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Abstract This work is concerned with a class of pde-constrained optimization problems
that are motivated by an application in radiotherapy treatment planning. Here the primary
design objective is to minimize the volume where a functional of the state violates a
prescribed level, but prescribing these levels in the form of pointwise state constraints
leads to infeasible problems. We therefore propose an alternative approach based on L1

penalization of the violation that is also applicable when state constraints are infeasible. We
establish well-posedness of the corresponding optimal control problem, derive �rst-order
optimality conditions, discuss convergence of minimizers as the penalty parameter tends
to in�nity, and present a semismooth Newton method for their e�cient numerical solution.
The performance of this method for a model problem is illustrated and contrasted with an
alternative approach based on (regularized) state constraints.

1 introduction

We consider optimal control problems governed by time-dependent linear partial di�erential
equations in which the region where the state (or a state-dependent quantity of interest) is greater
than or less than a prescribed level is to be minimized. Such problems arise in radiotherapy
treatment planning, where the aim is to deposit a radiative dose that is su�ciently strong to
destroy tumor tissue while also minimizing damage to nearby healthy organs and structures.
Speci�cally, on the target region (the tumor), we wish the accumulated output of the system
to exceed a prescribed level U , while on the risk region (the healthy organs), we wish the
accumulated output to not exceed a prescribed level L. Due to the usual close proximity of
tumors and healthy organs, it is usually not possible to satisfy these constraints over the whole
region. Since a successful therapy only requires destroying (i.e., depositing a dose exceeding U )
a su�ciently large part of the tumor, and healthy organs remain viable if a su�ciently large
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part remains undamaged (i.e., has a dose below L), volumetric conditions are used in evaluating
structure survival probabilities. These are usually given in the form of dose volume histograms
(DVH); see, e.g., [18].

Such performance criteria would be well-captured by an L0 penalty on the violation of the pre-
scribed limits. However, in light of well-established di�culties associated with L0 minimization,
we instead propose to use L1 penalty terms. Speci�cally, let Ω ⊂ Rn be given and letωT ,ωR ⊂ Ω
open, bounded, and disjoint be a target region and a risk region, respectively. Let E(y,u) = 0
denote the (time-dependent) partial di�erential equation with E : Y × V → W for suitable
Hilbert spaces W ,V ,Y , and let Cω : L2(0,T ;L1(ω)) → L1(ω) (for either ω = ωR or ω = ωT )
denote the integral operator y(t ,x) 7→

∫ T
0 χω (x)y(t ,x)dt . For the sake of generality, we also

include a quadratic tracking term with respect to a desired state z ∈ L2(Q) := L2(0,T ;L2(Ω)).
We then consider problems of the form

(1.1)


min
u ∈Vad, y ∈Y

1
2 ‖u‖

2
V +

α

2 ‖y − z‖
2
L2(Q ) + β1‖(CωTy −U )−‖L1(ωT ) + β2‖(CωRy − L)+‖L1(ωR )

s.t. E(y ,u) = 0,

where α ≥ 0 and β1, β2 > 0, (u)+ = max{0,u} and (u)− = min{0,u} pointwise almost every-
where, 0 < L < U , and Vad ⊂ V is a set of admissible controls to be speci�ed below. (Spatially
varying levels U and L are possible as well.) We call the addition of these L1-penalty terms
a volumetric dose penalization, in keeping with the motivational problem from radiotherapy
treatment planning. However, the subsequent analysis holds for more general linear PDEs. We
also note that the analysis in the following sections can be extended to problems where Cω
takes the form of some other bounded linear functional.

As an alternative approach, one could attempt to achieve the design objectives listed above
by way of pointwise state constraints on the target and risk region, i.e., by considering

(1.2)


min

u ∈Vad, y ∈Y

1
2 ‖u‖

2
V +

α

2 ‖y − z‖
2
L2(Q )

s.t. E(y,u) = 0,
CωTy ≥ U a.e. in ωT ,
CωRy ≤ L a.e. in ωR .

However, since the observed dose Cωy is continuous and L < U , this problem is not well-posed
due to the absence of feasible points ifωT andωR are not separated by a strictly positive distance;
as tumors can (and frequently will) occur inside vital organs, this separation does not hold in
practice. (We point out that any conforming discretization of the problem will also have no
feasible points.) For instance, even in simple academic problems as in [1], deploying a su�cient
radiative dose on the tumor is impossible unless high levels of dose are also placed on at least
some portion the healthy tissue. This becomes even more clear when additional constraints on
the control are included, such as requiring the control to be a beam of a certain shape or direction.
On the other hand, if we modify the problem so that the sets are open and disjoint, the reduced
cost functional for the continuous problem will not be weakly lower semi-continuous. If one
takes a cavalier approach and attempts to numerically solve the problem using, e.g., the method
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in [16], one will tend to run into a numerical locking as seen in the examples below. In contrast,
(1.1) su�ers from no such di�culty in these situations; while of course we can not expect a
solution which is feasible for (1.2) (if such a solution even exists), the theoretical existence and
uniqueness of solutions is still assured and we shall see that the numerical performance is still
reasonable. In particular, we stress that (1.1) should not be interpreted as an exact penalization
of (1.2).

Let us brie�y comment on related literature. A fully discretized formulation of the radiother-
apy treatment planning problem as a convex linear-quadratic program was studied in [19]. A
treatment strategy using convexi�ed DVH constraints was considered in [24]. However in these
two works, the physics of dose deposition are discretized using precomputed beamlets; this
simpli�cation gives signi�cant errors in dose calculation [22]. Regarding radiotherapy planning
and its formulation as a PDE-constrained optimization problem, we refer to, e.g., [1, 9, 10], which
use physically accurate models but do not treat DVH-based optimization strategies. Additionally,
such models involve a signi�cant increase in computational costs, meaning e�cient optimization
methods in the context of PDE-constrained problems are needed. Regarding L1-minimization, its
application to partial di�erential equations was �rst considered in the context of sparse control;
see, e.g., [13, 20]. L1 penalization of other constraints in optimal control of PDEs was treated in
[4, 6, 7]. In [12], an algorithm was developed which treats state-constrained problems, including
(1.2), via a sequence of smoothed penalizations. However, we note that here we are motivated
by problems where (1.2) does not have feasible solutions, for which such smoothing methods
are not directly applicable.

This work is organized as follows. In Section 2, we establish the well-posedness of (1.1), derive
necessary optimality conditions, and discuss the convergence of minimizers as β1, β2 → ∞.
We then turn in Section 3 to the issue of the numerical solutions of (1.1) via Moreau–Yosida
regularization, which allows for the use of a superlinearly convergent semismooth Newton
method. Numerical examples illustrating the behavior of the proposed approach are presented
in Section 4.

2 existence and optimality conditions

We �rst formulate (1.1) in reduced form. Let V := L2(0,T ;L2(ωC )),
Vad B

{
u ∈ L2(0,T ;L2(ωC )) : Umin ≤ u(t ,x) ≤ Umax for a.e. x ∈ ωC , t ∈ [0,T ]

}
denote the admissible control set and set Y := L2(0,T ;L2(Ω)). We assume that for every u ∈ V ,
the PDE E(y,u) = 0 admits a unique solutions y ∈ Y , meaning that we can introduce a
control-to-state operator

S : Vad → Y , u 7→ y solving E(y,u) = 0.

We make the assumption that S is a�ne and bounded from V to L2(Q). We note that since S is
a�ne, its Fréchet derivative S ′ C S0 is given by the solution of (4.1) with homogeneous initial
and boundary conditions.

We can thus formulate the reduced problem

(P) min
u ∈Vad

1
2 ‖u‖

2
V +

α

2 ‖Su − z‖
2
L2(Q ) + β1‖(CωT Su −U )−‖L1(ωT ) + β2‖(CωRSu − L)+‖L1(ωR ).
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The �nal two terms take the form of integrals of convex and Lipschitz continuous integrands
д+,д− : R→ R with

д+(v) := |(v − L)+ | =
{

0 v ≤ L,

v − L v ≥ L,
д−(v) := |(v −U )− | =

{
U −v v ≤ U ,

0 v ≥ U .

Since the bounded operators C and S are, respectively, linear and a�ne, the cost function is the
sum of convex and weakly lower semi-continuous functionals, and we obtain existence of an
optimal control by Tonelli’s direct method. Due to the strictly convex control cost term, the
optimal control is unique.

Theorem 2.1. For any α ≥ 0 and β1, β2 > 0, there exists a unique minimizer ū ∈ Vad to (P).

To derive optimality conditions, we apply the sum and chain rules of convex analysis. We
�rst compute the subdi�erentials of the volumetric dose penalty terms via the subdi�erentials
of the corresponding integrands д+,д−. Since both functions can be written as the maximum of
two convex and di�erentiable functions, their convex subdi�erential is given pointwise by the
convex hull of the derivatives of the active functions (see, e.g., [15, Corollary 4.3.2]), i.e.,

(2.1) ∂д+(v) =


{0} v < L,

{1} v > L,

[0, 1] v = L,

∂д−(v) =


{−1} v < U ,

{0} v > U ,

[−1, 0] v = U .

We also introduce the indicator function δVad : L2(0,T ;L2(ωC )) → R in the sense of convex
analysis, i.e., δVad(u) = 0 if u ∈ Vad and δVad(u) = ∞ else. Finally, set

G+ : L2(ωR) → R, y 7→
∫
ωR

д+(y(x))dx

and similarly for G− : L2(ωT ) → R. We then obtain the following optimality conditions.

Theorem 2.2. Let ū ∈ Vad be a minimizer of (P). Then there exist µ̄+ ∈ L∞(ωR) and µ̄− ∈ L∞(ωT )
such that

(OS)


ū = projVad

(
−S∗0

(
α(Sū − z) + β1C

∗
ωR µ̄

+ + β2C
∗
ωT µ̄

−) ) ,
µ̄+(x) ∈ ∂д+([CωRSū](x)) for a.e. x ∈ ωR ,

µ̄−(x) ∈ ∂д−([CωT Sū](x)) for a.e. x ∈ ωT .

Proof. Since (P) is convex, S and Cω are continuous, and all terms apart from the indicator
function are �nite-valued, the sum and chain rules of convex analysis (see, e.g., [8, Prop. I.5.6,
Prop. I.5.7]) yield the necessary optimality conditions

0 ∈ {ū} + {αS∗0(Sū − z)} + β1C
∗
ωT S

∗
0∂G

−(CωT Sū) + β2C
∗
ωRS

∗
0∂G

+(CωRSū) + ∂δVad(ū).

The fact that the subdi�erential of the convex integral functional G+ and G− can be computed
pointwise (see, e.g. [2, Prop. 16.50]) yields the second and third relation of (OS), which also
imply together with (2.1) the claimed boundedness of µ̄+ and µ̄−.
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Rearranging the remaining terms yields

− ū − S∗0
(
α(Sū − z) + β1C

∗
ωR µ̄

+ + β2C
∗
ωT µ̄

−) ∈ ∂δVad(ū),

which can be reformulated (denoting the second term on the left hand side by p̄ for brevity)

−ū + p̄ ∈ ∂δVad(ū) ⇔ p̄ ∈ {ū} + ∂δVad(ū)
⇔ ū ∈ (Id+∂δVad)−1(p̄) = projVad

(p̄),

using the fact that the proximal mapping of an indicator function of a convex set coincides with
the (single-valued) metric projection onto this set; cf., e.g., [2, Ex. 12.25]. This gives the �rst
relation of (OS). �

We �nally address the convergence β →∞. Note that we do not assume the existence of a
feasible solution to the state equation, which complicates the analysis and requires assuming
control constraints and complete continuity of S , i.e., that un ⇀ u in V implies Sun → Su in
L2(Q); this is in particular the case if the range of S embeds compactly into L2(Q). To simplify
the presentation, we assume in the following that β2 = cβ1 =: cβ for some c > 0.

Theorem 2.3. Assume that Vad is bounded and that S : V → L2(Q) is completely continuous. Then
for β →∞, the family {uβ }β>0 of solutions to (P) contains a subsequence converging strongly in
L2(0,T ;L2(ωC )) to a solution ū ∈ Vad of

(2.2) min
u ∈Vad

‖(CωT Su −U )−‖L1(ωT ) + c ‖(CωRSu − L)
+‖L1(ωR ).

Proof. Since Vad is closed and assumed to be bounded, the family {uβ }β>0 contains a sequence
{un}n∈N with un ⇀ ū ∈ Vad with βn → ∞. From Theorem 2.2, we obtain for every un a
corresponding pair of Lagrange multipliers

µ+n ∈ ∂G+(CωRSun), µ−n ∈ ∂G−(CωT Sun).

The pointwise characterization (2.1) implies that {µ+n }n∈N and {µ−n }n∈N are uniformly bounded
pointwise almost everywhere. We can thus extract a further subsequence such that µ+n ⇀ µ̄+

in L2(ωR) and µ−n ⇀ µ̄− in L2(ωT ). The complete continuity assumption on S now implies
Sun → Sū in L2(Q) and hence CωSun → CωSū in L2(ω) (where ω is either ωR or ωT ). Hence,
the weak-strong closedness of subdi�erentials (see, e.g., [2, Prop. 16.26]) yields that

(2.3) µ̄+ ∈ ∂G+(CωRSū), µ̄− ∈ ∂G−(CωT Sū).

By Schauder’s theorem and the re�exivity ofV and L2(Q), its adjoint S∗0 is completely continuous
as well. We can thus similarly deduce that

p+n := −S∗0(C∗ωR µ
+
n ) → −S∗0(C∗ωR µ̄

+) =: p̄+ and p−n := −S∗0(C∗ωT µ
+
n ) → −S∗0(C∗ωT µ̄

+) =: p̄−,

and that S∗0(Sun − z) → S∗0(Sū − z). Since Vad is a closed and convex subset of L2(0,T ;L2(ωC )),
the projection projVad

is continuous (see, e.g., [2, Prop. 12.27] and use again that projVad
coincides

with the proximal mapping of the corresponding indicator function δVad ). Hence, we obtain
from the �rst relation of (OS) that un → ū strongly as well.

By passing to a further subsequence, we can assume that the convergence is pointwise almost
everywhere. We now set p̄ := p̄+ + cp̄− and carry out a pointwise inspection of (OS).
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(i) p̄(x) > 0: In this case,

[−αS∗0(Sun − z) + βn(p+n + cp−n )](x) → ∞,

which implies that there exists an N ∈ N such that

ū(x) = un(x) = Umin for all n > N .

(ii) p̄(x) < 0: In this case,

[−αS∗0(Sun − z) + βn(p+n + cp−n )](x) → −∞,

and we similarly obtain the existence of an N ∈ N such that

ū(x) = un(x) = Umax for all n > N .

(iii) p̄(x) = 0: In this case, we can only conclude that ū(x) ∈ [Umin,Umax].

We thus conclude that

(2.4) ū(x) ∈


{Umin} if p̄(x) < 0,
[Umin,Umax] if p̄(x) = 0,
{Umax} if p̄(x) > 0.

Now consider (2.2). Proceeding as in the proof of Theorem 2.2, we deduce for any solution ū
the existence of µ̄+, µ̄− satisfying (2.3) such that

p̄ := −S∗0(CωR µ̄+ + cCωT µ̄−) ∈ ∂δVad(ū),

which can be reformulated as
ū = projVad

(ū + p̄).
By pointwise inspection, this is equivalent to (2.4). Hence, the limit of {un}n∈N satis�es the
optimality conditions for the convex problem (2.2) and is therefore a minimizer. �

Note that (2.2) does not coincide with (1.2), which may not admit a solution. However, if there
exists a solution to (1.2), it is obviously also a solution to (2.2). In fact, under this assumption,
standard arguments show weak subsequential convergence of uβ to a solution to (1.2); for the
sake of completeness, we give a full proof here.

Proposition 2.4. Assume that (1.2) admits a solution û. Then for β →∞, the family {uβ }β>0 of
solutions to (P) contains a subsequence converging weakly in L2(0,T ;L2(ωC )) to û.

Proof. By optimality of uβ for any β > 0 and feasibility of û, we have that

(2.5) 1
2 ‖uβ ‖

2
V ≤

1
2 ‖uβ ‖

2
V +

α

2 ‖Suβ − z‖
2
L2(Q ) + β ‖(CωT Suβ −U )

−‖L1(ωT )

+ cβ ‖(CωRSuβ − L)+‖L1(ωR )

≤ 1
2 ‖û‖

2
V +

α

2 ‖Sû − z‖
2
L2(Q ).
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Hence, the family {uβ }β>0 is bounded in V and therefore contains a sequence {un}n∈N ⊂ Vad
with βn → ∞ and un ⇀ u∗ for some u∗ ∈ V . Since Vad is convex and closed, it follows that
u∗ ∈ Vad as well. Similarly, we obtain from (2.5) that as β →∞,

‖(CωT Suβ −U )−‖L1(ωT ) + c ‖(CωRSuβ − L)
+‖L1(ωR ) ≤

1
β

(
1
2 ‖û‖

2
V +

α

2 ‖Sû − z‖
2
L2(Q )

)
→ 0.

By continuity of S andCω , and possibly after passing to a further subsequence such thatun → u∗

pointwise almost everywhere, we deduce from this that

CωT Su
∗ ≥ U a.e. in ωT , CωRSu

∗ ≤ L a.e. in ωR ,

and hence thatu∗ is feasible for (1.2) with y∗ = Su∗. Continuity of S , weak lower semi-continuity
of norms, and optimality of un = uβn then implies that

1
2 ‖u

∗‖2V +
α

2 ‖Su
∗ − z‖2L2(Q ) ≤ lim inf

n→∞
1
2 ‖un ‖

2
V +

α

2 ‖Sun − z‖
2
L2(Q )

≤ lim sup
n→∞

1
2 ‖un ‖

2
V +

α

2 ‖Sun − z‖
2
L2(Q ) + βn ‖(CωT Sun −U )

−‖L1(ωT )

+ cβn ‖(CωRSun − L)+‖L1(ωR )

≤ 1
2 ‖ũ‖

2
V +

α

2 ‖Sũ − z‖
2
L2(Q )

for any feasible ũ ∈ Vad, i.e.,u∗ is a minimizer of (1.2). Since (1.2) is strictly convex, the minimizer—
if it exists—must be unique, which yields u∗ = û. �

Since the penalization of feasible constraints is not the focus of this paper, we omit further
analysis of this case and refer instead to, e.g., [11, 12].

3 numerical solution

In order to solve (OSγ ), we proceed similarly to [5] and use a semismooth Newton method
applied to a Moreau–Yosida regularization of (OS).

3.1 moreau–yosida regularization

To compute the Moreau–Yosida regularization, we replace ∂д+ for γ > 0 by

∂д+γ (v) := (∂д+)γ (v) := 1
γ

(
v − proxγд+(v)

)
,

where
proxγд+(v) := arg min

w ∈R

1
2γ |w −v |

2 + д+(w) =
(
Id+γ ∂д+

)−1 (v)

is the proximal mapping of д+, which in Hilbert spaces coincides with the resolvent of ∂д+; see,
e.g., [2, Prop. 16.34]. Note that the proximal mapping and thus the Moreau–Yosida regularization
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of a proper and convex functional is always single-valued and Lipschitz continuous; see, e.g., [2,
Corollary 23.10].

We begin by calculating the proximal mapping of д+, proceeding as in [4]. For given γ > 0
and v ∈ R, the resolvent w := (Id+γ ∂д+)−1(v) is characterized by the subdi�erential inclusion

v ∈ (Id+γ ∂д+)(w) = {w} + γ ∂д+(w).

We now follow the case discrimination in the characterization (2.1) of the subdi�erential.

(i) w < L: In this case, we have that v = w < L.

(ii) w > L: In this case, we have that v = w + γ < L + γ , i.e., w = v − γ .

(iii) w = L: In this case, we have that v ∈ w + γ [0, 1] = [L,L + γ ].

Since these cases yield a complete and disjoint case distinction for v , we obtain

proxγд+(v) =


v if v < L,

L if v ∈ [L,L + γ ],
v − γ if v > L + γ .

Inserting this into the de�nition of the Moreau–Yosida regularization gives

∂д+γ (v) =


0 if v < L,
1
γ (v − L) if v ∈ [L,L + γ ],
1 if v > L + γ .

Proceeding similarly for д−, we �nd that

proxγд−(v) =


v + γ if v < U − γ ,
U if v ∈ [U − γ ,U ],
v if v > U ,

and hence

∂д−γ (v) =


−1 if v < U − γ ,
1
γ (v −U ) if v ∈ [U − γ ,U ],
0 if v > U .

Replacing the subdi�erentials with their regularizations in (OS), we arrive at the regularized
system

(OSγ )


uγ = projVad

(
−S∗0

(
α(Suγ − z) + β1C

∗
ωR µ

+
γ + β2C

∗
ωT µ

−
γ

))
,

µ+γ (x) = ∂д+γ ([CωRSuγ ](x)),
µ−γ (x) = ∂д−γ ([CωT Suγ ](x)).

Theorem 3.1. For every γ > 0, there exists (uγ , µ+γ , µ+γ ) satisfying (OSγ ).
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Proof. We use the fact that ∂д+γ (v) is the derivative of the (convex and lower semi-continuous)
Moreau envelope

д+γ (v) := д+(proxγд+(v)) +
1

2γ |v − proxγд+(v)|2,

see, e.g., [2, Remark 12.24, Proposition 12.29]; a similar statement holds for ∂д−γ . Hence, (OSγ )
are the necessary optimality conditions of the convex minimization problem

min
u ∈Vad

1
2 ‖u‖

2
V +

α

2 ‖Su − z‖
2
L2(Q ) + β1

∫
ωT

д−γ (CωT Su)dx + β2

∫
ωT

д+γ (CωRSu)dx ,

which admits a unique solution. �

Remark 3.2. The Moreau envelopes of д+ and д− are given by

д+γ (v) =


0 if v < L,

v − L − γ
2 if v > L + γ ,

1
2γ (v − L)2 if v ∈ [L,L + γ ],

д−γ (v) =


U −v − γ

2 if v < U − γ ,
0 if v > U ,

1
2γ (v −U )2 if v ∈ [U − γ ,U ].

The Moreau–Yosida regularization of the dose penalty is thus related to the well-known Huber-
regularization of the L1 norm.

We conclude this section by noting that solutions to the regularized system (OSγ ) converge
weakly up to a subsequence to solutions of the original optimality system (OS).

Theorem 3.3. The family {(uγ , µ+γ , µ−γ )}γ >0 contains a sequence {(uγn , µ+γn , µ
−
γn )}n∈N converging

weakly to a solution (ū, µ̄+, µ̄−) of (OS).

Proof. The proof follows largely that of [4, Prop. 2.5]. We note that for any u ∈ V , ∂д+γ (u(x))
and ∂д−γ (u(x)) are bounded almost everywhere, implying that {µ+γ }γ >0, {µ−γ }γ >0 are bounded.
As S∗0 and C∗ω are bounded linear operators, the family

{pγ }γ >0 :=
{
S∗0

(
α(Suγ − z) + β1C

∗
ωR µ

+
γ + β2C

∗
ωT µ

−
γ

)}
γ >0

is bounded in V . This in turn implies the boundedness of {uγ }γ >0. Hence, there exists a subse-
quence converging weakly to (p̂, û, µ̂+, µ̂−). As д+ and д− are convex, and therefore ∂д+(u(x))
and ∂д−(u(x)) are maximal monotone for every u ∈ V and almost every x ∈ ωC , we have by [3,
Lemma 1.3 (e)] that µ̂+, µ̂− satisfy the second and third relations of (OS). The �rst relation follows
similarly, using thatu = projVad

(p) is equivalent to the subdi�erential inclusion −u+p ∈ ∂δVad(u);
see the proof of Theorem 2.2. �

3.2 semismooth newton method

The solution to (OSγ ) can be computed using a semismooth Newton method [17, 23]. Since
h+γ := ∂д+γ and h−γ := ∂д−γ are globally Lipschitz continuous and piecewise di�erentiable, they
are Newton-di�erentiable with Newton derivatives given by

DNh
+
γ (v) =

{
1
γ if v ∈ [L,L + γ ],
0 else,

DNh
−
γ (v) =

{
1
γ if v ∈ [U − γ ,U ],
0 else,

9



see, e.g., [23, Proposition 2.26]. Similarly, proj{[Umin,Umax]}(v) is Newton-di�erentiable with New-
ton derivative given by

DN proj{[Umin,Umax]}(v) =
{

1 if v ∈ [Umin,Umax],
0 else.

This implies that the corresponding superposition operators H±γ : Lp (ω) → L2(ω) and projVad
:

Lp (0,T ;Lp (ωC )) → L2(0,T ;L2(ωC )) are semismooth, with Newton derivatives given pointwise
by, e.g.,

[DNH
+
γ (y)](x) =

1
γ
[χ+(y)](x) B

{
1
γ if y(x) ∈ [L,L + γ ],
0 else,

and DN projVad
(y) = χVad(y); see, e.g., [17, Example 8.12] or [23, Theorem 3.49].

To apply a semismooth Newton to (OSγ ), we rewrite it by eliminating µ+γ , µ−γ as

(3.1) uγ − projVad

(
−S∗0

(
α(Suγ − z) + β1C

∗
ωRH

+
γ (CωRSuγ ) + β2C

∗
ωTH

−
γ (CωT Suγ )

))
= 0.

We further assume that the range of S (and hence of S∗0) is contained (not necessarily compactly)
in Lp (0,T ;Lp (Ω)) for some p > 2, which also implies that the range of CωS is contained in
Lp (ω) for any subdomain ω ⊂ Ω. By the sum and chain rules of Newton derivatives (see,
e.g., [23, Theorem 3.69]) it then follows that (3.1)—taken as an operator equation T (u) = 0 for
T : L2(0,T ;L2(ωC )) → L2(0,T ;L2(ωC ))—is semismooth.

In order to establish the invertibility of the Newton step DNT (uk )δu = −T (uk ), i.e.,

(3.2)
(
Id+χVad(−F (uk ))DN F (uk )

)
δu = −

(
uk − projVad

(−F (uk ))
)

with

F (uk ) := S∗0

(
α(Suk − z) + β1C

∗
ωRH

+
γ (CωRSuk ) + β2C

∗
ωTH

−
γ (CωT Suk )

)
,

DN F (uk ) = S∗0

(
α +

β1
γ C
∗
ωR χ

+(CωRS0u
k )CωR +

β2
γ C
∗
ωT χ

−(CωT S0u
k )CωT

)
S0,

we note that DN F (uk ) = S∗0AS0 for a positive and self-adjoint linear operator A, and thus that
DN F (uk ) is positive and self-adjoint for every uk . We recall the following result:

Lemma 3.4 (Corrected Corollary 3.5 of [13, 14]). If A and B are positive, self-adjoint operators on
a Hilbert space, then σ (AB) ⊂ [0,∞).

As χVad(uk ) is positive for any uk , we have that σ
(
χVad(uk )DN F (uk )

)
⊂ [0,∞) for any k ∈ N,

and therefore Id+χVad(uk )DN F (uk ) is uniformly invertible.
By standard arguments, the uniform invertibility of the left-hand side operator in (3.2) together

with the Newton-di�erentiability implies local superlinear convergence of the corresponding
semismooth Newton method to a solution to (OSγ ) for each γ > 0; see, e.g., [17, Thm. 8.16], [23,
Chap. 3.2].

For given h, the application of the Newton derivative DN F (uk )h can be computed by solving
the linearized state equation (4.1), applying pointwise operations, and then solving the linearized

10



adjoint equation. Hence, the update δu solving the semismooth Newton step DNT (uk )δu =
−T (uk ) can be computed by a matrix-free Krylov method. To account for the local convergence
of Newton methods, we embed the semismooth Newton method within a homotopy strategy for
γ , where we start with a large γ which is successively reduced, taking the previous solution as
starting point. Furthermore, we include a backtracking line search based on the residual norm
‖T (uk+1)‖ to improve robustness. Our Python implementation of this approach, which was
used to generate the results below, can be downloaded from h�ps://www.github.com/clason/
dvhpenalty.

4 numerical examples

To illustrate the performance of the proposed approach, we compare the e�ects of the volumetric
dose penalty with the corresponding state constraints for a simple test problem. For the sake of
illustration, we consider in this section the partial di�erential equation

(4.1) E(y,u) = yt − c∆y − EωCu

for some c > 0 together with initial conditions y(0) = y0 ∈ L2(Ω) and homogeneous Dirichlet
boundary conditions, where EωC : V := L2(0,T ;L2(ωC )) → L2(0,T ;L2(Ω)) denotes the extension
by zero operator and ωC ⊂ Ω is the bounded control region. Let Ω = [−1, 1], T = 1, and
c = 0.01. We choose the target, risk and control regions as ωT := [−0.45, 0.45] \ [−0.2, 0.2],
ωR := [−0.7,−0.55] ∪ [0.55, 0.7] ∪ [−0.2, 0.2], and ωC = Ω, respectively. We further letU = 0.5,
L = 0.2, Umin = 0, and Umax = 2. Finally, we set α = 0 and accordingly do not require a target z.
To illustrate the in�uence of the dose penalty parameters β1 (on the target region) and β2 (on
the risk region), we set β1 = β̃1 |ωT |−1 and β2 = β̃2 |ωR |−1 for β̃1, β̃2 ∈ {105, 106}, where |ωT | = 0.5
and |ωR | = 0.7 denote the Lebesgue measure of the target and risk region, respectively; this
scaling ensures that if β̃1 = β̃2, both objectives are given equal weight. We also solve (1.2) with
identical parameters (where applicable) by solving a sequence of Moreau–Yosida-regularized
problems (which coincide with a quadratic penalization of the state constraints with penalty
parameter γ−1) via a semismooth Newton method as outlined in [16].

In the following, a spatial discretization with 256 nodes and 256 time steps are used. In order
to compute for each γ a minimizer of the Moreau–Yosida regularization of (1.1) and (1.2), we
use a maximum of 100 semismooth Newton iterations; each Newton step is computed using
GMRES with a maximum of 3000 iterations. We initialize γ as γ0 := max{β1, β2} for (1.1) and
as γ0 := 1 for (1.2), and in both cases reduce γ by a factor of 2 as long as the Newton method
converges until γ reaches 10−10γ0 for solving (1.1) and 10−7γ0 for solving (1.2), respectively. The
convergence criterion used for the Newton iterations is a reduction to below 10−6 of the norm
of the optimality system. The results for solving (1.2) and (1.1) are given in Figure 1 and Figures 2
to 5, respectively, for the last value ofγ (noted below) for which the semismooth Newton method
converged. In each case, the dose volume histogram shows the fraction of the area of the regions
ωR and ωT where the doseCωRy andCωTy is at least that level (i.e., the objective is to minimize
the area of the shaded regions between the dotted lines and the curves).

We �rst note that the solution of the regularized state-constrained problem, shown in Figure 1
for the �nal γ ≈ 1.22 · 10−4, gives poor results. This is not unexpected: the problem (1.2) is clearly
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Figure 1: Dose information for dose-constrained problem (1.2)

infeasible; we see that for all γ , we have CωTy < U everywhere while CωRy > L on around 13%
of the risk region. This means that one primary design objective—exceeding the minimal dose
U on ωT —is not achieved at all.

Meanwhile, the solution to the regularized dose-penalized problem for β̃1 = β̃2 = 105 and
�nal γ/γ0 ≈ 4.66 · 10−10 shown in Figure 2 is clearly superior: a signi�cant portion (45%) of the
target region ωT has at least a dose of U , while the area where CωRy > L is slightly smaller
(11%). Increasing β̃1 to 106 (see Figure 3, with �nal γ/γ0 ≈ 1.16 · 10−10) further improves the
dose coverage on the target (81%), but does so at the expense of increased violation of the dose
constraint on the risk region (22% instead of 11%). Conversely, increasing β̃2 to 106 while keeping
β̃1 at 105 (see Figure 4, with �nal γ/γ0 ≈ 1.16 · 10−10) reduces the dose violation on the risk region
to 2%, but the coverage on the target is now only 42%. Finally, increasing both β̃1 and β̃2 to 106

(see Figure 5, with �nal γ/γ0 ≈ 4.66 · 10−10) yields a dose coverage on the target of 84%, while
the dose violation on the risk region is still only 11%. Thus, in contrast to state constraints, the
penalization of the dose violation is able to balance the competing objectives.

This comparison is more evident in Table 1 and Table 2, where we report for selected values
of γ the number of Newton steps needed as well as the fraction of the area of ωT where the
resultingCωTy is belowU and the fraction of the area ofωR where the resultingCωRy is above L.
We see that for regularized state constraints, the regularization approach becomes signi�cantly
more di�cult for even modestly small γ while failing to give reasonable performance, which is
again not surprising since the limit problem is infeasible. In comparison, signi�cantly fewer
Newton iterations are required for the dose penalty, and the solutions to (OSγ ) give better
performance for each γ . (Here it should be pointed out that because the ratio β/γ enters into
the Newton system for the dose penalization, the values of γ are not directly comparable to the
case of state constraints, where 1/γ enters into the Newton system.) It can also be seen that, at
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Figure 2: Dose information for dose-penalized problem (1.1) with β̃1 = 105, β̃2 = 105
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Figure 3: Dose information for dose-penalized problem (1.1) with β̃1 = 106, β̃2 = 105
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Figure 4: Dose information for dose-penalized problem (1.1) with β̃1 = 105, β̃2 = 106
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Figure 5: Dose information for dose-penalized problem (1.1) with β̃1 = 106, β̃2 = 106
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least in this con�guration, putting more weight on the target region increases the di�culty of
the problem signi�cantly at the end of the homotopy loop, while putting more or equal weight
on the risk region requires fewer Newton iterations for each value of γ . We note that after
γ/γ0 = 1.86 · 10−9, the volume fraction where the dose exceeds L (respectively, is below U ) on
ωR (resp. ωT ) is unchanged for several iterations in the homotopy (not all of which are shown
in the tables). Finally, we remark that for β̃1 = β̃2 ∈ {107, 108, 109}, the �nal volume fractions
where the dose on ωR is above L is consistently 11%, and where the dose on ωT is below U is
consistently 9.7%; for β̃1 = β̃2 ≥ 1010, the �nal volume fractions are consistently 17.8% and 6.5%,
respectively, which is to be expected in light of Theorem 2.3.

To illustrate the convergence behavior of the semismooth Newton method, Table 4 shows
the iteration history for β̃1 = β̃2 = 106 and γ = 10−7γ0 (without warmstarts). For each iteration
k , the step length τk returned by the line search and the norm of the residual in the (regular-
ized) optimality condition (3.1) are reported. For some initial steps, moderate damping of the
semismooth Newton steps is required, leading to linear convergence. Starting from iteration 7,
full Newton steps are taken, and superlinear convergence can be observed.

Finally, removing the central section of the risk region—so that now ωR = [−0.7,−0.55] ∪
[0.55, 0.7]—results in (1.2) admitting a feasible solution. Figure 6 shows the dose pro�le and dose
volume histogram for solving the regularized dose-constrained problem using β̃1 = β̃2 = 107

and �nal γ ≈ 2 · 10−11γ0. We see that the solution satis�es the constraints in (1.2) for su�ciently
large β , as expected from Proposition 2.4.

5 conclusions

Volumetric dose constraints arising in, e.g., radiotherapy treatment planning can be formulated
using L1 penalization. This leads to a non-di�erentiable optimal control problem for partial
di�erential equations that can be analyzed and shown to be well-posed using tools from convex
analysis. After introducing a Moreau–Yosida regularization, these problems can be solved
e�ciently by a semismooth Newton method together with a homotopy in the regularization
parameter. Our numerical examples illustrate that this approach signi�cantly outperforms
formulations via pointwise state constraints, in particular with respect to the dose volume
histograms commonly used to evaluate structure survival probabilities.

Natural next steps are the extension of the proposed approach to radiative transport equations—
which are challenging both analytically and numerically due to their hyperbolic nature and

Table 1: Results for dose-constrained problem (1.2): number of SSN steps, volume fraction (as
percentage) for risk and target regions for di�erent values of γ (∗ denotes failure to
converge)
γ/γ0 1.25 · 10−1 9.77 · 10−4 4.88 · 10−4 2.44 · 10−4 1.22 · 10−4 6.10 · 10−5

#SSN 1 1 1 6 24 ∗
% ωR above L 0 0 6.67 11.11 13.33 ∗
% ωT below U 100 100 100 100 100 ∗
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Table 2: Results for dose-penalized problem (1.1): number of SSN steps, volume fraction (as
percentage) for risk and target regions for di�erent values of γ (∗ denotes failure to
converge)

(a) β̃1 = 105, β̃2 = 105

γ/γ0 1.56 · 10−2 1.22 · 10−4 1.91 · 10−6 1.49 · 10−8 1.86 · 10−9 1.16 · 10−10

#SSN 1 1 3 3 4 ∗
% ωR above L 0 0 13.33 13.33 11.11 ∗
% ωT below U 100 100 100 54.84 54.84 ∗

(b) β̃1 = 106, β̃2 = 105

γ/γ0 1.56 · 10−2 1.22 · 10−4 1.91 · 10−6 1.49 · 10−8 1.86 · 10−9 1.16 · 10−10

#SSN 1 1 3 5 7 27
% ωR above L 0 0 15.56 24.44 24.44 22.22
% ωT below U 100 100 100 29.03 19.35 19.35

(c) β̃1 = 105, β̃2 = 106

γ/γ0 1.56 · 10−2 1.22 · 10−4 1.91 · 10−6 1.49 · 10−8 1.86 · 10−9 1.16 · 10−10

#SSN 1 1 2 3 5 8
% ωR above L 0 0 0 4.44 2.22 2.22
% ωT below U 100 100 100 70.97 58.06 58.06

(d) β̃1 = 106, β̃2 = 106

γ/γ0 1.56 · 10−2 1.22 · 10−4 1.91 · 10−6 1.49 · 10−8 1.86 · 10−9 1.16 · 10−10

#SSN 1 1 3 10 10 ∗
% ωR above L 0 0 13.33 13.33 11.11 ∗
% ωT below U 100 100 100 19.35 16.13 ∗

Table 4: Convergence of semismooth Newton method forγ = 10−7γ0: step length τk and achieved
residual norm ‖T (uk )‖ in each iteration k

k 1 2 3 4 5 6

τk 1.00 1.00 0.50 0.125 0.50 0.50
‖T (uk )‖ 9.862 · 102 9.862 · 102 2.449 · 102 2.065 · 102 1.782 · 102 1.007 · 102

k 7 8 9 10 11 12

τk 1.00 1.00 1.00 1.00 1.00 1.00
‖T (uk )‖ 2.083 · 101 4.083 · 100 1.295 · 10−1 8.216 · 10−6 4.665 · 10−11 1.724 · 10−14
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Figure 6: Dose information for feasible dose-penalized problem (1.1) with β̃1 = 107, β̃2 = 107

their increased dimensionality (angular dependence)—and the application to concrete problems
in radiotherapy treatment planning. Here we note that the analysis in Section 2 and Section 3.1
only relies on the assumption that S is a completely continuous a�ne operator between Hilbert
spaces. Recent work on using realistic models for radiotherapy treatment [10, 21] has established
the complete continuity of the relevant control-to-state operator. While in this case we cannot
rely on the range assumption providing the norm gap needed to apply a semismooth Newton
method, we point out that this can be replaced by including an additional smoothing step in
the algorithm as in [23]; the norm gap (and hence the range assumption) is also not required
when directly considering the �nite-dimensional discretized optimality conditions. This is left
for future work.
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