Skip to main content
Log in

Reliable a posteriori error estimation for state-constrained optimal control

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We derive a reliable a posteriori error estimator for a state-constrained elliptic optimal control problem taking into account both regularisation and discretisation. The estimator is applicable to finite element discretisations of the problem with both discretised and non-discretised control. The performance of our estimator is illustrated by several numerical examples for which we also introduce an adaptation strategy for the regularisation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.: A Posteriori error estimation in finite element analysis. Pure and applied mathematics: a Wiley series of texts, monographs and tracts. Wiley (2000)

  2. Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Strouboulis, T., Whiteman, J.: Finite Elements: An Introduction to the Method and Error Estimation. Oxford University Press, Oxford (2011)

    MATH  Google Scholar 

  4. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Partial Differential Equations. No. 1 in Lectures in Mathematics. ETH Zürich. Birkhäuser (2003)

  5. Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori control in FEM on unstructured grids. Part I: Low-order conforming, non-conforming and mixed FEM. Math. Comp. 71(239), 945–969 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benedix, O., Vexler, B.: A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Computat. Optim. Appl. 44(1), 3–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  9. Bergounioux, M., Haddou, M., Hintermüller, M., Kunisch, K.: A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11(2), 495–521 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonito, A., Nochetto, R.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48(2), 734–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24(6), 1309–1318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casas, E., Mateos, M., Vexler, B.: New regularity results and improved error estimates for optimal control problems with state constraints. ESAIM Control Optim. Calc. Var. 3(20), 803–822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24(6), (2008)

  15. Ciarlet, P.: The finite element method for elliptic problems. SIAM classics in applied mathematics, Philadelphia (2002)

  16. Gaspoz, F., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29(4), 917–936 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Günther, A., Hinze, M.: A posteriori error control of a state-constrained elliptic control problem. J. Numer. Math. 16, 307–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hintermüller, M., Hinze, M.: Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J. Numer. Anal. 47(3), 1666–1683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hintermüller, M., Hoppe, R.: Goal-oriented adaptivity in control-constrained optimal control of partial differential equations. SIAM J. Control Optim. 47(4), 1721–1743 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hintermüller, M., Hoppe, R.: Goal-oriented mesh adaptivity for mixed control-state constrained elliptic optimal control problems. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Périaux, J., Pironneau O. (eds.) Applied and Numerical Partial Differential Equations, Comput. Methods Appl. Sci., vol. 15, pp. 97–111. Springer, Berlin (2010)

  21. Hintermüller, M., Hoppe, R., Iliash, Y., Kieweg, M.: An a posteriori error analysis of adaptive finite element methods for distributed elliptic optimal control problems with control constraints. ESAIM Control Optim. Calc. Var. 14(3), 865–888 (2008)

    Article  MATH  Google Scholar 

  22. Hintermüller, M., Kunisch, K.: Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17(1), 159–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hintermüller, M., Schiela, A., Wollner, W.: The length of the primal-dual path in Moreau-Yosida-based path-following methods for state constrained optimal control. SIAM J. Optim 24(1), 108–126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hinze, M., Meyer, C.: Variational discretization of Lavrentiev-regularized state constrained elliptic control problems. Comput. Optim. Appl. 46(3), 487–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hinze, M., Schiela, A.: Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment. Comput. Optim. Appl. 48(3), 581–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoppe, R., Kieweg, M.: Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems. Comput. Optim. Appl. 46(3), 511–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohls, K., Rösch, A., Siebert, K.: A posteriori error analysis of optimal control problems with control constraints. SIAM J. Cont. Optim. 52(3), 1832–1861 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kossacký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55(3), 275–288 (1994)

    Article  MathSciNet  Google Scholar 

  30. Krumbiegel, K., Rösch, A.: On the regularization error of state constrained Neumann control problems. Control Cybernet. 37(2), 369–392 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Krumbiegel, K., Rösch, A.: A virtual control concept for state constrained optimal control problems. Comput. Optim. Appl. 43(2), 213–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunisch, K., Rösch, A.: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13(2), 321–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kurcyusz, S., Zowe, J.: Regularity and stability for the mathematical programming problem in Banach spaces. Appli. Math. Optim. 5(1), 49–62 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, R., Liu, W., Yan, N.: A posteriori error estimates of recovery type for distributed convex optimal control problems. J. Sci. Comput. 33(2), 155–182 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems. Adv. Comput. Math 15(1–4), 285–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Meyer, C.: Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control Cybernet. 37(1), 51–85 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Meyer, C., Prüfert, U., Tröltzsch, F.: On two numerical methods for state-constrained elliptic control problems. Optim. Methods Softw. 22(6), 871–899 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Meyer, C., Rademacher, A., Wollner, W.: Adaptive optimal control of the obstacle problem. SIAM J. Sci. Comp. 37(2), A918–A945 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Morin, P., Siebert, K.G., Veeser, A.: A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18(5), 707–737 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  41. Rösch, A., Wachsmuth, D.: A posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120(4), 733–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schiela, A.: Barrier methods for optimal control problems with state constraints. SIAM J. Optim 20(2), 1002–1031 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schiela, A., Wollner, W.: Barrier methods for optimal control problems with convex nonlinear gradient state constraints. SIAM J. Optim 21(1), 269–286 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Schmidt, A., Siebert, K.: Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA, vol. 42. Springer (2005)

  45. Siebert, K.: A convergence proof for adaptive finite elements without lower bounds. IMA J. Numer. Anal. 31(3), 947–970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second order à coefficients discontinus. Ann. Inst. Fourier 15(1), 189–257 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  47. Steinig, S.: Adaptive finite elements for state-constrained optimal control problems - convergence analysis and a posteriori error estimation. Ph.D. thesis, Universität Stuttgart (2014)

  48. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods, and applications. Grad. Stud. Math . American Mathematical Society (2010)

  49. Veeser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47(3), 2387–2405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Advanced Numerical Mathematics. Wiley, Chichester (1996)

    MATH  Google Scholar 

  51. Vexler, B., Wollner, W.: Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Contr. Opt. 47(1), 509–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wollner, W.: A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints. Comput. Optim. Appl. 47(1), 133–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Steinig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rösch, A., Siebert, K.G. & Steinig, S. Reliable a posteriori error estimation for state-constrained optimal control. Comput Optim Appl 68, 121–162 (2017). https://doi.org/10.1007/s10589-017-9908-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9908-7

Keywords

Mathematics Subject Classification

Navigation