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Abstract We propose new algorithms for (i) the local optimization of bound con-
strained quadratic programs, (ii) the solution of general definite quadratic programs,
and (iii) finding either a point satisfying given linear equations and inequalities or
a certificate of infeasibility. The algorithms are implemented in Matlab and tested
against state-of-the-art quadratic programming software.
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1 Introduction

We consider the quadratic programming problem with bound constraints

min cT x + 1
2 x

T Gx
s.t. x ∈ x,

(1)

where c ∈ R
n , G is a symmetric n × n matrix, not necessarily semidefinite,

x := [x, x] = {x ∈ R
n | xi ≤ xi ≤ xi , i = 1, . . . , n} (2)
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is a box in R
n , and infinite bounds are permitted. Quadratic programming problems

with simple bounds form an important class of nonlinear optimization problems,
including for positive definite G linear least squares problems with nonnegativity
constraints and the dual problems of linearly constrained least distance problems, and
for indefinite G a number of combinatorial problems such as the maximum clique
problem or the maximum cut problem (see, e.g., Floudas and Pardalos [4]). If G is
positive semidefinite then every local minimizer is a global minimizer. On the other
hand, the global optimization problem is quite difficult in the indefinite case, where the
reliable solution needs quite different techniques (relaxation and branch and bound);
see, e.g., several articles in the collection by Lee and Leyffer [17]. Here we only dis-
cuss the local solution of indefinite quadratic programs, needed repeatedly in branch
and bound frameworks for finding good starting points for a global solver.

There are many optimization algorithms designed for finding local optima of
quadratic programs under various conditions. A fairly comprehensive list of algo-
rithms is maintained by Gould and Toint [9]. For strictly convex bound constrained
quadratic programs, many algorithms are available. For a comparison of solvers for
strictly convex bound constrained quadratic programs see Voglis and Lagaris [24].
We are interested in two more general situations: bound constrained quadratic pro-
grams without restriction (they may be strictly convex, rank-deficient or indefinite),
and strictly convex quadratic programs with general linear constraints. Because of
duality, the second problem class may be viewed as a special case of the first, hence
is still significantly simpler than a general quadratic program.

MINQ5 [20] is a publicly available Matlab program for bound constrained
quadratic programming and strictly convex general quadratic programming, based
on rank 1 modifications. It finds a local minimizer of the problem (1). If G is positive
semidefinite, any local optimizer is global, so it finds (in theory, assuming exact arith-
metic) the global optimum. The method combines coordinate searches and subspace
minimization steps. The latter solve safeguarded equality constrained QPs whenever
the coordinate searches no longer change the active set. Rank 1 updates, in a format
suited for both the dense and sparse case, are used to keep the linear algebra reasonably
cheap.

Applications ofMINQ5 to bound constrained quadratic programs include the calcu-
lation of the formation constants for copper(I)-chloride complexes [19], subpixel land
cover mapping [3], an optimal control model of redundant muscles in step-tracking
wrist movements [10], entropy estimation for high-dimensional finite-accuracy data
[16], finding the best code to represent a speech signal [23], the calculation of a non-
negative sparsity induced similarity measure for cluster analysis of spam images [7],
a method for calibrating the scores of biased reviewers [22], a model for the braking
behavior of industrial robots [2], and finding the filter coefficients for a filtering tech-
nique to denoise the far-field pattern in the presence of noise [21]. Moreover, many
nonlinear optimization techniques are based on solving auxiliary quadratic problems
[6,14,18,24,25]. Kanzow and Petra [15] used MINQ5 to solve a trust-region sub-
problem in a scaled filter trust region method. Finally, MINQ5 is an integral part of
the global optimization algorithm MCS [12] and the noisy optimization algorithm
SNOBFIT [13].
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In some of our applications we encountered bound constrained quadratic programs
where MINQ5 turned out to be very slow. This provided the impetus for developing a
new quadratic programming algorithm. Like MINQ5 it employs coordinate searches
and subspace steps, but the latter use smaller subspaces than in MINQ5. In contrast
to MINQ5, we do not use rank 1 updates but instead make direct factorizations. In
analogy to the MINQ5 package [20] (named afterMatlab 5), we call our new algo-
rithm MINQ8. As MINQ5, our Matlab 8 implementation of MINQ8 solves both
the general bound constrained quadratic program and the related problems discussed
in Sect. 4. The software is freely available at http://www.mat.univie.ac.at/~neum/
software/minq/, together with the drivers for the problem classes from Sect. 5.3.

In Sect. 2 we start with a motivation of the ingredients of MINQ8, introduce some
notation, describe themain subprograms of the algorithm in detail in the order inwhich
they are called in MINQ8, discuss the modifications needed if some bound is infinite
and finally present MINQ8 as a whole. We examine properties of the points obtained
by the algorithm and prove convergence under the assumption of strict convexity and
special settings of the parameters in Sect. 3. In Sect. 4 we describe howMINQ8 can be
applied to general positive definite quadratic programs. Finally, in Sect. 5 we make an
extensive comparison ofMINQ8,MINQ5, the algorithms contained in thequadprog
function of Matlab, and NewtonKKTqp [1] on different test problems.

2 The MINQ8 algorithm

MINQ8 is designed to solve the problem of finding a local minimizer of a bound
constrained (definite or indefinite) quadratic problem of the form

min f (x) := γ + cT x + ρ(Ax − b)
s.t. x ∈ x,

(3)

where γ ∈ R, c ∈ R
n , b ∈ R

m , A ∈ R
m×n , x is as in (2), and ρ : Rm → R is given

by

ρ(z) := 1

2
zT Dz,

where D ∈ R
m×m is a diagonal matrix. Thus there are n variables and each residual

Ax−b hasm components.Note that this formofwriting a quadratic function γ +cT x+
1
2 x

T Gx is not a restriction since each symmetric matrix G ∈ R
n×n can be written as

G = AT DA, A, D ∈ R
n×n , D a diagonal matrix, using a spectral factorization or an

LDLT factorization of G.
By a well-known theorem by Frank and Wolfe [5], (3) has a finite solution if and

only if { f (x) | x ∈ x} is bounded below. In this case, the necessary conditions for
local optimality are given by the Kuhn–Tucker conditions

gi = 0 if xi < xi < xi ,

gi ≥ 0 if xi = xi < xi ,
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gi ≤ 0 if xi < xi = xi ,

where
g := c + AT D(Ax − b) (4)

denotes the gradient of f at x . Therefore the active set at a point x , defined as

K (x) := {i | xi = xi or xi = xi },

plays an important role. The variables xi with i ∈ K (x) are called active (at the
respective bound); the variables that are not active are called inactive (or free) vari-
ables. We say that two points x, y ∈ x have the same activities iff K (x) = K (y) and
xi = yi ∀i ∈ K (x) = K (y).

The easiest case is that of an unconstrained convex quadratic optimization problem,
where the global optimizer can be computed easily since the Kuhn–Tucker conditions
reduce to a linear system. If x ∈ R

n with the corresponding gradient g and the Hessian
matrix G, the global minimum is attained at x + p with Gp = −g. On the other hand,
in the non-convex case even the problem of checking the existence of a Kuhn–Tucker
point is NP-hard; cf. Horst et al. [11]. If the unconstrained minimizer of a convex
quadratic optimization problem is not contained in x and in all other cases where
the objective function is bounded on the box x, minimizers occur at the boundary.
Therefore it is important to find the correct activities.

For any putative active set, the corresponding variables can be fixed, and the remain-
ing part of the gradient can be set to zero by solving a linear system. If the Hessian
is positive definite on the subspace, this gives the optimal point in the correspond-
ing subspace and defines part of the subspacestep (with modifications described
below). The best feasible point on the entire line through the current best point and
this point (if these are distinct) defines the result of this step. Thus a two-sided line
search is performed; a directional line search would not always be sufficient, since the
Hessian on the subspace might be indefinite or negative definite.

The solution of these linear systems is the most time-consuming part of the algo-
rithm; hence it pays to try to make the subspace dimension small before performing
the subspace step. This is done using three different techniques.

To increase the active set we use (as in MINQ5) a greedy method fixbounds
that fixes single variables as long as the objective function decreases.

A further dimension reduction is possible by noting that some coordinates are
unlikely to contribute much to the subspace step. These coordinates are determined
by a simple heuristic and form together with the active coordinates an extended active
set. The subspace direction is then computed only for the lower-dimensional subspace
spanned by the complementary reduced inactive set, and is augmented to a direction
in the full inactive set by components pointing towards the more favorable bound of
this component.

Amore expensive specialreductionstep is done in cases where this still leaves
more reduced inactive variables than the number of rows of A. Indeed, in this case
we can fix more bounds by an approximate minimization on the subspace where Ax
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MINQ8: general definite and bound constrained indefinite. . . 355

is fixed. Compared to MINQ5, this is another theoretical innovation of the present
algorithm.

These steps are alternated until subspacestep does not change the active set
any more. Then we try to free some of the bounds, which is done in freebounds,
where a two-sided line search is performed along a direction p that would be optimal
in the case of a separable problem.

Notation.We first introduce some notation, which will be used in the remainder of
this section. ei denotes the i th standard unit vector of Rn . We write Ai, j for the (i, j)-
entry of A. If I is a subset of {1, . . . ,m} and J a subset of {1, . . . , n}, AI,J denotes
the submatrix of A with the row indices taken from I and the column indices from J ,
i.e., AI,J := (Ai, j )i∈I, j∈J , AI,: the submatrix AI,: := (Ai, j )i∈I,1≤ j≤n , and similarly
A:,J := (Ai, j )1≤i≤m, j∈J . If J = {l}, we also write A:,l instead of A:,J , analogously
for the other cases of one-element index sets. xJ is the subvector of x with the indices
taken from the set J , and the vector |x | := (|x1|, . . . , |xn|)T is obtained by taking the
absolute values of all components of x .

We also introduce the quantities

di := 1

2
AT:,i DA:,i , i = 1, . . . , n. (5)

They are independent of the point x and stay constant during the algorithm. On the
other hand, the gradient (4) must be computed at each point x . The minimum of the
difference

Δ f := f (x + αei ) − f (x) = αgi + α2di

in function value when changing the i th coordinate within the box, so that x+αei ∈ x,
is attained at one of

α = αi := xi − xi , Δ f = Δ fi := αi (gi + αi di ), (6)

α = αi := xi − xi , Δ f = Δ fi := αi (gi + αi di ), (7)

α = α̂i := − gi
2di

, Δ f = Δ̂ fi := gi
2

α̂i = − g2i
4di

, (8)

where the minimizer can be different from αi and αi only if di > 0 and αi < α̂i < αi .
In the first five subsections of this section, we describe the ingredients of the algo-

rithm in detail under the condition that all bounds are finite. Subsequently we deal with
the possibility of infinite bounds, and in the final subsection the MINQ8 algorithm is
presented as a combination of its ingredients.

2.1 fixbounds

The subprogram fixbounds cyclically tries to fix as many variables at bounds as
possible in order to be left with a not too large set of inactive variables to be optimized
in the subsequent subspace step.
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Let ind be an index vector that sorts the components of d in ascending order.
Then the application of fixbounds to a point x is described in Algorithm 1 for the
case that the function is bounded below, where Δ fi and Δ fi are defined by (6) and
(7). Note that we use the equality sign for assignment as well as comparison in our
pseudocodes.

Input: x , d, ind, problem characteristics
while the loop changes the point do

for j = 1 to n do
i = ind( j)
Compute Δ fi and Δ fi
if min(Δ fi , Δ fi ) < 0 then

Set xi to the boundary value yielding the lower function value
end

end
end
Output: x , f (x)

Algorithm 1: fixbounds

After fixbounds has been completed it is not possible to improve the function
value by fixing an additional bound. Let I be the inactive set of the point x obtained
by fixbounds. Then the minimum of f (x + αei ), x + αei ∈ x, is attained for
α = α̂i ∈ (αi , αi ) for i ∈ I and thus di > 0, Δ fi ≥ 0, Δ fi ≥ 0, and Δ̂ fi ≤ 0, where
these quantities are defined by (5)–(8).

2.2 The reduced inactive set

We now describe the heuristic screening step used for choosing a sensible reduced
inactive set (a subset of the inactive set I of x) and the complementary extended
active set (a superset of the active set of x).

The idea is to incorporate some information from the bounds (which, in a full
subspace step, would not influence the search direction).We compare for each inactive
variable i of the point x obtained by fixbounds the (nonnegative) gains Δ fi and
Δ fi of moving this variable to a bound with the (nonpositive) gain Δ̂ fi when moving
to the optimal interior value. The absolute value of the ratio is taken to be a heuristic
indicator of how important the coordinate is for the subspace. A tunable threshold κ

for this ratio is used to determine which inactive variables are assigned to the reduced
inactive set.

The reduced inactive set is thus defined to be

I := {i ∈ I | κ|Δ̂ fi | < min(Δ fi ,Δ fi )}

for somefixed κ ≥ 0, and the extended active set is its complement K := {1, . . . , n}\I .
In the special case that κ = 0, the extended active and restricted inactive sets coincide
with the active and inactive sets, respectively. Another special case is κ = 1, where
Δ fi , Δ fi , and |Δ̂ fi | = −Δ̂ fi are compared. For very large κ , only the indices i with
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Δ̂ fi = 0 (i.e., xi has its optimal value along coordinate i in the interior of [xi , xi ])
belong to the reduced inactive set and thus very large values of κ do not make sense.

A non-vectorized version of the algorithm of computing the reduced inactive and
extended active sets is given in Algorithm 2.

Input: x , g, d, x , x
I = {i ∈ {1, . . . , n} | xi < xi < xi }
Kl = {i ∈ {1, . . . , n} | xi = xi }
Ku = {i ∈ {1, . . . , n} | xi = xi }
for i ∈ I do

Compute Δ fi , Δ fi , Δ̂ fi
if Δ fi ≤ min(Δ fi , −κΔ̂ fi ) then

Kl = Kl ∪ {i}, I = I \ {i}
else if Δ fi ≤ −κΔ̂ fi then

Ku = Ku ∪ {i}, I = I \ {i}
end

end
Output: Kl , Ku , I
Algorithm 2: Computation of the reduced inactive and extended active sets

2.3 reductionstep

Let I be the reduced inactive set of the current point x . If |I | > m,GI,I is singular and
we reduce the number of elements of I by the following procedure to obtain |I | ≤ m.

The idea is to perform an approximate minimization on the subspace Ax = Ax0,
where x0 is the current best point. On this subspace, the objective function simplifies
to cT x plus a constant, and all currently active variables are fixed. Thus proceeding
along a descent direction (if there is one) of the linear program

min cT x
s.t. Ax = Ax0, x ∈ x

we are guaranteed to fix a bound, and this can be iterated in strongly polynomial time
until |I | ≤ m.

Noting that the case |I | > m is only possible for n > m, we use LU factorizations of
AT:,I and submatrices of AT:,I to determinemaximal subsets I ′ of I and J ′ of {1, . . . ,m},
m ≥ r := |I ′| = |J ′|, such that AJ ′,I ′ is invertible, and compute its inverse C :=
A−1
J ′,I ′ . The set J ′′ := {1, . . . ,m} \ J ′ might be empty, but I ′′ := I \ I ′ 	= ∅ since

|I | > m.
We now define a vector u ∈ R

n with Au = 0 by assigning the subvectors uI ′ ,
uI ′′ and uK (pertaining to the index sets I ′, I ′′ and K , which form a disjoint partition
of {1, . . . , n}) as follows. Let uI ′′ = ek for some k ∈ {1, . . . , |I ′′|}, and let uI ′ :=
−CAJ ′,I ′′uI ′′ and uK = 0. Then we have A:,I ′′uI ′′ = A:,l for some l ∈ I ′′ and

Au = A:,I ′uI ′ + A:,I ′′uI ′′ = −A:,I ′CAJ ′,I ′′uI ′′ + A:,l = −A:,I ′CAJ ′,l + A:,l .

123



358 W. Huyer, A. Neumaier

Since r is the (numerical) rank of A:,I and AJ ′,I ′ is nonsingular, the columns of
A:,I ′ form a basis of the column space of A:,I . Hence A:,l can be written as a linear
combination

A:,l =
r∑

j=1

λ j A:,i j

for appropriate λ j , where I ′ = {i1, . . . , ir }. Then

Au = −A:,I ′CAJ ′,l + A:,l = −
∑r

j=1
λ j A:,I ′CAJ ′,i j + A:,l

= −
∑r

j=1
λ j A:,I ′e j + A:,l = −

∑r

j=1
λ j A:,i j + A:,l = 0,

where we have used the definition of C .
Since A(x + αu) = Ax , minimizing cT (x + αu) + ρ(A(x + αu)) over the box x

amounts to minimizing αcT u subject to x + αu ∈ x, which is easy to do.

Input: x , I , I ′, J ′, problem characteristics
K = {1, . . . , n} \ I
I ′′ = I \ I ′
while I ′′ 	= ∅ do

for all possible choices for u do
Set α to the boundary value that minimizes cT (x + αu)

L = {i ∈ I | xi + αui = xi or xi }
if L 	= ∅ then

break
end

end
x = x + αu
for i ∈ L do

if i ∈ I ′ then
Determine j ∈ I ′′ such that |1 + (Ch)i ′ |, h := AJ ′, j − AJ ′,i , is maximal and i ′ is
chosen such that i is the i ′th element of I ′
I ′ = (I ′ \ {i}) ∪ { j}, I ′′ = (I ′′ \ { j}) ∪ {i}
C = (AJ ′,I ′ + h(ei

′
)T )−1 = C − (Ch)Ci ′,:

1+(Ch)i ′
end
I ′′ = I ′′ \ {i}, I = I \ {i}, K = K ∪ {i}

end
end
Output: x , f (x), I , K

Algorithm 3: reductionstep

Putting things together results in Algorithm 3, where it is assumed that subsets J ′
of {1, . . . ,m} and I ′ of I such that AJ ′,I ′ is invertible have already been determined.
|I ′′| choices for uI ′′ and thus for u are possible, but in the first for loop the algorithm
just looks for one u that manages to fix at least one bound, and that will usually be
the one with uI ′′ = e1 ∈ R

|I ′′| since the standard basis vectors are tried out in the
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natural order. Let L ⊂ I be the set of bounds that are fixed. In the second for loop
the elements i ∈ L are transferred from I to K . If i ∈ I ′′, this can be done directly,
thus reducing I ′′. In the case where i ∈ I ′, |I ′| should stay the same. We therefore
replace i by a j ∈ I ′′ for which AJ ′, Ī ′ is still invertible, where Ī ′ := (I ′ ∪ { j}) \ {i},
and C̄ := A−1

J ′, Ī ′ is computed from C with the aid of the Sherman–Morrison formula.
To improve numerical stability, the index j is chosen such that the denominator in
the Sherman–Morrison formula is maximal. This procedure is repeated until I = I ′,
I ′′ = ∅. The indices that are transferred from I to K result in active indices of the
new current point. The matrix A:,I obtained at the end of the algorithm has full rank
by construction, which is necessary (but not sufficient) for GI,I = AT:,I DA:,I to be
nonsingular.

2.4 subspacestep

Nowwehave a reduced inactive set I with |I | ≤ m and an extended active set K , which
is a superset of the active set K ′ of the current point x (the output ofreductionstep
if it has been called, otherwise the output of fixbounds) with the gradient g and
the Hessian matrix G. I and K (or rather Kl and Ku) have been computed for x fb

(the point obtained by the last call to fixbounds) according to Algorithm 2 and
reduced and augmented, respectively, by Algorithm 2.3 (if it is called). We define a
search direction p as follows. For k ∈ K ′, we set pk = 0, and for k ∈ K \ K ′ we
set pk = xk − xk or pk = xk − xk (the value that yields the smaller function value,
cf. Sect. 2.2). The optimal step pI for the reduced inactive variables is determined by
GI,: p = −gI , which results in solving

GI,I pI = −gI − GI,K pK , (9)

where pK denotes the already determined part of p pertaining to the extended active
set. To improve numerical stability we regularize the matrix G by slightly increasing
its diagonal entries. We set Gi,i = (1+ δ1)Gi,i if Gi,i 	= 0 and Gi,i = δ1 if Gi,i = 0,
where δ1 is a fixed small nonnegative number. In the case δ1 = 0G remains unchanged,
but choosing δ1 > 0 might be advantageous for rank-deficient problems; cf. Sect. 5.1.
The vector pI is computed from (9) using the backslash operator inMatlab.

If the linear system does not have a well-defined solution, the remainder of the
subspace step is skipped. Otherwise an exact two-sided line search is made to find the
best α with x + αp ∈ x, and a new current point x + αp is obtained. Note that α can
even be negative, as in case of an indefinite Hessian nothing guarantees that p is a
descent direction. It may even point to a local maximum, from which we must move
away!

Since pi = 0 for active indices i , we always have x +αp ∈ x at least for small |α|.
p = 0 is only possible if gI = 0 and all indices in K are active. The pseudocode of
the subspacestep algorithm is given in Algorithm 4, where the sets Kl and Ku

are the extended lower and upper active sets, respectively, K = Kl ∪ Ku , and I is the
reduced inactive set.

123



360 W. Huyer, A. Neumaier

Input: x , g, Kl , Ku , I , problem characteristics
pKl = xKl

− xKl

pKu = xKu − xKu
h = δ1 diag(GI,I )

Set the coordinates of h that are 0 to δ1
pI = −(GI,I + diag(h))\(gI + GI,K pK )

if p is finite then
x = argmin{ f (y) | y = x + αp ∈ x}

end
Output: x , f (x)

Algorithm 4: subspacestep

2.5 freebounds

In this subprogram f (x + αp) is minimized for x + αp ∈ x with pi = αi , where
αi ∈ {αi , αi , α̂i } with smallest Δ f as defined by (6)–(8). This choice of p would be
optimal for separable quadratic problems.Anon-vectorized version of this subprogram
is given in Algorithm 5.

Input: x , g, d, problem characteristics
for i = 1 to n do

if di ≤ 0 then
Compute Δ fi and Δ fi
if Δ fi ≤ Δ fi then

pi = xi − xi
else

pi = xi − xi
end

else
α̂i = − gi

2di
pi = max(min(α̂i , xi − xi ), xi − xi )

end
end
x = argmin{ f (y) | y = x + αp ∈ x}
Output: x , f (x)

Algorithm 5: freebounds

2.6 Infinite bounds

Infinite bounds need a special treatment. Let Il be the set of i such that xi = −∞, let
Iu be the set of i such that xi = ∞, and assume that Iinf := Il ∪ Iu 	= ∅. If there is
an i ∈ Iinf such that di < 0, the function is unbounded below on x and the program
returns an error flag and a finite vector x with huge norm and f (x) 
 0. Such a case
can already be detected at the beginning of the algorithm.

For the case that di = 0 for some i ∈ Iinf , the boundedness of the quadratic function
on x depends on the i th component gi of the gradient, a quantity that varies with the
point x . The function is unbounded below on x if i ∈ Il and gi > 0, or i ∈ Iu and
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gi < 0. Such a case can be detected in freebounds and is handled similarly as the
unbounded case of di < 0. The same is done in the case that an unbounded direction is
found in an exact line search or inreductionstep, where setting α to the boundary
that minimizes cT (x + αu) in Algorithm 3 might identify an unbounded problem.

Since |I | > m in reductionstep can only occur in the case n > m, where the
Hessian matrix is singular, Algorithm 3 either finds a direction of infinite descent or
manages to reduce |I |. The only exception is the case where |cT u| is so small that the
search direction leaves cT x almost constant. In the case that |cT u| ≤ δ2|c|T |u| (where
δ2 is a fixed small positive number) and the minimization would yield a direction of
infinite descent, we do not minimize αcT u but set α = 0; if cT u = 0 (the function is
constant along the direction u) we also set α = 0. If that is the case for all possible
choices of u, it is not possible to reduce I and subspacestep is carried out with
this I .

For the changes needed in Algorithms 1–5 due to possible infinite bounds see the
actual Matlab code at http://www.mat.univie.ac.at/~neum/software/minq/.

2.7 The MINQ8 algorithm

Nowwe are ready to describe theMINQ8 algorithm as a whole.MINQ8 performs four
different subtasks, namely fixbounds, reductionstep, subspacestep, and
freebounds. Each of these subprograms yields, starting from the point x produced
by the previously called subprogram (or the initial point) with function value f , a
point xnew with function value fnew < f or stays at xnew = x , and xnew is used as
input for the subsequent subtask. This is indicated by writing x = subprogram(x)
in the pseudocode for the subprograms of MINQ8 (we do not care for the other input
and output parameters of the subprograms in the algorithm as a whole). The subtasks
are carried out in an appropriate sequence according to Algorithm 6. Here δ3 is a
fixed small positive number to handle the stopping criterion for function values close
to zero. This number and all other parameters in the algorithm will be specified in
Sect. 5.

To avoid inefficient zigzagging, i.e., multiple freeing and fixing the same set of
active variables in consecutive iterations, the subprogramfreebounds is only called
if the activities of the current points after the application of fixbounds and after the
application ofsubspacestep are the same.This is equivalent toreductionstep
(if applied) andsubspacestep not generating any additional active variables (since
it leaves active variables unchanged).

In addition to the possibility to identify the problem as unbounded at the beginning
of the algorithm (before entering the loop in Algorithm 6) as described in Sect. 2.6,
the algorithm checks at the beginning whether the function is constant along some
coordinate axis. If ci = 0 and A:,i = 0 for some i , f does not depend on xi . In that
case, xi is fixed at its initial value and only the remaining variables are optimized.

The program stops either due to finding an unbounded direction (before entering the
loop or in the loop), or by reaching themaximumnumbermaxit of iterations, or due to
an insufficient change in the function value given by the input parameter tol. Since a
very small step is rarely followed by a large step, it is typical of optimization algorithms
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Input: x , maxit, tol, problem characteristics
Check whether the problem is unbounded along a coordinate and return in that case
Check whether the function does not depend on some variables
fold = ∞
nit = 0
for nit = 1 to maxit do

x = fixbounds(x)

x fb = x
Compute the reduced inactive set I of x
if |I | > m then

x = reductionstep(x)
end
x = subspacestep(x)

if x has the same activities as xfb then
f = f (x)
if f = fold or ( fold − f )/max(| fold|, | f |, δ3) < tol then

break
end
fold = f
x = freebounds(x)

end
end
Output: x , f (x), nit

Algorithm 6: The MINQ8 algorithm

to terminate them when the gain in function value is too small. The algorithm returns
the best point (i.e., the current point at termination), its function value, the number
of times the loop in Algorithm 6 has been carried out, and an error flag indicating
whether the problem was detected to be unbounded.

Due to the fact that the subtasks of the algorithm only accept a new point if it
has a strictly smaller function value, a local minimizer returned might belong to a
locally optimal ray. Moreover, if the function value has not been changed by MINQ8,
the current point has not changed. Therefore, in the case that tol is set to zero and
maxit to ∞, the algorithm stops at a Kuhn–Tucker point; cf. Theorem 1.

3 Termination and convergence

In this section we prove several results concerning the termination of our algorithm.
Theorem 1 deals with the case where a whole iteration of the main loop of MINQ8
does not change the point any more and the algorithm stops due to not making any
progress in function value. To this end, in Lemma 1 we consider the case where
reductionstep (if applied) andsubspacestep have not changed the point, i.e.,
where some of the ingredients do not make any progress. In that case freebounds is
called (since no change in the point implies no change in the activities) and is applied
to the output of fixpoints.

Lemma 1 If freebounds is applied to the output of fixbounds, then the search
direction p in freebounds is a descent direction or p = 0.
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Proof Let x be the output of fixbounds. If xi < xi < xi for some i , then for αi , αi ,
Δ fi , and Δ fi defined by (6) and (7) we have αi < 0, αi > 0, Δ fi ≥ 0 and Δ fi ≥ 0.
This implies −αi di ≤ gi ≤ −αi di and thus di ≥ 0. If di = 0, we also have gi = 0
and pi = 0. For di > 0 we obtain 1

2αi ≤ − gi
2di

≤ 1
2αi . Then for α̂i and Δ̂ fi defined

by (8) we have αi < α̂i < αi and Δ̂ fi < 0, which implies pi = α̂i = − gi
2di

.

If xi = xi , then αi = 0 and αi > 0. Then di ≤ 0 implies pi = αi = 0. pi = − gi
2di

is only possible in the case that di > 0 and 0 < − gi
2di

< αi , which yields gi < 0.

Similarly, if xi = xi , we either have pi = 0 or pi = − gi
2di

, di > 0, and gi > 0.
This shows that x + αp ∈ [x, x] for sufficiently small positive α. If p 	= 0 then

M := {i | pi 	= 0} is nonempty, hence pT g = −∑
i∈M

g2i
2di

< 0. ��
If the algorithm stops with no change in the function value and thus the point, the

following holds.

Theorem 1 If a point x is not changed by fixbounds, reductionstep,
subspacestep, andfreebounds, then x is aKuhn–Tucker point, i.e., the reduced
gradient gred at x, defined by

gredi :=

⎧
⎪⎨

⎪⎩

gi if xi < xi < xi ,

max(0,−gi ) if xi = xi ,

max(0, gi ) if xi = xi ,

(10)

is zero. Here g is the gradient of f at x.

Proof Let x be point that fixbounds, reductionstep, subspacestep,
and freebounds leave the same. Then, by Lemma 1, the vector p defined by
freebounds should be 0. Let i ∈ {1, . . . , n}. If xi < xi < xi , pi = 0 implies
gi = 0. Let now xi = xi , i.e., 0 = αi < αi with the definitions from (6) and (7). In
the case di ≤ 0, Δ fi = αi (gi + αi di ) ≥ 0 yields gi ≥ −αi di ≥ 0. If di > 0, we have

− g2i
4di

≤ 0, and pi = 0 implies α̂i = − gi
2di

≤ αi = 0, again yielding gi ≥ 0. Similarly
xi = xi implies gi ≤ 0. ��

Under certain conditions, the result of subspacestep only depends on the activ-
ities.

Lemma 2 Assume that the parameters κ in Sect. 2.2 and δ1 in Sect. 2.4 are set to 0
and x ∈ x := [x, x] is the input of subspacestep. Let I be the inactive set of x,
suppose that GI,I is positive definite and K = {1, . . . , n} \ I = Kl ∪ Ku is the active
set of x, where

Kl := {i ∈ {1, . . . , n} | xi = xi } and Ku := {i ∈ {1, . . . , n} | xi = xi }.

Moreover, assume that

G−1
I,I

(
AT:,I Db − cI − GI,K xK

)
∈ [x I , x I ].
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Then the point obtained by applying subspacestep to x only depends on Kl and
Ku.

Proof Since Kl and Ku are given, xK is uniquely determined. κ = 0 implies that the
reduced inactive set is equal to the inactive set I of x and thus the search direction
p defined by subspacestep fulfils pK = 0 for the active set K = Kl ∪ Ku and
GI,I pI = −gI , which by assumption yields the unique solution pI = −G−1

I,I gI . Then

xI + pI = xI −G−1
I,I (cI +GI,:x− AT:,I Db) = −G−1

I,I (cI +GI,K xK − AT:,I Db), which
is independent of xI and in [x I , x I ] by assumption. The line search along x+αp yields
α∗ = 1 since x + p is the minimizer of f (y) s.t. yK = xK , yI ∈ [x I , x I ]. ��
Corollary 1 Assume that G is positive definite and the parameters κ in Sect. 2.2 and
δ1 in Sect. 2.4 are set to 0. If a point x with the correct activities has been found by
fixbounds, then subspacestep yields the unique minimizer.

Since fixbounds, reductionstep and subspacestep cannot free any
bounds and the number of active variables cannot increase indefinitely, it has to happen
from time to time that reductionstep and subspacestep do not change the
activities and freebounds is called.

Theorem 2 If G is positive definite and the parameters κ in Sect. 2.2 and δ1 in Sect.
2.4 are set to 0, the algorithm stops after finitely many iterations even if tol = 0 and
maxit = ∞ and the global minimizer of the problem is obtained.

Proof Let x be the current point before the application offreebounds, I its inactive
set, K its active set and g the corresponding gradient. If subspacestep has not
changed the active set, two cases are possible. In the first case we have p = 0, i.e.,
the search direction of subspacestep is zero. Then pI = 0, pK = 0 and GI,I

nonsingular by assumption imply gI = cI + GI,:x − AT:,I Db = 0, and we obtain

xI = G−1
I,I (A

T:,I Db − cI − GI,K xK ), i.e., xI is uniquely determined by the activities
xK .

In the second case, the line search into the direction of the minimizer of f (y) s.t.
yK = xK yields a point x with xI in the interior of [x I , x I ], which implies that xI is
the optimal point in the subspace, i.e., again xI = G−1

I,I (A
T:,I Db − cI − GI,K xK ).

Therefore, in both cases, only a single choice of xI is possible for every choice of xK .
The algorithm cannot cycle because the objective function is strictly decreasing from
one iteration of Algorithm 6 to the next. Since there are only finitely many possible
active sets, freebounds is called only finitely often. Therefore the algorithm stops,
the assumptions of Theorem 1 are satisfied and we obtain a Kuhn–Tucker point, which
is the global minimizer of the problem by assumption. ��

If κ > 0, the reduced inactive set may be smaller than the full inactive set, while
if δ1 > 0, the Hessian is modified. In these two cases, as well as in the case that
G is not positive definite, it is conceivable in exact arithmetic that we may perform
infinitely many iterations involving the same sets Ku and Kl . However, in floating-
point arithmetic this is not possible since the objective function is strictly decreasing
in each iteration. In practice, a properly chosen tolerance κ (and in some cases also a
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properly chosen δ1 > 0, cf. the end of Sect. 5.1) improves the numerical stability of
the algorithm and leads to a significant improvement in speed, without impairing the
convergence properties to a local minimizer.

4 Solving strictly convex quadratic programs

We consider the strictly convex quadratic program subject to linear constraints

min f (x) := cT x + 1
2 x

T Gx
s.t. (Ax)I ≥ bI , (Ax)E = bE ,

(11)

where c ∈ R
n , G is a symmetric, positive definite n × n matrix, A ∈ R

m×n , b ∈ R
m

and (I, E) is a partition of {1, . . . ,m} with |E | ≤ n.

Theorem 3 Let x be a feasible point of (11) and let y be a feasible point of the bound
constrained quadratic program

min d(y) := 1
2 (A

T y − c)T G−1(AT y − c) − bT y
s.t. yI ≥ 0.

(12)

Then

f (x) + d(y) ≥ 0,

with equality iff x and y are optimal solutions of (11) and (12), respectively. In this
case,

Gx + c = AT y, (13)

and the complementarity conditions

(Ax − b)i yi = 0 for all i ∈ I (14)

hold.

Proof Write r := AT y − c − Gx . Then

f (x) + d(y) = cT x + 1

2
xT Gx + 1

2
(r + Gx)T G−1(r + Gx) − bT y

= (c + Gx)T x + 1

2
rT G−1r + rT x − bT y = 1

2
rT G−1r + yT (Ax − b)

≥ yT (Ax − b) =
∑

i∈I
(Ax − b)i yi ≥ 0.

Equality is possible only if r = 0 and (Ax − b)i yi = 0 for all i ∈ I . ��
Together with the feasibility constraints, (13) and (14) are the common primal-dual

optimality conditions for (11) and (12). Thus these problems are dual to each other,
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and we may find the solution of (11) by first solving (12) with a bound constrained
solver and then computing

x = G−1(AT y − c).

This is how MINQ8 solves strictly convex problems of the form (11).
Since G is positive definite, (11) has a unique solution if it is feasible. However,

(12) is not necessarily strictly convex, and may have a direction p of infinite descent.
Since

d(y + αp) = d(y) + α
(
(AT y − c)T G−1AT − bT

)
p + 1

2
α2(AT p)T G−1AT p,

this is possible only if

AT p = 0, bT p > 0, pi ≥ 0 for all i ∈ I. (15)

But in this case, any feasible x satisfies

0 > (Ax − b)T p =
∑

i∈I
(Ax − b)i pi ≥ 0,

contradiction. Thus p defines a certificate of infeasibility for (11). (Numerically, due
to rounding errors, one may find in place of a direction of infinite descent just a huge
dual solution y with a very large negative objective function value. In this case, y is
itself an approximate certificate of infeasibility, and one may check whether p = y
satisfies (15) to sufficient accuracy to report infeasibility.)

In general, to obtain the form (3) required by MINQ8 one has to make a spectral
factorization or an LDLT factorization of G (cf. Sect. 2). If the sparsity pattern of G
is not unfavorable, this can be done in very large dimensions.

However there are two special cases that deserve a separate handling.

(i) In the special case where G is a diagonal matrix, the problem (12) has already
the form required for MINQ8.

(ii) Considering the even more specialized case where c = 0 and G = In in (11),
we see that bound constrained optimization can also be used to find either the
point with minimal Euclidean norm satisfying a system of linear equations and
inequalities, or a certificate of infeasibility of this system.

5 Numerical examples

This section discusses extensive computer experiments evaluating the performance of
the new algorithm. The numerical examples were carried out withMATLAB8.3.0.532
(R2014a) for Linux on an Intel Core i5-4670S processor with 3.1 GHz. The default
value for tol is tol = 10−8. The small parameters δ1, δ2, and δ3 from Sects. 2.4, 2.6,
and 2.7 were set to δ1 = 0, δ2 = 10−12, and δ3 = 10−4, respectively. Moreover, κ in
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Sect. 2.2 was set to κ = 0.5, which turned out to perform much better in practice than
κ = 0 (the extended active set coincides with the active set) and slightly better than
κ = 1, although the convergence proofs in Sect. 3 assume κ = 0.

In Sects. 5.1 and 5.2 we consider problems of the form (3), and Sect. 5.3 is devoted
to problems of the form (11). On the first two test sets we compare MINQ8 with
the default value for tol with MINQ5, NewtonKKTqp, and the Matlab function
quadprog. For all problems and algorithms (except for the interior-point-convex
quadprog algorithm, which does not take a starting point), the zero vector is used as
the starting point. If MINQ5 returns a nonzero error flag ier (if the maximal number
iterations maxit = 10n is exceeded or the algorithm incorrectly assumes that the
problem is unbounded below), another call to MINQ5 is made with the result from
the previous call as the starting point.

The Matlab version NewtonKKTqp of the Newton-KKT interior method for
indefinite quadratic programming by Absil and Tits [1] is designed to return a local
minimizer of the indefinite quadratic function f (x) = 1

2 x
T Hx + cT x subject to

the linear inequality constraints Ax ≤ b, starting with a feasible initial point. We
implemented the bound constraints as Ax ≤ b, and in the case of an unconstrained
problem, we set A to the 2× n zero matrix and b := (1, 1)T since the program exited
with an error message if A was chosen to be empty or a one-row matrix.

The Matlab function quadprog contains three algorithms for quadratic pro-
gramming: interior-point-convex, trust-region-reflective, and active-set. The interior-
point-convex algorithm is the default algorithm in Matlab 8, but it handles only
convex problems and does not allow the choice of an initial point. The trust-region-
reflective algorithm is not applicable to unconstrained problems.We used an increased
limit of 10,000 (instead of the default value 200) on the number of iterations for all
examples.

5.1 Test Set 1: random sparse problems

We consider A ∈ R
m×n sparse with 6 nonzero integer entries in [−5, 5] per row,

ci , b j ∈ {0, 1, 2, 3, 4, 5}, i = 1, . . . , n, j = 1, . . . ,m, γ = 0, and |Di,i | ∈
{1, 2, 3, 4, 5}, i = 1, . . . , n, where all entries are chosen randomly from uniform
distributions. A was always chosen to have full rank. The same problem is solved
without bounds (only in the positive definite case) or on the box [−10, 10]n , and the
problems are modified by taking D = D1, D1 a positive definite diagonal matrix
(i.e., Di,i ∈ {1, 2, 3, 4, 5}), D = −D1 and D = ED1, where E is a diagonal matrix
with diagonal elements randomly chosen from {−1, 1}. The problem characteristics
n, m, the signs of Di,i and the bounds are displayed in Table 1. An empty entry
means that the quantity is the same as in the previous line. This table also contains
the number of activities nact of the best solution found among the algorithms. If
the lowest fbest (up to 5 significant digits) was also achieved by MINQ8, nact is
the number of exact activities (since MINQ8 easily finds exact inactivities due to
fixbounds), and MINQ5 also finds exact inactivities for Problem 1c. In contrast,
NewtonKKT very rarely yields exact inactivities. If the lowest function value was
achieved by NewtonKKT, we applied MINQ8 to the point obtained by NewtonKKT,
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Table 1 Problem
characteristics of Test Set 1
(random sparse problems)

No. m n D Bounds nact

1a 1000 1000 + No bounds

1b + [−10, 10]n 35

1c − [−10, 10]n 1000

1d ± [−10, 10]n 888

2a 3000 3000 + No bounds

2b + [−10, 10]n 112

2c − [−10, 10]n 3000

2d ± [−10, 10]n 2684

3a 1500 1000 + No bounds

3b + [−10, 10]n 0

3c − [−10, 10]n 1000

3d ± [−10, 10]n 898

4a 4500 3000 + No bounds

4b + [−10, 10]n 1

4c − [−10, 10]n 3000

4d ± [−10, 10]n 2714

5a 2000 1000 + No bounds

5b + [−10, 10]n 0

5c − [−10, 10]n 1000

5d ± [−10, 10]n 921

6a 6000 3000 + No bounds

6b + [−10, 10]n 0

6c − [−10, 10]n 3000

6d ± [−10, 10]n 2735

7a 1000 1500 + [−10, 10]n 507

7b − [−10, 10]n 1498

7c ± [−10, 10]n 1329

8a 3000 4500 + [−10, 10]n 1525

8b − [−10, 10]n 4494

8c ± [−10, 10]n 3974

9a 1000 2000 + [−10, 10]n 993

9b − [−10, 10]n 1992

9c ± [−10, 10]n 1629

10a 2500 5000 + [−10, 10]n 2498

10b − [−10, 10]n 4981

10c ± [−10, 10]n 4402

which resulted in a point with a slightly lower function value, and we display the
number of activities of that point. Note that in the case of concave problems with a
singular Hessian (7–10b) it is possible for minimizers to occur also at points that are
not vertices.
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The results are presented in Table 2. The best function value fbest and the CPU
time needed for executing the algorithm (excluding the time for preparing the input
data) are given for all algorithms. In addition, we present the number nit of itera-
tions for MINQ8 (the number of times the loop in Algorithm 6 has been executed),
for NewtonKKTqp (where it is called nb_iter) and for quadprog, and the
number nsub of subspace steps for MINQ5. An asterisk after the time indicates
that NewtonKKTqp terminated with the warning “Computed a non-KKT stationary
point”. For quadprog, we report the results obtained by the interior-point-convex
algorithm for the convex (i.e., positive semidefinite) problems and the ones for the trust-
region-reflective algorithm for the non-convex problems. The trust-region-reflective
algorithm does not accept unconstrained problems and also does not find the global
minimum for six of the ten bound constrained convex problems. The active-set
quadprog algorithm yields lower fbest values than the trust-region-reflective algo-
rithm for some of the non-convex problems, but it is very slow and sometimes does
not even finish within a limit of 10,000 iterations.

Problem 1a is the only problem where the first call to MINQ5 returns the not
yet optimal function value − 1.5510 × 105 and the error flag for a problem that is
unbounded below, but the optimal function value and a zero error flag are obtained
after the second call to MINQ5. If two calls to MINQ5 were made, nsub column of
Table 2 contains two numbers separated by a plus sign.

All algorithmsyield the unique optimal function value fbest (up to the number of dig-
its presented here) for the six convex unconstrained problems (1–6a). Even though the
bound constrained convex problems (1–6b and 7–10a) also possess a unique local and
therefore also global minimum fbest, MINQ8 and interior-point-convex quadprog
are the only algorithms that always manage to find the optimal fbest. MINQ5 finds
the correct fbest only in the cases where the minima coincide with the unconstrained
minima (3b, 5b, 6b), i.e., no bounds are active at the best point, and in a case where one
bound is active (4b). NewtonKKTqp never achieves the correct fbest and sometimes,
as explained at the beginning of this section, claims that it has found a non-KKT sta-
tionary point (which is actually a non-stationary point). So, in spite of using different
parameter values than the ones in the convergence proof, MINQ8 does generally well
on convex problems. For all unconstrained convex problems and for the convex bound
constrained problems where the minima coincide with the unconstrained minima,
MINQ8 only needs two iterations of the main loop, i.e., it already finds the minimizer
after the first iteration (as supported by theory for κ = 0) and then makes a second
one in order to be able to fulfil the stopping criterion that the function value does
not change any more. However, for the rank-deficient positive semidefinite problems
7–10a, MINQ8 needs a high number of iterations compared to all other problems (and
longer time than the interior-point-convex quadprog algorithm) since it seems to be
hard to find the correct activities in such a case (a larger number of activities than for
Problems 1–6b).

Non-convex problems usually have several local minimizers, and MINQ8 also
finds good fbest values for many non-convex problems. Even though NewtonKKTqp
frequently achieves the lowest fbest for non-convex problems, the points returned are
not even local minimizers and the algorithm somehow gets stuck.
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Table 3 Results for MINQ8
with δ1 = 10−10 on some
problems of Test Set 1

No. MINQ8

nit fbest t (s)

7a 850 − 1.5373 × 104 67

7b 2 − 2.8071 × 107 0.2

7c 59 − 1.5816 × 107 1.3

8a 2503 − 5.0900 × 104 1738

8b 2 − 9.1112 × 107 0.5

8c 145 − 5.0751 × 107 9.4

9a 1350 − 2.9951 × 104 115

9b 2 − 3.1822 × 107 0.2

9c 52 − 1.8673 × 107 1.6

10a 3489 − 7.6119 × 104 1674

10b 2 − 8.2895 × 107 0.5

10c 126 − 4.6840 × 107 9.3

Since the performance of each algorithm is basically the same on each problem class
of the problems reported here (and several more that are not reported), the random
element in the problems does not seem to be crucial and we did not generate several
problems with the same n and m.

We also want to show the behavior of MINQ8 for unbounded problems. Applying
MINQ8 to the Problem 7a modified by minimizing the function on R

n instead of
[−10, 10]n yielded a warning “The problem is unbounded below”, a corresponding
error flag and a finite point with function value f ≈ −5 × 10307 before entering the
loop in Algorithm 6 (nit = 0).

For some of the rank-deficient problems 7–10, in particular for the indefinite
problems 7–10c, Matlab produced several warnings “Matrix is singular to work-
ing precision” when solving (9) with the backslash operator, and the same occurred
twice for Problem 9a. This is a situation where setting δ1 to a nonzero value makes
sense since there are noMatlabwarnings anymore and thus the stability is improved.
However, if δ1 is set to a nonzero value, some of the unconstrained convex problems in
this test set and in the following subsection might take three iterations to finish instead
of two. In Table 3 we present the results for MINQ8 with δ1 = 10−10 for Problems
7–10; for all other problems the results do not change significantly. Different local
minima are obtained for Problems 7–10c, but for the other problems fbest stays the
same up to the number of digits displayed here.

5.2 Test Set 2: quadratic problems from CUTEr

To complement the test set with random functions we coded some quadratic problems
from the CUTEr test set [8]. We use the default bounds and the default starting point
for all problems. The names, dimensions, bounds, starting points, and numbers of
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Table 4 Problem characteristics of Test Set 2

No. Name n m Bounds Starting point nact

C1 BIGGSB1 1000 n + 1 [0, 0.9]n × R (0, . . . , 0) 999

C2 CHENHARK 1000 n + 2 [0,∞)n (0.5, . . . , 0.5) 499

C3 CVXBQP1 1000 n [0.1, 10]n (0.5, . . . , 0.5) 1000

C4 10,000 10,000

C5 DIXON3DQ 10,000 n No bounds (−1, . . . , −1)

C6 DQDRTIC 5000 n No bounds (3, . . . , 3)

C7 HARKERP2 1000 2n [0,∞)n (1, 2, . . . , n) 999

C8 NCVXBQP1 1000 n [0.1, 10]n (0.5, . . . , 0.5) 1000

C9 10,000 10,000

C10 NCVXBQP2 1000 n [0.1, 10]n (0.5, . . . , 0.5) 993

C11 10,000 9935

C12 NCVXBQP3 1000 n [0.1, 10]n (0.5, . . . , 0.5) 984

C13 10,000 9839

C14 PENTDI 5000 4n − 6 [0,∞)n (1, . . . , 1) 4998

C15 QUDLIN 1200 n + 1 [0, 10]n (1, . . . , 1) 1200

C16 5000 5000

C17 TOINTQOR 50 83 No bounds (0, . . . , 0)

C18 TRIDIA 50 n No bounds (1, . . . , 1)

activities at the global minimizers of the problems are listed in Table 4. In order to
save space in the presentation of the results, we number the problems from C1 to C18.
For all problems we have m ≥ n.

Table 5 contains the results. A failure of NewtonKKTqp is indicated by a dash:
DQDRTIC terminated with an error message, the 10,000-dimensional problems could
not be solved with NewtonKKTqp due to limitations in memory, and CHEN-
HARK produced a warning (large k!!!) and never finished. NCVXBQP1–3
and QUDLIN are the only non-convex problems in this test set. Since on this test
set interior-point-convex quadprog occasionally fails to find the global minimum
and most of the problems are convex, we report the results of interior-point-convex
quadprog for all convex problems as well as the results of trust-region-reflective
quadprog for all constrained problems.

The active-set quadprog algorithm was also tested, but it is inferior to the
quadprog results presented in Table 5. It does not solve the 10,000-dimensional
problems due to memory limitations, and it takes hours to solve PENTDI and the
5000-dimensional QUDLIN problem.

5.3 Test Set 3: separable quadratic programs

To test the behavior of MINQ8 on problems of the form discussed in Sect. 4, we
apply MINQ8 and MINQ5 to separable quadratic problems with linear constraints by
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solving the dual problems. For comparison we only apply quadprog to the problems
since NewtonKKTqp requires a feasible starting point.

Example 1 We consider the minimization of a separable quadratic form subject to
linear constraints

min cT x + 1
2 x

T Dx
s.t. (Ax)I ≥ bI , (Ax)E = bE ,

(16)

where c ∈ R
n , D is a positive definite n × n diagonal matrix, A ∈ R

m×n , b ∈ R
m and

(I, E) is a partition of {1, . . . ,m} with |E | ≤ n. This problem is a special case of (11)
and we proceed as described in Sect. 4.

We construct the instances in the following way. We first choose the elements of
A ∈ R

m×n , c ∈ R
n , ydes, s ∈ R

m and the diagonal elements of D from a uniform
distribution on [0, 1]. Let I = N ∪N ′, where N is the set of nonactive and N ′ the set of
active inequalities, and |N ′| + |E | ≤ min(m, n). Then we set ydes,N = 0, sE∪N ′ = 0,
xdes := D−1(AT ydes − c), and b := Axdes − s. In the case N = ∅ (which can only
happen if m ≤ n), all indices are active or equalities and b = Axdes.

For the solution vector x we define the vector r ∈ R
n by rE := (Ax − b)E and

rI := min((Ax−b)I , 0), i.e., r measures the violation of the constraints.Moreover, we
use the abbreviation Δx := x − xdes. For MINQ5, we use the program minqsep.m
included in the MINQ5 package. It applies MINQ5 to the dual problem, and one step
of iterative refinement is applied if |r | ≤ nnz(A)ε(|A||x | + |b|) (with componentwise
absolute value and inequalities) is violated, where nnz(A) denotes the number of
nonzeros of the matrix A and ε the machine precision. For MINQ8, we solve the
dual problem with tol = ε = 2.2204 × 10−16 (the machine precision) instead of
the default value since the default value does not yet yield the optimal fbest for the
original problems for the test cases with I 	= ∅. (Note that MINQ8 and MINQ5 are
not applied to the original problems but to the dual ones.) We also apply one step of
iterative refinement in the above-mentioned case.

Table 6 contains the problem characteristics of the problems of Example 1. For each
value of (m, n), we consider one instancewith empty N ′ and onewith nonempty N ′. In
Table 7 the test results for MINQ8, MINQ5 and the interior-point-convex quadprog
algorithm are presented; two problems cannot be solved with quadprog due to
memory problems.

All three algorithms find approximately feasible pointswith the same function value
up to at least 5 significant digits (not displayed here). Most of the points are very close
to xdes, with the exception of a few solutions produced by MINQ8 and quadprog
(usually the problems that converge most slowly). The active-set quadprog algo-
rithm is faster than the interior-point-convex algorithm (but not faster than MINQ8)
for 9 of the 12 problems that are solved by quadprog, but it takes a long time to solve
S9 and also S3 and therefore we do not display the results. The trust-region-reflective
quadprog algorithm handles problems with only bounds, or only linear equality
constraints, but not both and is therefore not applicable.
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Table 6 Problem
characteristics of Example 1

No. m n |E | |N ′|
S1 700 1000 500 10

S2 700 1000 700 0

S3 2000 3000 1000 300

S4 2000 3000 2000 0

S5 7000 10,000 5000 100

S6 7000 10,000 7000 0

S7 1000 1000 500 100

S8 1000 1000 1000 0

S9 3000 3000 1500 300

S10 3000 3000 3000 0

S11 1000 700 500 100

S12 1000 700 700 0

S13 3000 2000 1500 300

S14 3000 2000 2000 0

Example 2 We consider the problem of finding a point of minimal norm satisfying a
given system of linear inequalities,

min 1
2‖x‖22

s.t. Ax ≥ b.
(17)

This problem is a special case of (16) with c = 0, D = In , and E = ∅, and we
consider the three cases m < n, m = n and m > n. The entries of A and b are chosen
from a uniform distribution on [0, 1]. We applied MINQ8, MINQ5, and the active-set
quadprog algorithm and present the results in Table 8. (The interior-point-convex
algorithm yielded suboptimal feasible points for all problems.) The three algorithms
produce essentially the same solutions. We display the maximal violation ‖r‖∞ of the
constraints and the CPU time needed for the computation for all three algorithms and
the number of iterations for MINQ8. The last block of Table 8 contains the minimal
function value 1

2‖x‖22 of the solution and the number of constraints that are numerically
active (|(Ax)i −bi | ≤ 10−8); these quantities are the same (up to the number of digits
presented here) for the successful algorithms. quadprog does not solve the three
largest problems due to memory problems. All solutions satisfy the constraints very
well.

5.4 Discussion summary

The numerical examples show that the MINQ8 performs well and is competitive
with other quadratic programming algorithms implemented in Matlab. MINQ8 is
good at solving convex problems and usually finds good local minima for non-convex
problems.TheCPU times needed for the computations are competitive aswell.MINQ8
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and MINQ5 are the only of the tested algorithms that are applicable to all problems
of our test sets; the other algorithms contain restrictions concerning the problem class
and more severe memory restrictions in Matlab. MINQ8 solves bound constrained
quadratic programs well with the default value of tol, but for the separable quadratic
programs from Sect. 5.3 a lower default value of tol is needed. The default value of
n (the dimension of the problem) for maxit turned out to be sufficient for our test
problems as well. The fact that MINQ8 easily produces points with exact activities
seems to be an advantage for bound constrained problems.

Acknowledgements Open access funding provided by University of Vienna.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Absil, P.-A., Tits, A.L.: Newton-KKT interior-point methods for indefinite quadratic programming.
Comput. Optim. Appl. 36, 5–41. http://www.montefiore.ulg.ac.be/~absil/Publi/indefQP.htm (2007)

2. Dietz, T., Verl, A.: Simulation of the stopping behavior of industrial robots using a complementarity-
based approach. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
pp. 428–433. IEEE (2011)

3. Fernandes, R., Fraser, R., Latifovic, R., Cihlar, J., Beaubien, J., Du, Y.: Approaches to fractional land
cover and continuous fieldmapping: a comparative assessment over theBOREAS study region. Remote
Sens. Environ. 89, 234–251 (2004)

4. Floudas, C.A., Pardalos, P.M.: A Collection of Test Problems for Constrained Global Optimization
Algorithms. Springer, Berlin (1990)

5. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3, 95–110 (1956)
6. Friedlander, M.P., Leyffer, S.: Global and finite termination of a two-phase augmented Lagrangian

filter method for general quadratic programs. SIAM J. Sci. Comput. 30, 1706–1729 (2008)
7. Gao, Y., Choudhary, A., Hua, G.: A nonnegative sparsity induced similarity measure with application

to cluster analysis of spam images. In: 35th IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp. 5594–5597. IEEE (2010)

8. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. CERFACS technical report no. TR/PA/01/04 (2004)

9. Gould, N.I.M., Toint, Ph.L.: A quadratic programming page. http://www.numerical.rl.ac.uk/people/
nimg/qp/qp.html. Accessed 21 July 2015

10. Haruno, M., Wolpert, D.M.: Optimal control of redundant muscles in step-tracking wrist movements.
J. Neorophysiol. 94, 4244–4255 (2005)

11. Horst, R., Pardalos, P.M., Thoai,N.V.: Introduction toGlobalOptimization, 2nd edn.Kluwer,Dordrecht
(2000)

12. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14,
331–355 (1999)

13. Huyer, W., Neumaier, A.: SNOBFIT—stable noisy optimization by branch and fit. ACM Trans. Math.
Softw. 35(2), Article 9 (2008)

14. Kannan, A., Wild, S.M.: Obtaining quadratic models of noisy functions. Preprint ANL/MCS-P1975-
1111, Argonne National Laboratory (2012)

15. Kanzow, C., Petra, S.: Projected filter trust region methods for a semismooth least squares formulation
of mixed complementarity problems. Optim. Methods Softw. 22(5), 713–735 (2007)

16. Kybic, J.: High-dimensional entropy estimation for finite accuracy data: R-NN entropy estimator. In:
Karssemeijer, N., Lelieveldt, B. (eds.) Information Processing in Medical Imaging. Lecture Notes in
Computer Science, vol. 4584, pp. 569–580. Springer, Berlin (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://www.montefiore.ulg.ac.be/~absil/Publi/indefQP.htm
http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html
http://www.numerical.rl.ac.uk/people/nimg/qp/qp.html


MINQ8: general definite and bound constrained indefinite. . . 381

17. Lee, J., Leyffer, S. (eds.): Mixed Integer Nonlinear Programming. IMA Volumes in Mathematics and
its Applications, vol. 154. Springer, Berlin (2012)

18. Lin, Y.Y., Pang, J.-S.: Iterativemethods for large convex quadratic programs: a survey. SIAM J. Control
Optim. 25, 383–411 (1987)

19. Liu, W., Brugger, J., McPhail, D.C., Spiccia, L.: A spectrophotometric study of aqueous copper(I)-
chloride complexes in LiCl solutions between 100 ◦C and 250 ◦C. Geochim. Cosmochim. Acta 66(20),
3615–3633 (2002)

20. Neumaier, A.: MINQ: general definite and bound constrained indefinite quadratic programming. Web
document. http://www.mat.univie.ac.at/~neum/software/minq/ (1998)

21. Olshansky, Y., Turkel, E.: Simultaneous scatterer shape estimation and partial aperture far-field pattern
denoising. Commun. Comput. Phys. 11(2), 271–284 (2012)

22. Roos, M., Rothe, J., Scheuermann, B.: How to calibrate the scores of biased reviewers by quadratic
programming. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
pp. 255–260. AAAI (2011)

23. Smit, W.J., Barnard, E.: Continuous speech recognition with sparse coding. Comput. Speech Lang. 23,
200–219 (2009)

24. Voglis, C., Lagaris, I.E.: BOXCQP: an algorithm for bound constrained convex quadratic problems.
In: 1st International Conference from Scientific Computing to Computational Engineering. IC-SCCE
(2004)

25. Xu, S.: A non-interior path following method for convex quadratic programming problems with bound
constraints. Comput. Optim. Appl. 27, 285–303 (2004)

123

http://www.mat.univie.ac.at/~neum/software/minq/

	MINQ8: general definite and bound constrained indefinite quadratic programming
	Abstract
	1 Introduction
	2 The MINQ8 algorithm
	2.1 fixbounds
	2.2 The reduced inactive set
	2.3 reductionstep
	2.4 subspacestep
	2.5 freebounds
	2.6 Infinite bounds
	2.7 The MINQ8 algorithm

	3 Termination and convergence
	4 Solving strictly convex quadratic programs
	5 Numerical examples
	5.1 Test Set 1: random sparse problems
	5.2 Test Set 2: quadratic problems from CUTEr
	5.3 Test Set 3: separable quadratic programs
	5.4 Discussion summary

	Acknowledgements
	References




