Skip to main content
Log in

Approximate ADMM algorithms derived from Lagrangian splitting

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents two new approximate versions of the alternating direction method of multipliers (ADMM) derived by modifying of the original “Lagrangian splitting” convergence analysis of Fortin and Glowinski. They require neither strong convexity of the objective function nor any restrictions on the coupling matrix. The first method uses an absolutely summable error criterion and resembles methods that may readily be derived from earlier work on the relationship between the ADMM and the proximal point method, but without any need for restrictive assumptions to make it practically implementable. It permits both subproblems to be solved inexactly. The second method uses a relative error criterion and the same kind of auxiliary iterate sequence that has recently been proposed to enable relative-error approximate implementation of non-decomposition augmented Lagrangian algorithms. It also allows both subproblems to be solved inexactly, although ruling out “jamming” behavior requires a somewhat complicated implementation. The convergence analyses of the two methods share extensive underlying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The analysis in [21] has this formal assumption, but it is not clear whether it is absolutely necessary. For ISTA and FISTA it is an definite requirement, although in the backtracking variant of FISTA we need not know the exact value of the Lipschitz constant.

  2. These methods do have box-constrained variants, which correspond to the particular case that g is the indicator function of a “box”. However, such algorithms tend to have rather intricate “hybrid” structure and are dependent on the facial structure of the box.

References

  1. Alves, M.M., Svaiter, B.F.: A note on Fejér-monotone sequences in product spaces and its applications to the dual convergence of augmented Lagrangian methods. Math. Program. 155(1–2), 613–616 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, Philadelphia (2014)

    Book  MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  5. Chambolle, A., DeVore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dettling, M., Bühlmann, P.: Finding predictive gene groups from microarray data. J. Multivar. Anal. 90(1), 106–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duarte, M.F., Davenport, M.A., Takbar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling: building simpler, smaller, and less-expensive digital cameras. IEEE Sig. Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  8. Eckstein, J.: Splitting methods for monotone operators with applications to parallel optimization. Ph.D. thesis, Massachusetts Institute of Technology (1989)

  9. Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4(1), 75–83 (1994)

    Article  Google Scholar 

  10. Eckstein, J.: A practical general approximation criterion for methods of multipliers based on Bregman distances. Math. Program. 96(1), 61–86 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Silva, P.J.S.: A practical relative error criterion for augmented Lagrangians. Math. Program. 141(1–2), 319–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckstein, J., Yao, W.: Approximate versions of the alternating direction method of multipliers. Tech. Rep. 2016-01-5276, Optimization Online (2016)

  14. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Fortin, M., Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15. North-Holland, Amsterdam (1983)

    Google Scholar 

  16. Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Article  Google Scholar 

  17. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Studies in Mathematics and its Applications, vol. 15, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  18. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 545–552. MIT Press, Cambridge (2005)

    Google Scholar 

  19. He, B.: Inexact implicit methods for monotone general variational inequalities. Math. Program. 86(1), 199–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, B., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1), 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y., Liu, H.: A Barzilai-Borwein type method for minimizing composite functions. Numer. Algorithms 69(4), 819–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kogan, S., Levin, D., Routledge, B.R., Sagi, J.S., Smith, N.A.: Predicting risk from financial reports with regression. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics. NAACL ’09, pp. 272–280. Association for Computational Linguistics, Stroudsburg, PA, USA (2009)

  23. Lichman, M.: UCI machine learning repository (2013). URL http://archive.ics.uci.edu/ml

  24. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(3), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ng, A.Y.: Feature selection, \(L_1\) vs. \(L_2\) regularization, and rotational invariance. In: Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004, pp. 615–622 (2004)

  26. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  27. Polyak, B.T.: Introduction to Optimization. Optimization Software Inc, New York (1987)

    MATH  Google Scholar 

  28. Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Michigan Math. J. 16, 397–407 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  30. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadephia (1974)

    Book  MATH  Google Scholar 

  31. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Math. Oper. Res. 25(2), 214–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Xie, J., Liao, A., Yang, X.: An inexact alternating direction method of multipliers with relative error criteria. Optim. Lett. 11(3), 583–596 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, X.M.: The improvement with relative errors of He et al’.s inexact alternating direction method for monotone variational inequalities. Math. Comput. Model. 42(11–12), 1225–1236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Eckstein.

Additional information

This work was funded in part by the National Science Foundation under Grant CCF-1115638. The authors would also like to thank Heinz Bauschke for suggesting the Proof of Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckstein, J., Yao, W. Approximate ADMM algorithms derived from Lagrangian splitting. Comput Optim Appl 68, 363–405 (2017). https://doi.org/10.1007/s10589-017-9911-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9911-z

Keywords

Mathematics Subject Classification

Navigation