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Abstract A new algorithmic approach for solving the stochastic Steiner tree problem
based on three procedures for computing lower bounds (dual ascent, Lagrangian relax-
ation, Benders decomposition) is introduced.Ourmethod is derived from a new integer
linear programming formulation, which is shown to be strongest among all known for-
mulations. The resulting method, which relies on an interplay of the dual information
retrieved from the respective dual procedures, computes upper and lower bounds and
combines them with several rules for fixing variables in order to decrease the size of
problem instances. The effectiveness of our method is compared in an extensive com-
putational study with the state-of-the-art exact approach, which employs a Benders
decomposition based on two-stage branch-and-cut, and a genetic algorithm introduced
during the DIMACS implementation challenge on Steiner trees. Our results indicate
that the presented method significantly outperforms existing ones, both on benchmark
instances from literature, as well as on large-scale telecommunication networks.
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1 Introduction

The two-stage stochastic Steiner tree problem with complete recourse (SSTP) is a
generalization of the well-studied (deterministic) Steiner tree problem (STP), with
applications in telecommunication network design under uncertainty. The problem
has been introduced by Gupta et al. [14] and subsequently, algorithms based on
fixed-parameter tractability [23], heuristics [19], and exact methods [2,27] have been
proposed. Moreover, approximation algorithms for several variants of the problem
have been studied [15–17,36].

Recall that in the classical (deterministic) STP on graphs, one is given an edge-
weighted graph with a set of terminals that need to be connected at minimum cost (see,
e.g., [20]). As illustrated in [27], in the SSTP (and in stochastic network design prob-
lems, in general), both the set of terminals and the edge-weights can be subject to
uncertainty. In that case, network planners want to establish profitable connections
now (in the first stage) while taking possible uncertain outcomes into account. Usu-
ally, the set of uncertain outcomes is approximated through a set of possible scenarios,
with a known probability of occurrence. In the second stage, the actual scenario is
revealed (i.e., the set of terminals and edge-weights become known), and additional
connections can be purchased (through so-called recourse actions) to create a feasible
Steiner tree. The objective is to minimize the expected cost of the solution, i.e., the
sum of the first-stage cost plus the expected cost of the second stage.

The SSTP is formally defined as follows.

Definition 1 (Stochastic Steiner tree problem (SSTP)) Let G = (V, E) be an undi-
rected graph with root node r ∈ V , first-stage edge costs c0 : E �→ R≥0 and scenario
set K . Each scenario k ∈ K has probability pk ∈ (0, 1],∑k∈K pk = 1, as well as
second-stage edge costs ck : E �→ R≥0 and terminals T k ⊆ V, r ∈ T k . The objective
is to select first-stage edges E0

S ⊆ E and second-stage edges Ek
S ⊆ E for each k ∈ K

such that the subgraph induced by E0
S∪Ek

S,G[E0
S∪Ek

S], connects T k and the expected
cost

∑

e∈E0
S

c0e +
∑

k∈K
pk

∑

e∈Ek
S

cke

is minimized.

Our contribution For the deterministic STP a wealth of theoretical results [6,11,
20,29] and empirically successful computational techniques are known [8,10,31].
However, as noted in [2,27], the generalization of results from the STP to the SSTP is
not straightforward. In this article we first provide a new integer linear programming
(ILP) formulation for the SSTP and show that it is the strongest (in terms of the quality
of linear relaxation bounds) among existing formulations. Moreover, we show how
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Decomposition methods for the two-stage STP 715

the new formulation allows the simple derivation of procedures for computing lower
bounds. Overall, we study three such procedures for the SSTP, namely dual ascent,
Lagrangian relaxation, and Benders decomposition. The dual information provided by
each of these methods is exploited in a common algorithmic framework. This results
in a powerful primal–dual method in which the calculation of upper and lower bounds
is combined with variable fixing for decreasing the size of the search space.

The effectiveness of our method is demonstrated in an extensive computational
study on benchmark instances from the literature, and on large-scale telecommuni-
cation networks. We compare our method with the state-of-the-art exact approach
from [2,27], which employs a Benders decomposition based on two-stage branch-
and-cut (B&C), and a genetic algorithm from [19], introduced during the DIMACS
implementation challenge on Steiner trees. Our results indicate that the presented
method significantly outperforms the alternative approaches from the literature, both
in terms of computing times, and the quality of obtained solutions.

Outline In the remainder of this section, notation is introduced and related work
is discussed. In Sect. 2, a new ILP formulation for the SSTP is presented and its
strength is compared to the previously strongest formulation. Moreover, strengthening
inequalities are analyzed. In Sect. 3, an algorithmic framework is described which
combines a dual ascent procedure, a Lagrangian heuristic, Benders decomposition,
and variable fixing. In Sect. 4, computational results are presented, while concluding
remarks are drawn in Sect. 5.

Notation Let GD = (V, A) denote the bidirected counterpart of G = (V, E), where
A = {(i, j) : {i, j} ∈ E}. We leave the arc costs on A unchanged, i.e., for all (i, j) ∈ A
and k ∈ K , we have: c0i j = c0e and cki j = cke , where e = {i, j} ∈ E . For W ⊂ V ,
let δ+(W ) := {(i, j) ∈ A : i ∈ W, j ∈ V \W } be the outgoing arc set, δ−(W ) :=
{(i, j) ∈ A : i ∈ V \W, j ∈ W } the ingoing arc set, and δ(W ) := {{i, j} ∈ E : i ∈
V \W, j ∈ W } the undirected cut set. For brevity, if W = {i}, we write δ+(i), δ−(i),
and δ(i), respectively. For each k ∈ K , let Wk be the family of node sets inducing
Steiner cuts with respect to the set of terminals T k , i.e.,

Wk := {W ⊂ V : r /∈ W,W ∩ T k 
= ∅}.

For a given k ∈ K and (i, j) ∈ A, let Wk
i j be the subset of node sets from Wk for

which the induced Steiner cut includes arc (i, j), i.e.,

Wk
i j := {W ∈ Wk : (i, j) ∈ δ−(W )}.

Given a variable vector v and an index set I, let v(I) = ∑
i∈I vi . Let c = (c0, . . . , ck)

and T = (T 1, . . . , T k). For a given scenario k ∈ K , a node i ∈ V \T k is referred to
as Steiner node.
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716 M. Leitner et al.

1.1 Related works

The SSTP isNP-hard, as the STP appears as special case for |K | = 1 and the first-stage
cost set to infinity. In the literature, variants and special cases have been addressed by
approximation algorithms [15–17,36].

An algorithm based on fixed-parameter tractability has been introduced in [23],
and a genetic algorithm in [19]. The only exact method we are aware of is a two-stage
B&C approach based on Benders decomposition, which has been originally proposed
in [2]. Very recently, the study of a generalization of the SSTP, namely the stochastic
survivable network design problem, along with a more sophisticated implementation,
has been given in [27].

In a recent comparison of ILP formulations [41], it is shown that the strongest
known formulations for the SSTP are semi-directed, i.e., they are defined on G in
the first and GD in the second stage. These formulations exploit the property that
in an optimal solution G[E0

S ∪ Ek
S] contains a Steiner tree for each k ∈ K , which

has a one-to-one correspondence to a Steiner arborescence rooted at r on GD . As
a consequence, given an (optimal) first-stage solution E0

S , an optimal second-stage
solution for each k ∈ K can be identified by solving a Steiner arborescence problem
(SAP) in a modified graph. It is well known that directed formulations based on the
STP’s representation as SAP are stronger than their undirected counterparts [11], and
the same relation holds between semi-directed and undirected formulations for the
SSTP [41]. Unfortunately, as shown in [41] the SSTP cannot be formulated in a purely
directed setting.

Consider the following two semi-directed cut formulations, (SDC1) and (SDC2),
studied in [2,27,41].

(SDC1) min
∑

e∈E
c0e xe +

∑

k∈K
pk

∑

e={i, j}∈E
cke

(
zki j + zkji

)

s.t. x(δ(W )) + zk (δ−(W )) ≥ 1 ∀W ∈ Wk , ∀k ∈ K (SDC1:1)

(x, z) ∈ {0, 1}|E |+|A||K | (SDC1:2)

(SDC2) min
∑

e∈E
c0e xe +

∑

k∈K
pk

∑

e={i, j}∈E
cke

(
yki j + ykji − xe

)

s.t. yk (δ−(W )) ≥ 1 ∀W ∈ Wk , ∀k ∈ K

(SDC2:1)

yki j + ykji ≥ xe ∀e = {i, j} ∈ E, ∀k ∈ K

(SDC2:2)

(x, y) ∈{0, 1}|E |+|A||K | (SDC2:3)

In both formulations, binary variables xe indicate if edge e is chosen as part of
the first stage (xe = 1) or not (xe = 0). A subtle difference exists between the
meaning of binary second-stage variables z in (SDC1) and y in (SDC2). In (SDC1),
for each scenario k ∈ K , zki j indicates if arc (i, j) is chosen as part of the second

stage (zki j = 1) or not (zki j = 0). In (SDC2), yki j have the same interpretation for

123



Decomposition methods for the two-stage STP 717

xe = 0, e = {i, j}. Otherwise, they indicate in which direction a first-stage edge can
be (potentially) used as part of the Steiner arborescence corresponding toG[E0

S ∪Ek
S].

Linking constraints (SDC2:2) enforce this choice of direction. By optimality, it is
guaranteed that per chosen first-stage edge exactly one arc is chosen in each scenario.
Note that in an optimal solution a first-stage edge might only be used by a subset
of scenarios, but constraints (SDC2:2) imply that for every scenario an arc must be
chosen (i.e., must be oriented in the second-stage), even though the arc may not be
part of the scenario’s Steiner arborescence. In these cases the superfluous cost must be
subtracted again in the objective function. Observe that the integrality requirements
on x can be relaxed, as whenever y is binary, x will automatically take on a binary
value, too. (SDC2) provides the advantage that connectivity is modeled by purely
directed connectivity cuts (SDC2:1). In the worst case (only first-stage edges are
chosen), the presence of undirected variables in (SDC1:1) has the effect that the Linear
Programming (LP) relaxation of (SDC1) is equivalent to the one of a purely undirected
formulation [41].

Despite (SDC2) being strictly stronger than (SDC1) (this result has been proven
in [27], see also [41]), there is a potential shortcoming of that formulation. As already
noted, due to the linking constraints (SDC2:2), the arc set induced by yk does not form
an arborescence in an optimal solution, i.e., the solution induced by yk is a union of
a Steiner arborescence connecting r with T k and a subset of oriented edges that are
purchased in the first-stage. Therefore, the flow-balance inequalities (FB) stating that
each Steiner node cannot be a leaf in any optimal solution,

yk(δ−(i)) ≤ yk(δ+(i)) ∀i ∈ V \T k, ∀k ∈ K , (FB)

are not valid for (SDC2) without further modification. This is unfortunate, as the
corresponding flow-balance inequalities for the STP are known to strengthen the LP
relaxation of its directed cut formulation (see, e.g, [21,31]).

In the following, we develop a new ILP formulation that explicitly takes advantage
of the flow-balance constraints and whose lower bounds dominate those of all known
models from the literature.

2 A new ILP formulation

Our new formulation, in which inequalities similar to (FB) hold, is derived on the basis
of (SDC1). First, copies xk of the undirected first-stage variables x are introduced
together with linking constraints x = xk for each scenario k ∈ K . Due to c0 ∈ R

|E |
≥0

these equations can be relaxed to inequalities, i.e., x ≥ xk,∀k ∈ K . As discussed
during the introduction of (SDC2), in an optimal solution a first-stage edge will only
be used in at most one direction. We therefore replace undirected edge variables xk by
corresponding arc variables w ∈ {0, 1}|A||K | and impose constraints xe ≥ wk

i j + wk
ji ,

for all e = {i, j} ∈ E , and all k ∈ K , instead.
Each variable wk

i j indicates if the Steiner arborescence of scenario k uses the first-
stage edge e = {i, j} and it also determines its orientation for the given scenario k.
It follows that in an optimal solution, the arc set induced by variables zk and wk with
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718 M. Leitner et al.

values equal to one forms a Steiner arborescence rooted at r connecting all terminals
from T k . Thus, we obtain a new valid ILP formulation for the SSTP, that we denote
by (SDC3):

(SDC3) min
∑

e∈E
c0e xe +

∑

k∈K
pk

∑

e={i, j}∈E
cke

(
zki j + zkji

)

s.t. wk (δ−(W )) + zk (δ−(W )) ≥ 1 ∀W ∈ Wk , ∀k ∈ K
(SDC3:1)

wk
i j + wk

ji ≤ xe ∀e = {i, j} ∈ E, ∀k ∈ K

(SDC3:2)

(x, z, w) ∈ {0, 1}|E |+2|A||K | (SDC3:3)

Observe that integrality requirements on x can be relaxed, as in an optimal solution
for any binary w and z, x will automatically take a binary value.

2.1 Comparison between (SDC2) and (SDC3)

In the following, we focus on the strength of the LP relaxation bound of (SDC3) and
compare it with the corresponding bound for the model (SDC2) presented in Sect. 1.1.
To this end, we introduce additional notation. Given ỹ ∈ R

|A||K |, let

α̃k
i j :=

⎧
⎨

⎩

ỹki j
ỹki j+ỹkj i

if ỹki j + ỹkj i > 0,

0 otherwise.

By construction, α̃k
i j + α̃k

ji ∈ {0, 1}, for all (i, j) ∈ A, and all k ∈ K .

Definition 2 Let ϕ and ψ denote the following mappings:

ϕ : (x̃, ỹ) ∈ R
|E |+|A||K | �→ (x̂, ŵ, ẑ) ∈ R

|E |+2|A||K |

ϕ(x̃, ỹ) :

⎧
⎪⎨

⎪⎩

x̂e := x̃e ∀e ∈ E

ẑki j := ỹki j − α̃k
i j x̃e ∀(i, j) ∈ A, e = {i, j}, ∀k ∈ K

ŵk
i j := α̃k

i j x̃e ∀(i, j) ∈ A, e = {i, j}, ∀k ∈ K

ψ : (x̂, ẑ, ŵ) ∈ R
|E |+2|A||K | �→ (x̃, ỹ) ∈ R

|E |+|A||K |

ψ(x̂, ẑ, ŵ) :
{
x̃e := x̂e ∀e ∈ E

ỹki j := ẑki j + ŵk
i j + 1

2

(
x̂e − ŵk

i j − ŵk
ji

)
∀(i, j) ∈ A, e = {i, j}, ∀k ∈ K

The value of a formulation is denoted by v(·), its LP relaxation by prepending
“LP-” to its name. Without loss of generality, we assume that any given LP solution is
minimal, i.e., no variable can be decreased such that the solution remains feasible and
the objective value does not increase. Moreover, as the upper bound constraints of an
LP relaxation are redundant in a minimization setting, they are not considered. The
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Decomposition methods for the two-stage STP 719

following result shows that the two formulations, (SDC2) and (SDC3), are equally
strong.

Theorem 1 v(LP-SDC2) = v(LP-SDC3).

Proof v(LP-SDC3) ≤ v(LP-SDC2): Let (x̃, ỹ) be a solution to (LP-SDC2). Define
(x̂, ẑ, ŵ) := ϕ(x̃, ỹ). Due to the feasibility of (x̃, ỹ), the constructed point satisfies all
bound constraints of (LP-SDC3). The choice of α̃k

i j in particular guarantees that each

ẑki j is non-negative. Moreover, due to constraints (SDC2:2), ỹki j + ỹkj i = 0 implies

x̃e = 0, so (α̃k
i j + α̃k

ji )x̃e = x̃e. As a consequence, under mapping ϕ Eqs. (1)–(3) hold
for each (i, j) ∈ A, e = {i, j} and k ∈ K :

ẑki j + ẑkj i = ỹki j + ỹkj i − x̃e (1)

ŵk
i j + ẑki j = ỹki j (2)

ŵk
i j + ŵk

ji = x̂e (3)

Due to (1), the objective values associated to (x̃, ỹ) by (LP-SDC2) and to (x̂, ẑ, ŵ) by
(LP-SDC3) are equal. Due to Eqs. (2) and (3), (x̂, ẑ, ŵ) satisfies both (SDC3:1) and
(SDC3:2), and is thus feasible for (LP-SDC3).

v(LP-SDC2) ≤ v(LP-SDC3): Let (x̂, ẑ, ŵ) be a solution to (LP-SDC3). Define
(x̃, ỹ) := ψ(x̂, ẑ, ŵ). Due to the feasibility of (x̂, ẑ, ŵ), the constructed point satisfies
all bound constraints of (LP-SDC2). Under mappingψ , Eq. (1) holds, and thus also in
this case the objective values of both points are equal under their respective objective
function. Moreover, due to zki j + zkji ≥ 0 and (1), (SDC2:2) are satisfied. Finally, (x̃, ỹ)

satisfies (SDC2:1) since (x̂, ẑ, ŵ) satisfies (SDC3:1) and (SDC3:2):

ỹk (δ−(W )) =
∑

(i, j)∈δ−(W ),
e={i, j}

(
ŵk
i j + ẑki j

)

︸ ︷︷ ︸
≥1

+
∑

(i, j)∈δ−(W ),
e={i, j}

1

2

(
x̂e − ŵk

i j − ŵk
ji

)

︸ ︷︷ ︸
≥0

≥ 1 ∀W ∈ Wk , ∀k ∈ K

Thus (x̃, ỹ) is feasible for (LP-SDC2). ��
The latter result may appear discouraging, since it shows that the two basic models,

(SDC2) and (SDC3), provide the same quality of LP relaxation bounds, whereas the
second one comes at the cost of introducing additional |A||K | variables w. However,
the following section demonstrates that the model (SDC3) has significant advantages
over (SDC2), due to the modeling of strong flow-balance constraints. Moreover, in
Sects. 3.1–3.3, we show how to construct alternative methods for computing lower
bounds and for applying variable fixing. These methods specifically exploit the prop-
erty that for each scenario k ∈ K the corresponding second-stage solution forms a
Steiner arborescence in (SDC3).
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720 M. Leitner et al.

2.2 Flow-balance constraints

Formulations (SDC2) and (SDC3) can be strengthened by adding variants of the STP’s
flow-balance inequalities, (SDC2:FB) and (SDC3:FB), respectively.

yk(δ−(i)) ≤ yk(δ+(i)) + x(δ(i)) ∀i ∈ V \T k, ∀k ∈ K
(SDC2:FB)

wk(δ−(i)) + zk(δ−(i)) ≤ wk(δ+(i)) + zk(δ+(i)) ∀i ∈ V \T k, ∀k ∈ K
(SDC3:FB)

Constraints (SDC2:FB) ensure that the in-degree of a Steiner node in the second-stage
is not greater than its out-degree, unless the node is adjacent to an edge that has been
purchased in the first-stage. A stronger version of these constraints can be imposed
for model (SDC3) due to the fact that the second-stage solution is now modeled as a
Steiner arborescence. Constraints (SDC3:FB) ensure that after orienting the solution
in the second-stage, each node i /∈ T k , cannot be a leaf in the second-stage, if scenario
k occurs.

In the following, we compare the strength ofmodels (SDC2) and (SDC3)with flow-
balance constraints. Theorems 2–3 show that adding flow-balance constraints in the
respectivemodels can lead towards a strictly stronger formulation, whereas Theorem 4
proves that the strongest LP relaxation bounds are obtained by model (SDCFB

3 ). All
theorems make use of the example shown in Fig. 1. In this instance, we are given two
scenarios (K = {1, 2}), with second-stage costs computed from first-stage costs based
on a fixed inflation factor. Terminals are represented by black squares. In Fig. 1, the
union of terminals over all scenarios is shown, i.e.,

⋃
k∈K T k .

Figures 2, 3 and 4 show optimal LP solutions to the instance fromFig. 1 for different
formulations. Each solution is displayed in three separate subfigures, one for the first

Fig. 1 Example. K =
{1, 2}, p1 = p2 = 0.5, T 1 =
{r, 6, 8}, T 2 = {r, 8, 10}, for
each e ∈ E, c0e = 2 if incident to
a terminal, else c0e = 1. Second
stage costs are set to c1 = 1.4c0

and c2 = 1.1c0, respectively

r

1 2 3 4 5

6 7 8 9 10

r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

y1

r

1 2 3 4 5

6 7 8 9 10

y2

Fig. 2 Fractional optimal LP solution to (SDC2) for the example shown in Fig. 1, v(LP-SDC2) = 8.875.
The solution is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values
equal to 0, drawn dashed for 0.5, and drawn solid for 1
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rr

1 2 3 4 5

6 7 8 9 10

x0

rr

1 2 3 4 5

6 7 8 9 10

y1

rr

1 2 3 4 5

6 7 8 9 10

y2

Fig. 3 Fractional optimal LP solution to (SDCFB
2 ) for the example shown in Fig. 1, v(LP-SDCFB

2 ) = 8.95.
The solution is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values
equal to 0, drawn dashed for 0.5, and drawn solid for 1

r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

z1 +w1

r

1 2 3 4 5

6 7 8 9 10

z2 +w2

Fig. 4 Fractional optimal LP solution to (SDC3) for the example shown in Fig. 1, v(LP-SDC3) = 8.875.
The solution is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values
equal to 0, drawn dashed for 0.5, and drawn solid for 1

stage and two for the second stage, one for each scenario. An edge/arc is omitted if
the LP value of the associated variable is 0. Otherwise, if the LP value is 0.5 or 1, it
is drawn dashed or solid, respectively. When displaying LP solutions for (SDC3) and
(SDCFB

3 ), note that for all k ∈ K , (i, j) ∈ A, either zki j = 0 or wk
i j = 0. Moreover, for

all e = {i, j} ∈ E, xe > 0 implies zki j = 0 for all k ∈ K . Thus for these formulations

only one graph for each scenario is shown, based on the LP values of zk + wk .

Theorem 2 v(LP-SDC2) ≤ v(LP-SDCFB
2 ) and there exist instances in which the

inequality is strict.

Proof Figures 2 and 3 showoptimal solutions to (LP-SDC2) and (LP-SDCFB
2 ), respec-

tively. The former solution violates (SDC2:FB) for k = 1, node i = 2 and k = 2,
node i = 4, while all inequalities of this type are satisfied for the latter. Moreover,
v(LP-SDC2) = 8.875 < 8.95 = v(LP-SDCFB

2 ) in the example. ��
Theorem 3 v(LP-SDC3) ≤ v(LP-SDCFB

3 ) and there exist instances in which the
inequality is strict.

Proof Figures 4 and 5 showoptimal solutions to (LP-SDC3) and (LP-SDCFB
3 ), respec-

tively. The former solution violates (SDC3:FB) for k = 1, node i = 2 and k = 2,
node i = 4, while all inequalities of this type are satisfied for the latter. Moreover,
v(LP-SDC3) = 8.875 < 9 = v(LP-SDCFB

3 ) in the example. ��
Theorem 4 v(LP-SDCFB

2 ) ≤ v(LP-SDCFB
3 ) and there exist instances in which the

inequality is strict.
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r

1 2 3 4 5

6 7 8 9 10

x0

r

1 2 3 4 5

6 7 8 9 10

z1 +w1

r

1 2 3 4 5

6 7 8 9 10

z2 +w2

Fig. 5 Integral optimal LP solution to (SDCFB
3 ) for the example shown in Fig. 1, v(LP-SDCFB

3 ) = 9. The
solution is drawn separately according to stage and scenario. Arcs/edges are omitted for LP values equal to
0 and are drawn solid for 1

Proof Let (x̂, ẑ, ŵ) be a solution to (LP-SDCFB
3 ). Define (x̃, ỹ) := ψ(x̂, ẑ, ŵ). By

Theorem 1, (x̃, ỹ) is feasible for (LP-SDC2). It remains to show that the point satisfies
(SDC2:FB). As indicated by (4)–(6), this is the case under mapping ψ if (x̂, ẑ, ŵ)

satisfies (SDC3:FB). Thus (x̃, ỹ) is feasible for (LP-SDCFB
2 ).

ŵk(δ−(i)) + ẑk(δ−(i)) ≤ ŵk(δ+(i)) + ẑk(δ+(i)) (4)

⇐⇒ ŵk(δ−(i)) + ẑk(δ−(i)) + 1
2 (x̂e − ŵi j − ŵ j i ) ≤ ŵk(δ+(i)) + ẑk(δ+(i))

+ 1
2 (x̂e − ŵi j − ŵ j i ) (5)

⇐⇒ ỹk(δ−(i)) ≤ ỹk(δ+(i)) (6)

In order to show that there exist instances in which the inequality is strict, Figs. 3 and 5
depict the optimal solutions to (LP-SDCFB

2 ) and (LP-SDCFB
3 ), respectively. One can

verify that in each case, all respective flow-balance inequalities are satisfied.Moreover,
v(LP-SDCFB

2 ) = 8.95 < 9 = v(LP-SDCFB
3 ). ��

In summary, one can observe that in case no first-stage edges are chosen, (SDC2:FB)
have the same effect as in the SAP. This behavior can be compared to (SDC1), which
may be as strong as (SDC2) in the same scenario. In contrast, (SDC3:FB) can poten-
tially improve the LP bound even if all edges are chosen in the first-stage.

2.3 Hierarchy of formulations

The theoretical results of this section are summarized in Fig. 6, in which we augment
the recent findings from [41] with our new results. For the sake of brevity, some of
the formulations from this hierarchy are not shown in this article. These are: (UF)

and (UC) that denote the undirected flow and cut formulations, and (SDF) which
denotes the semi-directed flow-formulation. (SDC∗

2) denotes a variant of (SDC2)with
aggregated coefficients in the objective function. Themodels have been studied in [41],
where the lower three levels of the shown hierarchy (except for the model (SDC3))
have been proven. In this article we introduce the formulation (SDC3) and show that
it is equally strong as the other strongest models from [41]. Our new models (SDCFB

2 )

and (SDCFB
3 ) are the formulations (SDC2) and (SDC3) augmented with flow-balance

inequalities (SDC2:FB) and (SDC3:FB), respectively. We show that (SDCFB
2 ) and

(SDCFB
3 ) further improve the LP relaxations bounds, with the strongest ones being

obtained with the (SDCFB
3 ) model.
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(SDCFB
3 )

(SDCFB
2 )

(SDF) (SDC3) (SDC2) (SDC∗
2)

(SDC1)

(UF) (UC)

Fig. 6 Hierarchy of formulations for the SSTP. Surrounding boxes and dashed lines indicate equivalence,
while directed arcs indicate that the target formulation is stronger than the source formulation

3 Algorithmic framework

Given the results of Sect. 2, we decided to build our algorithmic framework based
on formulation (SDCFB

3 ). It is well-known that the size of two-stage stochastic opti-
mization models becomes prohibitive for a large number of scenarios. Hence, in order
to develop a computationally competitive approach, naturally one has to rely on a
decomposition framework.

Two types of decomposition techniques are commonly employed for this task:
Benders decomposition (see, e.g., [1,5]) and Lagrangian relaxation (see, e.g., [9,39]).
These two approaches can be seen as dual to each other [32,33], as the former decom-
poses the problem by stage, while the latter decomposes by scenario. Naturally, both
of them can be used as stand-alone procedures for solving a large-scale stochastic
optimization problem. However, using both Lagrangian and Benders decomposition
in a combined framework opens up further possibilities to obtain the benefits of both
procedures, as the problem at hand can be attacked from multiple angles, in order to
exploit different types of problem-structures [38].

Thus our framework combines these two decomposition approaches. Furthermore,
due to similarities between the SSTP and its deterministic variant, a third option for
computing lower bounds appears promising: a dual ascent procedure, which constructs
an initial dual solution in a greedy scheme (see [28,30,40]). For the STP and its
variants, such procedures are known empirically to obtain high quality bounds, which
in some cases are even tight enough to solve the corresponding problem to optimality
in a branch-and-bound (B&B) procedure [26,28,31]. In the framework proposed in
this article, we chose the configuration of these three techniques as shown in Fig. 7.

The central component of our approach is a Lagrangian-based heuristic that com-
putes valid lower and upper bounds and performs variable fixing based on the dual
information. This Lagrangian procedure is warm-started by a dual ascent heuristic
(specifically derived for the SSTP). Finally, an additional refinement of the computed
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Fig. 7 Algorithmic framework

lower bound is performed by a Benders decomposition framework (actually, a two-
stage B&C similar to the one proposed in [2,27]).

Note that the chosen sequence of execution is a natural one, as the methods are
arranged based on the computational complexity (see Sects. 3.1–3.3 for details). The
communication between each distinct phase is performed by passing on primal and
dual solutions. Most importantly, the dual solution computed by the dual ascent proce-
dure is used as an initial set of Lagrange dual multipliers to warm-start a subgradient
algorithm. Similarly, a subset of all computed Lagrangian dual solutions is used to
generate valid cutting planes, which are then used to initialize the two-stage B&C
procedure.

Moreover, although (SDCFB
3 ) offers tighter bounds than (SDC3), we found it bene-

ficial to onlymake use of the flow-balance constraints in the final refinement phase. The
main reason is that in our implementation, up to this point we focus mainly on the use
of fast dual heuristics, in which the inclusion of such constraints is a non-trivial aspect.
Even in state-of-the-art algorithmics frameworks for the STP, their inclusion is usually
avoided [28,31] for simplicity reasons. Furthermore, the tighter bounds provided by
(SDCFB

3 ) are mainly useful when attempting to solve the instance to optimality, i.e.,
in the refinement phase.

In the remainder of this section we provide the algorithmic and implementational
details of this new method.

3.1 Lagrangian relaxation and reduced cost fixing

The Lagrangian relaxation of model (SDC3) is obtained by relaxing constraints
(SDC3:2) and adding them to the objective function as penalty terms. The associ-
ated set of non-negative Lagrangian dual multipliers is denoted by λ. For each value
of λ, the resulting Lagrangian relaxation yields a valid lower bound for (SDC3), and
is given as follows.

L(λ) := min
{ ∑

e∈E
c0e xe +

∑

k∈K
pk

∑

e={i, j}∈E
cke

(
zki j + zkji

)

+
∑

k∈K

∑

e={i, j}∈E
λke

(
wk
i j + wk

ji − xe
)

: (SDC3:1), (SDC3:3)
}

After rearranging the terms in the objective function and moreover defining the
Lagrangian cost as c̃e := c0e − ∑

k∈K λke, e ∈ E , we obtain the following, simpli-
fied representation.
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L(λ) := min
{ ∑

e∈E
c̃exe +

∑

k∈K

∑

e={i, j}∈E

[
pkcke

(
zki j + zkji

)
+ λke

(
wk
i j + wk

ji

)]

: (SDC3:1), (SDC3:3)
}

The problem decomposes into |K | + 1 independent subproblems, one in x and the
others in zk, wk for k ∈ K .

L0(λ) := min
{ ∑

e∈E
c̃exe : x ∈ {0, 1}|E |}

Lk(λ) := min
{ ∑

e={i, j}∈E

[
pkcke

(
zki j + zkji

)
+ λke

(
wk
i j + wk

ji

)]

: (SDC3:1), (zk, wk) ∈ {0, 1}2|A|} ∀k ∈ K

The Lagrangian dual problem, which corresponds to finding the best lower bound, is
then stated as:

(SDCLD
3 ) maxλ≥0

{
L0(λ) + ∑

k∈K Lk(λ)
}
.

It is easy to see that L0(λ) can be computed by inspection. For Lk(λ), there exists
an optimal solution in which either zki j or wk

i j (or none of them) will be chosen for

each k ∈ K—and this choice depends solely on the property if pkcke < λke holds or
not. Thus the computation of Lk(λ) is equivalent to solving an instance of the SAP,
i.e., given terminals T k and arc costs min{pkcke , λke} for all (i, j) ∈ A, e = {i, j}, the
objective is to find a minimum-cost arborescence rooted at r which contains a directed
path from r to each terminal t ∈ T k . Furthermore, in a minimal optimal solution to
Lk(λ), flow-balance inequalities will be satisfied.

The following result provides a further justification for choosing the model (SDC3)

in our approach, as the Lagrangian dual bounds obtained from (SDC3) can be even
stronger than the LP relaxation bounds from (SDCFB

3 ).

Theorem 5 v(LP-SDCFB
3 ) ≤ v(SDCLD

3 ) = v(SDC3).

Proof The LP relaxation of Lk(λ) augmented with flow-balance inequalities
(SDC3:FB) does not have the integrality property, and therefore the optimal solu-
tion to (SDCLD

3 ) may yield a stronger bound. Moreover, the Lagrangian dual bound
of (SDC3) is equal to the optimal solution value, which follows from the fact that
no integrality conditions are imposed on variables x that only appear in the relaxed
linking constraints (SDC3:2) (see Theorem 8.2 from [4] for further details). ��

3.1.1 Variable fixing based on reduced costs

Variable fixing based on reduced costs is an indispensable tool inmanymodern primal–
dual solution frameworks [26,31]. In this section we address conditions under which
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first- and second-stage variables of (SDC3) can be eliminated, given valid Lagrangian
dual multipliers λ̄.

In addition to theLagrangian cost c̃0 associated to the first-stage variables x, for each
k ∈ K we consider the LP relaxation of the Lagrangian subproblem for computing
Lk(λ̄) in order to obtain reduced cost also for the second-stage variables zk and wk .
The associated LP dual is given as follows. We use Lk(λ̄) to denote the corresponding
lower bound.

Lk(λ̄) := max
∑

W∈Wk

βk
W

s.t. β
(
Wk

i j

)
≤ min{pkcke , λ̄ke} ∀(i, j) ∈ A, e = {i, j}
βk ∈ R

|Wk |
≥0

Variables βk are non-negative dual multipliers associated to each connectivity cut

constraint (SDC3:1) Given a feasible solution β̄
k
, the reduced cost of the packing

constraints in the dual are

c̃ki j := min
{
pkcke , λ̄

k
e

}
− β̄

(
Wk

i j

)
∀(i, j) ∈ A, e = {i, j}.

Let the vector of Lagrangian cost and LP reduced cost be c̃ := (c̃0, . . . , c̃k). The
value of L0(λ̄) together with a lower bound Lk(λ̄) to Lk(λ̄) for each k ∈ K yields a
valid lower bound to the original problem, i.e., LB := L(λ̄) = L0(λ̄)+∑

k∈K Lk(λ̄).
Based on Lagrangian duality (see, e.g., [39]), this information in combination with a
valid upper boundUB allows variables to be fixed either to one or zero. For example, if
LB+ c̃ki j > UB, both zki j andwk

i j can be fixed to zero, as the cost of an optimal solution
in which either of these two variables are set to one will exceed UB. Conversely,
observe that fixing variables to one is only possible for first-stage variables xe for each
e ∈ E, as second-stage reduced cost are non-negative. However, as will be shown,
fixing variables to zero is usually a more promising strategy anyway, as in this case
various structural properties of an optimal solution can be exploited.

We begin with a simple observation based on the packing constraints in the stated
dual. If a second-stage variable zki j orw

k
i j is set to one for an arc (i, j) ∈ A, e = {i, j},

depending if either zki j or wk
i j is fixed, additional reduced cost are incurred due to the

min-expression. If zki j is fixed to one, then in addition to c̃ki j ,max{0, pkcke − λ̄ke} is
paid. Conversely, if wk

i j is fixed to one, then max{0, λ̄ke − pkcke } is paid in addition.
Additional incurred reduced cost can be inferred based on well-known arguments

for the SAP. By minimality, each arc (i, j) ∈ A part of an optimal arborescence
corresponding to Lk(λ̄) must lie on a directed path from r to some terminal t ∈ T k .
Based on this property, it can be shown that setting an arc variable to one will incur the
reduced cost of all arcs on this path [6,31]. As the optimal arborescence is not known,
a frequently applied approach is to obtain an efficiently computable underestimation
of these costs [6,10,26,31]. Let d̃ki j denote the cost of a shortest path from i to j on

GD computed based on c̃k . The incurred reduced cost can be bounded from below
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by computing the shortest path based on reduced cost from r to i and from j to the
closest terminal t ∈ T k , i.e.,

D̃k
i j := d̃kri + c̃ki j + min

t∈T k
d̃kj t ∀k ∈ K .

Note that similar reasoning applies if a first-stage edge variable xe, e ∈ E is set to one,
as at least one second-stage arc corresponding to this first-stage edge must be part of
an optimal solution. However, the direction of this arc is usually not known (either
w�
i j = 1 or w�

j i = 1 for some � ∈ K ). In this case the cheaper direction is a valid
underestimation of the reduced cost of this path.

D̃k
e := min

{
D̃k
i j , D̃

k
ji

}
+ max

{
0, λ̄ke − pkcke

}
, ∀k ∈ K , e = {i, j}.

Based on these definitions and observations, Proposition 1 state conditions when
variables x, w, and z can be fixed to zero.

Proposition 1 Given a lower bound LB, associated reduced cost c̃ and dual multipli-
ers λ̄, as well as an upper bound UB, a variable zki j can be fixed to zero if

LB + D̃k
i j + max

{
0, pkcke − λ̄ke

}
> UB (7)

holds. Similarly, variable wk
i j can be fixed to zero if

LB + D̃k
i j + max

{
0, λ̄ke − pkcke

}
+ max

{
0, c̃0e

}
> UB (8)

holds. Finally, variable xe can be fixed to zero if

LB + min
k∈K D̃k

e + max
{
0, c̃0e

}
> UB (9)

holds.

Proof The correctness of the given statements follows from the discussions in the
previous paragraphs. Moreover, conditions (8) and (9) exploit the fact that if c̃0e ≤ 0,
then the corresponding first-stage edge e will already be chosen in an optimal solution
of L0(λ̄), and thus its reduced cost can be set to zero. ��

Conditions (8) and (9) consider only one scenario at a time. Consequently, they
can be strengthened based on the property that in an optimal solution, in almost all
cases, a first-stage edge needs to to be used in multiple scenarios in order to pay off.
More formally, if e ∈ E is part of an optimal solution’s first stage, then there exists
a set of scenarios K ∗ ⊆ K such that

∑
k∈K ∗ pkcke ≥ c0e . For each k ∈ K ∗ the same

path-based arguments apply as made for Proposition 1. The following two conditions
again employ an underestimation of the incurred reduced cost based on the solution
of knapsack problems in minimization form.
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Proposition 2 Given a lower bound LB, associated reduced cost c̃ and dual multipli-
ers λ̄, as well as an upper bound UB, a variable xe can be fixed to zero if

LB + min
K ∗⊆K

{ ∑

k∈K ∗
D̃k
e :

∑

k∈K ∗
pkcke ≥ c0e

}
+ max

{
0, c̃0e

}
> UB (10)

holds. Similarly, variable wk
i j can be fixed to zero if

LB + D̃k
i j + max

{
0, λ̄ke − pkcke

}

+ min
K ∗⊆K\{k}

{ ∑

�∈K ∗
D̃�
e : pkcke +

∑

�∈K ∗
p�c�

e ≥ c0e
}

+ max
{
0, c̃0e

}
> UB (11)

Proof For condition (10), let K ′ ⊆ K be the optimal set of scenarios that uses edge e
in the first-stage, given that xe = 1. From the path-based discussions in the previous
paragraphs,

∑
k∈K ′ D̃k

e is a valid underestimation of the incurred reduced cost over
all scenarios. By definition, it holds that

∑
k∈K ′ pkcke ≥ c0e and

∑
k∈K ∗ pkcke ≥ c0e .

Therefore
∑

k∈K ∗ D̃k
e ≤ ∑

k∈K ′ D̃k
e , and consequently

∑
k∈K ∗ D̃k

e is also an underes-
timation. The argument for condition (11) is equivalent, except that scenario � ∈ K ,
is forced into the knapsack, and the direction in which e is used in scenario � is
fixed. ��

In order to compute all required shortest paths, for each scenario we need two
executions of Dijkstra’s algorithm using reduced cost c̃ as arc lengths: One execution
is on GD using r as source, and the other one is on a modified version of GD , in
which all arcs are inverted and an artificial source node has been added; this node is
connected to each terminal T k\{r}. This requiresO(|K |(|A|+|V | log |V |)). In order to
apply conditions (10) and (11), integrality is relaxed and the so-called Dantzig bound
is used. The resulting LP can be solved in O(|K | log |K |) by choosing elements in
ascending order based on their utility ratio D̃k

e/(p
kcke ) for all k ∈ K . Both for the

computation of shortest paths and knapsacks, existing variable fixing is taken into
account.

3.2 Warmstart using dual ascent

In order to accelerate the convergence of a Lagrangian-based decomposition approach,
in some cases it is essential to initialize the procedure with a suitable choice of
Lagrangian dual multipliers (see, e.g., [12,13] for details on the relationship between
dual ascent methods and Lagrangian relaxation). To this end, we propose to run an
alternative dual-based approach, namely, a dual ascent procedure. The major benefits
of this procedure are: (i) the obtained dual solution λ̄ is a feasible starting point for
(SDCLD

3 ), (ii) the lower bound computed in each step increases monotonically, thus
providing fast convergence, and (iii) it can be performed efficiently (the algorithm
runs in O(

∑
k∈K |A|min{|A|, |T k ||V |}) time).
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The STP admits the heuristic computation of LP relaxation bounds via the dual
ascent procedure by Wong [40]. Although this type of method does not provide tight
guarantees on the quality of the computed lower bound, empirically, the bound is
usually quite close to the optimum.

Using an appropriate model as a starting point, this approach can be extended seam-
lessly to the SSTP. Let (SDCD

3 ) denote the dual of (SDC3) after relaxing the integrality
constraints (SDC3:3). Let β and λ be the dual multipliers associated to (SDC3:1)
and (SDC3:2), respectively.

(SDCD
3 ) max

∑

k∈K

∑

W∈Wk

βk
W

∑

k∈K
λke ≤ c0e ∀e ∈ E (SDCD

3 :1)

β
(
Wk

i j

)
≤ pkcke ∀(i, j) ∈ A, ∀k ∈ K , e = {i, j} (SDCD

3 :2)

β
(
Wk

i j

)
− λke ≤ 0 ∀(i, j) ∈ A, ∀k ∈ K , e = {i, j} (SDCD

3 :3)

(βk , λk ) ∈ R
|Wk |+|E |
≥0 ∀k ∈ K

The dual can be simplified into a condensed dual (SDCD′
3 ), in which variables λ are

eliminated by aggregating inequalities (SDCD
3 :3) and combination with (SDCD

3 :1).
For any solution β̄ ∈ (SDCD′

3 ), a solution (β̄, λ̄) ∈ (SDCD
3 ) of equal objective value

can be constructed by setting λ̄ke = max{β̄(Wk
i j ), β̄(Wk

ji )} for each e = {i, j} ∈ E
and k ∈ K .

(SDCD′
3 ) max

∑

k∈K

∑

W∈Wk

βk
W

∑

k∈K
max

{
β

(
Wk

i j

)
, β

(
Wk

ji

) } ≤ c0e ∀e = {i, j} ∈ E (SDCD′
3 :1)

β
(
Wk

i j

)
≤ pkcke ∀(i, j) ∈ A, k ∈ K , e = {i, j}

(SDCD′
3 :2)

βk ∈ R
|Wk |
≥0 ∀k ∈ K

Algorithm 1 lists the pseudocode of our dual ascent procedure that computes a
heuristic solution to (SDCD′

3 ) and extends it to a feasible solution to (SDCD
3 ). Start-

ing from the initial solution β̄ = 0, in each iteration one dual variable βk
W = 0

is increased to its maximum possible value while preserving dual feasibility. As
dual variables β are exponential in number, they are only tracked implicitly by the
algorithm according to the reduced cost of constraints (SDCD′

3 :1) and (SDCD′
3 :2),

c̃0e := c0e − ∑
k∈K max{β(Wk

i j ), β(Wk
ji )} and c̃ki j := pkcki j − β(Wk

i j ), respectively.
Similarly, the objective value of the constructed dual solution is tracked as vari-
able LB.
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Data: SSTP instance (G = (V, E), r, c, p, T )

Result: Lower bound LB, reduced costs c̃ = (c̃0, . . . , c̃k ), dual multipliers λ

1 c̃ ← (c0, p1c1, . . . , p|K |c|K |)
2 T k

a ← T k\{r} ∀k ∈ K
3 LB ← 0

/* Implicitly set β̄k
W = 0 for each W ∈ Wk and k ∈ K. */

4 while
⋃

k∈K
T k
a 
= ∅ do

5 (k, i) ← chooseActiveTerminal(T 1
a , . . . , T |K |

a )

6 W ← Wk (i)

7 	 ← min
(i, j)∈δ−(W ),

e={i, j}
min

{
c̃ki j , c̃

0
e + max{c̃ki j − c̃kj i , 0}

}

8 c̃0e ← c̃0e − (
	 − max{c̃ki j − c̃kj i , 0}

) ∀e ∈ δ(W )

9 c̃ki j ← c̃ki j − 	 ∀(i, j) ∈ δ−(W )

10 LB ← LB + 	

11 T k
a ← removeInactiveTerminals(T k

a )

/* Implicitly set β̄k
W = 	. */

12 end
13 λke ← cke − min{c̃ki j , c̃kj i } ∀e = {i, j} ∈ E, ∀k ∈ K

Algorithm 1: Dual ascent algorithm for (SDCD′
3 ).

The selection of βk
W is performed as follows. First, recall that W induces a Steiner

cut w.r.t. k, i.e., r /∈ W and T k ∩W 
= ∅. For an increase of βk
W to be feasible, none of

the constraints (SDCD′
3 :2) associated to its directed cutset δ−(W ) can be tight. Thus,

if only constraints (SDCD′
3 :2) would be considered, the maximum feasible increase of

βk
W corresponds to the minimum reduced costs of the cutset’s arcs.

Concerning constraints (SDCD′
3 :1), the same does not hold for the undirected cutset

δ(W ) due to the max-expression therein. Consider the case where c̃0e = 0 for some
e = {i, j} ∈ δ(W ). The associated constraint does not prevent a further increase of βk

W
if for the arc (i, j) ∈ δ−(W ) associated to the edge, β(Wk

i j ) < β(Wk
ji ) holds. In this

case, in addition to an increase by c̃0e , β
k
W can further be increased byβ(Wk

ji )−β(Wk
i j ),

or equivalently, by c̃ki j − c̃kj i .
The stated properties can be represented in terms of subgraphs. Let the saturation

graph per scenario k ∈ K be defined as

Gk
S := GD

[
Ak
S

]
for Ak

S =
{
(i, j) ∈ A : c̃ki j = 0 ∨ c̃0e

+ max
{
c̃ki j − c̃kj i , 0

}
= 0, e = {i, j}

}
.

The arcs in Ak
S are referred to as saturated w.r.t. k. Furthermore, let

Wk(i) := {
j ∈ V : there exists a directed path from j to i in Gk

S

}
.
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The algorithm maintains a set of active terminals T k
a ⊆ T k\{r} for each k ∈ K . A

terminal i is said to be active for k if r /∈ Wk(i) and |Wk(i) ∩ T k
a | = 1. The former

condition implies thatWk(i) induces a Steiner cut, while the latter implies thatWk(i)
is a so-called root component. Increasing βk

W only for root components is a criterion
which may improve the computed lower bound. An example in which this is the case
and a more detailed discussion is given for Wong’s dual ascent procedure [40].

In each iteration, an active terminal i and scenario k is chosen in Step 3
(chooseActiveTerminal). Next, the setWk(i) is computed by a reverse breadth-
first search onGk

S and the maximum possible increase of βk
W is computed and denoted

by	. Note that whenever the aforementioned condition c̃ki j > c̃kj i holds for some edge
e = {i, j} ∈ δ(W ), then this amount must be subtracted when updating the reduced
cost in Step 6. Terminals that have become inactive for the current k are removed from
T k
a in Step 9 (removeInactiveTerminals). The procedure terminates as soon

as no active terminals remain, in which case no variable βk
W can be increased without

violating some constraint. In Step 11, the dual multipliers λ are computed based on
each scenarios reduced cost. It holds that cke −min{c̃ki j , ckji } = max{β(Wk

i j ), β(Wk
ji )}

for each e ∈ E and k ∈ K . Thus if β is feasible to (SDCD′
3 ), the corresponding

assignment (β,λ) is feasible to (SDCD
3 ).

Further details (e.g., in which order to choose active terminals) follow closely dual
ascent procedures for the STP (see, e.g., [28]), and are thus omitted. The following
propositions state basic properties of Algorithm 1.

Proposition 3 β̄ is feasible for (SDCD′
3 ) in each iteration of Algorithm 1.

Proof The initial assignment of c̃ implies β̄ = 0, which is feasible and LB = 0
corresponds to its objective value. In each iteration of the main loop, for the chosen
terminal i and scenario k, and the resulting setW , it holds by definition that r /∈ W and
δ−(W ) ∩ Ak

S = ∅. It follows that 	 > 0. At the beginning of any iteration, βk
W = 0.

As 	 is computed as the minimum feasible increase based on the reduced cost of all
involved constraints, setting βk

W to 	 results in feasible solution. ��
Proposition 4 Theworst-case time complexity ofAlgorithm1 isO(

∑
k∈K |A|min{|A|,

|T k ||V |}).
Proof For each scenario k ∈ K the following holds: In each iteration at least one
arc will be saturated w.r.t. k. Moreover, for each i ∈ T k\{r}, at most |V | iterations
can be performed, as at this point r ∈ Wk(i), and i becomes inactive for k. Thus
min{|A|, |T k ||V |} is an upper bound on the number of performed iterations for each
k ∈ K . Each iteration takes atmost |A| steps, as themost complex operation performed
is a breadth-first search. ��

3.3 Refinement by applying Benders decomposition

In this section a Benders decomposition based on (SDCFB
3 ) is detailed. This approach

is in the spirit of the two-stage B&C approach introduced in [2] for (SDC2). The
Benders master problem is stated as follows.
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(SDCB
3 ) min

∑

e∈E
c0e xe +

∑

k∈K
pkθk

s.t. θk ≥ �k(x) ∀k ∈ K (SDCB
3 :1)

x ∈ {0, 1}|E |, θ ∈ R
|K |
≥0

In this reformulation of (SDCFB
3 ), the variables z and w associated to the second

stage have been projected out of the model. In their place, non-negative variables
θ denote the second-stage cost for each scenario. This property is ensured by con-
straints (SDCB

3 :1). For each k ∈ K and first-stage solution x̄, the recourse function
�k(x̄) gives the corresponding second-stage cost, and is computed by solving the
following Benders subproblem.

�k(x̄) := min
∑

(i, j)∈A

cki j z
k
i j

s.t. wk(δ−(W )) + zk(δ−(W )) ≥ 1 ∀W ∈ Wk (βk
W )

(S:1)

wk
i j + wk

ji ≤ x̄e ∀e = {i, j} ∈ E (λke)

(S:2)

(zk, wk) ∈ {0, 1}2|A|

As the recourse function is neither convex or continuous, dynamically separated
fractional and integral Benders optimality cuts are used in order to underestimate the
value of �k(x̄). In stochastic programming, this approach is also referred to as the
L-shaped method (see, e.g., [3,24] for problems with integer recourse). No Benders
feasibility cuts are required as the SSTP has complete recourse.

Our implementation of this Benders decomposition approach is as follows: a
branch-and-cut is employed to solve the master problem. Each time a new fractional
master solution is found, Fractional Benders optimality cuts are added to the master.
Each time an integer master solution is found, Integer Benders optimality cuts are
inserted. Separation of these Benders cuts requires another cutting plane procedure
(for separating fractional points) and a branch-and-cut procedure (for separating inte-
ger ones), which is why the method is called two-stage B&C (see [2,27] for further
details).

Integer Benders optimality cuts Given x̄ integer, each Benders subproblem corre-
sponds to an SAP in which the cost of arcs associated to the chosen first-stage edges
are set to zero. Let E0

S = {e ∈ E : x̄e = 1} denote the set of chosen first-stage edges
induced by x̄. Then the following optimality cuts are valid.

θk ≥ �k(x̄) −
∑

e∈E\E0
S

cke xe ∀k ∈ K (SDCB
3 :INT)

The validity of (SDCB
3 :INT) can be shown as follows. If an additional edge e /∈ E0

S
is added to the first stage, then the second-stage cost of scenario k can only decrease
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by at most cke , i.e., the cost of the associated second-stage arc. Conversely, the cut
remains valid if an edge e ∈ E0

S is removed from the first stage, as in this case the cost
of each second-stage solution cannot decrease. In our implementation, we compute
the value of �k(x̄) by using the exact solver presented in [26].

Fractional Benders optimality cuts For the purpose of cutting off fractional solutions
x̄, we relax the integrality constraints of the Benders subproblem and dualize the
resulting LP to obtain a valid underestimation of �k , denoted by �k . Variables β and
λ are associated to constraints (S:1) and (S:2), respectively.

�k(x̄) := max
∑

W∈Wk

βk
W −

∑

e∈E
x̄eλ

k
e (D:1)

s.t. β
(
Wk

i j

)
≤ cki j ∀(i, j) ∈ A (D:2)

β
(
Wk

i j

)
− λke ≤ 0 ∀(i, j) ∈ A, e = {i, j} (D:3)

(βk,λk) ∈ R
|Wk |+|E |
≥0 (D:4)

Let (β̄
k
, λ̄

k
) denote an optimal solution to (D:1)–(D:4). Then the following optimality

cuts are valid.

θk ≥
∑

W∈Wk

β̄k
W −

∑

e∈E
λ̄ke xe ∀k ∈ K (SDCB

3 :FRAC)

In our framework the computation of (β̄
k
, λ̄

k
) is performed by applying row gener-

ation to the relaxed primal Benders subproblem. Thus constraints (S:1) are separated
dynamically, following the two-stage B&C that has also been applied in [2,27].

Lagrangian Benders optimality cuts A large number of optimality cuts may form a
potential bottleneck of the Benders decomposition approach. Especially at the begin-
ning to the procedure, a large number of cutting planes may be separated due to little
information on the original problem being presented in the master. A possible solution
to this situation is the generation of an initial set of Benders optimality cuts using a
set of high-quality dual solutions collected by the Lagrangian approach detailed in
Sect. 3.1.

For this purpose, first observe that the Benders optimality cuts derived from subop-
timal solutions to (D:1)–(D:1)–(D:4) are also valid. Consider for any k ∈ K a feasible

dual solution (λ̄
k
, β̄

k
) to one of the relaxations of the Lagrangian subproblems Lk(λ̄)

detailed in Sect. 3.1. As the solution satisfies

β̄
(
Wk

i j

)
≤ min

{
λ̄ke, p

kcki j

}
∀(i, j) ∈ A, e = {i, j},

the scaled solution (λ̄
k
, 1
pk

β̄
k
) is feasible to (D:1)–(D:1)–(D:4). An alternative

approach would be to move coefficients pk into the Benders subproblem by scaling
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each second-stage cost cki j appropriately. Note that this is however not recommendable

due to potential numerical instabilities caused by small values of pk .

3.4 Overall framework

In this section we present further details of our algorithmic framework that combines
the introduced approaches into an effective method. To efficiently attack large-scale
instances, we focus on the development of a purely combinatorial Lagrangian heuristic
framework. If the size of an instance allows, only in the refinement phase we invoke
a state-of-the-art ILP solver. The main strategy is to initially apply “light-weight”
methods, i.e., those of low worst-case runtime complexity. Thus we obtain iteratively
improved primal and dual solutions, as well as their associated bounds. Using these,
we can fix redundant parts of the instance early on (Sect. 3.1.1) before applying a
more “heavy-weight” technique, i.e., the Benders decomposition approach detailed in
Sect. 3.3.

With the aim to keep the Lagrangian relaxation approach from Sect. 3.1 “light-
weight”, we resort to the approximation of subproblems, Lk(λ̄), by fast primal and
dual heuristics for the STP/SAP [8,37,40] in the employed subgradient optimization
procedure. This is an attractive option, since for any λ̄, Lk(λ̄) corresponds to an SAP
for each k ∈ K . In contrast, for the Benders decomposition approach, this is only the
case if the master solution is integral in x. Preliminary experiments have shown that
such cases tend to occur rarely, and are solved exactly in our framework in order to
guarantee termination of the B&B procedure. A pseudocode of the full framework is
given by Algorithm 2. We proceed by explaining the used primal heuristics, and then
discuss each phase of the framework separately.

Primal heuristics Two complementary procedures are used for obtaining high-quality
primal solutions. In both of them solution construction is decomposed by stage.

– First-stage-based heuristicThefirst procedure exploits the fact that given a feasible
first-stage solution x̄, the SSTP decomposes into |K | independent instances of the
STP. This property is also exploited in other algorithms for the SSTP, namely
the exact framework presented in [2] and the heuristic by Hokama et al. [19]. In
the former, an exact algorithm is employed for the construction of second-stage
solutions, while the latter uses a heuristic. In our implementation we follow the
former and compute optimal solutions by using an exact algorithm. The solver
proposed in [26] is applied with a short time limit to guarantee termination (five
seconds per scenario in our implementation). In the Lagrangian approach, x̄ is
obtained from the solution of L0(λ̄). In the Benders approach, x̄ is obtained by
rounding fractional master solutions, i.e., for each edge e ∈ E , if x̄e ≥ 0.5, the
variable is set to one, otherwise to zero. This scheme is potentially time-consuming,
as even after fixing the first stage |K | instances of an NP-hard problem remain to
be solved. Thus the next scheme details a computationally cheaper approach.

– Second-stage-based heuristic In the second construction procedure, we exploit
the fact that in the employed subgradient optimization algorithm, for each k ∈ K ,
a heuristic Steiner arborescence Ak ⊆ A is constructed as solution to Lk(λ̄).
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Data: SSTP instance I = (G = (V, E), r, c, p, T).
Result: Lower bound LB, feasible solution S.

/* initialization phase */
1 x̄ ← 0
2 (LB, c̃, λ̄, GS) ← dualAscentSSTP(I )

3 for k ∈ K do Ak ← sphSAP(Gk
S , r, ck , T k )

(UB, S) ← heuristicsSSTP(I, x̄, A1, . . . , A|K |)
4 variableFixing(I, LB, c̃, λ̄,UB)

5 CutPool ← ∅
/* subgradient optimization phase */

6 ρ ← 2
7 for i = 1 to iteration limit do

/* solve master problem */

8 c̃0e ← c0e − ∑
k∈K λ̄ke ∀e ∈ E

9 x̄ ← solveLagrangianFirstStage(c̃0)

/* process subproblems (restart for multiple roots) */
10 for k ∈ K do
11 c′i j ← min{λ̄ke , pkcke } ∀(i, j) ∈ A, e = {i, j}
12 rk ← chooseRandomRoot(T k )

13 (LBk , c̃k ,Gk
S) ← dualAscentSAP(GD, rk , c′, T k )

14 Ak ← sphSAP(Gk
S , rk , c′, T k )

15 end

/* update bounds, fix variables, collect optimality cuts */

16 c̃ ← (c̃0, c̃1, . . . c̃|K |)
17 LB(i) ← ∑

e∈E c̃0e x̄e + ∑
k∈K LBk

18 (UB(i), S
′) ← heuristicsSSTP(I, x̄, A1, . . . , A|K |)

19 if LB(i) > LB ∨ UB(i) < UB then
20 variableFixing(I, LB(i), c̃, λ̄,UB)

21 CutPool ← CutPool ∪ generateLagrangianCuts(LB1, . . . , LB|K |, λ̄)

22 end
23 if UB(i) < UB then
24 S ← S′
25 end
26 UB ← min{UB,UB(i)}
27 LB ← max{LB, LB(i)}

/* update subgradient data */

28 (z̄, w̄) ← assignStage(I, λ̄, A1, . . . , A|K |)
29 ske ← x̄e − w̄k

i j − w̄k
ji ∀e = {i, j} ∈ E,∀k ∈ K

30 λ̄ke ← max
{
0, λ̄ke + ρ

UB−LB(i)
‖s‖ ske

} ∀e ∈ E,∀k ∈ K

31 ρ ← updateStepSize(ρ)

32 end

/* refinement phase */
33 (LB, S) ← refinement(S,CutPool)

Algorithm 2: Framework (SDCLD
3 ).
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From these Steiner arborescences, an optimal allocation between the first and
second stage can be computed as follows: For each e = {i, j} ∈ E , set xe = 1 if∑

k∈K :(i, j)∈Ak∨( j,i)∈Ak cke ≥ c0e , otherwise, set xe = 0. The assignment of z and w
can then be performed accordingly.

The consecutive execution of both procedures in our framework is denoted by
heuristicsSSTP. Input parameters are a (potentially fractional) first-stage vector
x, as well as a set of second-stage Steiner arborescences (A0, . . . , A|K |).

Additional variable fixing The STP offers a large arsenal of reduction tests, which
allow the transformation of a problem instance into a smaller instance if specific
conditions are satisfied. The simplest transformation corresponds to the elimination
of edges. The following two simple tests can be easily translated from their STP
counterparts [7] into fixing variables of (SDCFB

3 ). Note that the same does not hold
for (SDCFB

2 ), since as already stated, in this case the second-stage solutions do not
necessarily form Steiner arborescences. In order to benefit from these tests (that are
valid on undirected graphs) second-stage arcs are only fixed to zero if both zki j and z

k
ji

can be fixed to zero.
The following definitions are required: For each k ∈ K , letGk

z = (V, Ez) denote the
undirected second-stage graph induced by variables zk that have not been fixed to zero,
i.e., Ez := {e = {i, j} ∈ E : zki j 
= 0∨zkji 
= 0}. Let the set Pk

i j denote all paths that

connect i and j on Gk
z . A path is elementary if and only if its endpoints are terminals

from T k . Let the bottleneck Steiner distance relative to scenario k be defined as

SDk
e := min

{
max

{ ∑

e∈PS

cke : PS is an elementary subpath of P
}

: P ∈ Pk
i j

}

∀e = {i, j} ∈ Ek

The concept of the bottleneck Steiner distance has been first considered in [7], and
allows the formulation of an effective edge elimination test, which has been employed
in several successful algorithms for the STP [8,10,31]. Using these definitions, the
following two rules for fixing variables are stated for the SSTP and formulation
(SDCFB

3 ). These rules are always applied after the ones based on reduced cost detailed
in Sect. 3.1.1.

– Second-stage degree one (D1). If a non-terminal i ∈ V \T k has only one adjacent
edge e = {i, j} on Gk

z , then wk
i j , w

k
i j , z

k
i j , and z

k
ji can be fixed to zero. This can be

done, as these arcs would never be part of any Steiner arborescence spanning T k .
– Second-stage bottleneck Steiner distance (SD). If SDk

e < cke , e ∈ E , then zki j and

zkji can be fixed to zero. Concerning the validity of this condition, consider the SD
test for the STP [7]. The test states that any edge e ∈ E with edge cost ce greater
than its bottleneck Steiner distance cannot be part of an optimal Steiner tree. For
the SSTP, note that once the set of optimal first-stage edges E0

S is known, the SSTP
decomposes into |K | independent instances of the STP. In each of these instances,
T k is the set of terminals, and edge costs c̄ke = cke if e /∈ Ek

S and c̄
k
e = 0 otherwise.

For each edge e ∈ E , let SD
k
e denote the bottleneck Steiner distances on each of
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these instances, i.e., computed based on the modified edge cost c̄k . The SD test is

valid given an optimal set E0
S . Since SD

k
e < SDk

e of each k ∈ K and e ∈ E the
test is valid for the SSTP.
In our implementation, we compute a heuristic approximation of SDk

e for edges
e ∈ E by a modified implementation of Dijkstra’s algorithm, in which additional
distance labels are stored which are set to zero whenever a terminal is encountered.
Moreover, due to the test condition, the search can be restricted to paths of length
at most cke .

Algorithm 2 lists the pseudocode of the proposed framework. Three phases can be
distinguished: (i) initialization by dual ascent, (ii) subgradient optimization, and (iii)
refinement by using the Benders decomposition approach.

– Initialization (Dual ascent) In Step 2, the dual ascent procedure for the SSTP (cf.
Sect. 3.2, denoted by dualAscentSSTP in the pseudocode) is used to obtain a
globally valid lower bound LB, associated reduced cost c̃, and an initial set of dual
multipliers λ̄. Moreover, the corresponding saturation graphs Gk

S are returned. For
each k ∈ K , the shortest path heuristic for the STP [37] (sphSTP) is applied onGk

S
in order to obtain a heuristic Steiner arborescence Ak . Running the heuristic onGk

S
instead of GD is known to improve the performance of STP heuristics due to com-
plementary slackness [31]. Naturally, the same holds in case of the SSTP. Based
on an initial first-stage solution (x̄ = 0) and the computed Steiner arborescences,
a feasible solution S to the SSTP is computed in Step 4 (heuristicsSSTP).
Throughout the algorithm, S represents the incumbent solution. After this ini-
tial computation of lower and upper bounds, an initial round of variable fixing is
applied in Step 5 (cf. Sect. 3.1.1, variableFixing). The set CutPool is used
to collect optimality cuts derived from dual solutions in the next phase.

– Subgradient optimization Parameter ρ denotes the step-size used for updating the
Lagrangian dual multipliers λ̄ in each iteration. Initially, ρ = 2. Further details on
the employed schedule for updating ρ are given after all other operations executed
within each iteration have been presented. The main loop is executed until a fixed
iteration limit has been reached, or all first-stage variables have been fixed to one or
zero. In the latter case, the SSTP decomposes into a set of STP instances, which are
solved using the exact solver from [26] that is also applied in the primal heuristic
(but here without the timelimit).
In Steps 9–10, the Lagrangian costs are computed and the Lagrangian subproblem
L0(λ̄) is solved (solveLagrangianFirstStage). At this point we exploit
a simple observation, namely that in an optimal solution the subgraph induced by
the first-stage, i.e., G[E0

S], is cycle-free.
This property is efficiently incorporated into the solution of L0(λ̄): Variables x
with non-positive Lagrangian cost are set to one iteratively in ascending order
according to c̃. Any variable that would introduce a cycle in the induced subgraph
is skipped.
In Steps 11–16, for each k ∈ K , the Lagrangian subproblem Lk(λ̄) is solved
heuristically. This requires the computation of a lower bound LBk and a heuristic
primal solution. Note that the latter is required in order to compute a subgradient
for updating λ̄. In Step 12, the modified cost vector c′ is computed as the minimum
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between λ̄ and pkcke . In the next steps, the dual ascent procedure for the SAP [40]
(dualAscentSAP) and the shortest path heuristic [37] (sphSAP) are executed
based on a randomly selected root node rk , terminals T k , and the modified cost c′.
As in the initialization phase, the saturation graph Gk

S is exploited to improve the
performance of the primal heuristic. The random choice of the root node perturbs
both the primal and dual heuristic, and as a consequence repeating Steps 11–16
for multiple roots may yield solutions of improved quality. In our implementation,
we repeat these steps at most five times, and keep only the best primal and dual
solutions.
If for one scenario k ∈ K , the solutions’ corresponding lower and upper bounds
coincide, then of course no further repetitions are necessary for this scenario, as
this subproblem is solved to optimality. We choose to not represent this repetition
in the pseudocode for brevity and ease of exposition.
In Steps 17–28, the computed information is aggregated (reduced cost, bounds, and
Steiner arborescences). The primal heuristic is started in Step 19
(heuristicsSSTP). Due to its computational complexity, the first-stage-based
heuristic (which requires the solution of STP instances) is only applied every tenth
subgradient iteration, or to refine the solution computed by the second-stage-based
heuristic, if the constructed solution exceeds the quality of the incumbent solution
S. The variable fixing in Step 21 (variableFixing) is only executed if the
global lower or upper bound improved during the current iteration. Moreover, in
this case |K | optimality cuts (generateLagrangianCuts) are generated and
added to the CutPool. Note that for the generation of the cuts, it is sufficient to use
the lower bounds for each subproblem – the concrete assignment of dual variable
β is not required.
Finally, in Steps 29–32, a subgradient s is computed based on the primal solutions
to subproblems Lk(λ̄), k ∈ K , computed in the course of this iteration. For this pur-
pose, in Step 29 the corresponding vectors z̄ and w̄ are retrieved (assignStage)
as follows: For each k ∈ K , zki j = wk

i j = 0 if (i, j) /∈ Ak . For (i, j) ∈ Ak, wk
i j = 1

and zki j = 0 if λke < pkcke . Otherwise, the converse holds.

The dual multipliers λ̄ are updated based on the standard scheme for subgradi-
ent optimization (see, e.g., [9,18]), as is the step-size ρ. More complex update
schedules have been explored in preliminary experiments, but as no significant
improvements in convergence could be achieved on the tested benchmark set, we
prefer the standard scheme due to its simplicity: If for κ consecutive iterations the
global lower bound LB does not improve, ρ is halved. We set κ := 20 and the
iteration limit to 250.

– Refinement (Benders decomposition) In Step 34, the two-stage B&Cbased onBen-
ders decomposition is started (refinement). We initialize this final step using
the incumbent solution S and the Lagrangian optimality cuts collected in CutPool.
Similarly, we initialize the Benders subproblems using a set of connectivity cuts,
which we derived from the SAP dual ascent algorithm (see, e.g., [31]).
Moreover, whenever a subproblem is solved, all separated connectivity cuts remain
valid for any given first-stage vector. Thus these inequalities are also used to ini-
tialize all subsequent iterations. In addition to the separation of connectivity cuts,
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we also chose to separate the strengthening flow-balance inequalities (SDC3:FB)
dynamically. A related family of valid inequalities can be derived from the
SAP [21]. For the SAP, these inequalities are known to be implied by the optimal
solution of the LP relaxation of its directed cut formulation. However, it is known
empirically that a subset of them (dynamically separated) can decrease the num-
ber of necessary cutting plane iterations. The inequalities (SDC3:4) are valid for
(SDCFB

3 ), and thus also for (SDC3).

wk (δ−(i)) + zk (δ−(i)) ≥ zki j + zkji + wk
i j + wk

ji ∀(i, j) ∈ δ+(i), ∀i ∈ V \T k , ∀k ∈ K

(SDC3:4)

Tailing-off behavior of the cut-loop at the root node is detected as follows. Let
LBB

(i) denote the lower bound at iteration i of the row generation procedure applied

to (SDCB
3 ) within the root node of the B&C tree. If for κ ′ consecutive iterations

the relative lower bound improvement, i.e., (LBB
(i+1) − LBB

(i))/LB
B
(i+1), remains

below a threshold τ , then the cut loop is terminated and we begin to branch. In our
implementation κ ′ := 5 and τ := 1e − 10. The same approach is applied within
each subproblem.

4 Computational results

All algorithms have been implemented in C++. Recall that the subgradient procedure
is a combinatorial approach, and that only for the Benders decomposition part, CPLEX
12.7 is used as a ILP solver. Tests have been performed single-threaded on an Intel
Xeon CPU E5-2670v2 (2.5 GHz). On each test run a time limit of 1 h and a memory
limit of 6 GB is set. The performance evaluation is conducted on instances from
the SSTPLib [34], which are part of the benchmark set employed during the 11th
DIMACS implementation challenge on Steiner trees [19,35]. These instances have
been generated from STP instances available in the SteinLib [2,22]. Moreover, based
on the same schemewehave generated new large-scale benchmark instances from real-
world STP instances [25] which have also been used during the challenge. The graphs
in these instances have been generated from spatial data for the design of infrastructure
networks.We restrict ourselves to the ten smallest instances from this dataset (“vienna-
i-simple”), which already exceed the size of previous instances significantly. The new
dataset is referred to as VIENNA and made available online at https://msinnl.github.
io/pages/sstp.html (detailed results for each instance are also availabe). The average
characteristics of all benchmark instances are listed in Table 1.

For each dataset except VIENNA, |K | ∈ {5, 10, 20, 50, 75, 100, 150, 200, 250,
300, 400, 500, 750, 1000}. For VIENNA, only instances with up to 50 scenarios have
been created due to their large size. For performance plots instances are aggregated
into a group of small instances SMALL := {K100,P100,LIN01-10,WRP} and a
group of large-scale instances LARGE := {VIENNA}. Tests are conducted on 600
benchmark instances in total.

In each table reported in the remainder of this section, columns t [s] and tb [s] denote
the running time and the time at which the best solution has been found in seconds.
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Table 1 Basic properties of our benchmark instances

Dataset Inst [#] |V | |E | |K |
Min Avg Max Min Avg Max Min Avg Max

K100 154 22 31 45 64 115 191 5 272 1000
P100 70 66 77 91 163 194 237 5 272 1000
LIN01-10 140 53 190 321 80 318 540 5 272 1000
WRP 196 10 194 311 149 363 613 5 272 1000
VIENNA 40 1991 5756 9574 3176 9347 16,208 5 21 50

Columns inst[#] and solv[#] denote the number of instances in a given group and the
number of instances solved to optimality, respectively. Columns g [%] and Pg [%]
denote the relative optimality and primal gap, computed as g [%]:= (UB − LB)/UB
and Pg [%]:= (UB−BEST)/UB, respectively. Here the values LB andUB refer to the
best lower and upper bound computed by a method on a given instance, while BEST
denotes the best upper bound computed by one of the compared methods.

We begin our computational study by analyzing the contributions of the proposed
components of the Lagrangian decomposition framework. Once their effectiveness
has been established, we compare the performance of the total framework with state-
of-the-art exact and heuristic solution methods given in [2,19,27], respectively.

4.1 Effects of the dual ascent initialization

We first analyze the benefits of initializing the subgradient algorithm (see Sect. 3.4)
with the dual solution computed by the dual ascent procedure (see Sect. 3.2). For
this purpose, both the variable fixing based on reduced cost and reduction tests (see
Sects. 3.1.1 and 3.4), as well as the refinement (see Sect. 3.3) have been deactivated.

The following two settings are compared:

– L: This is a basic subgradient procedure in which an initial set of multipliers is
computed as λke = pkcke , e ∈ E, k ∈ K , which corresponds to no first-stage
edge being selected. In this setting the SSTP dual ascent is not executed during
the initialization phase, the initial primal solution S is computed only using the
first-stage-based heuristic (i.e., Step 3 of Algorithm 2 is hence skipped due to no
saturation graphs being available).

– DL: In this setting the SSTP dual ascent is executed as specified in the overall
framework (Algorithm 2) and the the subgradient algorithm is started from the
computed dual multipliers.

Figure 8 reports the optimality gaps obtained by the two settings after the 1-h
time limit. In the two cumulative charts (one per group), we report the percentage of
instances solved within a certain optimality gap. One observes that this warm-starting
has a significant impact on the performance of the subgradient procedure, both on small
and large-scale instances. The effect is particularly pronounced for group LARGE,
where the worst optimality gaps remain below to 3%. On the contrary, if the SSTP
dual ascent is skipped, the final gap achieved by the subgradient method lies between
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Fig. 8 Optimality gap charts for SMALL and LARGE instances with dual ascent initialization of the
subgradient algorithm (DL) and without (L)

5 and 30% for almost all instances of this group. This significant optimality gap is a
direct consequence of low-quality dual solutions, which yield lower bounds far from
the optimum. As a consequence, also the upper bounds rarely improve beyond the
ones computed by the initial heuristic, further amplifying the difference between the
tested settings. When starting from the given dual ascent solution, improvements of
lower and upper bounds have usually been observed after few iterations on almost all
benchmark instances. Thus these dual multipliers are a good starting point for further
improvement.

4.2 Effects of variable fixing

In order to quantify the effects and benefits of the variable fixing conditions presented
in Sects. 3.1.1 and 3.4, we first report on the number of variables/edges that can be
eliminated due to these tests. Observe that these operations are valid for any given
vector of dual multipliers. Since two algorithms have been proposed for deriving
strong dual multipliers (namely, the dual ascent and the subgradient procedure), we
investigate the effects of variable fixing on the following two settings:

– DR: This is the proposed SSTP dual ascent algorithm enhanced by variable fix-
ing. This means that only the initialization phase of the proposed framework is
executed, i.e., Algorithm 2 is executed up to Step 5.

– DLR: This is the DL setting from the previous section, enhanced by the variable
fixing. In other words, Algorithm 2 is executed up to Step 33, and the refinement
phase is omitted.

Table 2 reports the results of this comparison. Column fixed[%] lists the average
percentage of eliminated variables. In the following, we use f1 and f2 in order to refer
to the two types of variable fixing rules introduced in this article: reduced-cost-based
fixing (Sect. 3.1.1) and reduction-test-based fixing (Sect. 3.4), respectively. Columns
f1 [%] and f2 [%] report the corresponding averagepercentages of eliminatedvariables
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Fig. 9 Optimality gap charts for SMALL and LARGE with (DLR) and without (DL) reduction tests and
variable fixing

by the respective rules. In addition, we report the average running time and optimality
gaps of the two settings.

We observe that already the dual ascent procedure for the SSTP provides very useful
primal and dual bounds that allow a sizable portion of variables (up to almost 50%) to
be eliminated. The corresponding optimality gaps are within few percent, explaining
the effectiveness of f1, which profits from the availability of tight bounds. However,
the effects achieved by f2 are also considerable, as theymanage to eliminate up to 15%
of all variables. Moreover, on dataset VIENNA these tests manage to even outperform
f1. Even in the worst case, already after the initialization phase at least 10% of all
variables can be eliminated on average.

The effectiveness of the variable fixing is further amplified during the subgradient
procedure. Furthermore, the frameworkmanages to decrease the remaining optimality
gap to less than 2% on average. The most impressive results are achieved on dataset
P100, where on average 82% of all variables are eliminated. Even on dataset LIN01-
10, on which the largest average optimality gap remains (1.81%), almost 30% of all
variables can be eliminated. Between the initialization and subgradient phase, the
amount of variables fixed by f1 is more than doubled in most cases. The only dataset
seemingly resistant to the bound-based variable fixing f1 is WRP, on which even after
reducing the gap from over 2% to almost 0.3% during the subgradient phase, only few
additional variables can be fixed.

Figure 9 demonstrates the influence of the employed variable fixingw.r.t. the overall
performance. We compare the optimality gaps at the end of the subgradient procedure
without fixing (setting DL described above), and with fixing enabled (setting DLR).
The results on SMALL instances show that the proposed tests are effective. The tighter
the bounds, the larger the decrease in the optimality gap.More precisely, for about 20%
of SMALL instances, the gap without variable fixing is below 0.1%. After including
the variable fixing, 40% of SMALL instances can be solved within 0.1% to optimality.
On LARGE instances, an improvement can still be observed, but the bounds appear to
be not sufficiently tight in order to yield a significant boost of performance. However,
even though the effects of the proposed fixing on the subgradient algorithmmay appear
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Fig. 10 Optimality gap charts for SMALL and LARGEwith (DLRB3) andwithout (DLR) Benders decom-
position applied as a refinement procedure

minor, such eliminations are certainly essential when entering the exact algorithm
during the refinement phase.

4.3 Effects of the Benders decomposition approach

Upon the termination of the subgradient phase, our framework enters the refinement
phase, in which the Benders decomposition approach is called. We now report on the
improvements that are achieved in this final phase. Note that we still only consider
the performance of the method in the root node of the B&C tree. We compare the best
performing setting so-far (DLR) with the setting in which the Benders decomposition
approach is called after the subgradient algorithm (denoted by DLRB3). Figure 10
reports the optimality gaps of the two settings. As expected, an improvement of the
computed bounds is achieved. The results are particularly striking for the SMALL
instances. On the LARGE instances, the effect is much less pronounced, as these
instances appear to be too large to be effectively handled by using an ILP solver.

Finally, Fig. 11 shows the average development of the optimality gap relative to
running time. The colors and line styles are chosen according to the configurations
applied in the previous Sections (see Figs. 8, 9, 10). Note that a time limit of 1 h is
applied. If an instance finishes processing the root B&B node early, its final gap is
used in the computation of the average gap for subsequent time points. The average
gap is only computed at the time instants shown by the dots on each line while linear
interpolation is applied in between.OnSMALLandLARGE instances,we can observe
that the convergence is significantly improved by starting from the solution provided
by the SSTP dual ascent procedure. Moreover, one can observe that on the LARGE
instances, although the variable fixing finally pays off in the form of a smaller final
optimality gap, initially it can be a computational burden if the available bounds are
not sufficiently tight. In our implementation, a potential bottleneck is the computation
of special distances, which are recomputed from scratch in each check. Thus this
effect could be remedied by an improved implementation in which these distances are
updated dynamically [31].
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Fig. 11 Average development of the optimality gap w.r.t. running time

4.4 Comparison with the state-of-the-art

The results obtained in the previous sections suggest that the combination of our
framework’s components yields a computational performance which is fairly robust
both with respect to small and large-scale instances. In this section, we proceed by
comparing the performance of our new method to the state-of-the-art exact algorithm
presented in [2,27], a Benders decomposition approach based on a two-stage B&C
and formulation (SDC2). Moreover, the quality of the obtained primal solutions is
compared with the heuristic by Hokama et al. [19], a genetic algorithm introduced
during the 11th DIMACS implementation challenge on Steiner trees.

In order to provide a fair comparison, the method from [2,27] has been carefully
reimplemented. Moreover, the approach has been improved as follows: The strength-
ening flow-balance inequalities introduced in Sect. 2.2 are separated dynamically,
together with the following valid inequalities, which are the counterpart to (SDC3:4)
for formulation (SDC2).

yk(δ−(i)) ≥ yki j + ykji − xe ∀(i, j) ∈ δ+(i), ∀i ∈ V \T k, e = {i, j}, ∀k ∈ K

(SDC2:4)

For each k ∈ K , the cut pool of the corresponding subproblem is initialized using
the set of connectivity cuts detected by the dual ascent procedure for the SAP. The
resulting algorithmic approach is denoted by B2. In the following experiments, the
performances of DLRB3 and B2 are compared with respect to the exact solution of
instances, i.e., the ILP solver is not restricted anymore to the root node of the B&C
tree as in the previous section.

Figure 12 shows optimality gap charts on instance groups SMALL and LARGE.On
the LARGE instances, DLRB3 significantly outperforms B2 with respect to the com-
puted optimality gaps. The results on SMALL instances show that DLRB3 manages
to obtain significantly smaller gaps in the worst-case (3% instead of 7%). In addition,
also more instances can be solved within a gap of 0.1% than with B2.
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Fig. 12 Optimality gap charts comparing DLRB3 and B2

A more detailed view of these results is given in Tables 3, 4, 5 and 6. In each table
instances have been aggregated based on |K |. Moreover, the average quality of primal
solutions (columns Pg [%]) and the average times at which the best solutions have
been found (columns tb [s]) are reported. The results of the heuristic by Hokama et
al. [19] are denoted by H. Their results have been computed on an Intel Xeon CPU
E3-1230 V2, (3.30 GHz), implemented in C++, and run for a time limit of 1h. The
CPU is thus slightly faster than the one used for testing our own implementations.

Table 3 summarizes results on dataset K100 and P100. BothDLRB3 andB2 manage
to solve these instances to optimality within the time limit. On K100, both methods
require approximately equal time for this task, while DLRB3 usually obtains the best
primal solutions faster, due to its “light-weight” initialization approach. On P100,
DLRB3 significantly outperforms B2. On both K100 and P100, the solution quality
obtained by H is on average within 1%. However, the time required to reach this
quality is significantly higher than the time needed to solve the instance to optimality
by DLRB3.

Table 4 summarizes the results on dataset LIN01-10 and WRP. We observe that
on LIN01-10, DLRB3 significantly outperforms the results achieved by B2. This is
the case with respect to the number of instances solved, average remaining optimality
gap, the average required running time, and the quality of primal solutions. Moreover,
the heuristic approach is outperformed by both DLRB3 and B2.

On dataset WRP, DLRB3 computes slightly better bounds on average and also
better primal solution. However, the average solution time is slightly higher than
B2, and as a consequence in some cases less instances can be solved to optimality
within the time limit. This property is mainly a consequence of the larger number
of variables of model (SDCFB

3 ), a burden that outweights its gain on this specific
type of dataset. As already noted in Sect. 4.2, despite the availability of very tight
bounds, our reduced-cost-based variable fixing tests are not capable of eliminating
many variables on these instances. Here, a more light-weight modeling approach
appears more beneficial when the main aim is to solve instances to optimality. Finally,
we can observe that the heuristic approach Hmanages to outperform both DLRB3 and
B2 with respect to solution quality on instances with at least |K | = 200. However, on
average a significant amount of time is required to reach this quality.
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Table 5 Influence of the flow-balance constraints on the practical solving

Group (SDCFB
3 ) (SDCFB

2 ) Rel. improvement (%)

Root gap [%] # Nodes Root gap [%] # Nodes

SMALL 0.38 8.25 0.53 6.99 28
LARGE 9.83 0.00 11.20 0.00 12

Table 6 Results on dataset
VIENNA (none solved to
optimality)

|K | Solv [#] g [%] Pg [%]

DLRB3 B2 DLRB3 B2 DLRB3 B2

5 0 0 0.77 8.33 0.00 1.88
10 0 0 0.66 6.65 0.00 1.37
20 0 0 0.88 7.33 0.00 1.10
50 0 0 1.03 22.48 0.00 0.90

Table 6 reports results on dataset VIENNA. As this large-scale dataset has been
newly introduced in this articlewith the aim of further testing the limits of ourmethods,
unfortunately no results for the heuristic byHokama et al. are available.We can observe
that indeed, these instances are more challenging than the previously existing datasets,
as no instance could be solved to optimality by any of the testedmethods. The obtained
results show that on average DLRB3 significantly outperforms B2 both with respect
to optimality gaps and the quality of primal solutions. Moreover, the main difference
between these two methods lies mostly in the quality of lower bounds, which for
DLRB3 are much tighter than for B2. This behavior is mainly due to the superior
scalability of our Lagrangian heuristic. As a consequence, even instances with up to
50 scenarios can be handled effectively. In this latter case, average gaps obtained by
B2 are as high as 22%, whereas the respective gaps obtained by DLRB3 remain below
1%.

The success of our approach can be partially attributed to the improved quality
of lower bounds due to the flow-balance inequalities (SDC3:FB). In our algorithmic
framework, DLRB3, these constraints are exploited in the refinement phase, where
they are explicitly added to the Benders subproblems. To measure the impact of these
constraints on practical solving, we provide a comparison of lower bounds for two for-
mulations. Table 5 compares the quality of lower bounds at the root node of ourDLRB3
framework, which corresponds to the (SDC3) formulation enhanced by the inequal-
ities (SDC3:FB) (denoted by (SDCFB

3 )), and those obtained by the B2 framework,
which corresponds to the previous state-of-the-art formulation (SDC2), enhanced by
the weaker (SDC2:FB) constraints (denoted by (SDCFB

2 )). Recall that the two basic
formulations, (SDC2) and (SDC3) are equally strong, and that the bounds obtained by
(SDCFB

2 ) are in theory stronger, whereas those obtained by (SDCFB
3 ) are the strongest

ones (cf. Fig. 6). For the two groups, SMALL and LARGE, and for each of the two
formulations, the following values are reported in Table 5: the average gap at the
root node of the branch-and-bound tree (root gap [%]), and the average number of
branch-and-bound nodes (# nodes). In the last column, we also provide the relative
improvement of the root gap, thanks to the inclusion of our flow-balance constraints.
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The obtained results show that average gaps at the root node are significantly lower
for the formulation (SDCFB

3 ) and that the stronger flow-balance constraints (SDC3:FB)
allow for the relative improvement of lower bounds by 28 and 12% for SMALL and
LARGE instances, respectively. Consequently, a larger number of instances can be
solved to proven optimality within the given time limit (cf. Table 4). Concerning
the comparison of lower bounds between the basic formulations (SDC2)/(SDC3) and
(SDCFB

2 ), we did not observe any significant differences, which is why the correspond-
ing values are left out from the table.

We conclude that the newly developed framework DLRB3 scales well and pro-
vides robust performance for both small-scale and large-scale instances. We recall
that the development of similar components (dual ascent, subgradient algorithm, vari-
able reductions) for enhancing the B2 approach is not straight-forward. Most of these
components exploit the fact that second stage variables model an SAP in each of the
scenarios, a property which does not hold in the ILP model used by B2.

5 Conclusions

In this article several new computational techniques for the exact and heuristic solution
of the stochastic Steiner tree problem are studied. These techniques are formulated in
terms of a new ILP model that is shown to be the strongest among known formulation.
In the course of this study, also the previously strongest known formulation has been
improved by a new class of strengthening inequalities. But perhaps most importantly,
our new model enables an elegant transfer of methods known to be successful for the
Steiner tree problem.

On this basis, an algorithmic framework has been designed which combines the
benefits of three complementary procedures for computing lower bounds: a fast dual
ascent procedure, a Lagrangian heuristic, and a Benders decomposition approach.
The interaction between these methods is facilitated via an intelligent propagation
of primal and dual solutions. Furthermore, these solutions are exploited in order to
considerably reduce the search space via variable fixing, in which both the availability
of tight bounds and problem-specific knowledge is exploited simultaneously.

An extensive computational study shows that our approach significantly outper-
forms state-of-the-art methods in almost all cases. The techniques presented in this
work combine complementary strengths, and thus provide a rich foundation for the
design of effective algorithms that perform well on a broad range of instances types.
Most importantly, problem instances which can be considered as large-scale with
respect to different types of properties, like the size of the instance graph or the num-
ber of scenarios, can be tackled effectively by these methods.
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