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Abstract The Alternating Direction Method of Multipliers (ADMM) has been proved to be
effective for solving separable convex optimization subject to linear constraints. In this paper, we
propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier
twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-
ADMM partitions the data into two group variables so that one group consists of p block variables
while the other has q block variables, where p ≥ 1 and q ≥ 1 are two integers. The two grouped
variables are updated in a Gauss-Seidel scheme, while the variables within each group are updated
in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper
proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that
GS-ADMM is globally convergent with a worst-case O(1/t) ergodic convergence rate. It turns
out that our convergence domain of the stepsizes is significantly larger than other convergence
domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and
using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows
using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art
methods, preliminary numerical experiments on solving a sparse matrix minimization problem in
the statistical learning show that our proposed method is effective and promising.
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1 Introduction

We consider the following grouped multi-block separable convex programming problem

min
p∑

i=1

fi(xi) +
q∑

j=1

gj(yj)

s.t.
p∑

i=1

Aixi +
q∑

j=1

Bjyj = c,

xi ∈ Xi, i = 1, · · · , p,
yj ∈ Yj , j = 1, · · · , q,

(1)

where fi(xi) : Rmi → R, gj(yj) : Rdj → R are closed and proper convex functions (possibly
nonsmooth); Ai ∈ Rn×mi , Bj ∈ Rn×dj and c ∈ Rn are given matrices and vectors, respectively;
Xi ⊂ Rmi and Yj ⊂ Rdj are closed convex sets; p ≥ 1 and q ≥ 1 are two integers. Throughout
this paper, we assume that the solution set of the problem (1) is nonempty and all the matrices
Ai, i = 1, · · · , p, and Bj, j = 1, · · · , q, have full column rank. And in the following, we denote
A = (A1, · · · , Ap) ,B = (B1, · · · , Bq), x = (xT

1 , · · · , xT

p )
T, y = (yT1 , · · · , yTq )T, X = X1×X2×· · ·Xp,

Y = Y1 × Y2 × · · · Yq and M = X × Y ×Rn.
In the last few years, the problem (1) has been extensively investigated due to its wide appli-

cations in different fields, such as the sparse inverse covariance estimation problem [21] in finance
and statistics, the model updating problem [4] in the design of vibration structural dynamic sys-
tem and bridges, the low rank and sparse representations [19] in image processing and so forth.
One standard way to solve the problem (1) is the classical Augmented Lagrangian Method (ALM)
[10], which minimizes the following augmented Lagrangian function

Lβ (x,y, λ) = L (x,y, λ) +
β

2
‖Ax+ By− c‖2,

where β > 0 is a penalty parameter for the equality constraint and

L (x,y, λ) =

p∑

i=1

fi(xi) +

q∑

j=1

gj(yj)− 〈λ,Ax + By− c〉 (2)

is the Lagrangian function of the problem (1) with the Lagrange multiplier λ ∈ Rn. Then, the
ALM procedure for solving (1) can be described as follows:

{(
xk+1,yk+1

)
= argmin

{
Lβ

(
x,y, λk

)
| x ∈ X ,y ∈ Y

}
,

λk+1 = λk − β(Axk+1 + Byk+1 − c).

However, ALM does not make full use of the separable structure of the objective function of
(1) and hence, could not take advantage of the special properties of the component objective
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functions fi and gj in (1). As a result, in many recent real applications involving big data, solving
the subproblems of ALM becomes very expensive.

One effective approach to overcome such difficulty is the Alternating Direction Method of
Multipliers (ADMM), which was originally proposed in [8] and could be regarded as a splitting
version of ALM. At each iteration, ADMM first sequentially optimize over one block variable
while fixing all the other block variables, and then follows by updating the Lagrange multiplier.
A natural extension of ADMM for solving the multi-block case problem (1) takes the following
iterations:





For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ

(
xk+1
1 , · · · , xk+1

i−1 , xi, x
k
i+1, · · · , xk

p,y
k, λk

)
,

For j = 1, 2, · · · , q,
yk+1
j = arg min

yj∈Yj

Lβ

(
xk+1, yk+1

1 , · · · , yk+1
j−1 , yj , y

k
j+1, · · · , ykq , λk

)
,

λk+1 = λk − β
(
Axk+1 + Byk+1 − c

)
.

(3)

Obviously, the scheme (3) is a serial algorithm which uses the newest information of the variables
at each iteration. Although the above scheme was proved to be convergent for the two-block,
i.e., p = q = 1, separable convex minimization (see [11]), as shown in [3], the direct extension
of ADMM (3) for the multi-block case, i.e., p + q ≥ 3, without proper modifications is not
necessarily convergent. Another natural extension of ADMM is to use the Jacobian fashion,
where the variables are updated simultaneously after each iteration, that is,





For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ

(
xk
1 , · · · , xk

i−1, xi, x
k
i+1, · · · , xk

p,y
k, λk

)
,

For j = 1, 2, · · · , q,
yk+1
j = arg min

yj∈Yj

Lβ

(
xk, yk1 , · · · , ykj−1, yj , y

k
j+1, · · · , ykq , λk

)
,

λk+1 = λk − β
(
Axk+1 + Byk+1 − c

)
.

(4)

As shown in [13], however, the Jacobian scheme (4) is not necessarily convergent either. To ensure
the convergence, He et al. [14] proposed a novel ADMM-type splitting method that by adding
certain proximal terms, allowed some of the subproblems to be solved in parallel, i.e., in a Jacobian
fashion. And in [14], some sparse low-rank models and image painting problems were tested to
verify the efficiency of their method.

More recently, a Symmetric ADMM (S-ADMM) was proposed by He et al. [16] for solving the
two-block separable convex minimization, where the algorithm performs the following updating
scheme: 




xk+1 = argmin
{
Lβ

(
x,yk, λk

)
| x ∈ X

}
,

λk+ 1
2 = λk − τβ

(
Axk+1 + Byk − c

)
,

yk+1 = argmin
{
Lβ(x

k+1,y, λk+ 1
2 ) | y ∈ Y

}
,

λk+1 = λk+ 1
2 − sβ

(
Axk+1 + Byk+1 − c

)
,

(5)

and the stepsizes (τ, s) were restricted into the domain

H =
{
(τ, s) | s ∈ (0, (

√
5 + 1)/2), τ + s > 0, τ ∈ (−1, 1), |τ | < 1 + s− s2

}
(6)

in order to ensure its global convergence. The main improvement of [16] is that the scheme (5)
largely extends the domain of the stepsizes (τ, s) of other ADMM-type methods [12]. What’s
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more, the numerical performance of S-ADMM on solving the widely used basis pursuit model
and the total-variational image debarring model significantly outperforms the original ADMM
in both the CPU time and the number of iterations. Besides, Gu, et al.[9] also studied a semi-
proximal-based strictly contractive Peaceman-Rachford splitting method, that is (5) with two
additional proximal penalty terms for the x and y update. But their method has a nonsymmetric
convergence domain of the stepsize and still focuses on the two-block case problem, which limits
its applications for solving large-scale problems with multiple block variables.

Mainly motivated by the work of [14,16,9], we would like to generalize S-ADMM with more
wider convergence domain of the stepsizes to tackle the multi-block separable convex programming
model (1), which more frequently appears in recent applications involving big data [2,20]. Our
algorithm framework can be described as follows:

(GS-ADMM)





For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ(x
k
1 , · · · , xi, · · · , xk

p,y
k, λk) + P k

i (xi),

where P k
i (xi) =

σ1β
2

∥∥Ai(xi − xk
i )
∥∥2 ,

λk+ 1
2 = λk − τβ(Axk+1 + Byk − c),

For j = 1, 2, · · · , q,
yk+1
j = arg min

yj∈Yj

Lβ(x
k+1, yk1 , · · · , yj , · · · , ykq , λk+ 1

2 ) +Qk
j (yj),

where Qk
j (yj) =

σ2β
2

∥∥Bj(yj − ykj )
∥∥2 ,

λk+1 = λk+ 1
2 − sβ(Axk+1 + Byk+1 − c).

(7)

In the above Generalized Symmetric ADMM (GS-ADMM), τ and s are two stepsize parameters
satisfying

(τ, s) ∈ K =
{
(τ, s) | τ + s > 0, τ ≤ 1, −τ2 − s2 − τs+ τ + s+ 1 > 0

}
, (8)

and σ1 ∈ (p−1,+∞), σ2 ∈ (q−1,+∞) are two proximal parameters1 for the regularization terms
P k
i (·) and Qk

j (·). He and Yuan[15] also investigated the above GS-ADMM (7) but restricted the
stepsize τ = s ∈ (0, 1), which does not exploit the advantages of using flexible stepsizes given in
(8) to improve its convergence.

Major contributions of this paper can be summarized as the following four aspects:

– Firstly, the new GS-ADMM could deal with the multi-block separable convex programming
problem (1), while the original S-ADMM in [16] only works for the two block case and may
not be convenient for solving large-scale problems. In addition, the convergence domain K for
the stepsizes (τ, s) in (8), shown in Fig. 1, is significantly larger than the domain H given
in (6) and the convergence domain in [9,15]. For example, the stepsize s can be arbitrarily
close to 5/3 when the stepsize τ is close to −1/3. Moreover, the above domain in (8) is later
enlarged to a symmetric domain G defined in (73), shown in Fig. 2. Numerical experiments
in Sec. 5.2.1 also validate that using more flexible and relatively larger stepsizes (τ, s) can
often improve the convergence speed of GS-ADMM. On the other hand, we can see that when
τ = 0, the stepsize s can be chosen in the interval (0, (

√
5+ 1)/2), which was firstly suggested

by Fortin and Glowinski in [5,7].

1 Note that these two parameters are strictly positive in (7). In Section 4, however, we analyze two special cases
of GS-ADMM allowing either σ1 or σ2 to be zero.
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Fig 1. Stepsize region K of GS-ADMM

– Secondly, the global convergence of GS-ADMM as well as its worst-case O(1/t) ergodic con-
vergence rate are established. What’s more, the total p+q block variables are partitioned into
two grouped variables. While a Gauss-Seidel fashion is taken between the two grouped vari-
ables, the block variables within each group are updated in a Jacobi scheme. Hence, parallel
computing can be implemented for updating the variables within each group, which could be
critical in some scenarios for problems involving big data.

– Thirdly, we discuss two special cases of GS-ADMM, which is (7) with p ≥ 1, q = 1 and σ2 = 0
or with p = 1, q ≥ 1 and σ1 = 0. These two special cases of GS-ADMM were not discussed in
[15] and in fact, to the best of our knowledge, they have not been studied in the literature.
We show the convergence domain of the stepsizes (τ, s) for these two cases is still K defined
in (8) that is larger than H.

– Finally, numerical experiments are performed on solving a sparse matrix optimization problem
arising from the statistical learning. We have investigated the effects of the stepsizes (τ, s) and
the penal parameter β on the performance of GS-ADMM. And our numerical experiments
demonstrate that by properly choosing the parameters, GS-ADMM could perform significantly
better than other recently quite popular methods developed in [1,14,17,23].

The paper is organized as follows. In Section 2, some preliminaries are given to reformulate
the problem (1) into a variational inequality and to interpret the GS-ADMM (7) as a prediction-
correction procedure. Section 3 investigates some properties of ‖wk −w∗‖2H and provides a lower
bound of ‖wk−w̃k‖2G, whereH and G are some particular symmetric matrices. Then, we establish
the global convergence of GS-ADMM and show its convergence rate in an ergodic sense. In Section
4, we discuss two special cases of GS-ADMM, in which either the penalty parameters σ1 or σ2
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is allowed to be zero. Some preliminary numerical experiments are done in Section 5. We finally
make some conclusions in Section 6.

1.1 Notation

Denoted by R,Rn,Rm×n be the set of real numbers, the set of n dimensional real column vectors
and the set of m × n real matrices, respectively. For any x, y ∈ Rn, 〈x, y〉 = xTy denotes their
inner product and ‖x‖ =

√
〈x, x〉 denotes the Euclidean norm of x, where the superscript T is the

transpose. Given a symmetric matrix G, we define ‖x‖2G = xTGx. Note that with this convention,
‖x‖2G is not necessarily nonnegative unless G is a positive definite matrix (� 0). For convenience,
we use I and 0 to stand respectively for the identity matrix and the zero matrix with proper
dimension throughout the context.

2 Preliminaries

In this section, we first use a variational inequality to characterize the solution set of the problem
(1). Then, we analyze that GS-ADMM (7) can be treated as a prediction-correction procedure
involving a prediction step and a correction step.

2.1 Variational reformulation of (1)

We begin with the following standard lemma whose proof can be found in [16,18].

Lemma 1 Let f : Rm −→ R and h : Rm −→ R be two convex functions defined on a closed
convex set Ω ⊂ Rm and h is differentiable. Suppose that the solution set Ω∗ = argmin

x∈Ω
{f(x) +

h(x)} is nonempty. Then, we have

x∗ ∈ Ω∗ if and only if x∗ ∈ Ω, f(x)− f(x∗) + 〈x− x∗,∇h(x∗)〉 ≥ 0, ∀x ∈ Ω.

It is well-known in optimization that a triple point (x∗,y∗, λ∗) ∈ M is called the saddle-point
of the Lagrangian function (2) if it satisfies

L (x∗,y∗, λ) ≤ L (x∗,y∗, λ∗) ≤ L (x,y, λ∗) , ∀(x,y, λ) ∈ M

which can be also characterized as





For i = 1, 2, · · · , p,
x∗
i = arg min

xi∈Xi

Lβ

(
x∗
1, · · · , x∗

i−1, xi, x
∗
i+1, · · · , x∗

p,y
∗, λ∗

)
,

For j = 1, 2, · · · , q,
y∗j = arg min

yj∈Yj

Lβ

(
x∗, y∗1 , · · · , y∗j−1, yj, y

∗
j+1, · · · , y∗q , λ∗

)
,

λ∗ = arg max
λ∈Rn

Lβ (x
∗,y∗, λ) .
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Then, by Lemma 1, the above saddle-point equations can be equivalently expressed as




For i = 1, 2, · · · , p,
x∗
i ∈ Xi, fi(xi)− fi(x

∗
i ) + 〈xi − x∗

i ,−AT

i λ
∗〉 ≥ 0, ∀xi ∈ Xi,

For j = 1, 2, · · · , q,
y∗j ∈ Yj , gj(yj)− gj(y

∗
j ) + 〈yj − y∗j ,−BT

j λ
∗〉 ≥ 0, ∀yj ∈ Yj ,

λ∗ ∈ Rn, 〈λ− λ∗,Ax∗ + By∗ − c〉 ≥ 0, ∀λ ∈ Rn.

(9)

Rewriting (9) in a more compact variational inequality (VI) form, we have

h(u)− h(u∗) + 〈w−w∗,J (w∗)〉 ≥ 0, ∀w ∈ M, (10)

where

h(u) =

p∑

i=1

fi(xi) +

p∑

j=1

gj(yj)

and

u =

(
x
y

)
, w =




x
y
λ


 , J (w) =




−ATλ
−BTλ

Ax + By− c


 .

Noticing that the affine mapping J is skew-symmetric, we immediately get

〈w− ŵ,J (w)− J (ŵ)〉 = 0, ∀ w, ŵ ∈ M. (11)

Hence, (10) can be also rewritten as

VI(h,J ,M) : h(u)− h(u∗) + 〈w −w∗,J (w)〉 ≥ 0, ∀w ∈ M. (12)

Because of the nonempty assumption on the solution set of (1), the solution set M∗ of the vari-
ational inequality VI(h,J ,M) is also nonempty and convex, see e.g. Theorem 2.3.5 [6] for more
details. The following theorem given by Theorem 2.1 [11] provides a concrete way to characterize
the set M∗.

Theorem 1 The solution set of the variational inequality VI(h,J ,M) is convex and can be
expressed as

M∗ =
⋂

w∈M

{ŵ ∈ M| h(u)− h(û) + 〈w − ŵ,J (w)〉 ≥ 0} .

2.2 A prediction-correction interpretation of GS-ADMM

Following a similar approach in [16], we next interpret GS-ADMM as a prediction-correction
procedure. First, let

x̃k =




x̃k
1

x̃k
2
...
x̃k
p


 =




xk+1
1

xk+1
2
...

xk+1
p


 , ỹk =




ỹk1
ỹk2
...
ỹkq


 =




yk+1
1

yk+1
2
...

yk+1
q


 , (13)

λ̃k = λk − β
(
Axk+1 + Byk − c

)
, (14)
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and

ũ =

(
x̃
ỹ

)
, w̃k =




x̃k

ỹk

λ̃k


 =




xk+1

yk+1

λ̃k


 . (15)

Then, by using the above notations, we derive the following basic lemma.

Lemma 2 For the iterates ũk, w̃k defined in (15), we have w̃k ∈ M and

h(u)− h(ũk) +
〈
w − w̃k,J (w̃k) +Q(w̃k −wk)

〉
≥ 0, ∀w ∈ M, (16)

where

Q =

[
Hx 0

0 Q̃

]
(17)

with

Hx = β




σ1A
T

1A1 −AT

1A2 · · · −AT

1Ap

−AT

2A1 σ1A
T

2A2 · · · −AT

2Ap

...
...

. . .
...

−AT

pA1 −AT

pA2 · · · σ1A
T

pAp




, (18)

Q̃ =




(σ2 + 1)βBT

1 B1 0 · · · 0 −τBT

1

0 (σ2 + 1)βBT

2 B2 · · · 0 −τBT

2

...
...

. . .
...

...

0 0 · · · (σ2 + 1)βBT

q Bq −τBT

q

−B1 −B2 · · · −Bq
1
β I




. (19)

Proof Omitting some constants, it is easy to verify that the xi-subproblem (i = 1, 2, · · · , p) of
GS-ADMM can be written as

xk+1
i = arg min

xi∈Xi

{
fi(xi)− 〈λk, Aixi〉+

β

2
‖Aixi − cx,i‖2 +

σ1β

2

∥∥Ai(xi − xk
i )
∥∥2
}
,

where cx,i = c−
p∑

l=1,l 6=i

Alx
k
l − Byk. Hence, by Lemma 1, we have xk+1

i ∈ Xi and

fi(xi)− fi(x
k+1
i ) +

〈
Ai(xi − xk+1

i ),−λk + β(Aix
k+1
i − cx,i) + σ1βAi(x

k+1
i − xk

i )
〉
≥ 0

for any xi ∈ Xi. So, by the definition of (13) and (14), we get

fi(xi)− fi(x̃
k
i ) +

〈
Ai(xi − x̃k

i ),−λ̃k − β

p∑

l=1,l 6=i

Al(x̃
k
l − xk

l ) + σ1β

p∑

l=1

Al(x̃
k
l − xk

l )

〉
≥ 0 (20)
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for any xi ∈ Xi. By the way of generating λk+ 1
2 in (7) and the definition of (14), the following

relation holds

λk+ 1
2 = λk − τ(λk − λ̃k ). (21)

Similarly, the yj-subproblem (j = 1, · · · , q) of GS-ADMM can be written as

yk+1
j = arg min

yj∈Yj

{
gj(yj)−

〈
λk+ 1

2 , Bjyj

〉
+

β

2
‖Bjyj − cy,j‖2 +

σ2β

2

∥∥Bj(yj − ykj )
∥∥2
}
,

where cy,j = c−Axk+1 −
q∑

l=1,l 6=j

Bly
k
l . Hence, by Lemma 1, we have yk+1

j ∈ Yj and

gj(yj)− gj(y
k+1
j ) +

〈
Bj(yj − yk+1

j ),−λk+ 1
2 + β(Bjy

k+1
j − cy,j) + σ2βBj(y

k+1
j − ykj )

〉
≥ 0

for any yj ∈ Yj . This inequality, by using (21) and the definition of (13) and (14), can be rewritten
as

gj(yj)− gj(ỹ
k
j ) +

〈
Bj(yj − ỹkj ),−λ̃k + (σ2 + 1)βBj(ỹ

k
j − ykj )− τ(λ̃k − λk)

〉
≥ 0 (22)

for any yj ∈ Yj . Besides, the equality (14) can be rewritten as

(
Ax̃k + Bỹk − c

)
− B

(
ỹk − yk

)
+

1

β
(λ̃k − λk) = 0,

which is equivalent to

〈
λ− λ̃k, (Ax̃k + Bỹk − c)− B(ỹk − yk) +

1

β
(λ̃k − λk)

〉
≥ 0, ∀λ ∈ Rn. (23)

Then, (16) follows from (20), (22) and (23). ♦

Lemma 3 For the sequences {wk} and {w̃k} generated by GS-ADMM, the following equality
holds

wk+1 = wk −M(wk − w̃k), (24)

where

M =




I
I

. . .

I
−sβB1 · · · −sβBq (τ + s)I



. (25)

Proof It follows from the way of generating λk+1 in the algorithm and (21) that

λk+1 = λk+ 1
2 − sβ(Axk+1 + Byk+1 − c)

= λk+ 1
2 − sβ(Axk+1 + Byk − c) + sβB(yk − yk+1)

= λk − τ(λk − λ̃k)− s(λk − λ̃k) + sβB(yk − ỹk)

= λk −
[
−sβB(yk − ỹk) + (τ + s)(λk − λ̃k)

]
.
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The above equality together with xk+1
i = x̃k

l , for i = 1, · · · , p, and yk+1
j = ỹkj , for j = 1, · · · , q,

imply



xk+1

1

...

xk+1
p

yk+1

1

...

yk+1
q

λk+1




=




xk
1

.

..
xk
p

yk
1

...
ykq
λk




−




I

. . .

I
I

. . .

I
−sβB1 · · · −sβBq (τ + s)I







xk
1
− x̃k

1

.

..
xk
p − x̃k

p

yk
1
− ỹk

1

.

..

ykq − ỹkq
λk − λ̃k




,

which immediately gives (24). ♦

Lemma 2 and Lemma 3 show that our GS-ADMM can be interpreted as a prediction-correction
framework, where wk+1 and w̃k are normally called the predictive variable and the correcting
variable, respectively.

3 Convergence analysis of GS-ADMM

Compared with (12) and (16), the key to proving the convergence of GS-ADMM is to verify that
the extra term in (16) converges to zero, that is,

lim
k→∞

〈
w − w̃k, Q(wk − w̃k)

〉
= 0, ∀w ∈ M.

In this section, we first investigate some properties of the sequence {‖wk − w∗‖2H}. Then, we
provide a lower bound of ‖wk − w̃k‖2G. Based on these properties, the global convergence and
worst-case O(1/t) convergence rate of GS-ADMM are established in the end.

3.1 Properties of {
∥∥wk −w∗

∥∥2
H
}

It follows from (11) and (16) that w̃k ∈ M and

h(u)− h(ũk) +
〈
w − w̃k,J (w)

〉
≥
〈
w − w̃k, Q(wk − w̃k)

〉
, ∀w ∈ M. (26)

Suppose τ + s > 0. Then, the matrix M defined in (25) is nonsingular. So, by (24) and a direct
calculation, the right-hand term of (26) is rewritten as

〈
w− w̃k, Q(wk − w̃k)

〉
=
〈
w − w̃k, H(wk −wk+1)

〉
(27)

where

H = QM−1 =

[
Hx 0

0 H̃

]
(28)
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with Hx defined in (18) and

H̃ =




(σ2 + 1− τs
τ+s )βB

T

1 B1 · · · − τs
τ+sβB

T

1 Bq − τ
τ+sB

T

1

...
. . .

...
...

− τs
τ+sβB

T

q B1 · · · (σ2 + 1− τs
τ+s)βB

T

q Bq − τ
τ+sB

T

q

− τ
τ+sB1 · · · − τ

τ+sBq
1

β(τ+s)I




. (29)

The following lemma shows that H is a positive definite matrix for proper choice of the
parameters (σ1, σ2, τ, s).

Lemma 4 The matrix H defined in (28) is symmetric positive definite if

σ1 ∈ (p− 1,+∞), σ2 ∈ (q − 1,+∞), τ ≤ 1 and τ + s > 0. (30)

Proof By the block structure of H , we only need to show that the blocks Hx and H̃ in (28) are
positive definite if the parameters (σ1, σ2, τ, s) satisfy (30). Note that

Hx = β




A1

A2

. . .

Ap




T

Hx,0




A1

A2

. . .

Ap


 , (31)

where

Hx,0 =




σ1I −I · · · −I
−I σ1I · · · −I
...

...
. . .

...
−I −I · · · σ1I



p×p

. (32)

If σ1 ∈ (p−1,+∞), Hx,0 is positive definite. Then, it follows from (31) that Hx is positive definite
if σ1 ∈ (p− 1,+∞) and all Ai, i = 1, · · · , p, have full column rank.

Now, note that the matrix H̃ can be decomposed as

H̃ = D̃TH̃0D̃, (33)

where

D̃ =




β
1
2B1

β
1
2B2

. . .

β
1
2Bq

β− 1
2 I




(34)
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and

H̃0 =




(
σ2 + 1− τs

τ+s

)
I − τs

τ+sI · · · − τs
τ+sI − τ

τ+sI

− τs
τ+sI

(
σ2 + 1− τs

τ+s

)
I · · · − τs

τ+sI − τ
τ+sI

...
...

. . .
...

...

− τs
τ+sI − τs

τ+sI · · ·
(
σ2 + 1− τs

τ+s

)
I − τ

τ+sI

− τ
τ+sI − τ

τ+sI · · · − τ
τ+sI

1
τ+sI




.

According to the fact that



I τI

. . . τI
I


 H̃0



I τI

. . . τI
I




T

=




(σ2 + 1− τ)I −τI · · · −τI 0

−τI (σ2 + 1− τ)I · · · −τI 0

...
...

. . .
...

...

−τI −τI · · · (σ2 + 1− τ)I 0

0 0 · · · 0 1
τ+sI




=



Hy,0 + (1 − τ)EET 0

0 1
τ+sI


 ,

where

E =




I
I
...
I


 and Hy,0 =




σ2I −I · · · −I
−I σ2I · · · −I
...

...
. . .

...
−I −I · · · σ2I



q×q

, (35)

we have H̃0 is positive definite if and only if Hy,0+(1− τ)EET is positive definite and τ + s > 0.
Note that Hy,0 is positive definite if σ2 ∈ (q− 1,+∞), and (1− τ)EET is positive semidefinite if

τ ≤ 1. So, H̃0 is positive definite if σ2 ∈ (q − 1,+∞), τ ≤ 1 and τ + s > 0. Then, it follows from

(33) that H̃ is positive definite, if σ2 ∈ (q − 1,+∞), τ ≤ 1, τ + s > 0 and all the matrices Bj ,
j = 1, · · · , q, have full column rank.

Summarizing the above discussions, the matrixH is positive definite if the parameters (σ1, σ2, τ, s)
satisfy (30). ♦
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Theorem 2 The sequences {wk} and {w̃k} generated by GS-ADMM satisfy

h(u)− h(ũk) +
〈
w − w̃k,J (w)

〉
≥ 1

2

{∥∥w −wk+1
∥∥2
H
−
∥∥w −wk

∥∥2
H

}

+
1

2

∥∥wk − w̃k
∥∥2
G
, ∀w ∈ M, (36)

where
G = Q+QT −MTHM. (37)

Proof By substituting
a = w, b = w̃k, c = wk, d = wk+1,

into the following identity

2〈a− b,H(c− d)〉 = ‖a− d‖2H − ‖a− c‖2H + ‖c− b‖2H − ‖d− b‖2H ,

we have

2
〈
w − w̃k, H(wk −wk+1)

〉

=
∥∥w−wk+1

∥∥2
H
−
∥∥w −wk

∥∥2
H
+
∥∥wk − w̃k

∥∥2
H
−
∥∥wk+1 − w̃k

∥∥2
H
. (38)

Now, notice that

∥∥wk − w̃k
∥∥2
H
−
∥∥wk+1 − w̃k

∥∥2
H

=
∥∥wk − w̃k

∥∥2
H
−
∥∥w̃k −wk +wk −wk+1

∥∥2
H

=
∥∥wk − w̃k

∥∥2
H
−
∥∥w̃k −wk +M(wk − w̃k)

∥∥2
H

=
〈
wk − w̃k,

(
HM + (HM)T −MTHM

)
(wk − w̃k)

〉

=
〈
wk − w̃k,

(
Q+QT −MTHM

)
(wk − w̃k)

〉
, (39)

where the second equality holds by (24) and the fourth equality follows from (28). Then, (36)
follows from (26)-(27), (38)-(39) and the definition of G in (37). ♦

Theorem 3 The sequences {wk} and {w̃k} generated by GS-ADMM satisfy

∥∥wk+1 −w∗
∥∥2
H

≤
∥∥wk −w∗

∥∥2
H
−
∥∥wk − w̃k

∥∥2
G
, ∀w∗ ∈ M∗. (40)

Proof Setting w = w∗ ∈ M∗ in (36) we have

1

2

∥∥wk+1 −w∗
∥∥2
H

≤ 1

2

∥∥wk −w∗
∥∥2
H
− 1

2

∥∥wk − w̃k
∥∥2
G
+ h(u∗)− h(ũk) +

〈
w∗ − w̃k,J (w∗)

〉
.

The above inequality together with (10) reduces to the inequality (40). ♦

It can be observed that if
∥∥wk − w̃k

∥∥2
G

is positive, then the inequality (40) implies the con-

tractiveness of the sequence {wk − w∗} under the H-weighted norm. However, the matrix G
defined in (37) is not necessarily positive definite when σ1 ∈ (p − 1,+∞), σ2 ∈ (q − 1,+∞) and

(τ, s) ∈ K. Therefore, it is necessary to estimate the lower bound of
∥∥wk − w̃k

∥∥2
G
for the sake of

the convergence analysis.
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3.2 Lower bound of
∥∥wk − w̃k

∥∥2
G

This subsection provides a lower bound of
∥∥wk − w̃k

∥∥2
G
, for σ1 ∈ (p− 1,+∞), σ2 ∈ (q − 1,+∞)

and (τ, s) ∈ K, where K is defined in (8).

By simple calculations, the G given in (37) can be explicitly written as

G =

[
Hx 0

0 G̃

]
,

where Hx is defined in (18) and

G̃ =




(σ2 + 1− s)βBT

1 B1 · · · −sβBT

1Bq (s− 1)BT

1

...
. . .

...
...

−sβBT

q B1 · · · (σ2 + 1− s)βBT

q Bq s− 1)BT

q

(s− 1)B1 · · · (s− 1)Bq
2−τ−s

β I




. (41)

In addition, we have

G̃ = D̃TG̃0D̃,

where D̃ is defined in (34) and

G̃0 =




(σ2 + 1− s)I −sI · · · −sI (s− 1)I

−sI (σ2 + 1− s)I · · · −sI (s− 1)I

...
...

. . .
...

...

−sI −sI · · · (σ2 + 1− s)I (s− 1)I

(s− 1)I (s− 1)I · · · (s− 1)I (2− τ − s)I




. (42)

Now, we present the following lemma which provides a lower bound of ‖wk − w̃k‖G.

Lemma 5 Suppose σ1 ∈ (p− 1,+∞) and σ2 ∈ (q − 1,+∞). For the sequences {wk} and {w̃k}
generated by GS-ADMM, there exists ξ1 > 0 such that

∥∥wk − w̃k
∥∥2
G
≥ ξ1




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2



+(1− τ)β
∥∥B
(
yk − yk+1

)∥∥2 + (2− τ − s)β
∥∥Axk+1 + Byk+1 − c

∥∥2

+2(1− τ)β
(
Axk+1 + Byk+1 − c

)T B
(
yk − yk+1

)
. (43)
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Proof First, it is easy to derive that

‖wk − w̃k‖2G =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




A1

(
xk
1 − xk+1

1

)
...

Ap

(
xk
p − xk+1

p

)

B1

(
yk1 − yk+1

1

)
...

Bq

(
ykq − yk+1

q

)

Axk+1 + Byk+1 − c




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

G

,

where

G = β




I
I I

. . .
...
I




[
Hx,0

G̃0

]



I
I I

. . .
...
I




T

= β

[
Hx,0

G0

]
,

with Hx,0 and G̃0 defined in (32) and (42), respectively, and

G0 =




(σ2 + 1− τ)I −τI · · · −τI (1 − τ)I

−τI (σ2 + 1− τ)I · · · −τI (1 − τ)I

...
...

. . .
...

...

−τI −τI · · · (σ2 + 1− τ)I (1 − τ)I

(1 − τ)I (1− τ)I · · · (1 − τ)I (2 − τ − s)I




=




(1− τ)I

Hy,0 + (1− τ)EET
...

(1− τ)I
(1 − τ)I · · · (1− τ)I (2− τ − s)I


 .

In the above matrix G0, E and Hy,0 are defined in (35). Hence, we have

1

β

∥∥wk − w̃k
∥∥2
G
=

∥∥∥∥∥∥∥∥∥




A1

(
xk
1 − xk+1

1

)

A2

(
xk
2 − xk+1

2

)

...
Ap

(
xk
p − xk+1

p

)




∥∥∥∥∥∥∥∥∥

2

Hx,0

+

∥∥∥∥∥∥∥∥∥




B1

(
yk1 − yk+1

1

)

B2

(
yk2 − yk+1

2

)

...
Bq

(
ykq − yk+1

q

)




∥∥∥∥∥∥∥∥∥

2

Hy,0

+

∥∥∥∥∥∥∥∥∥




B1

(
yk1 − yk+1

1

)

B2

(
yk2 − yk+1

2

)

...
Bq

(
ykq − yk+1

q

)




∥∥∥∥∥∥∥∥∥

2

(1−τ)EET

+ (2− τ − s)
∥∥Axk+1 + Byk+1 − c

∥∥2



16 Jianchao Bai et al.

+2(1− τ)
(
Axk+1 + Byk+1 − c

)T B
(
yk − yk+1

)
. (44)

Since σ1 ∈ (p− 1,+∞) and σ2 ∈ (q− 1,+∞), Hx,0 and Hy,0 are positive definite. So, there exists
a ξ1 > 0 such that

∥∥∥∥∥∥∥∥∥




A1

(
xk
1 − xk+1

1

)

A2

(
xk
2 − xk+1

2

)

...
Ap

(
xk
p − xk+1

p

)




∥∥∥∥∥∥∥∥∥

2

Hx,0

+

∥∥∥∥∥∥∥∥∥




B1

(
yk1 − yk+1

1

)

B2

(
yk2 − yk+1

2

)

...
Bq

(
ykq − yk+1

q

)




∥∥∥∥∥∥∥∥∥

2

Hy,0

(45)

≥ ξ1




p∑

i=1

‖Ai

(
xk
i − xk+1

i

)
‖2 +

q∑

j=1

‖Bj

(
ykj − yk+1

j

)
‖2

 .

In view of the definition of E in (35), we have

∥∥∥∥∥∥∥∥∥




B1

(
yk1 − yk+1

1

)

B2

(
yk2 − yk+1

2

)

...
Bq

(
ykq − yk+1

q

)




∥∥∥∥∥∥∥∥∥

2

(1−τ)EET

= (1− τ)
∥∥B
(
yk − yk+1

)∥∥2 .

Then, the inequality (43) follows from (44) and (45). ♦

Lemma 6 Suppose τ > −1. Then, the sequence {wk} generated by GS-ADMM satisfies

(
Axk+1 + Byk+1 − c

)T B
(
yk − yk+1

)
(46)

≥ 1− s

1 + τ

(
Axk + Byk − c

)T B
(
yk − yk+1

)
− τ

1 + τ

∥∥B
(
yk − yk+1

)∥∥2

+
1

2(1 + τ)β

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
.

Proof It follows from the optimality condition of yk+1
l -subproblem that yk+1

l ∈ Yl and for any
yl ∈ Yl, we have

gl(yl)− gl(y
k+1
l ) +

〈
Bl(yl − yk+1

l ),−λk+ 1
2 + σ2βBl

(
yk+1
l − ykl

)
+ β(Bly

k+1
l − cy,l)

〉
≥ 0

with cy,l = c−Axk+1 −
q∑

j=1,j 6=l

Bjy
k
j , which implies

gl(yl)− gl(y
k+1
l )

+
〈
Bl(yl − yk+1

l ),−λk+ 1
2 + σ2βBl

(
yk+1
l − ykl

)
+ β(Axk+1 + Byk+1 − c)

〉

−β

〈
Bl(yl − yk+1

l ),

q∑

j=1,j 6=l

Bj(y
k+1
j − ykj )

〉
≥ 0.
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For l = 1, 2, · · · , q, letting yl = ykl in the above inequality and summing them together, we can
deduce that

q∑

l=1

(
gl(y

k
l )− gl(y

k+1
l )

)
+
〈
B(yk − yk+1),−λk+ 1

2 + β
(
Axk+1 + Byk+1 − c

)〉
(47)

≥
∥∥yk+1 − yk

∥∥2
Hy

,

where

Hy = β




σ2B
T

1 B1 −BT

1B2 · · · −BT

1Bq

−BT

2B1 σ2B
T

2 B2 · · · −BT

2Bq

...
...

. . .
...

−BT

q B1 −BT

q B2 · · · σ2B
T

q Bq




(48)

= β



B1

. . .

Bq




T

Hy,0



B1

. . .

Bq




and Hy,0 is defined in (35). Similarly, it follows from the optimality condition of ykl -subproblem
that

gl(yl)− gl(y
k
l ) +

〈
Bl(yl − ykl ),−λk− 1

2 + σ2βBl

(
ykl − yk−1

l

)
+ β(Axk + Byk − c)

〉

−β

〈
Bl(yl − ykl ),

q∑

j=1,j 6=l

Bj(y
k
j − yk−1

j )

〉
≥ 0.

For l = 1, 2, · · · , q, letting yl = yk+1
l in the above inequality and summing them together, we

obtain

q∑

l=1

(
gl(y

k+1
l )− gp(y

k
l )
)
+
〈
B(yk+1 − yk),−λk− 1

2 + β
(
Axk + Byk − c

)〉
(49)

≥ (yk − yk+1)THy(y
k − yk−1).

Since σ2 ∈ (q − 1,∞) and all Bj , j = 1, · · · , q, have full column rank, we have from (48) that Hy

is positive definite. Meanwhile, by the Cauchy-Schwartz inequality, we get

∥∥yk+1 − yk
∥∥2
Hy

+
(
yk − yk+1

)T
Hy

(
yk − yk−1

)
≥ 1

2

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
.(50)

By adding (47) to (49) and using (50), we achieve

〈
B(yk − yk+1), λk− 1

2 − λk+ 1
2 + β(Axk+1 + Byk+1 − c)

〉
(51)

≥ 〈B(yk − yk+1), β(Axk + Byk − c)〉+ 1

2

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
.
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From the update of λk+ 1
2 , i.e., λk+ 1

2 = λk − τβ
(
Axk+1 + Byk − c

)
and the update of λk, i.e.,

λk = λk− 1
2 − sβ

(
Axk + Byk − c

)
, we have

λk− 1
2 − λk+ 1

2 = τβ(Axk+1 + Byk+1 − c) + sβ(Axk + Byk − c) + τβB(yk − yk+1).

Substituting the above inequality into the left-term of (51), the proof is completed. ♦

Theorem 4 Suppose σ1 ∈ (p− 1,+∞), σ2 ∈ (q − 1,+∞) and τ > −1. For the sequences {wk}
and {w̃k} generated by GS-ADMM , there exists ξ1 > 0 such that

∥∥wk − w̃k
∥∥2
G

(52)

≥ ξ1




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2



+ (2− τ − s)β
∥∥Axk+1 + Byk+1 − c

∥∥2 + 1− τ

1 + τ

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)

+
(1 − τ)2

1 + τ
β
∥∥B
(
yk − yk+1

)∥∥2 + 2(1− τ)(1 − s)

1 + τ
β
(
Axk + Byk − c

)T B
(
yk − yk+1

)
.

Proof The inequality (52) is directly obtained from (43) and (46). ♦

The following theorem gives another variant of the lower bound of ‖wk − w̃k‖2G, which plays
a key role in showing the convergence of GS-ADMM.

Theorem 5 Let the sequences {wk} and {w̃k} be generated by GS-ADMM. Then, for any

σ1 ∈ (p− 1,+∞), σ2 ∈ (q − 1,+∞) and (τ, s) ∈ K, (53)

where K is defined in (8), there exist constants ξi(i = 1, 2) > 0 and ξj(j = 3, 4) ≥ 0, such that

∥∥wk − w̃k
∥∥2
G
≥ ξ1




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2

 (54)

+ξ2
∥∥Axk+1 + Byk+1 − c

∥∥2

+ξ3

(∥∥Axk+1 + Byk+1 − c
∥∥2 −

∥∥Axk + Byk − c
∥∥2
)

+ξ4

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
.

Proof By the Cauchy-Schwartz inequality, we have

2(1− τ)(1 − s)
(
Axk + Byk − c

)T B
(
yk − yk+1

)
(55)

≥ −(1− s)2
∥∥Axk + Byk − c

∥∥2 − (1− τ)2
∥∥B
(
yk − yk+1

)∥∥2 .

Since

−τ2 − s2 − τs+ τ + s+ 1 = −τ2 + (1− s)(τ + s) + 1,
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we have τ > −1 when (τ, s) ∈ K. Then, combining (55) with Theorem 4, we deduce

∥∥wk − w̃k
∥∥2
G
≥ ξ1




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2

 (56)

+

(
2− τ − s− (1− s)2

1 + τ

)
β
∥∥Axk+1 + Byk+1 − c

∥∥2

+
(1− s)2

1 + τ
β
(∥∥Axk+1 + Byk+1 − c

∥∥2 −
∥∥Axk + Byk − c

∥∥2
)

+
1− τ

1 + τ

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
,

where ξ1 > 0 is the constant in Theorem 4. Since −1 < τ ≤ 1 and β > 0, we have

ξ3 :=
(1− s)2

1 + τ
β ≥ 0 and ξ4 :=

1− τ

1 + τ
≥ 0. (57)

In addition, when (τ, s) ∈ K, there is

−τ2 − s2 − τs+ τ + s+ 1 > 0,

which, by τ > −1 and β > 0, implies

ξ2 :=

(
2− τ − s− (1− s)2

1 + τ

)
β > 0. (58)

Hence, the proof is completed. ♦

3.3 Global convergence

In this subsection, we show the global convergence and the worst-case O(1/t) convergence rate
of GS-ADMM. The following corollary is obtained directly from Theorems 2-3 and Theorem 5.

Corollary 1 Let the sequences {wk} and {w̃k} be generated by GS-ADMM. For any (σ1, σ2, τ, s)
satisfying (53), there exist constants ξi(i = 1, 2) > 0 and ξj(j = 3, 4) ≥ 0 such that

∥∥wk+1 −w∗
∥∥2
H
+ ξ3

∥∥Axk+1 + Byk+1 − c
∥∥2 + ξ4

∥∥yk+1 − yk
∥∥2
Hy

(59)

≤
∥∥wk −w∗

∥∥2
H
+ ξ3

∥∥Axk + Byk − c
∥∥2 + ξ4

∥∥yk − yk−1
∥∥2
Hy

−ξ1




p∑

i=1

‖Ai

(
xk
i − xk+1

i

)
‖2 +

q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2



−ξ2
∥∥Axk+1 + Byk+1 − c

∥∥2 , ∀w∗ ∈ M∗,

and

h(u)− h(ũk) + 〈w − w̃k,J (w)〉 (60)

≥ 1

2

(
‖w−wk+1‖2H + ξ3

∥∥Axk+1 + Byk+1 − c
∥∥2 + ξ4

∥∥yk+1 − yk
∥∥2
Hy

)

−1

2

(
‖w−wk‖2H + ξ3

∥∥Axk + Byk − c
∥∥2 + ξ4

∥∥yk − yk−1
∥∥2
Hy

)
, ∀w ∈ M.
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Theorem 6 Let the sequences {wk} and {w̃k} be generated by GS-ADMM. Then, for any
(σ1, σ2, τ, s) satisfying (53), we have

lim
k→∞




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2

 = 0, (61)

lim
k→∞

∥∥Axk + Byk − c
∥∥ = 0, (62)

and there exists a w∞ ∈ M∗ such that

lim
k→∞

w̃k = w∞. (63)

Proof Summing the inequality (59) over k = 1, 2, · · · ,∞, we have

ξ1

∞∑

k=1




p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 +
q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2

+ ξ2

∞∑

k=1

∥∥Axk+1 + Byk+1 − c
∥∥2

≤ ‖w1 −w∗‖2H + ξ1
∥∥Ax1 + By1 − c

∥∥2 + ξ2
∥∥y1 − y0

∥∥2
Hy

,

which implies that (61) and (62) hold since ξ1 > 0 and ξ2 > 0.
Because (σ1, σ2, τ, s) satisfy (53), we have by Lemma 4 that H is positive definite. So, it follows

from (59) that the sequence {wk} is uniformly bounded. Therefore, there exits a subsequence
{wkj} converging to a point w∞ = (x∞,y∞, λ∞) ∈ M. In addition, by the definitions of x̃k, ỹk
and λ̃k in (13) and (14), it follows from (61), (62) and the full column rank assumption of all the
matrices Ai and Bj that

lim
k→∞

xk
i − x̃k

i = 0, lim
k→∞

ykj − ỹkj = 0 and lim
k→∞

λk − λ̃k = 0, (64)

for all i = 1, · · · , p and j = 1, · · · , q. So, we have lim
k→∞

wk − w̃k = 0. Thus, for any fixed w ∈ M,

taking w̃kj in (16) and letting j go to ∞, we obtain

h(u)− h(u∞) + 〈w −w∞,J (w∞)〉 ≥ 0. (65)

Hence, w∞ ∈ M∗ is a solution point of VI(h,J ,M) defined in (12).
Since (59) holds for any w∗ ∈ M∗, by (59) and w∞ ∈ M∗, for all l ≥ kj , we have

∥∥wl −w∞
∥∥2
H
+ ξ3

∥∥Axl + Byl − c
∥∥2 + ξ4

∥∥yl − yl−1
∥∥2
Hy

≤
∥∥wkj −w∞

∥∥2
H
+ ξ3

∥∥Axkj + Bykj − c
∥∥2 + ξ4

∥∥ykj − ykj−1
∥∥2
Hy

.

This together with (62), (64), lim
j→∞

wkj = w∞ and the positive definiteness of H illustrate

lim
l→∞

wl = w∞. Therefore, the whole sequence {wk} converges to the solution w∞ ∈ M∗. This

completes the whole proof. ♦
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The above Theorem 6 shows the global convergence of our GS-ADMM. Next, we show the
O(1/t) convergence rate for the ergodic iterates

wt :=
1

t

t∑

k=1

w̃k and ut :=
1

t

t∑

k=1

ũk. (66)

Theorem 7 Let the sequences {wk} and {w̃k} be generated by GS-ADMM. Then, for any
(σ1, σ2, τ, s) satisfying (53), there exist ξj(j = 3, 4) ≥ 0 such that

h(ut)− h(u) + 〈wt −w,J (w)〉 (67)

≤ 1

2t

(∥∥w −w1
∥∥2
H
+ ξ3

∥∥Ax1 + By1 − c
∥∥2 + ξ4

∥∥y1 − y0
∥∥2
Hy

)
, ∀w ∈ M.

Proof For k = 1, · · · , t, summing the inequality (60), we have

th(u)−
t∑

k=1

h(ũk) +

〈
tw −

t∑

k=1

w̃k,J (w)

〉
(68)

≥ 1

2

(∥∥w−wt+1
∥∥2
H
+ ξ3

∥∥Axt+1 + Byt+1 − c
∥∥2 + ξ4

∥∥yt+1 − yt
∥∥2
Hy

)

−1

2

(
‖w−w1‖2H + ξ3

∥∥Ax1 + By1 − c
∥∥2 + ξ4

∥∥y1 − y0
∥∥2
Hy

)
, ∀w ∈ M.

Since (σ1, σ2, τ, s) satisfy (53), Hy is positive definite. And by Lemma 4,H is also positive definite.
So, it follows from (68) that

1

t

t∑

k=1

h(ũk)− h(u) +

〈
1

t

t∑

k=1

w̃k −w,J (w)

〉
(69)

≤ 1

2t
(
∥∥w −w1

∥∥2
H
+ ξ3

∥∥Ax1 + By1 − c
∥∥2 + ξ4

∥∥y1 − y0
∥∥2
Hy

), ∀w ∈ M.

By the convexity of h and (66), we have

h(ut) ≤
1

t

t∑

k=1

h(ũk).

Then, (67) follows from (69). ♦

Remark 1 In the above Theorem 6 and Theorem 7, we assume the parameters (σ1, σ2, τ, s) satisfy
(53). However, because of the symmetric role played by the x and y iterates in the GS-ADMM,
substituting the index k + 1 by k for the x and λ iterates, the GS-ADMM algorithm (7) can be
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clearly written as




For j = 1, 2, · · · , q,
yk+1
j = arg min

yj∈Yj

Lβ(x
k, yk1 , · · · , yj , · · · , ykq , λk− 1

2 ) +Qk
j (yj),

where Qk
j (yj) =

σ2β
2

∥∥Bj(yj − ykj )
∥∥2 ,

λk = λk− 1
2 − sβ(Axk + Byk+1 − c)

For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ(x
k
1 , · · · , xi, · · · , xk

p,y
k+1, λk) + P k

i (xi),

where P k
i (xi) =

σ1β
2

∥∥Ai(xi − xk
i )
∥∥2 ,

λk+ 1
2 = λk − τβ(Axk+1 + Byk+1 − c).

(70)

So, by applying Theorem 6 and Theorem 7 on the algorithm (70), it also converges and has the
O(1/t) convergence rate when (σ1, σ2, τ, s) satisfy

σ1 ∈ (p− 1,+∞), σ2 ∈ (q − 1,+∞) and (τ, s) ∈ K, (71)

where
K =

{
(τ, s) | τ + s > 0, s ≤ 1, −τ2 − s2 − τs+ τ + s+ 1 > 0

}
. (72)

Hence, the convergence domain K in Theorem 6 and Theorem 7 can be easily enlarged to the
symmetric domain, shown in Fig. 2,

G = K ∪ K =
{
(τ, s) | τ + s > 0, −τ2 − s2 − τs+ τ + s+ 1 > 0

}
. (73)

Remark 2 Theorem 6 implies that we can apply the following easily usable stopping criterion for
GS-ADMM:

max
{∥∥xk

i − xk+1
i

∥∥
∞

,
∥∥ykj − yk+1

j

∥∥
∞

,
∥∥Axk+1 + Byk+1 − c

∥∥
∞

}
≤ tol,

where tol > 0 is a given tolerance error. One the other hand, Theorem 7 tells us that for any
given compact set K ⊂ M, if

η = sup
w∈K

{
‖w −w1‖2H + ξ3

∥∥Ax1 + By1 − c
∥∥2 + ξ4

∥∥y1 − y0
∥∥2
Hy

}
< ∞,

we have
h(ut)− h(u) + 〈wt −w,J (w)〉 ≤ η

2t
,

which shows that GS-ADMM has a worst-case O(1/t) convergence rate in an ergodic sense.

4 Two special cases of GS-ADMM

Note that in GS-ADMM (7), the two proximal parameters σ1 and σ2 are required to be strictly
positive for the generalized p + q block separable convex programming. However, when taking
σ1 = σ2 = 0 for the two-block problem, i.e., p = q = 1, GS-ADMM would reduce to the scheme
(5), which is globally convergent [16]. Such observations motivate us to further investigate the
following two special cases:

(a) GS-ADMM (7) with p ≥ 1, q = 1, σ1 ∈ (p− 1,∞) and σ2 = 0;
(b) GS-ADMM (7) with p = 1, q ≥ 1, σ1 = 0 and σ2 ∈ (q − 1,∞).



Generalized Symmetric ADMM for Separable Convex Optimization 23

Fig 2. Stepsize region G of GS-ADMM

4.1 Convergence for the case (a)

The corresponding GS-ADMM for the first case (a) can be simplified as follows:





For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ

(
xk
1 , · · · , xi, · · · , xk

p, y
k, λk

)
+ P k

i (xi),

where P k
i (xi) =

σ1β
2

∥∥Ai

(
xi − xk

i

)∥∥2 ,
λk+ 1

2 = λk − τβ
(
Axk+1 +Byk − c

)
,

yk+1 = argmin
y∈Y

Lβ

(
xk+1, y, λk+ 1

2

)
,

λk+1 = λk+ 1
2 − sβ

(
Axk+1 +Byk+1 − c

)
.

(74)

And, the corresponding matrices Q,M,H and G in this case are the following:

Q =

[
Hx 0

0 Q̃

]
, (75)

where Hx is defined in (18) and

Q̃ =

[
βBTB −τBT

−B 1
β I

]
, (76)

M =



I

I
−sβB (τ + s)I


 , (77)
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H = QM−1 =




Hx (
1− τs

τ+s

)
βBTB − τ

τ+sB
T

− τ
τ+sB

1
(τ+s)β I


 , (78)

G = Q+QT −MTHM =




Hx

(1− s)βBTB (s− 1)BT

(s− 1)B 2−τ−s
β

I


 . (79)

It can be verified that H in (78) is positive definite as long as

σ1 ∈ (p− 1,+∞), (τ, s) ∈ {(τ, s) | τ + s > 0, τ < 1}.

Analogous to (44), we have

1

β
‖wk − w̃k‖2G (80)

=

∥∥∥∥∥∥∥∥∥




A1

(
xk
1 − xk+1

1

)

A2

(
xk
2 − xk+1

2

)

...
Ap

(
xk
p − xk+1

p

)




∥∥∥∥∥∥∥∥∥

2

Hx,0

+ (2− τ − s)
∥∥Axk+1 +Byk+1 − c

∥∥2

+(1− τ)
∥∥B
(
yk − yk+1

)∥∥2 + 2(1− τ)
(
Axk+1 +Byk+1 − c

)T
B
(
yk − yk+1

)

≥ ξ1

p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 + (2 − τ − s)
∥∥Axk+1 +Byk+1 − c

∥∥2

+(1− τ)
∥∥B
(
yk − yk+1

)∥∥2 + 2(1− τ)
(
Axk+1 +Byk+1 − c

)T
B
(
yk − yk+1

)
,

for some ξ1 > 0, since Hx,0 defined in (32) is positive definite. When σ2 = 0, by a slight modifi-
cation for the proof of Lemma 6, we have the following lemma.

Lemma 7 Suppose τ > −1. The sequence {wk} generated by the algorithm (74) satisfies

(
Axk+1 +Byk+1 − c

)T
B
(
yk − yk+1

)

≥ 1− s

1 + τ

(
Axk +Byk − c

)T
B
(
yk − yk+1

)
− τ

1 + τ

∥∥B
(
yk − yk+1

)∥∥2 .

Then, the following two theorems are similar to Theorem 5 and Theorem 6.

Theorem 8 Let the sequences {wk} and {w̃k} be generated by the algorithm (74). For any

σ1 ∈ (p− 1,+∞) and (τ, s) ∈ K,

where K is given in (8), there exist constants ξi(i = 1, 2) > 0 and ξ3 ≥ 0, such that

∥∥wk − w̃k
∥∥2
G
≥ ξ1

p∑

i=1

‖Ai

(
xk
i − xk+1

i

)
‖2 + ξ2

∥∥Axk+1 +Byk+1 − c
∥∥2 (81)

+ξ3

(∥∥Axk+1 +Byk+1 − c
∥∥2 −

∥∥Axk +Byk − c
∥∥2
)
.
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Proof For any (τ, s) ∈ K, we have τ > −1. Then, by Lemma 7, the inequality (80) and the
Cauchy-Schwartz inequality (55), we can deduce that (81) holds with ξ1 given in (80), ξ2 and ξ3
given in (58) and (57), respectively. ♦

Theorem 9 Let the sequences {wk} and {w̃k} be generated by the algorithm (74). For any

σ1 ∈ (p− 1,+∞) and (τ, s) ∈ K1, (82)

where

K1 =
{
(τ, s) | τ + s > 0, τ < 1, −τ2 − s2 − τs+ τ + s+ 1 > 0

}
,

we have

lim
k→∞

p∑

i=1

∥∥Ai

(
xk
i − xk+1

i

)∥∥2 = 0 and lim
k→∞

∥∥Axk + Byk − c
∥∥ = 0, (83)

and there exists a w∞ ∈ M∗ such that lim
k→∞

w̃k = w∞.

Proof First, it is clear that Theorem 3 still holds, which, combining with Theorem 8, gives

‖wk+1 −w∗‖2H + ξ3
∥∥Axk+1 +Byk+1 − c

∥∥2 (84)

≤ ‖wk −w∗‖2H + ξ3
∥∥Axk +Byk − c

∥∥2

−ξ1

p∑

i=1

‖Ai

(
xk
i − xk+1

i

)
‖2 − ξ2

∥∥Axk+1 + Byk+1 − c
∥∥2 , ∀w∗ ∈ M∗.

Hence, (83) holds. For (σ1, τ, s) satisfying (82), H in (78) is positive definite. So, by (84), {wk} is
uniformly bounded and therefore, there exits a subsequence {wkj} converging to a point w∞ =
(x∞, y∞, λ∞) ∈ M. So, it follows from (83) and the full column rank assumption of all the
matrices Ai that

lim
k→∞

xk
i − x̃k

i = lim
k→∞

xk
i − xk+1

i = 0 and lim
k→∞

λk − λ̃k = 0, (85)

for all i = 1, · · · , p. Hence, by lim
j→∞

wkj = w∞ and (83), we have

lim
j→∞

xkj+1 = x∞ and Ax∞ +By∞ − c = 0,

and therefore, by the full column rank assumption of B and (83),

lim
j→∞

ykj+1 = lim
j→∞

ỹkj = y∞.

Hence, by (85), we have lim
j→∞

wkj − w̃kj = 0. Thus, by taking w̃kj in (16) and letting j go to ∞,

the inequality (65) still holds. Then, the rest proof of this theorem follows from the same proof
of Theorem 6. ♦

Based on Theorem 8 and by a similar proof to those of Theorem 7, we can also show that the
algorithm (74) has the worst-case O(1/t) convergence rate, which is omitted here for conciseness.
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4.2 Convergence for the case (b)

The corresponding GS-ADMM for the case (b) can be simplified as follows





xk+1 = argmin
x∈X

Lβ(x,y
k, λk)

λk+ 1
2 = λk − τβ(Axk+1 + Byk − c),

For j = 1, 2, · · · , q,
yk+1
j = arg min

yj∈Yj

Lβ(x
k+1, yk1 , · · · , yj , · · · , ykq , λk+ 1

2 ) +Qk
j (yj),

where Qk
j (yj) =

σ2β
2

∥∥Bj(yj − ykj )
∥∥2 ,

λk+1 = λk+ 1
2 − sβ(Axk+1 + Byk+1 − c).

(86)

In this case, the corresponding matricesQ,M,H and G become Q̃, M̃, H̃ and G̃, which are defined
in (19), the lower-right block of M in (25), (29) and (41), respectively.

In what follows, let us define

vk =

(
yk

λk

)
and ṽk =

(
ỹk

λ̃k

)
.

Then, by the proof of Theorem 5, we can deduce the following theorem.

Theorem 10 Let the sequences {vk} and {ṽk} be generated by the algorithm (86). For any

σ2 ∈ (q − 1,+∞) and (τ, s) ∈ K,

where K is defined in (8), there exist constants ξi(i = 1, 2) > 0 and ξj(j = 3, 4) ≥ 0 such that

∥∥vk − ṽk
∥∥2
G̃
≥ ξ1

q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2 + ξ2
∥∥Axk+1 + Byk+1 − c

∥∥2

+ξ3

(∥∥Axk+1 + Byk+1 − c
∥∥2 −

∥∥Axk + Byk − c
∥∥2
)

+ξ4

(∥∥yk+1 − yk
∥∥2
Hy

−
∥∥yk − yk−1

∥∥2
Hy

)
.

By slight modifications of the proof of Theorem 6 and Theorem 9, we have the following global
convergence theorem.

Theorem 11 Let the sequences {wk} and {w̃k} be generated by the algorithm (74). Then, for
any

σ2 ∈ (q − 1,+∞) and (τ, s) ∈ K,

where K is defined in (8), we have

lim
k→∞

q∑

j=1

∥∥Bj

(
ykj − yk+1

j

)∥∥2 = 0 and lim
k→∞

∥∥Axk + Byk − c
∥∥ = 0,

and there exists a w∞ ∈ M∗ such that limk→∞ w̃k = w∞.

By a similar proof to that of Theorem 7, the algorithm (86) also has the worst-case O(1/t)
convergence rate.



Generalized Symmetric ADMM for Separable Convex Optimization 27

Remark 3 Again, substituting the index k + 1 by k for the x and λ iterates, the algorithm (74)
can be also written as





yk+1 = argmin
y∈Y

Lβ(x
k, y, λk− 1

2 ),

λk = λk− 1
2 − sβ(Axk +Byk+1 − c)

For i = 1, 2, · · · , p,
xk+1
i = arg min

xi∈Xi

Lβ(x
k
1 , · · · , , xi, · · · , xk

p, y
k+1, λk) + P k

i (xi),

where P k
i (xi) =

σ1β
2

∥∥Ai(xi − xk
i )
∥∥2 ,

λk+ 1
2 = λk − τβ(Axk+1 +Byk+1 − c).

So, by applying Theorem 11 on the above algorithm, we know the algorithm (74) also converges
globally when (σ1, τ, s) satisfy

σ1 ∈ (p− 1,+∞), and (τ, s) ∈ K,

where K is given in (72). Hence, the convergence domain K1 in Theorem 9 can be enlarged to
the symmetric domain G = K1 ∪K given in (73). By a similar reason, the convergence domain K
in Theorem 11 can be enlarged to G as well.

5 Numerical experiments

In this section, we investigate the performance of the proposed GS-ADMM for solving a class of
sparse matrix minimization problems. All the algorithms are coded and simulated in MATLAB
7.10(R2010a) on a PC with Intel Core i5 processor(3.3GHz) with 4 GB memory.

5.1 Test problem

Consider the following Latent Variable Gaussian Graphical Model Selection (LVGGMS) problem
arising in the statistical learning [2,20]:

min
X,S,L∈Rn×n

F (X,S, L) := 〈X,C〉 − log det(X) + ν‖S‖1 + µtr(L)

s.t. X − S + L = 0, L � 0,
(87)

where C ∈ Rn×n is the covariance matrix obtained from observation, ν and µ are two given
positive weight parameters, tr(L) stands for the trace of the matrix L and ‖S‖1 =

∑
ij |Sij |.

Clearly, by two different ways of partitioning the variables of (87), the GS-ADMM (7) can lead
to the following two algorithms:




Xk+1 = argmin
X

{
〈X,C〉 − log det(X) + β

2

∥∥∥X − Sk + Lk − Λk

β

∥∥∥
2

F
+ σ1β

2

∥∥X −Xk
∥∥2
F

}
,

Sk+1 = argmin
S

{
ν‖S‖1 + β

2

∥∥∥Xk − S + Lk − Λk

β

∥∥∥
2

F
+ σ1β

2

∥∥S − Sk
∥∥2
F

}
,

Λk+ 1
2 = Λk − τβ(Xk+1 − Sk+1 + Lk),

Lk+1 = arg min
L�0

{
µtr(L) + β

2

∥∥∥∥Xk+1 − Sk+1 + L− Λk+1
2

β

∥∥∥∥
2

F

+ σ2β
2

∥∥L− Lk
∥∥2
F

}
,

Λk+1 = Λk+ 1
2 − sβ(Xk+1 − Sk+1 + Lk+1);

(88)
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Xk+1 = argmin
X

{
〈X,C〉 − log det(X) + β

2

∥∥∥X − Sk + Lk − Λk

β

∥∥∥
2

F
+ σ1β

2

∥∥X −Xk
∥∥2
F

}
,

Λk+ 1
2 = Λk − τβ(Xk+1 − Sk + Lk),

Sk+1 = argmin
S

{
ν‖S‖1 + β

2

∥∥∥∥Xk+1 − S + Lk − Λk+1
2

β

∥∥∥∥
2

F

+ σ2β
2

∥∥S − Sk
∥∥2
F

}
,

Lk+1 = arg min
L�0

{
µtr(L) + β

2

∥∥∥∥Xk+1 − Sk + L− Λk+ 1
2

β

∥∥∥∥
2

F

+ σ2β
2

∥∥L− Lk
∥∥2
F

}
,

Λk+1 = Λk+ 1
2 − sβ(Xk+1 − Sk+1 + Lk+1).

(89)
Note that all the subproblems in (88) and (89) have closed formula solutions. Next, we take

the scheme (88) for an example to show how to get the explicit solutions of the subproblem. By
the first-order optimality condition of the X-subproblem in (88), we derive

0 = C −X−1 + β
(
X − Sk + Lk − Λk/β

)
+ σ1β(X −Xk)

which is equivalent to

(σ1 + 1)βX2 +
[
C + β(Lk − Sk)− Λk − σ1βX

k
]
X − I = 0.

Then, from the eigenvalue decomposition

UDiag(ρ)UT = C + β(Lk − Sk)− Λk − σ1βX
k,

where Diag(ρ) is a diagonal matrix with ρi, i = 1, · · · , n, on the diagonal, we obtain that the
solution of the X-subproblem in (88) is

Xk+1 = UDiag(γ)UT,

where Diag(γ) is the diagonal matrix with diagonal elements

γi =
−ρi +

√
ρ2i + 4(σ1 + 1)β

2(σ1 + 1)β
, i = 1, 2, · · · , n.

On the other hand, the S-subproblem in (88) is equivalent to

Sk+1 = argmin
S

{
ν‖S‖1 + (σ1+1)β

2

∥∥∥S − Xk+Lk+σ1S
k−Λk/β

(σ1+1)

∥∥∥
2

F

}

= Shrink
(

Xk+Lk+σ1S
k−Λk/β

(σ1+1) , ν
(σ1+1)β

)
,

where Shrink(·, ·) is the soft shrinkage operator (see e.g.[22]). Meanwhile, it is easy to verify that
the L-subproblem is equivalent to

Lk+1 = argmin
L�0

(σ2+1)β
2

∥∥∥L− L̃
∥∥∥
2

F

= VDiag(max{ρ,0})V T,

where max{ρ,0} is taken component-wise and VDiag(ρ)V T is the eigenvalue decomposition of
the matrix

L̃ =
σ2L

k + Sk+1 + Λk+ 1
2 /β −Xk+1 − µI/β

(σ2 + 1)
.
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5.2 Numerical results

In the following, we investigate the performance of several algorithms for solving the LVGGMS
problem, where all the corresponding subproblems can be solved in a similar way as shown in the
above analysis. For all algorithms, the maximal number of iterations is set as 1000, the starting
iterative values are set as (X0, S0, L0, Λ0) = (I,2I, I,0), and motivated by Remark 2, the following
stopping conditions are used

IER(k) := max
{∥∥Xk −Xk−1

∥∥
∞

,
∥∥Sk − Sk−1

∥∥
∞

,
∥∥Lk − Lk−1

∥∥
∞

}
≤ TOL,

OER(k) :=
|F (Xk, Sk, Lk)− F ∗|

|F ∗| ≤ Tol,

together with CER(k) :=
∥∥Xk − Sk + Lk

∥∥
F

≤ 10−4, where F ∗ is the approximate optimal ob-
jective function value obtained by running GS-ADMM (88) after 1000 iterations. In (87), we set
(ν, µ) = (0.005, 0.05) and the given data C is randomly generated by the following MATLAB
code with m = 100, which are downloaded from S. Boyd’s homepage2:

randn(’seed’,0); rand(’seed’,0); n=m; N=10*n;

Sinv=diag(abs(ones(n,1))); idx=randsample(n^2,0.001*n^2);

Sinv(idx)=ones(numel(idx),1); Sinv=Sinv+Sinv’;

if min(eig(Sinv))<0

Sinv=Sinv+1.1*abs(min(eig(Sinv)))*eye(n);

end

S=inv(Sinv);

D=mvnrnd(zeros(1,n),S,N); C=cov(D);

5.2.1 Performance of different versions of GS-ADMM

In the following, we denote

GS-ADMM (88) by “GS-ADMM-I”;
GS-ADMM (89) by “GS-ADMM-II”;
GS-ADMM (88) with σ2 = 0 by “GS-ADMM-III”;
GS-ADMM (89) with σ1 = 0 by “GS-ADMM-IV”.

2 http://web.stanford.edu/∼boyd/papers/admm/covsel/covsel example.html
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GS-ADMM-I/β Iter(k) CPU(s) CER IER OER
0.5 1000 15.29 7.2116e-8 5.0083e-6 3.2384e-10
0.2 493 8.58 1.4886e-8 9.8980e-8 5.7847e-11
0.1 254 4.24 1.6105e-8 9.7867e-8 5.6284e-11
0.08 202 3.27 1.7112e-8 9.8657e-8 5.6063e-11
0.07 175 3.03 1.7548e-8 9.7091e-8 5.4426e-11
0.06 146 2.42 1.9200e-8 9.9841e-8 5.4499e-11
0.05 115 1.84 1.9174e-8 8.8302e-8 4.4919e-11
0.03 112 2.21 1.7788e-7 9.9591e-8 2.2472e-11
0.01 270 4.50 6.4349e-7 9.9990e-8 2.5969e-10
0.006 424 7.57 1.0801e-6 9.8883e-8 5.0542e-10
0.004 604 10.74 1.6490e-6 9.9185e-8 8.7172e-10

GS-ADMM-II/β Iter(k) CPU(s) CER IER OER
0.5 1000 15.80 8.8857e-8 3.2511e-6 4.0156e-10
0.2 603 11.35 3.7706e-9 9.9070e-8 1.2204e-12
0.1 312 4.93 6.0798e-9 9.9239e-8 2.3994e-12
0.08 250 4.40 7.1384e-9 9.6234e-8 2.8127e-12
0.07 217 3.42 8.2861e-9 9.8471e-8 3.1878e-12
0.06 183 3.09 9.7087e-8 9.8298e-8 3.4898e-12
0.05 147 2.85 1.1335e-8 9.1450e-8 3.3405e-12
0.03 114 1.85 1.5606e-7 9.1283e-8 1.9479e-11
0.01 271 4.70 6.2003e-7 9.6960e-8 2.4594e-10
0.006 424 7.38 1.0774e-6 9.8852e-8 5.0224e-10
0.004 604 10.01 1.6461e-6 9.9114e-8 8.6812 e-10

GS-ADMM-III/β Iter(k) CPU(s) CER IER OER
0.5 579 9.36 1.2740e-8 9.9818e-8 5.2821e-11
0.2 247 5.52 1.2043e-8 9.6354e-8 4.5217e-11
0.1 125 2.14 1.1737e-8 9.5170e-8 3.6207e-11
0.08 97 1.55 1.2078e-8 9.7603e-8 2.8773e-11
0.07 82 1.36 1.1854e-8 9.5322e-8 1.6215e-11
0.06 69 1.27 1.2680e-8 8.2352e-8 1.5087e-11
0.05 71 1.40 9.1560e-8 9.8745e-8 8.1869e-12
0.03 110 1.71 1.8118e-7 9.4257e-8 2.7549e-11
0.01 271 4.46 6.3390e-7 9.7803e-8 2.5210e-10
0.006 424 6.92 1.0856e-6 9.9123e-8 5.0717e-10
0.004 604 10.11 1.6527e-6 9.9275e-8 8.7303e-10

GS-ADMM-IV/β Iter(k) CPU(s) CER IER OER
0.5 1000 15.76 7.1259e-8 2.6323e-6 6.9956e-12
0.2 587 9.08 3.8200e-9 9.9214e-8 1.3291e-12
0.1 304 4.80 6.0296e-9 9.6197e-8 2.4309e-12
0.08 243 4.91 7.2062e-9 9.4484e-8 2.8670e-12
0.07 211 3.25 8.1772e-9 9.4133e-8 3.1477e-12
0.06 177 2.81 9.9510e-9 9.6911e-8 3.5342e-12
0.05 140 3.07 1.3067e-8 9.9446e-8 3.6691e-12
0.03 115 1.80 1.6886e-7 9.5844e-8 2.1829e-11
0.01 271 4.67 6.2006e-7 9.7151e-8 2.4927e-10
0.006 424 6.94 1.0758e-6 9.8755e-8 5.0454e-10
0.004 604 10.21 1.6454e-6 9.9088e-8 8.6995e-10

Table 1: Numerical results of GS-ADMM-I, II, III and IV with different β.

First, we would like to investigate the performance of the above different versions of GS-
ADMM for solving the LVGGMS problem with variance of the penalty parameter β. The results
are reported in Table 1 with TOL = Tol = 1.0× 10−7, and (τ, s) = (0.8, 1.17). For GS-ADMM-I
and GS-ADMM-II, (σ1, σ2) = (2, 3). Here, “Iter” and “CPU” denote the iteration number and



Generalized Symmetric ADMM for Separable Convex Optimization 31

the CPU time in seconds, and the bold letter indicates the best result of each algorithm. From
Table 1, we can observe that:

– Both the iteration number and the CPU time of all the algorithms have a similar changing
pattern, which decreases originally and then increases along with the decrease of the value of
β.

– For the same value of β, the results of GS-ADMM-III are slightly better than other algorithms
in terms of the iteration number, CPU time, and the feasibility errors CER, IER and OER.

– GS-ADMM-III with β = 0.5 can terminate after 579 iterations to achieve the tolerance 10−7,
while the other algorithms with β = 0.5 fail to achieve this tolerance within given number of
iterations.

In general, the algorithm (88) with β = 0.06 performs better than other cases. Hence, in the
following experiments for GS-ADMM, we adapt GS-ADMM-III with default β = 0.06. Also note
that σ2 = 0, which is not allowed by the algorithms discussed in [15].

(τ, s) Iter(k) CPU(s) CER IER OER
(1, -0.8) 256 4.20 9.8084e-5 7.8786e-6 1.1298e-7
(1, -0.6) 144 2.39 5.7216e-5 9.9974e-6 3.8444e-8
(1, -0.4) 105 1.80 3.5144e-5 9.7960e-6 1.3946e-8
(1, -0.2) 84 1.45 2.3513e-5 9.3160e-6 6.4220e-9
(1, 0) 70 1.14 1.7899e-5 9.4261e-6 3.9922e-9
(1, 0.2) 61 0.98 1.3141e-5 8.9191e-6 1.7780e-9
(1, 0.4) 54 0.88 1.0549e-5 9.1564e-6 4.6063e-10
(1, 0.6) 49 0.82 9.0317e-5 9.4051e-6 2.7938e-9
(1, 0.8) 49 0.80 3.5351e-5 8.0885e-6 1.4738e-9
(-0.8, 1) 229 3.91 9.9324e-5 8.4462e-6 1.9906e-7
(-0.6, 1) 127 2.06 6.1118e-5 9.6995e-6 7.8849e-8
(-0.4, 1) 96 1.61 3.4111e-5 9.6829e-6 2.7549e-8
(-0.2, 1) 79 1.30 2.2004e-5 9.6567e-6 1.2015e-8
(0, 1) 67 1.16 1.6747e-5 9.9244e-6 6.2228e-9
(0.2, 1) 59 0.93 1.2719e-5 9.4862e-6 2.9997e-9
(0.4, 1) 53 0.88 1.0253e-5 9.3461e-6 3.4811e-10
(0.6, 1) 49 0.85 8.0343e-6 8.8412e-6 2.9837e-9
(0.8, 1) 49 0.81 3.3831e-6 8.1998e-6 2.1457e-9

(1.6, -0.3) 60 0.99 1.2111e-5 9.4583e-6 1.1705e-9
(1.6, -0.6) 74 1.22 1.8012e-5 9.6814e-6 2.7562e-9
(1.5, -0.8) 97 1.68 3.1310e-5 9.8972e-6 1.4911e-8
(1.3, 0.3) 50 0.83 8.5476e-6 8.9655e-6 3.4389e-10
(0.2, 0.5) 87 1.44 2.7160e-5 9.4503e-6 1.7906e-8
(0.4, 0.9) 56 0.98 1.1060e-5 9.1081e-6 1.7179e-9
(0.8, 1.17) 49 0.86 1.5419e-6 8.5023e-6 2.5529e-9
(0, 1.618) 50 0.90 5.5019e-6 8.6980e-6 1.4722e-9
(0.9, 1.09) 49 0.78 1.4874e-6 8.4766e-6 2.2194e-9
(0.1, 0.1) 229 4.42 9.8698e-5 8.3622e-6 2.3575e-7
(0.2, 0.2) 130 2.32 5.5559e-5 9.9888e-6 7.5859e-8
(0.3, 0.3) 97 1.75 3.4344e-5 9.9362e-6 2.8190e-8
(0.4, 0.4) 79 1.43 2.4256e-5 9.8539e-6 1.2790e-8
(0.5, 0.5) 68 1.15 1.6805e-5 9.2144e-6 5.5121e-9
(0.6, 0.6) 59 0.98 1.3862e-5 9.7793e-6 2.8580e-9
(0.7, 0.7) 53 0.91 1.1091e-5 9.6433e-6 3.9013e-12
(0.8, 0.8) 49 0.84 8.4235e-6 8.9432e-6 3.0519e-9
(0.9, 0.9) 49 0.83 3.4493e-6 8.1314e-6 1.8888e-9

Table 2: Numerical results of GS-ADMM-III with different stepsizes (τ, s).
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Second, we investigate how the stepsizes (τ, s) ∈ G with different values would affect the
performance of GS-ADMM-III. Table 2 reports the comparison results with variance of (τ, s)
for TOL = Tol = 1.0 × 10−5. One obvious observation from Table 2 is that both the iteration
number and the CPU time decrease along with the increase of s (or τ) for fixed value of τ (or
s), which indicates that the stepsizes of (τ, s) ∈ G could influence the performance of GS-ADMM
significantly. In addition, the results in Table 2 also indicate that using more flexible but with both
relatively larger stepsizes τ and s of the dual variables often gives the best convergence speed.
Comparing all the reported results in Table 2, by setting (τ, s) = (0.9, 1.09), GS-ADMM-III gives
the relative best performance for solving the problem (87).

5.2.2 Comparison of GS-ADMM with other state-of-the-art algorithms

In this subsection, we would like to carry out some numerical comparison of solving the problem
(87) by using GS-ADMM-III and the other four methods:
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TOL Tol Iter(k) CPU(s) CER IER OER
1e-3 1e-7 33 0.46 8.3280e-5 2.5770e-4 4.0973e-9

1e-12 83 1.16 9.5004e-9 1.0413e-8 8.3240e-13

GS-ADMM-III 1e-6 1e-8 58 0.84 8.3812e-7 9.0995e-7 7.6372e-11
1e-14 108 1.55 1.0936e-10 1.2072e-10 9.5398e-15

1e-9 1e-7 97 1.39 7.7916e-10 8.5759e-10 6.8775e-14
1e-15 118 1.72 1.8412e-11 2.0361e-11 6.6557e-16

1e-3 1e-7 62 0.88 9.6422e-5 3.6934e-5 5.8126e-8
1e-12 187 2.74 9.4636e-9 3.4868e-9 9.4447e-13

PJALM 1e-6 1e-8 111 1.67 2.4977e-6 9.4450e-7 4.1335e-10
1e-14 249 3.63 1.0173e-10 3.7225e-11 8.6506e-15

1e-9 1e-7 205 3.06 2.5369e-9 9.3210e-10 2.4510e-13
1e-15 276 4.08 1.4143e-11 5.2002e-11 6.6543e-16

1e-3 1e-7 62 0.85 4.8548e-5 1.7123e-5 9.3737e-8
1e-12 176 2.64 2.7059e-9 9.7709e-10 9.1783e-13

HTY 1e-6 1e-8 92 1.35 2.7184e-6 9.6661e-7 4.0385e-9
1e-14 223 3.15 1.1042e-10 4.0226e-11 9.3091e-15

1e-9 1e-7 176 2.78 2.7059e-9 9.7709e-10 9.1783e-13
1e-15 243 3.70 2.8377e-11 1.0533e-11 4.4329e-16

1e-3 1e-7 61 0.82 7.4082e-5 3.3954e-5 1.5195e-9
1e-12 127 1.84 5.8944e-8 1.6729e-7 1.3001e-13

GR-PPA 1e-6 1e-8 108 1.52 5.5130e-7 6.2676e-7 3.4315e-11
1e-14 172 2.56 2.9521e-10 8.3742e-10 8.8742e-16

1e-9 1e-7 167 2.42 5.3963e-10 7.3383e-10 3.7050e-14
1e-15 172 2.41 2.9521e-10 8.3742e-10 8.8742e-16

1e-3 1e-7 40 0.55 9.8495e-5 1.2096e-4 2.7440e-8
1e-12 112 1.53 7.1036e-9 4.8224e-9 8.9763e-13

T-ADMM 1e-6 1e-8 72 1.02 1.3128e-6 8.9570e-7 2.3510e-10
1e-14 147 2.12 7.4334e-11 5.0156e-11 9.7617e-15

1e-9 1e-7 125 1.70 1.3053e-9 8.8746e-10 1.5974e-13
1e-15 160 2.01 1.3669e-11 9.4374e-12 6.6557e-16

Table 3: Comparative results of different algorithms under different tolerances.

– The Proximal Jacobian Decomposition of ALM [17] (denoted by “PJALM”);
– The splitting method in [14] (denoted by “HTY”);
– The generalized parametrized proximal point algorithm [1] (denoted by “GR-PPA”).
– The twisted version of the proximal ADMM [23] (denoted by “T-ADMM”).

We set (τ, s) = (0.9, 1.09) for GS-ADMM-III and the parameter β = 0.05 for all the comparison
algorithms. The default parameter µ = 2.01 and H = βI are used for HTY [14]. As suggested
by the theory and numerical experiments in [17], the proximal parameter is set as 2 for PJALM.
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As shown in [1], the relaxation factor of GR-PPA is set as 1.8 and other default parameters are
chosen as

(σ1, σ2, σ3, s, τ, ε) =

(
0.178, 0.178, 0.178, 10,

√
5− 1

2
,

√
5− 1

2

)
.

For T-ADMM, the symmetric matrices therein are chosen as M2 = M2 = vI with v = β and
the correction factor is set as a = 1.6 [23]. The results obtained by the above algorithms under
different tolerances are reported in Table 3. With fixed tolerance TOL = 10−9 and Tol = 10−15,
the convergence behavior of the error measurements IER(k) and OER(k) by the five algorithms
using different starting points are shown in Figs. 3-5. From Table 3 and Figures 3-5, we may have
the following observation:

– Under all different tolerances, GS-ADMM-III performs significantly better than other four
algorithms in both the number of iterations and CPU time.

– GR-PPA is slightly better than PJALM and HTY, and T-ADMM outperforms PJALM, HTY
and GR-PPA.

– the convergence curves in Figs. 3-5 illustrate that using different starting points, GS-ADMM-
III also converges fastest among the comparing methods.

All these numerical results demonstrate the effectiveness and robustness of GS-ADMM-III, which
is perhaps due to the symmetric updating of the Lagrange multipliers and the proper choice of
the stepsizes.

6 Conclusion

Since the direct extension of ADMM in a Gauss-Seidel fashion for solving the three-block separable
convex optimization problem is not necessarily convergent analyzed by Chen et al. [3], there has
been a constantly increasing interest in developing and improving the theory of the ADMM for
solving the multi-block separable convex optimization. In this paper, we propose an algorithm,
called GS-ADMM, which could solve the general model (1) by taking advantages of the multi-
block structure. In our GS-ADMM, the Gauss-Seidel fashion is taken for updating the two grouped
variables, while the block variables within each group are updated in a Jacobi scheme, which would
make the algorithm more be attractive and effective for solving big size problems. We provide a
new convergence domain for the stepsizes of the dual variables, which is significantly larger than
the convergence domains given in the literature. Global convergence as well as the O(1/t) ergodic
convergence rate of the GS-ADMM is established. In addition, two special cases of GS-ADMM,
which allows one of the proximal parameters to be zero, are also discussed.

This paper simplifies the analysis in [16] and provides an easy way to analyze the conver-
gence of the symmetric ADMM. Our preliminary numerical experiments show that with proper
choice of parameters, the performance of the GS-ADMM could be very promising. Besides, from
the presented convergence analysis, we can see that the theories in the paper can be naturally
extended to use more general proximal terms, such as letting P k

i (xk) := β
2 ‖xi − xk

i ‖Pi
and

Qk
j (yj) :=

β
2 ‖yj − ykj ‖Qj

in (7), where Pi and Qi are matrices such that Pi ≻ (p− 1)AT

i Ai and

Qj ≻ (q − 1)BT

j Bj for all i = 1, · · · , p and j = 1, · · · , q. Finally, the different ways of partitioning
the variables of the problem also gives the flexibility of GS-ADMM.
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Fig. 1 Convergence curves of IER and OER with initial values (X0, S0, L0, Λ0) = (I, 2I, I,0).
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Fig. 2 Convergence curves of IER and OER with initial values (X0, S0, L0, Λ0) = (I, I,0,0).
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