
ar
X

iv
:1

51
2.

04
18

0v
3

 [c
s.

S
I]

 1
8

A
ug

 2
01

6

Maximizing Influence in Social Networks: A Two-Stage Stochastic
Programming Approach That Exploits Submodularity

Hao-Hsiang Wu, Simge Küçükyavuz
Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH

wu.2294@osu.edu, kucukyavuz.2@osu.edu

August 19, 2016

Abstract: We consider stochastic influence maximization problems arising in social networks. In contrast to

existing studies that involve greedy approximation algorithms with a 63% performance guarantee, our work focuses

on solving the problem optimally. To this end, we introduce a new class of problems that we refer to as two-stage

stochastic submodular optimization models. We propose a delayed constraint generation algorithm to find the optimal

solution to this class of problems with a finite number of samples. The influence maximization problems of interest

are special cases of this general problem class. We show that the submodularity of the influence function can be

exploited to develop strong optimality cuts that are more effective than the standard optimality cuts available in the

literature. Finally, we report our computational experiments with large-scale real-world datasets for two fundamental

influence maximization problems, independent cascade and linear threshold, and show that our proposed algorithm

outperforms the greedy algorithm.

Keywords: social networks; independent cascade; linear threshold; influence maximization; stochastic programming;

submodularity

1. Introduction The exploding popularity of social networking services, such as Facebook, LinkedIn,

Google+ and Twitter, has led to an increasing interest in the effective use of word-of-mouth to market

products or brands to consumers. A few individuals, seen as influencers, are targeted with free merchandise,

exclusive deals or new information on a product or brand. Marketers hope that these key influencers promote

the product to others in their social network through status updates, blog posts or online reviews and that

this information propagates throughout the social network from peers to peers of peers until the product

“goes viral.” Therefore, a key question for marketers with limited budgets and resources is to identify a small

number of individuals whom to target with promotions and relevant information so as to instigate a cascade

of peer influence, taking into account the network effects.

1.1 Literature Review Domingos and Richardson (2001) first introduce the problem of finding which

customers to target to maximize the spread of their influence in the social network. The authors propose a

Markov random-field-model of the social network, where the probability that a customer is influenced takes

into account whether her connections are influenced. After building this network, the authors propose several

heuristics to identify which k individuals to target in a viral marketing campaign, where k is a user-defined

positive integer. Kempe et al. (2003) formalize the optimization problem and introduce two fundamental

models to maximize the influence spread in a social network: the independent cascade model and the linear

threshold model. The authors show that the optimization problems are NP-hard, assuming that there is an

efficient oracle to compute the influence spread function. This seminal work spurred a flurry of research

on social networks with over 3400 citations. Wang et al. (2012) show that calculating the influence spread

1

http://arxiv.org/abs/1512.04180v3

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 2

function is #P-hard under the probabilistic assumptions of Kempe et al. (2003). Therefore, the independent

cascade problem is #P-hard, and there are two sources of difficulty. First, the calculation of the influence

spread function is hard because there is an exponential number of scenarios. This difficulty is overcome

by using sampling. Second, the seed selection is combinatorial in nature, and requires the evaluation of an

exponential number of choices. This difficulty is overcome by seeking heuristic solutions in the literature.

We describe the results of the seminal paper by Kempe et al. (2003) and the subsequent developments in

Section 2.

The existing work on optimization-based methods for social network analysis focus on various aspects other

than influence maximization (see the review by Xanthopoulos et al., 2009). The first class of problems studied

is that of identifying the influential nodes of a network with respect to the nodes’ centrality and connectivity.

As an example of this class of problems, Arulselvan et al. (2009) propose an integer programming formulation

for the problem of identifying k nodes whose removal from a deterministic social network causes maximum

fragmentation (disconnected components). The second class is that of clustering the nodes of a deterministic

social network to identify the cohesive subgroups of the network. For example, Balasundaram et al. (2011)

and Ertem et al. (2016) utilize optimization models to identify clique relaxations. Third, game-theoretic

approaches are used to study various aspects of social networks, such as modeling competitive marketing

strategies of two firms to maximize their market shares (see, e.g., Bimpikis et al., 2016).

In contrast to these models, we focus on the stochastic influence maximization problems and propose a

two-stage stochastic programming method. In addition, by utilizing the submodularity of the second stage

value (objective) function, we develop effective decomposition algorithms. Two-stage stochastic programming

is a versatile modeling tool for decision-making under uncertainty. In the first stage, a set of decision needs

to be made when some parameters are random. In the second stage, after the uncertain parameters are

revealed, a second set of (recourse) decisions are made so that the expected total cost is minimized. We

refer the reader to Birge and Louveaux (1997) and Shapiro et al. (2009) for an overview of stochastic (linear)

programming. To the best of our knowledge, Song and Dinh (2014) provide the only study besides ours that

uses a stochastic programming approach to solve a problem in social networks. In this paper, the authors

consider the problem of protecting some arcs of a social network (subject to a limited budget) so that the

damage caused by the spread of rumors from their sources to a set of targeted nodes is minimized.

1.2 Our contributions Despite the ubiquity of social networks, there has been a paucity of research

in finding provably optimal solutions to the two fundamental problems of maximizing influence in social

networks (independent cascade and general threshold). The algorithms studied to date are approximation

algorithms with a worst-case guarantee within 63% optimal (Kempe et al., 2015, and references therein).

The proposed heuristics are tested on real social networks and compared to other simple heuristics. How-

ever, their practical performance has not been tested against the optimal solution due to the hardness of the

problem and the unavailability of an algorithm that can find the optimal solution for large-scale instances of

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 3

the problem. To fill this gap, we introduce a new class of problems that we refer to as two-stage stochastic

submodular optimization models. We propose a delayed constraint generation algorithm to find the optimal

solution to this class of problems with a finite number of samples. The proposed delayed constraint gener-

ation algorithm exploits the submodularity of the second-stage value function. The influence maximization

problems of interest are special cases of this general problem class. Utilizing the special structure of the

influence function, we give an explicit characterization of the cut coefficients of the submodular inequalities,

and identify conditions under which they are facet-defining for the full master problem that is solved by

delayed constraint generation. This leads to a more efficient implementation of the proposed algorithm than

is available from a textbook implementation of available algorithms for this class of problems (Benders, 1962;

Van Slyke and Wets, 1969; Nemhauser and Wolsey, 1981). In addition, we give the complete linear descrip-

tion of the master problem for k = 1. We illustrate our proposed algorithm on the classical independent

cascade and linear threshold problems (Kempe et al., 2003). In our computational study, we show that our

algorithm yields solutions with 36% higher optimality guarantees, much faster than the greedy heuristic in

most of the large-scale real-world instances.

We note that while we demonstrate our algorithms on the independent cascade and linear threshold

models, our approach is more generally applicable to many other variants of the influence maximization

problem studied previously in the literature. Furthermore, beyond social networks, there are other applica-

tions of identifying a few key nodes in complex networks for which our models are applicable. For example,

Ostfeld and Salomons (2004) consider the problem of locating costly sensors on the crucial junctures of the

water distribution network to ensure water quality and safety by the early detection and prevention of out-

breaks. The models could also be useful in the development of immunization strategies in epidemic models

(see, e.g. Madar et al., 2004), and prevention of cascading failures in power systems (see, e.g., Hines et al.,

2009). Furthermore, it also applies to more general stochastic optimization problems that have submodular

second-stage value functions. For example, recently Contreras and Fernández (2014) consider a determinis-

tic hub location problem, and prove that the routing costs in the objective function are submodular. Using

this observation, the authors employ the delayed constraint generation algorithm of Nemhauser and Wolsey

(1981) to solve the optimization problem more effectively than the existing models for this problem. Our

proposed algorithm can be used to solve a stochastic extension of the hub location problem, where in the first

stage, the hub locations are determined, and in the second stage, after the revelation of uncertain demand

of multiple commodities, the optimal routing decisions are made. Hence, the general two-stage stochastic

submodular optimization model and method that we introduce in Section 3 has a potential broader impact

beyond social networks.

1.3 Outline In Section 2, we formally introduce the influence maximization problem and review the

greedy algorithm of Kempe et al. (2003). In Section 3, we define a general two-stage stochastic submodular

optimization model, and describe a delayed constraint generation algorithm that exploits the submodularity

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 4

of the second-stage value function. We show that for k = 1, solving a linear program with a simple set of

submodular optimality cuts and the cardinality restriction on the seed set guarantees an integer optimal

solution. In Section 4, we consider the two fundamental influence maximization problems as defined by

Kempe et al. (2003), namely independent cascade and linear threshold. We show that for these special

cases of the two-stage stochastic submodular optimization problems, we can obtain an explicit form of

the submodular optimality cuts and identify conditions under which they are facet defining. In Section

5, we report our computational experience with large-scale real-world datasets, which show the efficacy of

the proposed approach in finding optimal solutions as compared to the greedy algorithm. We share our

conclusions and future work in Section 6.

2. Greedy Algorithm of Kempe et al. (2003) In this section, we describe the modeling assumptions

of Kempe et al. (2003), and overview the greedy hill-climbing algorithm proposed by these authors. Suppose

that we are given a social networkG = (V,A), where |V | = n, |A| = m. The vertices represent the individuals,

and an arc (i, j) ∈ A represents a potential influence relationship between individuals i and j. Our goal is to

select a subset of seed nodes, X ⊂ V , with |X | ≤ k < n to activate initially, so that the expected number of

people influenced by X (denoted by σ(X)) is maximized, where k is a given integer. (Note that the original

problem statement is to select exactly k nodes to activate. However, for the relaxation that seeks |X | ≤ k

seed nodes that maximize influence, there exists a solution for which the inequality holds at equality.) The

influence propagation is assumed to be progressive, in other words, once a node is activated it remains active.

Kempe et al. (2003) show that for various influence maximization problems, the influence function σ(X)

is nonnegative, monotone and submodular. Therefore, the influence maximization problem involves the

maximization of a submodular function. The authors show that this problem is NP-hard even if there is

an efficient oracle to compute the influence spread function. However, using the results of Cornuéjols et al.

(1977) and Nemhauser et al. (1978) that the greedy method gives a (1 − 1
e
)-approximation algorithm for

maximizing a nonnegative monotone submodular function, where e is the base of the natural logarithm,

Kempe et al. (2003) establish that the greedy hill-climbing algorithm solves the influence maximization

problem with a constant (0.63) guarantee, assuming that the function σ(X) can be calculated efficiently.

Recognizing the computational difficulty of calculating σ(X) exactly, which involves taking the expectation

of the influence function with respect to a finite (but exponential) number of scenarios, Kempe et al. (2003)

propose Monte-Carlo sampling, which provides a subset of equiprobable scenarios, Λ, of moderate size.

Letting σω denote the influence function for scenario ω ∈ Λ, we get σ(X) = 1
|Λ|

∑

ω∈Λ σω(X). The basic

greedy approximation algorithm of Kempe et al. (2003) is given in Algorithm 1.

Subsequently, Wang et al. (2012) formally show that calculating σ(X) is #P-hard under the assumption

of independent arc probabilities πij , (i, j) ∈ A. Therefore, Kempe et al. (2015) propose a modification

where an arbitrarily good approximation of σ(X) is obtained in polynomial time by sampling from the true

distribution. In particular, Kempe et al. (2015) show that for a sample size of Ω
(

n2

ε2
ln(1/α)

)

, the average

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 5

number of activated nodes over the sample is a (1 ± ε)-approximation to σ(X), with probability at least

1− α.

Algorithm 1: Greedy Approximation Algorithm of Kempe et al. (2003).

1 Start with X = ∅ and a sample set of scenarios Λ;

2 while |X | ≤ k do

3 For each node i ∈ V \X , use the sample Λ to approximate σ(X ∪ {i});

4 Add node i with the largest estimate for σ(X ∪ {i}) to X ;

5 end

6 Output the set of seed nodes, X .

Further algorithmic improvements to the greedy heuristic are given in the literature (see Kempe et al.,

2015; Chen et al., 2013, for an overview). Most notably, Borgs et al. (2014) give a randomized algorithm

for finding a (1 − 1/e − ǫ)-approximate seed sets in O((m + n)ǫ−3 logn) time for any precision parameter

ǫ > 0. Note that this run time is independent of the number of seeds k. The authors show that the running

time is close to the lower bound of Ω(m + n) on the time required to obtain a constant factor randomized

approximation algorithm. The proposed randomized algorithm has a success probability of 0.6, and failure

is detectable. Therefore, the authors suggest repeated runs if failure is detected to improve the probability

of success.

3. A Two-Stage Stochastic Submodular Optimization Model and Method In this section,

we define a general two-stage stochastic submodular optimization model and outline a delayed constraint

generation algorithm for its solution. Then, in Section 4, we describe how this general model and method is

applicable to the influence maximization problems of interest.

Let (Λ,F ,P) be a finite probability space, where the probability of an elementary event ω ∈ Λ is pω :=

P(ω). Consider a general two-stage stochastic binary program

max c⊤x+
∑

ω∈Λ

pωσω(x) (1a)

s.t. x ∈ X (1b)

x ∈ {0, 1}n, (1c)

where c ∈ Rn is a given objective vector, the set X represents the constraints on the first-stage variables x

and σω(x) is the objective function of the second-stage problem for scenario ω ∈ Λ solved as a function of

first-stage decisions given by

σω(x) := max q⊤y (2a)

s.t. y ∈ Y(x, ω). (2b)

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 6

Here q is an objective vector of conformable dimension, y is the vector of second-stage decisions, and Y(x, ω)

defines the set of feasible second-stage decisions for a given first-stage vector x, and the realization of

the uncertain outcomes given by the scenario ω ∈ Λ. We assume that σω(x) : {0, 1}n → R is known

to be a submodular function for each ω ∈ Λ, and refer to the optimization problem (1) as a two-stage

stochastic submodular optimization model. It is well-known from the property of submodular functions that

if σω(x), ω ∈ Ω is submodular, then so is the second-stage value function σ(x) =
∑

ω∈Λ pωσω(x), which

is a nonnegative (convex) combination of submodular functions. Furthermore, we assume that Y(x, ω) is

a non-empty set for each x ∈ X , ω ∈ Λ, a property known as relatively complete recourse in stochastic

programming.

Next we overview a delayed constraint generation approach to solve the two-stage program (1). The

generic master problem at an iteration is formulated as

max c⊤x+
∑

ω∈Λ

pωθω (3a)

s.t. x ∈ X (3b)

(x, θ) ∈ C, (3c)

where θ is a |Λ|-dimensional vector of variables θω representing the second-stage objective function approxi-

mation for scenario ω, constraints (3c) represents the so-called optimality cuts generated until this iteration.

The set of inequalities in C provide a piecewise linear approximation of the second stage value function,

which is iteratively refined through the addition of the optimality cuts. (We will describe different forms

of these inequalities in the following discussion.) Let (x̄, θ̄) be the optimal solution to the master problem

at the current iteration. Then for all ω ∈ Λ we solve the subproblems (2) to obtain σω(x̄). We add valid

optimality cuts to C if θ̄ω > σω(x̄) for any ω ∈ Λ, otherwise we deduce that the current solution x̄ is op-

timal. The generic version of the delayed constraint generation algorithm is given in Algorithm 2. In this

algorithm, ε is a user-defined optimality tolerance. The particular implementation of Algorithm 2 depends

on the method with which subproblems are solved to obtain σω(x̄) (in line 5 of Algorithm 2), and the form

of the optimality cuts added to the master problem (in line 7 of Algorithm 2). In this section, we explore

the possibility of utilizing the submodularity of the second-stage value function in a two-stage stochastic

programming problem. We discuss a natural alternative in Appendix A, which we use as a benchmark.

Nemhauser and Wolsey (1981) give submodular inequalities to describe the maximum of a submodular

set function (see also Nemhauser and Wolsey, 1988). Consider the polyhedra Sω = {(θω, x) ∈ R× {0, 1}n :

θω ≤ σω(S) +
∑

j∈V \S ρωj (S)xj , ∀S ⊆ V }, and S ′ω = {(θω, x) ∈ R × {0, 1}n : θω ≤ σω(S) −
∑

j∈S ρωj (V \

{j})(1 − xj) +
∑

j∈V \S ρωj (S)xj , ∀S ⊆ V } for ω ∈ Λ, where ρωj (S) = σω(S ∪ {j}) − σω(S) is the marginal

contribution of adding j ∈ V \ S to the set S.

Theorem 3.1 (cf. Nemhauser and Wolsey, 1981) For a submodular and nondecreasing set function σω :

2n → R, X̄, with a characteristic vector x̄, is an optimal solution to maxS⊆V :|S|≤k{σω(S)}, if and only

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 7

Algorithm 2: Delayed Constraint Generation Algorithm.

1 Start with C = {0 ≤ θω ≤ n, ω ∈ Λ}. Let LB=0 and UB=n;

2 while UB− LB ≤ ε do

3 Solve the master problem (3) and obtain (x̄, θ̄). Let UB be the upper bound obtained from the

optimal objective value of the master problem;

4 for ω ∈ Λ do

5 Solve Subproblem (2) to obtain σω(x̄) ;

6 if θ̄ω > σω(x̄) then

7 Add an optimality cut to C;

8 end

9 end

10 Let σ(x̄) =
∑

ω∈Λ pωσω(x̄). if LB < σ(x̄) then

11 Let LB ← σ(x̄), and let x̂← x̄ be the incumbent solution

12 end

13 end

14 Output the set of seed nodes X = {i ∈ V : x̂i = 1}.

if (θω, x̄) is an optimal solution to {max θω :
∑

j∈V xj ≤ k, (θω , x) ∈ Sω}. Similarly for a submodular

and nonmonotone set function σω : 2n → R, X̄, with a characteristic vector x̄, is an optimal solution to

maxS⊆V :|S|≤k{σω(S)}, if and only if (θω, x̄) is an optimal solution to {max θω :
∑

j∈V xj ≤ k, (θω, x) ∈ S ′ω}.

Therefore, we can adapt the delayed constraint generation algorithm of Nemhauser and Wolsey (1988)

given for deterministic submodular maximization problems to two-stage stochastic submodular optimization

problems. The proposed method takes the form of Algorithm 2. For a given first stage solution, x̄, which is

a characteristic vector of the set X̄ , and scenario ω ∈ Λ, we use the optimality cut

θω ≤ σω(X̄) +
∑

j∈V \X̄

ρωj (X̄)xj , (4)

if the second-stage value function σω(x) is nondecreasing and submodular. If the second-stage value function

σω(x) is nonmonotone and submodular, then we use the optimality cut given by the inequality

θω ≤ σω(X̄)−
∑

j∈X̄

ρωj (V \ {j})(1− xj) +
∑

j∈V \X̄

ρωj (X̄)xj . (5)

We refer the reader to Nemhauser and Wolsey (1981) for validity of inequalities (4)-(5).

Corollary 3.1 Algorithm 2 with optimality cuts (4) and (5) converges to an optimal solution in finitely

many iterations for a two-stage stochastic program with binary first-stage decisions, x ∈ {0, 1}|V | for which

the second-stage value function, σω(x), ω ∈ Λ, (|Λ| finite) is submodular nondecreasing and submodular

nonmonotone, respectively.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 8

Proof. The result follows from the fact that the number of feasible first stage solutions is finite, and

from Theorem 3.1. �

Note that Algorithm 2 is generally applicable to two-stage stochastic programs with binary first-stage de-

cisions, x ∈ {0, 1}n, where the second-stage value function, σω(x) is submodular for all ω ∈ Λ. There is very

limited reporting on the computational performance of this algorithm even for deterministic submodular max-

imization problems for which the method was originally developed (see Lee et al., 1996; Contreras and Fernández,

2014, for computational results on quadratic cost partition and hub location problems, respectively). To

the best of our knowledge, our work is the first adaptation and testing of this algorithm to stochastic opti-

mization. While the submodular inequalities (4)-(5) are implicit in that they require the calculation of ρωj (·)

terms, in Section 4, we give an explicit form of the submodular optimality cuts for influence maximization

problems of interest. This allows us to characterize conditions under which the optimality cuts are strong,

and to improve the performance of a textbook implementation of the algorithm of Nemhauser and Wolsey

(1981).

Convex Hull for a Special Case Next, we consider the special case of cardinality-constrained first-

stage problem (1), i.e., X := {x ∈ {0, 1}n :
∑

j∈V xj ≤ k}, when k = 1. It is easy to see that in this case, the

greedy algorithm is optimal. Note also that for fixed k, the problem is polynomially solvable (with respect

to the input size of number of nodes, arcs and scenarios), because it involves evaluating O(nk) possible

functions σω(X), ω ∈ Λ. Observe that, without loss of generality, we can assume that pω > 0 for all ω ∈ Λ

(otherwise, we can ignore scenario ω), and that σω(∅) = 0 (otherwise, we can add a constant to the influence

function). Furthermore, because σω(·) is submodular ρωj (∅) ≥ ρωj (S) for any S ⊆ V, S 6= ∅ and j ∈ V \ S.

As a result, if ρωj (∅) < 0, then xj = 0 in any optimal solution. Therefore, without loss of generality, we can

assume that ρωj (∅) ≥ 0 for all j ∈ V, ω ∈ Λ.

Proposition 3.1 For submodular functions σω(x), ω ∈ Λ with ρωj (∅) > 0 for all j ∈ V, ω ∈ Λ, and X :=

{x ∈ {0, 1}n :
∑

j∈V xj ≤ 1}, adding the submodular optimality cut (4) with X̄ = ∅ to the linear programming

(LP) relaxation of the master problem (3) for each scenario is sufficient to give the (integer) optimal solution

x∗.

Proof. First, note that for X̄ = ∅, inequalities (4) and (5) are equivalent. Under the given assumptions,

in an optimal solution x 6= 0, the right-hand side of (4) is positive for each ω ∈ Λ. Therefore, the decision

variables θω > 0, ω ∈ Λ, are basic variables at an extreme point optimal solution of the LP relaxation of

the master problem (3). This gives us |Λ| basic variables, and the number of constraints is |Λ|+ 1. Hence,

only one decision variable xj for some j ∈ V can be basic, and it is equal to 1 (due to constraint (6)), and

θω = ρωj (∅) = σω({j}). Furthermore, this is the optimal solution to the master problem for the case k = 1.

�

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 9

4. Triggering Set Technique and the Live-arc Graph Representation In this section, we specify

how the general algorithm we propose for two-stage stochastic programs with submodular second-stage value

functions applies to the influence maximization problems of interest. Kempe et al. (2003) observe that even

though the stochastic diffusion process of influence spread is dynamic, because the decisions of whom to

activate do not influence the probability of an individual influencing another, we may envision the process to

be static and ignore the time aspect. In other words, we can generate sample paths (scenarios) of likely events

for each arc, a priori. As a result, the decision-making process considered by Kempe et al. (2003) may be

viewed as a two-stage stochastic program. In the first stage, the nodes to be activated are determined. The

uncertainty, represented by a finite collection of scenarios, Λ, is revealed with respect to how the influence

spreads in the network. For each scenario ω ∈ Λ, with associated probability pω, the influence spread given

the initial seed set X is calculated as σω(X). As a result, the expected total influence spread of the initial

seed set X is given by σ(X) =
∑

ω∈Λ pωσω(X). Let x ∈ {0, 1}n be the characteristic vector of X ⊂ V .

Where appropriate, we use σ(x) interchangeably with σ(X).

As observed by Kempe et al. (2003), the influence function σω(X) is submodular and monotone (nonde-

creasing) for various influence maximization problems. Then the two-stage stochastic programming formu-

lation of the classical influence maximization problem is given by (1) where cj = 0 for al j ∈ V and the set

X defines the cardinality constraint on the number of seed nodes given by

∑

j∈V

xj ≤ k, (6)

for a given 0 < k < |V |. Therefore, Algorithm 2 can be used to solve the influence maximization problem.

Furthermore, note that the influence functions of interest in this paper satisfy the assumption ρωj (∅) > 0

for all j ∈ V, ω ∈ Λ, because influencing only node j contributes at least one node (itself) to the influence

function. In addition, the first-stage problem is cardinality-constrained. Hence Proposition 3.1 applies to

the influence functions considered in this paper.

To model the stochastic diffusion process and calculate the influence spread function, Kempe et al. (2003)

introduce a technique that generates a finite set, Λ, of sample paths (scenarios) by tossing biased coins. The

coin tosses reveal, a priori, which influence arcs are active (live). A live-arc (i, j) indicates that if node i

is influenced during the influence propagation process, then node j is influenced by it. For each scenario

ω ∈ Λ, with a probability of occurrence pω, a so-called live-arc graph Gω = (V,Aω) is constructed, where

Aω is the set of live arcs under scenario ω. The influence spread under scenario ω ∈ Λ, denoted as σω(X),

is then calculated as the number of vertices reachable from X in Gω. Hence, the expected influence spread

function is given by σ(X) =
∑

ω∈Λ pωσω(X). This is referred to as the “triggering model” or the “triggering

set technique” by Kempe et al. (2015). The authors show the equivalence of the stochastic diffusion process

of two fundamental influence maximization problems to the live-arc graph model with respect to the final

active set. In addition, Kempe et al. (2003) show that the influence spread in a live-arc graph representable

problem is monotone and submodular under the given assumptions. As a result, our stochastic programming

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 10

method applies to such problems. Next we describe the two fundamental influence maximization problems

that are live-arc representable.

Independent Cascade Model: In the independent cascade model of Kempe et al. (2003), it is assumed

that each arc (i, j) ∈ A of the social network G = (V,A) has an associated probability of success,

πij . In other words, with probability πij individual i will be successful at influencing individual j.

We say that an arc (i, j) is active or live in this case. We generate a sample path (scenario) by

tossing biased coins (with probability of πij for each arc (i, j) ∈ A) to determine whether the arc

is active/live to construct the live-arc graph. Because each arc influence probability is independent,

and does not depend on which nodes are influenced, Kempe et al. (2003) show that the influence

maximization problem is equivalent to maximizing the expected influence function in the live-arc

graph model.

Linear Threshold Model: In the linear threshold model of Kempe et al. (2003), each arc (i, j) in the

social network G = (V,A) has deterministic weight 0 ≤ wij ≤ 1, such that for all nodes j ∈ V ,
∑

i:(i,j)∈A wij ≤ 1. In addition, each node j ∈ V selects a threshold νj uniformly at random. A node

is activated if sum of the weights of its active neighbors is above the thresholds, i.e.,
∑

i:(i,j)∈A wijxi ≥

νj . Given the set of initial seed nodes, X̄ , the activated nodes in the set U at time t influence their

unactivated neighbor j at time t + 1 if
∑

u∈U wuj ≥ νj . Kempe et al. (2003) show that the linear

threshold model also has an equivalent live-arc graph representation, where every node has at most

one incoming live arc. Each node j ∈ V selects at most one incoming live arc (i, j) with probability

wij , or it selects no arc with probability 1 −
∑

i:(i,j)∈A wij . Given the seed set X̄, Kempe et al.

(2003) prove the following two are equivalent:

(i) The distribution of active nodes computed by executing the linear threshold model with starting

seed set X̄, and

(ii) the distribution of nodes reachable from X̄ in the live-arc graph representation of the linear

threshold model defined above.

Next, we demonstrate how the proposed algorithm (Algorithm 2) can be applied to influence maximization

problems that have a live-arc graph representation. Subsequently, we give extensions where the proposed

algorithm applies to models which are not live-arc graph representable. In such models, the form of the cuts

change, but as long as the influence spread function is submodular, the proposed algorithm applies.

4.1 Exploiting the Submodularity of the Second-Stage Value Function for Live-Arc Graph

Models Utilizing Theorem 3.1, we give an explicit description of the submodular inequalities for the

influence maximization problems that have live-arc graph representations. We say that a node j is reachable

from a set of nodes S, in scenario ω ∈ Λ, if there exists a node i ∈ S such that there is a directed path

from i to j in the graph Gω = (V,Aω). It is well known that reachability can be checked in linear time with

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 11

respect to the number of arcs using depth- or breadth-first search. For S ⊆ V and ω ∈ Λ, let R(S) be the

set of nodes reachable from the nodes in S not including the nodes in S, and let R̄(S) be the set of nodes

not reachable from the nodes in S in the graph Gω = (V,Aω).

Proposition 4.1 For S ⊆ V and ω ∈ Λ the inequality

θω ≤ σω(S) +
∑

j∈R̄(S)

rωj (S)xj , (7)

is a valid optimality cut for the master problem (3), where rωj (S) is the number of nodes reachable from

j ∈ R̄(S) (including j) that are not reachable from any node in S in Gω.

Proof. From Theorem 3.1, we know that θω ≤ σω(S) +
∑

j∈V \S ρωj (S)xj is a valid inequality. Note

that R̄(S) ⊆ V \ S and for j ∈ R̄(S), we have ρωj (S) = rωj (S), in other words, the marginal contribution of

adding j ∈ R̄(S) to S is precisely rωj (S). Furthermore, for any node j ∈ R(S), the marginal contribution of

adding j to S is zero, because j is already reachable from at least one node in S. This completes the proof.

�

We refer to the cuts in the form of (7) as submodular optimality cuts. Next we give conditions under which

inequalities (7) are facet defining for conv(Sω). For i ∈ V , let indeg(i) and outdeg(i) denote the in-degree

and out-degree of node i, respectively. Let T := {i ∈ V : indeg(i) = 0}, we refer to the nodes in T as root

nodes. For i ∈ V \ T , let Pi be the set of root nodes such that i is reachable from the nodes in this set, i.e.,

Pi := {j ∈ T : i ∈ R({j})}. Finally, let L := {i ∈ V : indeg(i) > 0, outdeg(i) = 0} denote the set of leaf

nodes that have no outgoing arcs.

Proposition 4.2 For S ⊆ V and ω ∈ Λ the submodular inequality (7) is facet defining for conv(Sω) only

if the following conditions hold

(i) if i ∈ S, then i 6∈ T ,

(ii) there exists T ′ ⊆ T with |T ′| < k such that S ⊆ R(T ′).

These conditions are also sufficient

(i) if S = ∅ (for any k ≥ 1), or

(ii) if |S| = 1 for k ≥ 2.

Proof. Necessity. First, note that the submodular inequality (7) for a set S is equivalent to that for

the set S ∪R(S) =: R̂(S), because σω(S) = σω(R̂(S)), R̄(S) = R̄(R̂(S)), rωj (S) = rωj (R̂(S)) for all j ∈ R̄(S)

and ρωj (S) = 0 for j ∈ R(S). Therefore, without loss of generality, we assume that for all non-leaf nodes

i ∈ S \ L, we have R({i}) ⊆ S (Assumption A1).

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 12

(i) Suppose, for contradiction, that there exists i ∈ S ∩ T . Now consider the submodular inequality (7)

for the set S′ = S \ {i} given by

θω ≤ σω(S
′) +

∑

j∈R̄(S′)

rωj (S
′)xj = σω(S)− 1 + xi +

∑

j∈R̄(S)

rωj (S)xj , (8)

which follows because the set of all descendants of i, R({i}) is contained in S by Assumption A1, so

removing i reduces the influence function by exactly 1 (recall that, by the contradictory assumption

i ∈ T , hence its in-degree is 0 and it is not influenced by any other node in the graph), and the set of

nodes not reachable from S′ is given by R̄(S′) = R̄(S)∪{i}, and hence the coefficients rωj (S
′) = rωj (S)

for j ∈ R̄(S), and rωi (S
′) = 1. Because xi ≤ 1, inequality (8) dominates the submodular inequality

(7) for this choice of S. Hence, the submodular inequality for a set S such that there exists i ∈ S∩T

is not facet defining for conv(Sω).

(ii) Suppose, for contradiction, that there does not exist T ′ ⊆ T with |T ′| < k such that S ⊆ R(T ′). In

other words, the minimum cardinality of root nodes T ′ ⊆ T such that S ⊆ R(T ′) is greater than or

equal to k. In this case, consider the set Ŝ := {i ∈ S : ∄j ∈ S with i ∈ R({j})}, in other words, Ŝ is

the set of nodes in the graph induced by S that have no incoming arcs from other nodes in S. Note

that from condition (i), we know that Ŝ∩T = ∅. Then, by the contradictory assumption, there exist

at least k nodes, say nodes 1, . . . , k ∈ Ŝ such that Pi ∩ Pj = ∅ for all pairs i, j ∈ {1, . . . , k}, i 6= j.

Now consider the submodular inequality (7) for the set S′ = S \ {1, . . . , k} given by

θω ≤ σω(S
′) +

∑

j∈R̄(S′)

rωj (S
′)xj = σω(S)− k +

∑

j∈R̄(S)

rωj (S)xj +

k
∑

i=1

∑

j∈R̂(Pi)\R({i})

xj , (9)

which follows because the set of all descendants of i ∈ {1, . . . , k}, R({i}), is contained in S by

Assumption A1, so removing nodes i = 1, . . . , k reduces the influence function by exactly k, and

the set of nodes not reachable from S′ is given by R̄(S′) = R̄(S) ∪ {1, . . . , k}. In addition, the

coefficients rωj (S
′) = rωj (S) for j ∈ R̄(S) such that j 6∈ ∪ki=1

(

R̂(Pi) \R({i})
)

, rωj (S
′) = rωj (S) + 1

for j ∈ R̄(S) such that j ∈ ∪ki=1

(

R̂(Pi) \R({i})
)

, and rωi (S
′) = 1 for i = 1, . . . , k. Because

∑k

i=1

∑

j∈R̂(Pi)\R({i}) xj ≤
∑

j∈V xj ≤ k, inequality (9) dominates the submodular inequality (7)

for this choice of S. Hence, there must exist T ′ ⊆ T with |T ′| < k such that S ⊆ R(T ′) for the

submodular inequality (7) to be facet defining for conv(Sω).

Sufficiency. First, note that for ω ∈ Λ, dim(Sω) = n+ 1. Let ei be a unit vector of dimension n whose ith

component is 1, and other components are zero.

(i) Note that when S = ∅, the necessity conditions are trivially satisfied. Consider the n + 1 affinely

independent points: (θω , x)
0 = 0, and (θω , x)

i = (σω({i}), ei), for i ∈ V . These points are on the

face defined by the inequality (7) for S = ∅. Hence inequality (7) for S = ∅ is facet-defining for

conv(Sω).

(ii) Note that for |S| = 1, the necessity conditions imply that S := {j} for some j ∈ L. Consider the

n + 1 affinely independent points: (θω, x)
0 = (σω({j}),0); (θω, x)j = (σω({j}), ej and (θω, x)

i =

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 13

(σω({i, j}), ej + ei), for i ∈ V \ {j}. The last set of points is feasible because we have k ≥ 2 in this

case. These points are on the face defined by the inequality (7) for S = {j}. Hence inequality (7)

for S = {j} is facet-defining for conv(Sω).

�

Note that during the course of the algorithm, if a submodular inequality (7) corresponding to the seed

set S does not satisfy the necessary conditions given in Proposition 4.2, then a stronger inequality can be

constructed using the arguments in the proof of the proposition.

4.2 Facet conditions at work From Proposition 4.2 we see that inequalities (7) with S = ∅ are

facets of conv(Sω) for any k ≥ 1. We will also see their importance in our computational study. Similarly,

inequalities (7) with |S| = 1 are facets of conv(Sω) for any k ≥ 2. We note that more conditions are necessary

for the inequalities (7) with |S| = 2 to be facets of conv(Sω). We illustrate this in the next example.

Example 4.1 Consider the network in Figure 1 for a given scenario ω ∈ Λ and let k = 2. From Proposition

4.2, inequalities (7) with S = ∅, and inequalities (7) with S = {j}, for j = 4, . . . , 9 are facet-defining for

conv(Sω). Inequalities (7) with S = {7, 8} or S = {5, 6} are facets of conv(Sω); each of these sets satisfy

the necessary facet conditions in Proposition 4.2, which for these choices of S also turn out to be sufficient.

However, the sets S = {7, 9} or S = {4, 5} satisfy the necessary facet conditions in Proposition 4.2, but they

do not lead to facet-defining inequalities for k = 2. Finally, S = {4, 7} violates the necessity condition (ii) of

Proposition 4.2 (the minimum number of root nodes that can influence 4 and 7 is 2 = k) and is not a facet.

2

4

 p

5

 p

6

 p

1

 p p

7

 p

8

 p

3

 p p

9

 p

Figure 1: Network with 9 nodes and 10 arcs with equal influence probabilities p.

It is important to note that in the direct adaptation of the delayed constraint generation algorithm

proposed by Nemhauser and Wolsey (1988) to our problem, for a given solution x̄ to the current master

problem, one would use the submodular inequalities (7), where we let S = {i ∈ V : x̄i = 1} =: X̄. From

Proposition 3.1, we have that Algorithm 2 with optimality cuts (7) with S = X̄ converges to an optimal

solution in finitely many iterations for two-stage stochastic submodular maximization problems. However,

note that at any iteration, the solution to the master problem, x̄ will be such that
∑

j∈V x̄j = k. Therefore,

all submodular optimality cuts (7) added will have |S| = k, and no facets with S = ∅ will be added for

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 14

k ≥ 1. This may lead to slow convergence of the delayed constraint generation algorithm with submodular

optimality cuts for S = X̄ , which we illustrate next.

Example 4.1 (Continued.) Consider the network in Figure 1, and suppose that |Λ| = 1, hence we consider

a deterministic problem. Adding the submodular optimality cut (7) for S = ∅: θ1 ≤ 5x1+4x2+4x3+
∑9

j=4 xj

to the cardinality constraint, and solving the linear programming relaxation of the master problem yields the

integer optimal solution, x̄1 = 1, θ1 = 5 at the first iteration (from Proposition 3.1). In contrast, solving the

master problem without any optimality cuts (i.e., with just the cardinality constraint) may lead to an initial

solution of x̄2 = 1. Then the following set of submodular cuts are added in that order during the course of

the algorithm of Nemhauser and Wolsey (1988):

θ1 ≤ 4 + 3x1 + 4x3 +

9
∑

j=7

xj (S = X̄ = {2}), (10)

θ1 ≤ 4 + 3x1 + 4x2 +

6
∑

j=4

xj (S = X̄ = {3}), (11)

θ1 ≤ 5 + 2x2 + 2x3 + x4 + x9 (S = X̄ = {1}). (12)

Furthermore, none of the inequalities (10)-(12) are facet-defining. Solving the LP relaxation of the master

problem with the optimality cuts (10)-(12) leads to a fractional solution: x̄2 = x̄3 = 0.5. This small example

highlights that a textbook implementation of the algorithm by Nemhauser and Wolsey (1988) may lead to slow

convergence because the algorithm (1) may explore, in the worst case, O
(

n
k

)

many locally optimal solutions

before finding an optimal solution, and (2) may require long solution times for each master problem, because

the optimality cuts given by S = X̄ may not be facet-defining and hence lead to weak LP relaxations.

These observations enable us to devise a more efficient implementation of Algorithm 2, which we report

in Section 5.

4.3 Extensions In this section, we give various extensions of the influence maximization problems that

can be solved using our proposed methods.

4.3.1 Extensions to live-arc graph models Observe that while we demonstrate our general algo-

rithm on the independent cascade and linear threshold models, our proposed model and method is applicable

to many extensions of the social network problems studied in the literature. For example, an extension consid-

ered in the literature is to replace the cardinality constraint on the number of nodes selected with a knapsack

constraint representing a marketing budget where each node has a different cost to market. This model also

admits an adapted and more involved 0.63-factor greedy approximation algorithm (see, Khuller et al., 1999;

Sviridenko, 2004). In fact, our model is flexible enough to allow any constraints in X so long as the master

problem can be solved with an optimization solver, while the greedy approximation algorithm needs careful

adjustment and analysis for each additional constraint. Similarly, the time-constrained influence spread

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 15

problem studied in Chen et al. (2012) and Liu et al. (2012) can also be solved using our method. In this

problem, there is an additional constraint that the number of time periods it takes to influence a node should

be no more than a given parameter τ . The resulting influence spread function is monotone and submodular,

hence we can use inequalities (4) as the submodular optimality cuts. Furthermore, we can efficiently cal-

culate the coefficients ρωj (X̄) by solving, with breadth-first search, a modified reachability problem limiting

the number of hops from the seed set X̄ to any other node by τ .

4.3.2 General cascade and general threshold models In the general cascade model, every node

j ∈ V has an activation function p′j(i, S) ∈ [0, 1] for S ⊆ {(k, j) ∈ A} =: N in(j) and i ∈ N in(j) \ S. The

activation function represents the probability that node j is influenced by node i given that the nodes in S

failed to activate node i. The independent cascade model is a special case, where p′j(i, S) = πij , independent

of S.

In the general threshold model, every node j ∈ V has an threshold function fj(S) for S ⊆ N in(j), where

fj(·) is monotone and fj(∅) = 0. As before, every node j selects a threshold νj uniformly at random in the

range [0, 1]. Then, a node j is activated if for a given active set S, fj(S ∩N
in(j)) ≥ νj . The linear threshold

model is a special case, where fj(S) =
∑

i∈S wij .

Kempe et al. (2003) show that general cascade model is equivalent to the general threshold model with

an appropriate selection of activation and threshold functions. This is not true for the independent cascade

and the linear threshold models (see Example 2.14 in Chen et al., 2013). Furthermore, the influence spread

function is no longer submodular. However, if fj(S) is submodular for all j ∈ V , then the influence spread is

submodular (first conjectured by Kempe et al. (2003) and later proven by Mossel and Roch (2007; 2010)).

Therefore, the greedy hill climbing algorithm is a 0.63-approximation algorithm for this case as well. Algo-

rithm 2 is applicable in the submodular threshold functions case, where the optimality cuts take the more

general form (4) or (5) depending on the monotonicity of the function f .

5. Computational Experiments In this section we summarize our experience with solving the influ-

ence maximization problem using the delayed constraint generation method (DCG) with various optimality

cuts as given in Algorithm 2, and the greedy hill-climbing algorithm (Greedy) of Kempe et al. (2003) as

given in Algorithm 1. The algorithms are implemented in C++ with IBM ILOG CPLEX 12.6 Optimizer.

All experiments were executed on a Windows Server 2012 R2 with an Intel Xeon E5-2630 2.40 GHz CPU,

32 GB DRAM and x64 based processor. In our implementation of Algorithm 2, we set the parameter ε = 0.

For the master problem of the decomposition algorithm, the relative MIP gap tolerance of CPLEX was set

to 1%, so a feasible solution which has an optimality gap of 1% is considered optimal.

5.1 Small-Scale Network First, we study the quality of the solutions produced by DCG and Greedy

on a small-scale network for which we can enumerate all possible outcomes of the random process. In these

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 16

experiments, we are able to capture the random process precisely, and no information is lost through sampling

from the true distribution. An illustrative network is given in Figure 1 with 9 nodes, 10 directed arcs and

independent influence probability πij = p for all (i, j) ∈ A. Our goal is to select k = 2 seed nodes, so that

the objective value, which is the expected number of nodes influenced by the seed nodes, is maximized. We

generate all possible influence scenarios (a total of 210 = 1024 scenarios). Note that under the assumption

that each influence is independent of the others, the probability of scenario ω, which has ℓ ≤ 10 live arcs, is

given by pω = (1− p)10−ℓ pℓ.

The solution of DCG and Greedy methods on 1024 scenarios with various values of p = 0.1, 0.2, . . . , 1 is

shown in Table 1. When p ≤ 0.5, both algorithms have the same objective value. For 0.6 ≤ p ≤ 1, Greedy

selects node 1 as the seed in the first iteration of Algorithm 1 (line 4 of Algotihm 1) and selects either node

2 or 3 as the seed in the second iteration. However, DCG selects nodes 2 and 3 as the seed nodes, and

provides a better objective value than Greedy (up to 12.5% improvement). So while Greedy does better

than its worst-case bound (63%), it is within 12.5% of optimality.

Next, instead of generating all 1024 scenarios, we employed Monte-Carlo sampling, and independently

sampled different number of scenarios |Λ| = 10, 50 and 100 according to different p values, and let pω = 1/|Λ|.

We summarize the results of this experiment in Table 2. For eight out of 15 cases, DCG has a higher

objective value than Greedy, and in all other cases Greedy attains the optimal objective value (mostly for

small influence probabilities p = 0.1, 0.3). We also observe that the objective value for the instances with

a larger number of scenarios is generally closer to the objective value with all 1024 scenarios (except for

p = 0.1 and |Λ| = 100). Note that Greedy is a 0.63-approximation algorithm even for the sampled problem,

which assumes that the true distribution is given by the scenarios in Λ, whereas DCG provides the optimal

solution to the sampled problem.

Table 1: Expected influence obtained from two algorithms for the small-scale network with 1024 scenarios.

Objective values with different p

Algorithm p = 1.0 p = 0.9 p = 0.8 p = 0.7 p = 0.6 p = 0.5 p = 0.4 p = 0.3 p = 0.2 p = 0.1

DCG 8 7.4 6.8 6.2 5.6 5 4.48 3.92 3.32 2.68

Greedy 7 6.68 6.32 5.92 5.48 5 4.48 3.92 3.32 2.68

5.2 Large-Scale Network with Real-World Datasets To evaluate the efficiency of DCG and

Greedy on large networks, we conduct computational experiments on four real-world datasets with different

categories and scales. These datasets are summarized below and in Table 3:

UCI-message is the dataset for the online student community network at the University of California,

Irvine (Opsahl and Panzarasa, 2009). The 1,899 nodes represent the students, and the 59,835 di-

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 17

Table 2: Expected influence obtained from two algorithms for the small-scale network with |Λ| scenarios.

Objective values for different p

|Λ| Algorithm p = 0.9 p = 0.6 p = 0.5 p = 0.3 p = 0.1

10 DCG 7.1 5.2 4.7 3.4 2.6

10 Greedy 6.8 5.1 4.6 3.4 2.6

50 DCG 7.4 5.84 5.18 3.98 2.68

50 Greedy 6.82 5.66 5.06 3.98 2.68

100 DCG 7.38 5.61 5.04 3.96 2.76

100 Greedy 6.69 5.52 5.04 3.96 2.76

rected arcs between two nodes indicate that one student sent a message to the other.

P2P02 is the dataset for the Gnutella peer-to-peer file sharing network from August 2002 (Leskovec et al.,

2007; Ripeanu et al., 2002). The 10,876 nodes represent the hosts, and the 39,994 undirected edges

denote the connections between two hosts.

Phy-HEP is the dataset for the academic collaboration network in the “high energy physics theory”

(HEPT) section of the e-print arXiv (www.arxiv.org) (Kempe et al., 2003; Chen et al., 2009; Kempe et al.,

2015). The 15,233 nodes represent the authors, and the 58,891 undirected edges represent the co-

authorship between each pair of authors in the “high energy physics theory” papers from 1991 to

2003. Note that this is the original dataset considered in Kempe et al. (2003), and it is commonly

used as a benchmark in comparing various algorithms for maximizing influence in social networks.

Email-Enron is the dataset for the email communication network of the Enron Corporation (Leskovec et al.,

2009; Klimt and Yang, 2004). It is posted to the public by the Federal Energy Regulatory Com-

mission during the investigation. The 36,692 nodes represent the different email addresses, and the

183,831 directed arcs denote one address sent a mail to the other.

Note that if the graph in the original datasets contain undirected edges between i and j, then we construct

a directed graph with two directed arcs from i to j and j to i. We follow the data generation scheme of

Kempe et al. (2003) in constructing live-arcs graphs for these instances (i.e., the probabilities of influence on

each arc for the independent cascade model, and the arc weights and node thresholds for the linear threshold

model follow from Kempe et al., 2003).

In our experiments in this subsection, we compare three algorithms: Greedy is the greedy hill-climbing

algorithm (Algorithm 1); DCG-SubIneqs is Algorithm 2 using submodular optimality cuts (7) for S = X̄,

where X̄ is the optimal solution given by the master problem in the current iteration; and DCG-SubWarmup

adds the submodular inequalities (7) for S = ∅ for each scenario, before the execution of DCG-SubIneqs

as a warm-start. Proposition 3.1 shows that the submodular optimality cut (7) with S = ∅, which is

www.arxiv.org

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 18

referred to as EmptySetCut, is sufficient to find the optimal solution for k = 1 (note that ρωj (∅) ≥ 1 for

all j ∈ V, ω ∈ Λ, hence the assumptions of the proposition are satisfied). Our goal in implementing DCG-

SubWarmup is to test if EmptySetCut is also useful for k > 1. To verify this, we add EmptySetCuts for

all scenarios to the master problem before executing the DCG algorithm, and solving the initial master

problem. Note that the total computation time in our experiments includes the generation time of all

EmptySetCuts, and the total number of user cuts also includes the number of EmptySetCuts. We also

implemented Algorithm 2 using alternative optimality cuts (adapted and strengthened versions of integer-

L-shaped cuts of Laporte and Louveaux, 1993, referred to as Benders-LC, and described in Appendix A);

however, the running time of Benders-LC is extremely slow. Therefore, we only report our results with

DCG-SubIneqs, DCG-SubWarmup and Greedy, and discuss the inefficiency of Benders-LC in Appendix A.1.

Table 3: The summary of real world datasets.

Dataset

UCI-message P2P02 Phy-HEP Email-Enron

Network Category Online-Message File-Shearing Collaboration Communication

Nodes 1,899 10,876 15,233 36,692

Edges 59,835 39,994 58,891 183,831

Format Directed Undirected Undirected Directed

5.2.1 Independent Cascade Model For the independent cascade model, we assign uniform influence

probability πij = p = 0.1 independently to each arc (i, j) in the network as was done in Kempe et al. (2003).

Note that Kempe et al. (2003) consider the dataset Phy-HEP with influence probabilities πij ∈ {0.01, 0.1}

for each arc (i, j) in the network. However, we observe that for πij = 0.01, the total number of live arcs is

very small, resulting in sparse live-arc graphs with a large number of singletons. For example, the expected

number of live arcs in our largest dataset Email-Enron is 183, 831 ∗ 0.01 = 1, 838 with p = 0.01. However,

the number of nodes of Email-Enron is 36,692, resulting in over 30,000 singletons in the network. Therefore,

we focus on the more interesting case of πij = 0.1 in our experiments in this section.

We generate |Λ| = 100, 200, 300 and 500 scenarios to find k = 1 to 5 seed nodes that maximize influence.

Tables 4-5 summarize our experiments with the algorithms DCG-SubIneqs, DCG-SubWarmup and Greedy

for the independent cascade model. Column “k” denotes the number of seed nodes to be selected. Column

“Cuts(#)” reports the total number of submodular inequalities (7) added to the master problem of DCG-

SubIneqs, and column “Time(s)” reports the solution time in seconds. We do not report the objective values

in these experiments, because we are able to prove that despite its worst-case performance guarantee of

63%, Greedy is within the optimality tolerance for these instances. In Kempe et al. (2003) Greedy is tested

empirically against other heuristics such as choosing the nodes with k highest degrees in the graph G, because

it is said that an optimal solution is not available. Therefore, our computational experiments also provide

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 19

an empirical test on the greedy heuristic when the optimal solution is available (to the sampled problem)

due to our proposed method.

From column Cuts(#) in Tables 4-5, we observe that the number of cuts added to the master problem

generally increases with the number of seed nodes k. In other words, more iterations are needed to prove

optimality if we have more seed nodes to select. Columns DCG-SubIneqs Time(s) and Cuts(#) show that

the overall running time does not necessarily increase with the number of user cuts, as more cuts may help

the master problem converge to an optimal solution faster. Recall that the running time of DCG-SubIneqs

includes the solution time of the master problem (a mixed-integer program) and the cut generation time of

submodular inequalities, which decomposes by each scenario. DCG-SubWarmup improves the efficiency for

most of the instances compared to DCG-SubIneqs, because it requires fewer user cuts, and the EmptySetCuts

are facet-defining and may lead to faster solution times for the master problem. This improvement is expected

for k = 1 (from Proposition 3.1), but it also holds for k ≥ 2.

From columns DCG-SubIneqs Time(s), DCG-SubWarmup Time(s) and Greedy Time(s), we see that the

running time of Greedy increases linearly as the number of seed nodes increases, but the same observation

can not be made for the number of scenarios. For example, for Phy-HEP with k = 5 in Table 5, Greedy takes

2465 seconds to solve the instance with 300 scenarios, but 13808 seconds for the instance with 500 scenarios.

In addition, there is no obvious trend in the solution time of DCG-SubIneqs and DCG-SubWarmup as we

increase k or |Λ|.

Considering the average solution time, we observe that DCG-SubWarmup is faster than DCG-SubIneqs,

which is in turn faster than Greedy for large networks with more than 10,000 nodes. For example, for the

instance Email-Enron in Table 5, the average solution time of Greedy is five times that of DCG-SubIneqs.

Only for the smallest instance, UCI-message, Greedy is the fastest algorithm (see Table 4). Finally, we note

that the time required to calculate ρωj (x̄) for each ω ∈ Λ and for a given x̄ ∈ X is negligible (it is a reachability

problem solved in linear time in |Aω |). However because this problem needs to be solved for a large number

of nodes and scenarios for the calculation of the cut coefficients, the majority of the overall time for DCG

is spent on cut generation (for example, the cut generation takes, on average, 80% of the time over all four

problem instances with |Λ| = 300). Because we observe that the major bottleneck is the cut generation time,

and that the algorithm converges in a few iterations, we did not implement enhancements known to improve

convergence, such as the trust region method or heuristics (cf. Santoso et al., 2005; Oliveira et al., 2014).

5.2.2 Linear Threshold Model In this section, we summarize our experiments with the linear thresh-

old model. Recall that in the live-arc graph representation of linear threshold models, at most one incoming

arc is chosen for each node in the live-arc graph construction for each scenario. As in Kempe et al. (2003) we

let the deterministic weight on each arc (i, j) ∈ A be wij = 1/indeg(j). We generate |Λ| ∈ {100, 200, 300, 500}

for the four real-world datasets described earlier.

W
u

a
n
d

K
ü
ç
ü
k
y
a
v
u
z
:
M

a
x
im

iz
in

g
In

fl
u
e
n
c
e
in

S
o
c
ia
l
N
e
tw

o
r
k
s
:
A

T
w
o
-S

ta
g
e
S
to
c
h
a
s
tic

P
ro
g
ra

m
m
in

g
A
p
p
ro
a
c
h

2
0

Table 4: Independent Cascade Model for UCI-message and P2P02

UCI-message P2P02

DCG-SubIneqs DCG-SubWarmup Greedy DCG-SubIneqs DCG-SubWarmup Greedy

k |Λ| Time(s) Cuts(#) Time(s) Cuts(#) Time(s) Time(s) Cuts(#) Time(s) Cuts(#) Time(s)

1 100 50 118 45 100 31 460 200 227 100 211

2 100 75 200 72 200 40 466 200 505 212 364

3 100 82 200 78 201 50 463 216 514 216 520

4 100 76 200 71 200 59 721 245 591 244 682

5 100 81 200 73 200 69 572 232 547 232 823

1 200 55 234 43 200 59 538 400 261 200 324

2 200 90 399 85 400 77 526 400 514 400 558

3 200 91 400 88 400 96 553 412 552 411 794

4 200 95 400 84 400 118 569 433 552 428 1014

5 200 89 400 87 400 138 785 451 590 451 1227

1 300 186 339 164 300 99 234 600 136 300 1029

2 300 356 596 260 600 133 240 600 246 600 1852

3 300 274 600 264 600 168 246 600 251 600 2652

4 300 268 600 282 600 201 324 658 295 643 3452

5 300 273 600 272 600 232 310 678 302 658 4369

1 500 161 571 99 500 154 529 1000 271 500 2508

2 500 237 994 201 1000 202 522 1000 515 1000 4796

3 500 221 999 207 1000 252 489 1000 522 1000 6922

4 500 219 1000 203 1000 299 609 1075 721 1193 9018

5 500 211 1000 200 1000 347 608 1131 620 1129 11043

Average 159.5 502.5 143.9 495.05 141.2 488.2 576.55 436.6 525.85 2707.9

W
u

a
n
d

K
ü
ç
ü
k
y
a
v
u
z
:
M

a
x
im

iz
in

g
In

fl
u
e
n
c
e
in

S
o
c
ia
l
N
e
tw

o
r
k
s
:
A

T
w
o
-S

ta
g
e
S
to
c
h
a
s
tic

P
ro
g
ra

m
m
in

g
A
p
p
ro
a
c
h

2
1

Table 5: Independent Cascade Model for Phy-HEP and Email-Enron

Phy-HEP Email-Enron

DCG-SubIneqs DCG-SubWarmup Greedy DCG-SubIneqs DCG-SubWarmup Greedy

k |Λ| Time(s) Cuts(#) Time(s) Cuts(#) Time(s) Time(s) Cuts(#) Time(s) Cuts(#) Time(s)

1 100 170 200 76 100 616 1717 200 848 100 4712

2 100 650 208 623 200 1141 1656 200 2004 200 7332

3 100 777 301 771 300 1654 1618 200 1721 200 9860

4 100 1064 385 1054 385 2107 1715 200 1618 200 12465

5 100 375 491 366 491 2530 1622 200 1628 200 15137

1 200 1800 400 921 200 906 3599 400 1810 200 7610

2 200 261 400 257 401 1593 4279 400 4262 400 11623

3 200 524 599 455 598 2185 3372 400 3420 400 15576

4 200 2208 770 1983 771 2770 3273 400 3668 400 19414

5 200 845 989 733 988 3344 3265 400 3529 400 23124

1 300 416 600 245 300 695 5737 600 2702 300 11295

2 300 414 609 504 600 1123 5256 600 5037 600 17675

3 300 648 902 567 900 1561 4890 600 5003 600 24357

4 300 829 1040 863 1038 2004 4921 600 6116 726 31387

5 300 911 1190 737 1190 2465 4900 600 5000 600 38385

1 500 925 1000 421 500 3439 9526 1000 4679 500 16976

2 500 603 1000 614 1005 6250 9176 1000 8756 1000 25970

3 500 1266 1498 1353 1500 8992 9726 1000 9305 1000 34775

4 500 1544 1985 1434 1985 11545 9187 1000 9507 1000 43588

5 500 2128 2220 2315 2323 13808 11056 1000 9390 1000 52548

Average 917.9 839.35 814.6 788.75 3536.4 5024.55 550 4500.15 501.3 21190.45

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 22

The results are shown in Tables 6-7. Similar to the independent cascade model, the running time of

Greedy increases linearly in k, and there is no obvious trend in the solution time of DCG-SubIneqs and

DCG-SubWarmup as we increase k or |Λ|. As in the previous experiments for the independent cascade

model, DCG-SubWarmup is slower than Greedy only for the smallest dataset with fewer than 2,000 nodes

(UCI-message) (see Table 6). For the large-scale datasets with over 10,000 nodes (P2P01, Phy-HEP, and

Email-Enron) reported in Tables 6-7, we observe that the warm-up strategy is highly effective. It provides

the best solution times, and fewer iterations and cuts. For example, DCG-SubWarmup outperforms Greedy

by a factor of 2.23 in P2P02 in Table 6, a factor of 4.05 in Phy-Hep in Table 7, and a factor of 25 in

Email-Enron in Table 7, the largest dataset considered.

Some comments are in order for both the independent cascade and linear threshold models. First, we

make some observations on increasing k. As can be seen from our experiments, the running time of Greedy

increases linearly with k. However, the increase in the running time of DCG is nonlinear, as can be expected.

Hence, as we increase k, we need to set some time limits for both DCG and Greedy (currently, we impose

no time limits). In this case, with DCG, we are still able to obtain an incumbent solution with k seed nodes

and an estimate on optimality gap provided by the bound from the DCG master. However, with a time

limit, we will have to stop Greedy prematurely, before it identifies all k seed nodes. For example, for the

independent cascade model for the medium-sized instance P2P02, setting a time limit of one hour, for k = 30

and |Λ| = 300, Greedy stops at time limit with a solution that has k = 4 seed nodes (see Table 4). On the

other hand, DCG stops with an incumbent solution that has k = 30 seed nodes and an optimality gap of

3.7%. For the largest instance Enron, from Table 5, we observe that Greedy cannot even find the first seed

node in over three hours. Similarly, as we increase |Λ|, the running time of both algorithms increase greatly,

and as in the case of increasing k we will have to impose time limits and stop Greedy prematurely to be able

to compare the performance of the algorithms.

Our computational experiments demonstrate an overlooked opportunity to use optimization methods

to solve stochastic influence maximization problems. For deterministic submodular maximization problems,

Greedy has much faster solution times and close to optimal performance in practice than a delayed constraint

generation method based on submodular inequalities (see, for example, Contreras and Fernández, 2014, for

a deterministic hub location problem). In contrast, for stochastic submodular maximization problems, which

are very large scale, Greedy, which guarantees a 0.63-approximate solution, may be much slower than our

proposed method.

Finally, note that, throughout the paper, we present a so-called multicut version of the DCG algorithm

and its variants, where we add an optimality cut for each scenario at each iteration. We have also tested a

single cut implementation, in which multiple cuts across all scenarios are aggregated into a single cut at each

iteration. We observe a degraded performance of the single cut version for our problem instances; therefore,

we present our results for the multicut approach. In particular, for the independent cascade model, the total

W
u

a
n
d

K
ü
ç
ü
k
y
a
v
u
z
:
M

a
x
im

iz
in

g
In

fl
u
e
n
c
e
in

S
o
c
ia
l
N
e
tw

o
r
k
s
:
A

T
w
o
-S

ta
g
e
S
to
c
h
a
s
tic

P
ro
g
ra

m
m
in

g
A
p
p
ro
a
c
h

2
3

Table 6: Linear Threshold Model for UCI-message and P2P02

UCI-message P2P02

DCG-SubIneqs DCG-SubWarmup Greedy DCG-SubIneqs DCG-SubWarmup Greedy

k |Λ| Time(s) Cuts(#) Time(s) Cuts(#) Time(s) Time(s) Cuts(#) Time(s) Cuts(#) Time(s)

1 100 52 196 32 100 1 55 200 17 100 110

2 100 72 299 43 120 1 48 200 26 103 222

3 100 94 378 70 169 2 55 200 28 108 337

4 100 130 455 93 257 3 136 338 28 120 449

5 100 162 606 89 303 4 230 580 31 133 565

1 200 137 386 61 200 1 394 400 236 200 107

2 200 220 722 91 259 3 387 400 202 202 211

3 200 221 735 80 296 4 583 596 225 214 311

4 200 243 892 161 502 6 590 596 204 213 414

5 200 469 1435 289 893 7 1260 1156 306 290 512

1 300 192 582 103 300 3 1457 600 558 300 624

2 300 188 590 200 513 5 1564 600 584 308 1231

3 300 192 594 159 449 8 1853 885 684 343 1833

4 300 573 1507 249 637 11 3529 1687 855 410 2531

5 300 543 1554 387 1011 13 9557 4000 1656 765 3118

1 500 493 962 76 500 3 1225 1000 544 500 512

2 500 462 988 84 559 6 1721 1000 576 503 1028

3 500 747 1403 181 740 9 1224 1000 534 512 1507

4 500 665 1415 130 723 12 4799 3308 600 552 1969

5 500 1282 2909 462 1933 15 10505 5861 1047 887 2415

Average 356.85 930.4 152 523.2 5.85 2058.6 1230.35 447.05 338.15 1000.3

W
u

a
n
d

K
ü
ç
ü
k
y
a
v
u
z
:
M

a
x
im

iz
in

g
In

fl
u
e
n
c
e
in

S
o
c
ia
l
N
e
tw

o
r
k
s
:
A

T
w
o
-S

ta
g
e
S
to
c
h
a
s
tic

P
ro
g
ra

m
m
in

g
A
p
p
ro
a
c
h

2
4

Table 7: Linear Threshold Model for Phy-HEP and Email-Enron

Phy-HEP Email-Enron

DCG-SubIneqs DCG-SubWarmup Greedy DCG-SubIneqs DCG-SubWarmup Greedy

k |Λ| Time(s) Cuts(#) Time(s) Cuts(#) Time(s) Time(s) Cuts(#) Time(s) Cuts(#) Time(s)

1 100 476 200 160 100 587 209 200 100 100 2045

2 100 528 243 175 101 1116 206 200 97 100 3972

3 100 1117 428 333 182 1682 196 200 131 106 5814

4 100 1351 474 383 185 2235 414 379 158 137 7605

5 100 786 387 63 209 2740 644 535 299 230 9366

1 200 1180 691 261 200 595 440 400 200 200 2411

2 200 1141 586 477 359 1176 1240 400 608 200 4732

3 200 1841 964 540 362 1791 419 400 223 215 7001

4 200 1448 779 602 363 2444 642 593 285 265 9192

5 200 1190 581 722 377 3229 902 760 447 378 11330

1 300 1212 898 424 300 380 773 600 324 300 4822

2 300 399 600 445 303 692 740 600 335 300 9283

3 300 489 600 516 312 1017 666 600 375 326 13602

4 300 943 871 1089 548 1329 1082 886 436 365 17833

5 300 6425 3413 824 619 1642 1975 1441 982 710 22354

1 500 546 1000 236 500 2051 1243 1000 670 500 6179

2 500 1910 1218 1229 887 4002 1199 1000 613 500 12113

3 500 2440 1421 1312 891 6342 1192 1000 675 523 17858

4 500 4340 2283 1635 988 8637 2446 1929 845 669 23443

5 500 9291 3845 2051 1040 10993 3490 2373 1044 844 28876

Average 1952.65 1074.1 673.85 441.3 2734 1005.9 774.8 442.35 348.4 10991.55

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 25

computational time of the single cut version of DCG-SubWarmup is between 20 to 100% higher than the

multicut version in all four datasets with 300 scenarios for k > 1. (See page 167 of Birge and Louveaux, 1997,

for a discussion on the problem-dependent nature of the performance of the single vs. multicut approach.)

6. Conclusion In this paper, we propose a delayed constraint generation algorithm to solve influence

maximization problems arising in social networks. We show that exploiting the submodularity of the influence

function leads to strong optimality cuts. Furthermore, our computational experiments with large-scale real-

world test instances indicate that the algorithm performs favorably against a popular greedy heuristic for

this problem. In most instances, our algorithm finds a solution with provable optimality guarantees more

quickly than the greedy heuristic, which can only provide a 0.63 performance guarantee. Our algorithm is

applicable to many other variants of the influence maximization problem for which the influence function is

submodular. Furthermore, we generalize the proposed algorithm to solve any two-stage stochastic program,

where the second-stage value function is submodular.

Our results on optimization-based methods for the fundamental influence maximization problems provide

a foundation to build algorithms for more advanced models, such as the adaptive model of Seeman and Singer

(2013), where a subset of additional seed nodes is selected in the second stage based on the realization of some

of the uncertain parameters and the seed nodes selected in the first stage. The decomposition methods of

Sen (2010); Gade et al. (2014) and Zhang and Küçükyavuz (2014) can be employed in this case to convexify

the second stage problems that involve binary decisions. Another possible future research direction is to

develop optimization-based methods for the problem of marketing to nodes (Kempe et al., 2003; 2015) to

increase their probabilities of getting activated.

Acknowledgments This work is supported, in part, by the National Science Foundation Grant 1055668.

Appendix A. Alternative Benders Optimality Cuts for Live-Arc Graph Models In this sec-

tion, we present optimality cuts that can be obtained by traditional methods. First, we give an explicit linear

programming (LP) formulation for the subproblems (2) used to calculate σω(x) for live-arc graph models

such as independent cascade or linear threshold. Observe that the maximum number of nodes reachable

from nodes X (corresponding to the decision vector x) in graph Gω can be formulated as a maximum flow

problem an a modified graph G′
ω = (V ∪ {s, t}, A′

ω), where s is the source node, t is the sink node, and A′
ω

includes the arcs Aω and arcs (s, i) and (i, t) for all i ∈ V . Let the capacity of the arcs (i, t), i ∈ V be one,

and the capacity of arcs (i, j) ∈ Aω be n (the maximum flow possible on any arc). In addition, we would like

the arcs (s, i), i ∈ V to have a capacity of n if xi = 1 and 0 otherwise. Therefore, we let the capacity of arc

(s, i) be nxi. The reader might wonder why we create an arc (s, i) if a node i is not activated. To see why,

note that in a two-stage stochastic programming framework, we need to build a second-stage model that is

correct for any first-stage decision x. It is easy to see that the maximum flow on this graph is equal to the

maximum number of vertices reachable from the seeded nodes X . The LP formulation of the second-stage

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 26

problem for scenario ω ∈ Λ is

σω(x) = max
∑

i∈V

ysi (13a)

s.t.
∑

j:(j,i)∈A′

ω

yji −
∑

j:(i,j)∈A′

ω

yij = 0, i ∈ V (uω
i) (13b)

ysi ≤ nxi, i ∈ V (vωsi) (13c)

yij ≤ n, (i, j) ∈ Aω (vωij) (13d)

yit ≤ 1, i ∈ V (vωit) (13e)

yij ≥ 0, (i, j) ∈ A′
ω, (13f)

where yij represents the flow on arc (i, j) ∈ A′
ω, and the dual variables associated with each constraint are

defined in parentheses. Note that the subproblems are feasible for any ω ∈ Λ and x ∈ {0, 1}n (we can always

send zero flows), therefore this problem is said to have complete recourse. The dual of the second-stage

problem (13) is

σω(x) = min
∑

i∈V

(nxiv
ω
si + vωit) +

∑

(i,j)∈Aω

nvωij (14a)

s.t. uω
i + vωsi ≥ 1, i ∈ V (14b)

uω
j − uω

i + vωij ≥ 0, (i, j) ∈ Aω (14c)

− uω
i + vωit ≥ 0, i ∈ V (14d)

vωij ≥ 0, (i, j) ∈ A′
ω. (14e)

Note that we can write a large-scale mixed-integer program, known as the deterministic equivalent program

(DEP), to solve the independent cascade problem. To do this, we create copies of the second-stage variables

yωij for all ω ∈ Λ, where yωij represents the flow on arc (i, j) ∈ A′
ω under scenario ω ∈ Λ. The DEP is

formulated as

max
∑

ω∈Λ

pω
∑

i∈V

yωsi (15a)

s.t.
∑

j∈V

xj ≤ k (15b)

∑

j:(j,i)∈A′

ω

yji −
∑

j:(i,j)∈A′

ω

yij = 0, i ∈ V (15c)

yωsi ≤ nxi, ω ∈ Λ, i ∈ V (15d)

yωij ≤ n, ω ∈ Λ, (i, j) ∈ Aω (15e)

yωit ≤ 1, ω ∈ Λ, i ∈ V (15f)

x ∈ {0, 1}n, yωij ≥ 0, ω ∈ Λ, (i, j) ∈ A′
ω . (15g)

It is well-established in the stochastic programming field that due to its large size, it is not practical to

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 27

solve DEP directly. Instead, as is commonly done, we consider the use of Benders decomposition method

(Benders, 1962; Van Slyke and Wets, 1969) utilizing the structure of this large-scale MIP.

A naive way of generating the optimality cuts is to solve the subproblem (13) for each ω ∈ Λ as an LP

(in line 5 of Algorithm 2) to obtain σω(x̄), and the corresponding dual vector (ūω, v̄ω). Then the optimality

cut is

θω ≤
∑

i∈V

(nxiv̄
ω
si + v̄ωit) +

∑

(i,j)∈Aω

nv̄ωij . (16)

We refer to the optimality cuts (16) obtained by solving the subproblems as an LP as the LP-based optimality

cuts.

Next, we discuss a more efficient way of obtaining the optimality cuts by utilizing the fact that the sub-

problems are maximum flow problems, which can be solved in polynomial time using specialized algorithms.

In particular, for our problem, one only needs to solve a reachability problem to obtain the corresponding

maximum flow. Reachability problem in a graph can be solved in linear time in the number of arcs us-

ing breadth- or depth-first search. We describe the equivalence of the maximum flow problem defining the

evaluation of the influence spread to the graph reachability problem next.

For a given first-stage solution x̄ and the corresponding seed set X̄, let R̂(X̄) ⊆ V be the set of nodes in V

reachable from s, R(X̄) = R̂(X̄)\X̄ be the set of nodes reachable from s not including the seed nodes X̄, and

R̄(X̄) = V \ R̂(X̄) be the set of nodes in V not reachable from s in G′
ω. From maximum flow minimum cut

theorem (see, e.g., Ahuja et al., 1993)) we can show that a minimum cut is given by (R̂(X̄)∪{s}, R̄(X̄)∪{t}).

(See the maximum flow formulation of this problem for a given X̄ and scenario ω ∈ Λ in Figure 2.) Let

uω
i = 1 if i ∈ R̂(X̄), and uω

i = 0, if i ∈ R̄(X̄). In addition, for (i, j) ∈ A′
ω , let v

ω
ij = 1 if i ∈ R̂(X̄) ∪ {s} and

j ∈ R̄(X̄) ∪ {t}, otherwise let vωij = 0. It is easy to check that this choice of the dual variables is feasible.

Furthermore, this choice is optimal. To see this, note that the objective value of the dual is

∑

i∈V

(nxiv̄
ω
si + v̄ωit) +

∑

(i,j)∈Aω

nv̄ωij =
∑

i∈R̄(X̄)

nxi +
∑

i∈R̂(X̄)

1 +
∑

(i,j)∈(R̂(X̄),R̄(X̄))

n = |R̂(X̄)|,

because xi = 0 for i ∈ R̄(X̄) and there can be no arc (i, j) ∈ Aω with i ∈ R̂(X̄), j ∈ R̄(X̄) (otherwise j

would be reachable from s and hence it will be in R̂(X̄)). Because the optimal objective value of the primal

subproblem is σω(x̄) = |R̂(X̄)|, this dual solution must be optimal. With this choice of the optimal dual

vector, we obtain the Benders optimality cut

θω ≤ σω(x̄) +
∑

i∈R̄(X̄)

nxi. (17)

We refer to the optimality cuts (17) obtained by solving the subproblems as reachability problems as com-

binatorial optimality cuts. Wallace (1987) and Wollmer (1991) use the same type of optimality cuts for a

problem of investing in arc capacities of a network to maximize flow under stochastic demands. This problem

is a relaxation of our problem in that the first stage variables are continuous. Hence, submodular inequalities

cannot be used in their problem context.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 28

Note that inequality (17) can also be seen as a big-M type inequality. For x = x̄, with the associated seed

set X̄ , we get a correct upper bound on θω as σω(x). For any other x 6= x̄, if xi = 1 for some i ∈ R̄(X̄), then

the upper bound on θω given by inequality (17) is trivially valid, because σω(x) ≤ n for any x ∈ {0, 1}n.

Finally, for any x 6= x̄, if xi = 0 for all i ∈ R̄(X̄), then we must have xj = 0 for some j ∈ X̄ and xℓ = 1 from

some ℓ ∈ R(X̄). However, because ℓ is reachable from X̄ , replacing j with ℓ will not increase the number of

reachable nodes, i.e., σω(x) ≤ σω(x̄). Therefore, inequality (17) is valid.

Magnanti and Wong (1981) propose a method to strengthen Benders cuts in cases when the dual of the

subproblems is degenerate (see also, Papadakos, 2008; Sherali and Lunday, 2013, for other enhancements of

this method). The method chooses, among alternative dual optimal solutions to the subproblem, one that is

not dominated. While this idea is useful to strengthen the weak Benders cut (16) (in particular, inequality

(17) corresponding to one choice of optimal dual solutions), we note that it alone cannot lead to the stronger

cuts given by the submodular inequalities (7). To see this note, first, that all extreme points of the dual

subproblem (14) are integral. So any non-integral dual feasible solution is a convex combination of these

extreme points. Then note that an optimality cut of the form (16) obtained from the dual is non-dominated

only if the corresponding dual solution is an extreme point (otherwise the optimality cut would be a convex

combination of the optimality cuts corresponding to the extreme points). As a result, v̄ωsi ∈ Z for all i ∈ V ,

hence submodular inequalities (7) cannot be expressed as inequalities (16) obtained from non-dominated

extreme point optimal dual solutions to the subproblem (14).

Figure 2: Maximum flow formulation of the influence function.

Finally, note that because the first-stage problem is a pure binary optimization problem, one can also

consider the optimality cuts proposed in the integer L-shaped method of Laporte and Louveaux (1993). The

resulting inequality, for ω ∈ Λ and a given x̄, with an associated seed set X̄, is

θω ≤ σω(x̄) +
∑

i∈V \X̄

(n− σω(x̄))xi. (18)

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 29

This inequality can be strengthened by the same observation that replacing a node j ∈ X̄ with a node

ℓ ∈ R(X̄) does not increase the number of reachable nodes. Therefore, we can reduce the coefficient of xℓ in

inequality (18) to obtain a strengthened version of the integer L-shaped optimality cut (18):

θω ≤ σω(x̄) +
∑

i∈R̄(X̄)

(n− σω(x̄))xi, (19)

which is clearly valid. We refer to inequalities (19) as the strengthened integer L-shaped optimality cuts.

Proposition A.1 The submodular optimality cuts (7) dominate the combinatorial optimality cuts (19).

Proof. This follows because rωj (S) ≤ n− σω(x̄) for any j ∈ R̄(S). �

A.1 Computations with Benders using strengthened L-shaped cuts In our computational study

in Section 5.2, we set πij = p = 0.1, (i, j) ∈ A in the real world network. Because the influence probability

p is very small, the live-arc graphs corresponding to each scenario are large-scale sparse networks. We were

not able to solve even the smallest instances (with k = 1 and |Λ| = 50) using Benders-LC after one day. To

demonstrate the inefficiency of Benders-LC, we consider a much smaller subset of the sparse HEPT network

under one scenario, depicted in Figure 3 with 15 nodes and 4 directed arcs, and compare the performance of

DCG-SubIneqs and Benders-LC. In other words, we let p = 1, which leads to a deterministic problem (i.e.,

a unique scenario with objective θ1 and p1 = 1). We vary the value of k from 1 to 5.

1

2

 p

3

 p

4

5

 p

6

7

 p

8 9 10 11 12 13 14 15

Figure 3: Sparse Network with 15 nodes and 4 arcs with equal influence probabilities p.

The total number of user cuts added to the corresponding master problem is shown in Table 8. We

observe that compared to DCG-SubIneqs the number of user cuts added to the master problem of Benders-

LC grows rapidly as the number of seed nodes k increases. Indeed, the number of user cuts for Benders-LC

approached
(

15
k

)

, indicating that Benders-LC is effectively a pure enumeration algorithm for this problem.

The strengthened integer L-shaped optimality cuts (19) do not provide any useful information on the objective

value when the solution is different from the one that generates the cut. In contrast, submodular inequalities

are highly effective for this set of problems. To see why, consider the problem of finding k = 1 seed node.

The master problem of both DCG-SubIneqs and Benders-LC selects k = 1 node arbitrarily, because they do

not have any cut at the beginning. Because the sparse network is constituted of many singleton nodes (with

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 30

no incoming and outgoing arcs), there is a high probability that the master problem selects one singleton at

the first iteration. Suppose that the master problem chooses node 15, which was also the choice of CPLEX.

DCG-SubIneqs generates the cut

θ1 ≤ 1 + 3x1 + 2x2 + x3 + 2x4 + x5 + 2x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14,

and Benders-LC generates the cut

θ1 ≤ 1 +

14
∑

i=1

14xi,

to be added to the corresponding master problem. At the second iteration, due to the use of the stronger

optimality cut, DCG-SubIneqs chooses node 1 and reaches optimality, but Benders-LC chooses one of the 14

nodes arbitrarily. Note that, in the worst case, Benders-LC traces all 15 nodes in the network (and generates

15 optimality cuts) before reaching the optimal solution. Therefore, in the large-scale network of Section

5.2, Benders-LC fails due to the need for a large number of iterations and computational time. In contrast,

the submodular inequality guides the master problem to choose nodes with higher marginal influence.

Table 8: Comparison of DCG-SubIneqs and Benders-LC.

Number of user cuts with different k

Algorithm k = 1 k = 2 k = 3 k = 4 k = 5

DCG-SubIneqs 2 5 11 16 51

Benders-LC 15 106 458 1365 3003

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applica-

tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Arulselvan, A., Commander, C. W., Elefteriadou, L., and Pardalos, P. M. (2009). Detecting critical nodes

in sparse graphs. Computers and Operations Research, 36(7):2193 – 2200.

Balasundaram, B., Butenko, S., and Hicks, I. V. (2011). Clique relaxations in social network analysis: The

maximum k-plex problem. Operations Research, 59(1):133–142.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische

Mathematik, 4(1):238–252.

Bimpikis, K., Ozdaglar, A., and Yildiz, E. (2016). Competitive targeted advertising over networks. Operations

Research. Article in Advance.

Birge, J. R. and Louveaux, F. (1997). Introduction to stochastic programming. Springer Verlag, New York.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 31

Borgs, C., Brautbar, M., Chayes, J., and Lucier, B. (2014). Maximizing social influence in nearly optimal

time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

’14, pages 946–957. SIAM.

Chen, W., Lakshmanan, L. V., and Castillo, C. (2013). Information and influence propagation in social

networks. Synthesis Lectures on Data Management, 5(4):1–177.

Chen, W., Lu, W., and Zhang, N. (2012). Time-critical influence maximization in social networks with

time-delayed diffusion process. In Proceedings of the 26th AAAI Conference on Artificial Intelligence.

Chen, W., Wang, Y., and Yang, S. (2009). Efficient influence maximization in social networks. In Proceedings

of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’09, pages 199–208, New York, NY, USA. ACM.

Contreras, I. and Fernández, E. (2014). Hub location as the minimization of a supermodular set function.

Operations Research, 62(3):557–570.

Cornuéjols, G., Fisher, M. L., and Nemhauser, G. L. (1977). Location of bank accounts to optimize float:

An analytic study of exact and approximate algorithms. Management Science, 23(8):789–810.

Domingos, P. and Richardson, M. (2001). Mining the network value of customers. In Proceedings of the

Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01,

pages 57–66, New York, NY, USA. ACM.

Ertem, Z., Veremyev, A., and Butenko, S. (2016). Detecting large cohesive subgroups with high clustering

coefficients in social networks. Social Networks, 46:1 – 10.

Gade, D., Küçükyavuz, S., and Sen, S. (2014). Decomposition algorithms with parametric Gomory cuts for

two-stage stochastic integer programs. Mathematical Programming, 144(1–2):39–64.

Hines, P., Balasubramaniam, K., and Sanchez, E. (2009). Cascading failures in power grids. IEEE Potentials,

28(5):24–30.

Kempe, D., Kleinberg, J., and Tardos, É. (2003). Maximizing the spread of influence through a social

network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’03, pages 137–146, New York, NY, USA. ACM.

Kempe, D., Kleinberg, J., and Tardos, É. (2015). Maximizing the spread of influence through a social

network. Theory of Computing, 11(4):105–147.

Khuller, S., Moss, A., and Naor, J. (1999). The budgeted maximum coverage problem. Information Pro-

cessing Letters, 70(1):39 – 45.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 32

Klimt, B. and Yang, Y. (2004). Introducing the Enron corpus. In First Conference on Email and Anti-Spam,

CEAS ’04.

Laporte, G. and Louveaux, F. (1993). The integer L-shaped method for stochastic integer programs with

complete recourse. Operations Research Letters, 13(3):133–142.

Lee, H., Nemhauser, G. L., andWang, Y. (1996). Maximizing a submodular function by integer programming:

Polyhedral results for the quadratic case. European Journal of Operational Research, 94(1):154 – 166.

Leskovec, J., Kleinberg, J., and Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters.

ACM Transactions on Knowledge Discovery from Data, 1(1):2.

Leskovec, J., Lang, K. J., Dasgupta, A., and Mahoney, M. W. (2009). Community structure in large networks:

Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29–123.

Liu, B., Cong, G., Xu, D., and Zeng, Y. (2012). Time constrained influence maximization in social networks.

In 2012 IEEE 12th International Conference on Data Mining (ICDM), pages 439–448.

Madar, N., Kalisky, T., Cohen, R., Ben-Avraham, D., and Havlin, S. (2004). Immunization and epidemic

dynamics in complex networks. The European Physical Journal B - Condensed Matter and Complex

Systems, 38(2):269–276.

Magnanti, T. L. and Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement

and model selection criteria. Operations Research, 29(3):464–484.

Mossel, E. and Roch, S. (2007). On the submodularity of influence in social networks. In Proceedings of the

Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages 128–134, New York,

NY, USA. ACM.

Mossel, E. and Roch, S. (2010). Submodularity of influence in social networks: From local to global. SIAM

Journal on Computing, 39(6):2176–2188.

Nemhauser, G. and Wolsey, L. (1981). Maximizing submodular set functions: Formulations and analysis of

algorithms. In Hansen, P., editor, Annals of Discrete Mathematics (11) Studies on Graphs and Discrete

Programming, volume 59 of North-Holland Mathematics Studies, pages 279 – 301. North-Holland.

Nemhauser, G., Wolsey, L., and Fisher, M. (1978). An analysis of approximations for maximizing submodular

set functions—I. Mathematical Programming, 14(1):265–294.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. Wiley-Interscience,

New York, NY, USA.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 33

Oliveira, F., Grossmann, I., and Hamacher, S. (2014). Accelerating benders stochastic decomposition for

the optimization under uncertainty of the petroleum product supply chain. Computers & Operations

Research, 49:47 – 58.

Opsahl, T. and Panzarasa, P. (2009). Clustering in weighted networks. Social Networks, 31(2):155–163.

Ostfeld, A. and Salomons, E. (2004). Optimal layout of early warning detection stations for water distribution

systems security. Journal of Water Resources Planning and Management, 130(5):377–385.

Papadakos, N. (2008). Practical enhancements to the Magnanti-Wong method. Operations Research Letters,

36(4):444 – 449.

Ripeanu, M., Foster, I., and Iamnitchi, A. (2002). Mapping the gnutella network: Properties of large-scale

peer-to-peer systems and implications for system design. IEEE Internet Computing, 6(1):50–57.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic programming approach for

supply chain network design under uncertainty. European Journal of Operational Research, 167(1):96 –

115.

Seeman, L. and Singer, Y. (2013). Adaptive seeding in social networks. In 2013 IEEE 54th Annual Symposium

on Foundations of Computer Science (FOCS), pages 459–468.

Sen, S. (2010). Stochastic mixed-integer programming algorithms: Beyond Benders’ decomposition. In

Cochran, J. J., Cox, L. A., Keskinocak, P., Kharoufeh, J. P., and Smith, J. C., editors, Wiley Encyclopedia

of Operations Research and Management Science. John Wiley & Sons, Inc.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling and

Theory. Society for Industrial Mathematics, Philadelphia, PA, USA.

Sherali, H. D. and Lunday, B. J. (2013). On generating maximal nondominated Benders cuts. Annals of

Operations Research, 210(1):57–72.

Song, Y. and Dinh, T. N. (2014). Optimal containment of misinformation in social media: A scenario-

based approach. In Zhang, Z., Wu, L., Xu, W., and Du, D.-Z., editors, Combinatorial Optimization

and Applications: 8th International Conference Proceedings, COCOA 2014, Wailea, Maui, HI, USA,

December 19-21, 2014, pages 547–556. Springer International Publishing, Cham.

Sviridenko, M. (2004). A note on maximizing a submodular set function subject to a knapsack constraint.

Operations Research Letters, 32(1):41 – 43.

Van Slyke, R. and Wets, R. (1969). L-shaped linear programs with applications to optimal control and

stochastic programming. SIAM Journal on Applied Mathematics, 17(4):638–663.

Wu and Küçükyavuz: Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach 34

Wallace, S. W. (1987). Investing in arcs in a network to maximize the expected max flow. Networks,

17(1):87–103.

Wang, C., Chen, W., and Wang, Y. (2012). Scalable influence maximization for independent cascade model

in large-scale social networks. Data Mining and Knowledge Discovery, 25(3):545–576.

Wollmer, R. D. (1991). Investments in stochastic maximum flow networks. Annals of Operations Research,

31(1):457–467.

Xanthopoulos, P., Arulselvan, A., Boginski, V., and Pardalos, P. (2009). A retrospective review of social

networks. In Social Network Analysis and Mining, 2009. ASONAM ’09. International Conference on

Advances in, pages 300–305.

Zhang, M. and Küçükyavuz, S. (2014). Finitely convergent decomposition algorithms for two-stage stochastic

pure integer programs. SIAM Journal on Optimization, 24(4):1933–1951.

