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Accelerated Primal-Dual Proximal Block Coordinate Updating

Methods for Constrained Convex Optimization*

Yangyang Xuf Shuzhong Zhang?

Abstract

Block Coordinate Update (BCU) methods enjoy low per-update computational complexity
because every time only one or a few block variables would need to be updated among possibly
a large number of blocks. They are also easily parallelized and thus have been particularly
popular for solving problems involving large-scale dataset and/or variables. In this paper, we
propose a primal-dual BCU method for solving linearly constrained convex program in multi-
block variables. The method is an accelerated version of a primal-dual algorithm proposed by the
authors, which applies randomization in selecting block variables to update and establishes an
O(1/t) convergence rate under convexity assumption. We show that the rate can be accelerated
to O(1/t?) if the objective is strongly convex. In addition, if one block variable is independent of
the others in the objective, we then show that the algorithm can be modified to achieve a linear
rate of convergence. The numerical experiments show that the accelerated method performs
stably with a single set of parameters while the original method needs to tune the parameters
for different datasets in order to achieve a comparable level of performance.

Keywords: primal-dual method, block coordinate update, alternating direction method of
multipliers (ADMM), accelerated first-order method.

Mathematics Subject Classification: 90C25, 95C06, 68W20.

1 Introduction

Motivated by the need to solve large-scale optimization problems and increasing capabilities in
parallel computing, block coordinate update (BCU) methods have become particularly popular in
recent years due to their low per-update computational complexity, low memory requirements, and
their potentials in a distributive computing environment. In the context of optimization, BCU first
appeared in the form of block coordinate descent (BCD) type of algorithms which can be applied
to solve unconstrained smooth problems or those with separable nonsmooth terms in the objective
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(possibly with separable constraints). More recently, it has been developed for solving problems

with nonseparable nonsmooth terms and/or constraint in a primal-dual framework.

In this paper, we consider the following linearly constrained multi-block structured optimization

model:
M M
min flz)+ Zgi(xi), s.t. Z Ajx; =0, (1)
i=1 i=1
where x is partitioned into disjoint blocks (z1,x2,...,2a), f is a smooth convex function with

Lipschitz continuous gradient, and each g; is proper closed convex and possibly non-differentiable.
Note that g; can include an indicator function of a convex set X;, and thus (1) can implicitly include
certain separable block constraints in addition to the nonseparable linear constraint.

Many applications arising in statistical and machine learning, image processing, and finance can be
formulated in the form of (1) including the basis pursuit [7], constrained regression [23], support
vector machine in its dual form [10], portfolio optimization [28], just to name a few.

Towards finding a solution for (1), we will first present an accelerated proximal Jacobian alternating
direction method of multipliers (Algorithm 1), and then we generalize it to an accelerated random-
ized primal-dual block coordinate update method (Algorithm 2). Assuming strong convexity on the
objective function, we will establish O(1/t?) convergence rate results of the proposed algorithms by
adaptively setting the parameters, where ¢ is the total number of iterations. In addition, if further
assuming smoothness and the full-rankness we then obtain linear convergence of a modified method
(Algorithm 3).

1.1 Related methods

Our algorithms are closely related to randomized coordinate descent methods, primal-dual coor-
dinate update methods, and accelerated primal-dual methods. In this subsection, let us briefly
review the three classes of methods and discuss their relations to our algorithms.

Randomized coordinate descent methods

In the absence of linear constraint, Algorithm 2 specializes to randomized coordinate descent (RCD),
which was first proposed in [31] for smooth problems and later generalized in [27,38] to nonsmooth
problems. It was shown that RCD converges sublinearly with rate O(1/t), which can be accelerated
to O(1/t?) for convex problems and achieves a linear rate for strongly convex problems. By choosing
multiple block variables at each iteration, [37] proposed to parallelize the RCD method and showed
the same convergence results for parallelized RCD. This is similar to setting m > 1 in Algorithm
2, allowing parallel updates on the selected z-blocks.



Primal-dual coordinate update methods

In the presence of linear constraints, coordinate descent methods may fail to converge to a solution of
the problem because fixing all but one block, the selected block variable may be uniquely determined
by the linear constraint. To perform coordinate update to the linearly constrained problem (1),
one effective approach is to update both primal and dual variables. Under this framework, the
alternating direction method of multipliers (ADMM) is one popular choice. Originally, ADMM
[14,17] was proposed for solving two-block structured problems with separable objective (by setting
f=0and M = 2 in (1)), for which its convergence and also convergence rate have been well-
established (see e.g. [2,13,22,29]). However, directly extending ADMM to the multi-block setting
such as (1) may fail to converge; see [6] for a divergence example of the ADMM even for solving
a linear system of equations. Lots of efforts have been spent on establishing the convergence of
multi-block ADMM under stronger assumptions (see e.g. [4,6,16,25,26]) such as strong convexity
or orthogonality conditions on the linear constraint. Without additional assumptions, modification
is necessary for the ADMM applied to multi-block problems to be convergent; see [12, 19,20, 39]
for example. Very recently, [15] proposed a randomized primal-dual coordinate (RPDC) update
method, whose asynchronous parallel version was then studied in [41]. Applied to (1), RPDC is a
special case of Algorithm 2 with fixed parameters. It was shown that RPDC converges with rate
O(1/t) under convexity assumption. More general than solving an optimization problem, primal-
dual coordinate (PDC) update methods have also appeared in solving fixed-point or monotone
inclusion problems [9,34-36]. However, for these problems, the PDC methods are only shown to
converge but no convergence rate estimates are known unless additional assumptions are made such
as the strong monotonicity condition.

Accelerated primal-dual methods

It is possible to accelerate the rate of convergence from O(1/t) to O(1/t?) for gradient type methods.
The first acceleration result was shown by Nesterov [30] for solving smooth unconstrained problems.
The technique has been generalized to accelerate gradient-type methods on possibly nonsmooth
convex programs [1,32]. Primal-dual methods on solving linearly constrained problems can also
be accelerated by similar techniques. Under convexity assumption, the augmented Lagrangian
method (ALM) is accelerated in [21] from O(1/t) convergence rate to O(1/t?) by using a similar
technique as that in [1] to the multiplier update, and [40] accelerates the linearized ALM using
a technique similar to that in [32]. Assuming strong convexity on the objective, [18] accelerates
the ADMM method, and the assumption is weakened in [40] to assuming the strong convexity
for one component of the objective function. On solving bilinear saddle-point problems, various
primal-dual methods can be accelerated if either primal or dual problem is strongly convex [3,5,11].
Without strong convexity, partial acceleration is still possible in terms of the rate depending on
some other quantities; see e.g. [8,33].



1.2 Contributions of this paper

We accelerate the proximal Jacobian ADMM [12] and also generalize it to an accelerated primal-
dual coordinate updating method for linearly constrained multi-block structured convex program,
where in the objective there is a nonseparable smooth function. With parameters fixed during
all iterations, the generalized method reduces to that in [15] and enjoys O(1/t) convergence rate
under mere convexity assumption. By adaptively setting the parameters at different iterations,
we show that the accelerated method has O(1/t?) convergence rate if the objective is strongly
convex. In addition, if there is one block variable that is independent of all others in the objective
(but coupled in the linear constraint) and also the corresponding component function is smooth,
we modify the algorithm by treating that independent variable in a different way and establish a
linear convergence result. Numerically, we test the accelerated method on quadratic programming
and compare it to the (nonaccelerated) RPDC method in [15]. The results demonstrate that
the accelerated method performs efficiently and stably with the parameters automatically set in
accordance of the analysis, while the RPDC method needs to tune its parameters for different data
in order to have a comparable performance.

1.3 Nomenclature and basic facts

Notations. For a positive integer M, we denote [M] as {1,...,M}. We let g denote the subvector
of x with blocks indexed by S. Namely, if S = {i1,...,4n}, then zg = (z4,,...,2;,). Similarly,
Ag denotes the submatrix of A with columns indexed by S, and gg denotes the sum of component
functions indicated by S. We use V, f(z) for the partial gradient of f with respect to x; at = and
Vs f(x) with respect to xg. For a nondifferentiable function g, @g(z) denotes a subgradient of g at
x. We reserve I for the identity matrix and use || - || for Euclidean norm. Given a symmetric positive
semidefinite (PSD) matrix W, for any vector v of appropriate size, we define ||v[|%, = v Ww, and

1
Aw (0% 0) = S [lv" = vllfy = v = vllfy + " = oIl ], (2)

If W = I, we simply use A(v",v°, v). Also, we denote

g@) =) gi(x:), Flz)=f(2)+g@), ®(&2,X)=F@) —Fz)-\AZ-0).  (3)
i=1

Preparations. A point (z*, \*) is called a Karush-Kuhn-Tucker (KKT) point of (1) if
0€dF(z*) —ATN*, Az* —b=0. (4)

For convex programs, the conditions in (4) are sufficient for z* to be an optimal solution of (1),
and they are also necessary if a certain qualification condition holds (e.g., the Slater condition:
there is z in the interior of the domain of F' such that Ax = b). Together with the convexity of
F, (4) implies

O(x, 2%, \*) >0, Va. (5)



We will use the following lemmas as basic facts. The first lemma is straightforward to verify from
the definition of || - ||y; the second one is similar to Lemma 3.3 in [15]; the third one is from Lemma
3.5 in [15].

Lemma 1.1 For any vectors u,v and symmetric PSD matriz W of appropriate sizes, it holds that

1
wWo = [llulliy — llu = viliy + llvliy] - (6)

Lemma 1.2 Given a function ¢, for a given x and a random vector &, if for any A (that may
depend on %) it holds E®(&,x,\) < E@(N), then for any v > 0, we have

B[F(3) = Fla) +7]147 = b]] < sup o[V

Proof. Let \ = —% if Az —b+#0, and A = 0 otherwise. Then

O(&,2,A) = F(2) — F(x) + 7] A& — b

In addition, since || A|| < 7, we have ¢(\) < supj|y|<y #(A) and thus Ep()) < sup|| <y #(A). Hence,
we have the desired result from E®(&,z,A) < Eg(\). O

Lemma 1.3 Suppose E[F(2) — F(z*) +v|| Az — b||] < e. Then,

. € €|l .
E|AZ —b|| < ——, and — ———— < E|F (%) — F(2%)| <,
| | v = A v = |2 [ (@) ( )}

where (x*, \*) satisfies the optimality conditions in (4), and we assume ||[N*|| < 7.

Outline. The rest of the paper is organized as follows. Section 2 presents the accelerated proximal
Jacobian ADMM and its convergence results. In section 3, we propose an accelerated primal-dual
block coordinate update method with convergence analysis. Section 4 assumes more structure on
the problem (1) and modifies the algorithm in section 3 to have linear convergence. Numerical
results are provided in section 5. Finally, section 6 concludes the paper.

2 Accelerated proximal Jacobian ADMM

In this section, we propose an accelerated proximal Jacobian ADMM for solving (1). At each iter-
ation, the algorithm updates all M block variables in parallel by minimizing a linearized proximal
approximation of the augmented Lagrangian function, and then it renews the multiplier. Specifi-
cally, it iteratively performs the following updates:
. 1 .
2! = argmin <Vz'f(l’k) — Al (\F - /Bkrk)axi> + gi(zi) + 5”%’ - x?pra i=1,...,M, (7a)
;

)\k‘-i-l — )\k: _ pkrk-i-l’ (7b)



where f3; and pj, are scalar parameters, P* is an M x M block diagonal matrix with sz as its ¢-th
diagonal block for i = 1,..., M, and ¥ = Az* — b denotes the residual. Note that (7a) consists of
M independent subproblems, and they can be solved in parallel.

Algorithm 1 summarizes the proposed method. It reduces to the proximal Jacobian ADMM in [12]
if By, pr and P* are fixed for all k and there is no nonseparable function f. We will show that
adapting the parameters as the iteration progresses can accelerate the convergence of the algorithm.

Algorithm 1: Accelerated proximal Jacobian ADMM for (1)

1 Initialization: choose z', set A' =0, and let ' = Az! — b
2 for k=1,2,... do
3 Choose parameters 3y, pr, and a block diagonal matrix P*
Let x%*1 + (7a) and \F*! « (7b) with rk+1 = Azh+! —p,
if a certain stopping criterion satisfied then

L Return (zF+1 \k+1).

[N BN

2.1 Technical assumptions

Throughout the analysis in this section, we make the following assumptions.

Assumption 1 There exists (x*, \*) satisfying the KKT conditions in (4).
Assumption 2 Vf is Lipschitz continuous with modulus Ly.
Assumption 3 The function g is strongly convex with modulus p > 0.

The first two assumptions are standard, and the third one is for showing convergence rate of
O(1/t?), where t is the number of iterations. ~ Note that if f is strongly convex with modulus
py >0, we can let f < f— 5| and g < g+ & - ||>. This way, we have a convex function
f and a strongly convex function g. Hence, Assumption 3 is without loss of generality. With only
convexity, Algorithm 1 can be shown to converge at the rate O(1/t) with parameters fixed for all
iterations, and the order 1/t is optimal as shown in the very recent work [24].

2.2 Convergence results

In this subsection, we show the O(1/t?) convergence rate result of Algorithm 1. First, we establish
a result of running one iteration of Algorithm 1.



Lemma 2.1 (One-iteration analysis) Under Assumptions 2 and 3, let {(z*,\F)} be the se-
quence generated from Algorithm 1. Then for any k and (z,\) such that Ax = b, it holds that

(a2, 0)
1 (|2 \EHL2 ko yk+12] k12
<2p LI = XFJ2 = A = AT XF = AL 2] = gkt (8)

k+1 2 k 2 k+1 k2
) [Hx - lpr_poat apur = 127 = @llpr_g a7 4 + 2 T ”Pk—BkATA—LfI] :
Using the above lemma, we are able to prove the following theorem.

Theorem 2.2 Under Assumptions 2 and 3, let {(z*, \F)} be the sequence generated by Algorithm 1.
Suppose that the parameters are set to satisfy

0<pp <28, PF=pBATA+ LI, VE>1, 9)

and there exists a number ko such that for all k > 2,

k+ko+1 < k + ko

, 10
Pk T Pk (10)
(k+ko+1)(P* = BATA) = (k4 ko)(P*! = Br1 AT A+ pul). (11)
Then, for any (x,\) satisfying Ax = b, we have
! " k+ko+1
Z (k+ ko + 1)@ (z 2, 0) + Z f@ﬁk — p) [P TP
k=1 k=1
t4+ko+1
+f“xt+l _‘T”?Dt—ﬁtATA-H/«I S (bl(xa)‘)a (12)
where k+2 o + 2
0 0
p1(w,A) = H)‘ )‘1H2 D) ”xl - x”?ol_glATA' (13)

In the next theorem, we provide a set of parameters that satisfy the conditions in Theorem 2.2 and
establish the O(1/t?) convergence rate result.

Theorem 2.3 (Convergence rate of order 1/t?) Under Assumptions 1 through 3, let {(x*, \F)}
be the sequence generated by Algorithm 1 with parameters set to:

Br=pr=kB, PF=kP+ LI Vk>1, (14)

where P is a block diagonal matriz satisfying 0 < P — BATA < 81. Then,

2
masx { Bl R, ot = ot 3} <

> m¢l(w*,)\*)’ (15)



where ko = %, and ¢y is defined in (13). In addition, letting v = max {2||\*||,1 + |[\*||} and

_t(t+ 2k +3) e St (k+ Ko+ 1)ak

T AT T
2 ’ T ’
we have
1
F@E*Y — F(2*)] < = max ", N), 16a
F@E) = P)| < 7 max r(*, ) (161)
1
AT — || < b1(z*,\). (16b)

max
T max{1, [|A*[|} A<y

3 Accelerating randomized primal-dual block coordinate updates

In this section, we generalize Algorithm 1 to a randomized setting where the user may choose to
update a subset of blocks at each iteration. Instead of updating all M block variables, we randomly
choose a subset of them to renew at each iteration. Depending on the number of processors (nodes,
or cores), we can choose a single or multiple block variables for each update.

3.1 The algorithm

Our algorithm is an accelerated version of the randomized primal-dual coordinate update method

recently proposed in [15], for which we shall use RPDC as its acronym.!

At each iteration, it
performs a block proximal gradient update to a subset of randomly selected primal variables while
keeping the remaining ones fixed, followed by an update to the multipliers. Specifically, at iteration

k, it selects an index set Sk C {1,..., M} with cardinality m and performs the following updates:

argmin(V; f(z%) — AT (\F = Burk), 2:) + gi () + L ||y — 2F |2, if i € Sy,
ﬂj‘?—i_l _ i (17&)
xf, if 1 € Sy
PRl =k 4 Z Ay (aM Tt — o), (17b)
1€Sk
)\k-i-l — Ak o kak+1, (170)

where [, pr. and 7y, are algorithm parameters, and their values will be determined later. Note that
we use Z||z; — 2¥||> in (17a) for simplicity. It can be replaced by a PSD matrix weighted norm

square term as in (7a), and our convergence results still hold.

Algorithm 2 summarizes the above method. If the parameters 5y, pr and 7, are fixed during all the
iterations, i.e., constant parameters, the algorithm reduces to a special case of the RPDC method

n fact, [15] presents a more general algorithmic framework. It assumes two groups of variables, and each has
multi-block structure. Our method in Algorithm 2 is an accelerated version of one special case of Algorithm 1 in [15].



in [15]. Adapting these parameters to the iterations, we will show that Algorithm 2 enjoys faster
convergence rate than RPDC if the problem is strongly convex.

Algorithm 2: Accelerated randomized primal-dual block coordinate update method for (1)

1 Initialization: choose z!, set A\! =0, let 7' = Az' — b, and choose parameter m
2 for k=1,2,... do

3 Select Sy, C {1,2,..., M} uniformly at random with |Sg| = m.

4 Choose parameters (i, pr and 7.

5 Let 2#+1 « (17a) and A1« (17¢).

6 if a certain stopping criterion satisfied then

7 L Return (zF+1 \k+1).

3.2 Convergence results

In this subsection, we establish convergence results of Algorithm 2 under Assumptions 1 and 3, and
also the following partial gradient Lipschitz continuity assumption.

Assumption 4 Forany S C {1,..., M} with |S| = m, Vsf is Lipschitz continuous with a uniform
constant L,,.

Note that if V f is Lipschitz continuous with constant Ly, then L,, < Ly and Ly; = L. In addition,
if 27 and x only differ on a set S C [M] with cardinality m, then

Pt < Fl@) +{VF () at — 2) + 22t — (15)

Similar to the analysis in section 2, we first establish a result of running one iteration of Algorithm
2. Throughout this section, we denote 6 = ;.

Lemma 3.1 (One iteration analysis) Under Assumptions 3 and 4, let {(z*,\F)} be the se-
quence generated from Algorithm 2. Then for any x such that Ax = b, it holds

E (@@, o, X + (8 — o)l + St — o] (19)
% Ly,
< (1= O [@(*, 2, A%) + Bellrt|? + Sla* — 2] —E [Anu_mm<x’f“,xﬂm> - ket — ok

When p = 0 (i.e., (1) is convex), Algorithm 2 has O(1/t) convergence rate with fixed B, pk, M-
This can be shown from (19), and a similar result in slightly different form has been established
in [15, Theorem 3.6]. For completeness, we provide its proof in the appendix.



Theorem 3.2 (Un-accelerated convergence) Under Assumptions 1 and 4, let {(x*,\¥)} be
the sequence generated from Algorithm 2 with B = B, pr = p,mx = 1 for all k, satisfying

0<p<0B, n>Ly+BlA3

where ||All2 denotes the spectral norm of A. Then

P * 1 *
[E[F(z") — F(z")]] < THoE—1) p2(z”, A), (20a)

E[|Az’ — b < ax ¢o(z*, A), (20b)

1
(1+0(¢ — 1)) max{L, [N*[[} NI<

where (%, \*) satisfies the KKT conditions in (4), v = max{||2X\*||, 1 + || \*||}, and

t k
P = I ) = (1-0) (P — Fl@) + Dt~ +

OlIA]I?
1+0(t—1) '

2p

When F is strongly convex, the above O(1/t) convergence rate can be accelerated to O(1/t?) by
adaptively changing the parameters at each iteration. The following theorem is our main result.
It shows an O(1/t?) convergence result under certain conditions on the parameters. Based on this
theorem, we will give a set of parameters that satisfy these conditions, thus providing a specific
scheme to choose the paramenters.

Theorem 3.3 Under Assumptions 3 and 4, let {(x*, \F)} be the sequence generated from Algorithm
2 with parameters satisfying the following conditions for a certain number kq:

Ok +ko+1) > 1,Vk>2, (21a)
(Br—1 — pe—1)(k + ko) = (L—=0)(k+ko+1)Bk, V2<k <t, (21b)
9(1<:+k:0+1)—1 > 9<k+k0+2)_1,VZ§k§t—1, (210)

Pk—1 Pk
Ot +ko+1) — 1 > t+/<:0+17 (214)

Pt—1 Pt

Br(k+ko+1) > Br_1(k+ ko), Vk > 2, (216)
(k+ko+ 1) — L) = Brlk+ko+1)ATA, Vk > 1, (21f)
(k+ko)ym—1 + p(0(k + ko +1) = 1) > (k+ko—+ 1)nx, Vk > 2. (21g)

Then for any (z,\) such that Ax = b, we have

t
(t+ ko + DED(@T 2, 0) + > (0(k + ko + 1) — 1)E® (2", 2, \)

k=2
k 2
< (1= 0)(ko +2)E [0’ 2, A1) + Bulr!? + L2 — 22| + Wﬁuxl —z|?
0(ko+3) — 1 t+ko+1
T BIN AP = Bt =l (22)

10



Specifying the parameters that satisfy (21), we show O(1/t?) convergence rate of Algorithm 2.

Proposition 3.4 The following parameters satisfy all conditions in (21):

w0k 42 +6)
=1 _ ‘ Vi>1 23
= oA 2t .
(60—’;;9)’ for1<k<t-—1,
Pk = (t+ko+1)ps—1 k= (23b)
O(t+kot1)—1° for k=t
Mk = pBrl|AllS + Lun, VE > 1, (23¢)

where p > 1 and
(24)

Theorem 3.5 (Accelerated convergence) Under Assumptions 1, 3 and 4, let {(z*, \F)} be the
sequence generated from Algorithm 2 with parameters taken as in (23). Then

1

1
E[F(z) - F < — max ¢3(x*, A\ E||AzttT —p|| < max ¢@g(x*, A
[BFG) - PG| < 3 max dale”, N, E] | e s Gl ), (29
where v = max{2||\*||, 1 + [|[\*||},
1 koDt 457, (0(k + ko + 1) — 1)at

T

T )
Ga(@, ) = (L=0)(ko+2) [F(a') = F(2) + Bl |2 + Slla" = 2]
+7]1(/€0 +2) Hﬂfl B xH2 n O(ko+3)—1

b 2
] DLy

and .
T=(t+ko+1)+> (0(k+k+1)—1).
k=2
In addition,

2¢3(x*, \¥)

Enxt—l—l _ :E*||2 < : ]
(t+ ko +1) <%(9t+9+2) +2,u+Lm)

4 Linearly convergent primal-dual method

In this section, we assume some more structure on (1) and show that a linear rate of convergence is
possible. If there is no linear constraint, Algorithm 2 reduces to the RCD method proposed in [31].
It is well-known that RCD converges linearly if the objective is strongly convex. However, with
the presence of linear constraints, mere strong convexity of the objective of the primal problem

11



only ensures the smoothness of its Lagrangian dual function, but not its strong concavity. Hence,
in general, we do not expect linear convergence by only assuming strong convexity on the primal
objective function. To ensure linear convergence on both the primal and dual variables, we need
additional assumptions.

Throughout this section, we suppose that there is at least one block variable being absent in the
nonseparable part of the objective, namely f. For convenience, we rename this block variable to
be y, and the corresponding component function and constraint coefficient matrix as h and B.
Specifically, we consider the following problem

M M
min f(x1,...,2n) + > gi(wi) + h(y), s.t. > A+ By =b. (26)

Z,
Y i=1 1=1

One example of (26) is the problem that appears while computing a point on the central path of a
convex program. Suppose we are interested in solving

M
min f(x1,...,25), s.t. ZAZ':EZ' <bx;>0,i=1,..., M. (27)
xT
i=1

Let y=0— Zf\il A;z; and use the log-barrier function. We have the log-barrier approximation of
(27) as follows:

M M
ng[ﬂli;lf(xl, Ce L XA) — ,uZeT log z; — pe' logy, s.t. ZAiazi +y=b, (28)
’ i=1 i=1

where e is the all-one vector. As p decreases, the approximation becomes more accurate.

Towards a solution to (26), we modify Algorithm 2 by updating y-variable after the z-update. Since
there is only a single y-block, to balance x and y updates, we do not renew ¥ in every iteration but
instead update it in probability § = 7;. Hence, roughly speaking, x and y variables are updated in
the same frequency. The method is summarized in Algorithm 3.

4.1 Technical assumptions

In this section, we denote z = (z,y,A). Assume h is differentiable. Similar to (4), a point z* =
(x*,y*, \*) is called a KKT point of (26) if

0€dF(z*) — AT, (32a)
Vh(y*) — BTA* =0, (32b)
Az* + By* —b=0. (32¢)

Besides Assumptions 3 and 4, we make two additional assumptions as follows.

12



Algorithm 3: Randomized primal-dual block coordinate update for (26)

1 Initialization: choose (z',y'), set A! = 0, and choose parameters B, Py Nass Ny M.
2 Let r' = Az' + By' —band 6§ = L

g fork=1,2,...do

4 Select index set Sy C {1,..., M} uniformly at random with |S;| = m.

5 Keep zF ! = xf, Vi ¢ Si and update

i =

:135-CJrl = arg min <V¢f(3:k) — AZ-T(/\k — 5rk),3:i> + gi(x;) + 772—IH:13Z - xk||2, if i € S. (29)

)
i

Let 72 = ok 4 > ies, Ai(zh Tt — 2k,

K3 (2

6 In probability 1 — 0 keep y*T! = ¢*. and in probability 6 let y*t! = gF+1, where
- . 1 n
7 = argminh(y) — (BT OF = gri=),y) + 2y —F 2 (30)
y
Let rkt1 = phts 4 B(yhtl — k),
7 Update the multiplier by
)\k‘-i-l — )\k: _ prk‘-i-l' (31)

if a certain stopping criterion is satisfied then
8 L Return (zF+1 F+1 \k+1),

Assumption 5 There exists z* = (z*,y*, \*) satisfying the KKT conditions in (32).

Assumption 6 The function h is strongly convex with modulus v, and its gradient Vh is Lipschitz
continuous with constant Ly,.

The strong convexity of F' and h implies

F(a*) = F@®) = (VF@),a" —a%) = Dl — a7, (33a)
W =yt VR = Vh(yY) > vl T =yt (33b)

4.2 Convergence analysis

Similar to Lemma 3.1, we first establish a result of running one iteration of Algorithm 3. It can be
proven by similar arguments to those showing Lemma 3.1.

Lemma 4.1 (One iteration analysis) Under Assumptions 3, 4, and 6, let {(z*,y*, \¥)} be the
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sequence generated from Algorithm 3. Then for any k and (x,y, \) such that Ax+ By = b, it holds
1
Ep(z"",2) + (8 = p)EIr*T | + ZEANT, A, )

Ly,

+E |Ap(aFtt 2 2) — -

[+ = 22| + BG4, )

S (1= OBp(*,2) + 51— OBIH? + T TEANE X )
p

+BE(A(L T — ), By* — ")) + B(1 - OE(B* —y), AT —a*)). (34
where P =n,I — BATA, Q = Nyl — BB B, and
p(2*,2) = F(a*) - F(z) + gw —z® + (" —y, V")) — (A, Ae¥ + By —b).  (35)

In the following, we let
V(" 2%) = F(a¥) = F(a*) = (VF(2"), 2" —2*) + (" —y", VA(y") = VA(y)), (36)
and
W(z*, 2" P,Q, B, p,c.7)

= (1-0)EV(*, %) + M

1 . o 1 )
B [0 = X = (1 T G T ). (37)

1 1
k k * k *
EllrH|? + SElle* — 25, oy + 5EWF 5712, sumar o

The following theorem is key to establishing linear convergence of Algorithm 3.

Theorem 4.2 Under Assumptions 3 through 6, let {(z*,y* \F)} be the sequence generated from
2 2
Algorithm 3 with p=08. Let 0 < a < 0 and v = max{8||A||2 81l Bllz } Choose 6,k > 0 such that

ap 7 oav

o 1-0
i[1_9 5—(1—9)]’ 38)

1-(1-0)(1+6) (1-0)(1+90)
1-0)(1+6) w—(1—0)1+0)

and positive numbers 1,,ny, ¢, T1, T2, 3 such that
P = Bl-0nATA+L,I (39a)
1
Q = 8cQ'Q +4cp*(1—6)(1+ E)BTBBTB + 871 B'B. (39b)

Then it holds that

1 1
(1-— a)E\II(zkH,z*) + §E|]xk+1 — x*”z + iEHka

* (12
P+(%+M)I—%ATA y HQ+(3O‘T"—8cLi)I

+(¥ + %)EHMM‘P — <cp2 (k+2(1—-6)(1+ %)) +2¢(8 — p)2> E||BT |2

1 1
+ (5 + gamin(BBT)> E [le = AP = (L= O)IAF = AT 4 A - )\kH2]
< W PQ B p ). (40)
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Using Theorem 4.2, a linear convergence rate of Algorithm 3 follows.

Theorem 4.3 Under Assumptions 3 through 6, let {(z*,y* \F)} be the sequence generated from
2 2

Algorithm 3 with p = 05. Let 0 < a < 0 and v = max{8||A”2 8”3”2}. Assume that B is full

row-rank and max{||Al|2, ||Bll2} < 1. Choose 6, k, 13,1y, ¢, 5,71, T2 satisfying (38) and (39), and in

addition,
a B
a B 41
ght+on > n e
3av ﬁ(l—@)
i deLj + ——= b
I (41b)
1
Lo <ﬁ+2<1_9><1+5>>+2c<ﬁ—p>2- (41¢)
Then 1
1/1(Zk+172*;P,Q7ﬁ7P7 C, 7—2) S Ew(2k72*;P7Q757p7 c, T2)7 (42)
where
~ min{ "¢ JF%MJFHM_TAi +%TV_4CL%_6(21—T_20)
U 1-0"" " na+pl-0) w4 20
T2

1+%_2wﬂg+%1—wu+§n—4dﬁ—m2
A1 —0)

, 1+ cpamin(BBT)} > 1.

We finish this section by making a few remarks.

Remark 4.1 We can always rescale A, B and b without essentially altering the linear constraints.
Hence, the assumption max{||Al,||B|l2} <1 can be made without losing generality. From (42), it
is easy to see that when P = 0 and Q = 0, (z¥,y*) converges to (x*,y*) R-linearly in expectation.
In addition, note that

IARFE = X2 — (1 = 0) A" — X)) + %HA’“H — M|
1
_ HH/\k—l—l o )\*H2 + 2(1 o 9)<)\k+1 o /\*’/\k—l—l o )\k> + (_ — 14+ H)H/\k—l—l o )\kH2

0
1—-6)? .
> (9——5 & )uwl—w
119

0 :
= T I X
0

Hence, (42) also implies an R-linear convergence of \E to \* in expectation.
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Remark 4.2 We give examples of parameters that satisfy the conditions required in Theorem 4.3.
First consider the case of 0 = 1, i.e., all blocks are updated at each iteration. In this case, we
can choose § = 0,k = 3 to satisfy (38) and n, = B||Alj3 + Ly to 2satisfy (39a) and let o = 5 and
T = g to ensure that (41a) holds. Finally, choose n, > (B + %)HBH% and ¢ sufficiently small,
and all other conditions in Theorem 4.3 are satisfied. Next consider the case of 0 < 1. We can

2p3(1—6
g’ﬁ:ﬁ Ty = B( )’

choose § = ﬁ and k = 3 + 32 — 2 to satisfy (38), and let a = o -
ne = B(L+ (1 — 0)72)||All3 + Ly, and n, > B(1 +71)|B||3. With such choices, all other conditions

required in Theorem 4.3 hold when c is sufficiently small.

Remark 4.3 If there is only one x-block and there is mo f function, then Algorithm 3 reduces
to the so-called linearized ADMM. To show the linear convergence of the linearized ADMDM, one
scenario in [13, Theorem 3.1] assumes® the strong convezity of g and h, the smoothness of h, and
the full row-rankness of B. In Theorem 4.3, we make the same assumptions, and so our result can
be considered as a generalization.

5 Numerical experiments

The aim of this section is to test the practical performance of the proposed algorithms. We test
Algorithm 2 on quadratic programming

1
min F(x) = §xTQ:E +c'x, st Az =b, x>0, (43)
x

and Algorithm 3 on the log-barrier approximation of linear programming

minc'z —e' logz —e' logy, s.t. Az +y = b, z; < u;, Vi. (44)
m7y

Quadratic programming. Two types of randomized implementations are considered: one with
fixed parameters and the newly introduced one with adaptive parameters, which shall be called
nonadaptive RPDC and adaptive RPDC respectively. Note that the former reduces to the method
proposed in [15] when applied to (43). The purpose of the experiment is to test the effect of
acceleration for the latter approach.

The data was generated randomly as follows. We let Q = HDH' € R™ ", where H is Gaussian

L—1
n—1"

1,...,n. Hence, the smallest and largest singular values of () are 1 and L respectively, and the

randomly generated orthogonal matrix and D is a diagonal matrix with d; =1+ (i — 1) 1=

objective of (43) is strongly convex with modulus 1. The components of ¢ follow standard Gaussian
distribution, and those of b follow uniform distribution on [0,1]. We let A = [B,I] € RP*" to

?Besides the scenario that g and h are strongly convex, h is smooth, and B is of full row-rank, [13, Theorem 3.1]
also shows linear convergence of the linearized ADMM under three other different scenarios.
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Figure 1: Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving
(43) with problem size n = 2000, p = 200 and condition number 10. The latter uses different penalty
parameter 3. Top row: difference of objective value to the optimal value |F(2*) — F(z*)|; bottom
row: violation of feasibility ||Az* — b].

guarantee the existence of feasible solutions, where B was generated according to standard Gaussian
distribution. In addition, we normalized A so that it has a unit spectral norm.

In the test, we fixed n = 2000, p = 200 and varied L among {10, 100,1000}. For both nonadaptive
and adaptive RPDC, we evenly partitioned z into 40 blocks, i.e., each block consists of 50 coordi-
nates, and we set m = 40, i.e., all blocks are updated at each iteration. For the adaptive RPDC, we
set the values of its parameters according to (23) with p = 1, and those for the nonadaptive RPDC
were set based on Theorem 3.2 with p = 3, n = 100+, Vk where /3 varied among {1, 10, 100, 1000}.
Figures 1 through 3 plot the objective values and feasibility violations by Algorithm 2 under these
two different settings. From these results, we see that adaptive RPDC performed well for all three
datasets with a single set of parameters while the performance of the nonadaptive one was severely
affected by the penalty parameter.

Linear programming. In this test, we apply Algorithm 3 to the problem (44), where we let f(z) =
c'z,g(x) = —e logz and h(y) = —e' logy. The purpose of this experiment is to demonstrate the

linear convergence of Algorithm 3.

We generated A € R200%2000 and ¢ according to the standard Gaussian distribution and b by the
uniform distribution on [%, %] The upper bound was set to u; = 10,Vi. We treated = as a single
block and set the algorithm parameters to 8 = 0.1, 7, = 8| A||3, and 1, = B(l + %). This
setting satisfies the conditions required in Theorem 4.3 if « is sufficiently close to 1. Note that
g and h do not have uniform strong convexity constants but they are both strongly convex on a
bounded set. Figure 4 shows the convergence behavior of Algorithm 3. From the figure, we can

clearly see that the algorithm linearly converges to an optimal solution.
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Figure 2: Results by Algorithm 2 with adaptive parameters and nonadaptive parameters for solving
(43) with problem size n = 2000,p = 200 and condition number 100. The latter uses different
penalty parameter 3. Top row: difference of objective value to the optimal value |F(z*) — F(z*)|;

bottom row: violation of feasibility ||Az* — b].
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Figure 4: Results by Algorithm 3 on the problem (44) with A € R200%2000 " Teft: difference of
objective value to the optimal value |F(z*) + h(y*) — F(2*) — h(y*)|; Right: violation of feasibility
|Az* + By* — b]|

6 Conclusions

In this paper we propose an accelerated proximal Jacobian ADMM method and generalize it to an
accelerated randomized primal-dual coordinate updating method for solving linearly constrained
multi-block structured convex programs. We show that if the objective is strongly convex then the
methods achieve O(1/t?) convergence rate where ¢ is the total number of iterations. In addition, if
one block variable is independent of others in the objective and its part of the objective function
is smooth, we have modified the primal-dual coordinate updating method to achieve linear conver-
gence. Numerical experiments on quadratic programming and log-barrier approximation of linear
programming have shown the efficacy of the newly proposed methods.
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A Technical proofs: Section 2

In this section, we give the detailed proofs of the lemmas and theorems in section 2. The following
lemma will be used a few times. Note that when S = [M], the result is deterministic.

Lemma A.1 Let S be a uniformly selected subset of [M] with cardinality m and x° be a vector
independent of S. Suppose xT is a random vector dependent on S and its coordinates out of S are
the same as z°. Let B € R, \° and r° be vectors independent of S, and W a positive semidefinite
M x M block diagonal matriz. If

Vsf(@®) + Vgs(a§) — Ag(\° = Brf) + Ws(a§ — %) =0,
then for any x, it holds that
Es [Pa*) = P@) + Sl — o) = (Ala* = )0 = r°)]
< (1-0) [F@?) ~ Fla) + 5o = 2l — (Aa” — ).~ 5r")| (15)
L [ Farey [

where 0 = 11, Ly, is given in Assumption 4, and the expectation is taken on S.
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Proof. For any x, we have
(2% — w5, Vs f(@®) + Vgs(a}) = AT = Br°) + Ws(ah —2%)) = 0.

We split the left hand side of the above equation into four terms and bound each of them as below.
First, we have

s{zd — x5, Vsf(z°)
=Eg(z" —2°, Vf(2°)) + Eg (2% — x5, Vs f(z°))
> Bs | 1)~ 1) - St =P |+ 617) - )
— B [£(a") = f2) — Tl = a7 | - (1= )7 e7) - Sl (46)

where the first equality uses the fact xj =9, Vi € S, and the inequality follows from the uniform
distribution of S, the convexity of f, and also the inequality (18).

Secondly, it follows from the strong convexity of g that

(28 - w5, Vgs(a})) = gs(a}) — gs(as) + > Lz - il (47)
€S

Since gs(z§) —gs(zs) = g(x™) —g(2°) +g5(2%) — gs(zs) and Es[gs (2%) — gs(xs)] = 0[g(x°) — g ()],
we have

Eslgs(z§) — gs(zs)] = Eslg(a™) — g(a”)] + 0[g(2°) — g(2)]
= Eslg(a™) —g(@)] — (1 = 0)[g(2°) — g(=)]. (48)

Similarly, it holds Eg Y .cq 5llaf — il]* = & (Eglla™ — 2||* — (1 — 0)[la° — z||?) . Hence, taking
expectation on both sides of (47) yields

Es <<E§’ —zg, @gs($§)>

> Es [g(at) = g(@) + Sl —al?] = (1= 0) [9(e") = g(@) + Slla” —al?] . (49)

Thirdly, by essentially the same arguments on showing (48), we have
Es <g;; ~ag, — ATV — ﬁr°)> = —Eg(A(xt —2),A° = Br°) + (1 — 0)(A(2° — ), \° — Br°). (50)

Fourth, note (& — zg, Wg(z§ — 2%)) = (x+ — 2, W (2 — 2°)), and thus by (6),

o 1 o o
Es (vg —ws, Ws(zg —a3)) = 5Es [[l2" - zllfy = lla® = 2lffy + ll27 — 2l ] - (51)

The desired result is obtained by adding (46), (49), (50), and (51), and recalling F' = f + g. O
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A.1 Proof of Lemma 2.1

From (7a), we have the optimality condition
Vf(a*) — AT = Bpr?) + V(e ) + PR —2%) = 0.

Hence, for any = such that Az = b, it follows from the definition of ® in (3) and Lemma A.1 with
S = [M], z° = a* Xo =\ B = By, 2t = 2**1 and W = P* that

Ok 2, \) < <A:1:k+1 b N~ ﬁkrk> _ <Axk+1 —p, A>

1
— 5Es [0 = 2l — ok = alde + o = aF R, ] (52)
Using the fact AF1 = A\ — pp(AzF+1 — b), we have

<Axk+1 bk >\> plk <)\k AR Nk /\>

6 1

= g LI = AR = I X - AR (53)

ko= ph _ phtl g phtl — pktl _ g(gk+1 — 2F) and have

In addition, we write r

<Axk+1 — b, —Bkrk>
_ 5k‘|7”k+1“2 _|_5k <A(3§k+1 - aj),A(ajk'H o ﬂjk)>

D Bl 2 4 2 AR - I - 1A - D) +IAEE -] ()

Substituting (53) and (54) into (52) gives the inequality in (8).

A.2 Proof of Theorem 2.2

First, we have

t
> IS0 L = X — A — X1 ]
= 2py,

ko +

t+ko+1 k+ky+1 k‘ ki
- 2 kot L), WIHQ+Z< L ) e
2m 2p pet 200 20k
(10) ko + 2
< B2 (55)
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In addition,

t
k+ko+1 k k 2
=3 R (ot ol s — 2t 2l m)
k=1

ko +2
et

t+Fko+1
2 t+1 2
—llpgara = e g ar A

t
1 k
= ((k ko + Dlla¥ — 2l 2y 4ma — (k+ ko)lla* — $||§)k,1_ﬁk71ATA+H,)

k=2
1) ko +2 t+ko+1
< THazl _foDl_BlATA— f\\wt“ _xugﬁ_ﬁtATAwl. (56)

Now multiplying &k + ko + 1 to both sides of (8) and adding it over k, we obtain (12) by using (55)

and (56), and noting [|A* — M2 = p2[[r5F1|2 and [|* T — 2F]12, oAT AL, 2 O

A.3 Proof of Theorem 2.3
From the choice of kg and the condition P — AT A < £1, it is not difficult to verify
(k + ko + 1) [kp —kBATA + Lff] < (k + ko) [(k )P — (k—1)BATA+ (Ls + u)[] k> 1.

Hence, the condition in (11) holds. In addition, it is easy to see that all conditions in (9) and (10)
also hold. Therefore, we have (12), which, by taking parameters in (14) and z = x*, reduces to

t t
. k(k 4 ko + 1
;kJrkoJrl k+1,x,A)+Z( 5 ) gl 2

k=1
t+ k‘o +1 " "
+f”$t+1 — T H?(P—BATA)-l-(Lf-‘r,u)I < gbl(ﬂj 7)‘)7 (57)
where we have used the fact \! = 0.

Letting A = \*, we have from (5) and (57) that (by dropping nonnegative ®(2*+1 2* \*)’s):

t+ko+1 t+ko+1
w | t+1‘|2+70”$t+1

d > = @i popar s ey emr S 1A,

which indicates (15). In addition, from the convexity of F' and (57), we have that for any A, it
holds w@(ft+l,$*, A) < ¢1(x*, N), which together with Lemmas 1.2 and 1.3 implies (16).

B Technical proofs: Section 3

In this section, we give the proofs of the lemmas and theorems in section 3.
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B.1 Proof of Lemma 3.1

From the update in (17a), we have the optimality condition:
Vs, f(@") = A5 (" = Bir®) + Vs, (a5 +m(ag —2§,) = 0. (58)
It follows from the update rule of A that
C(AZFH b AR = (AR ALY Y2,

Plugging (54) and the above equation into (45) with S = Sy, A\° = A\F, 8 = B, 2° = 2F, 2t = 2F 1
W = nil, and x satisfying Ax = b, we have the desired result by taking expectation and recalling
the definition of A in (2) and @ in (3).

B.2 Proof of Theorem 3.2
Let By = B3, px = p and 1 = 1 in (19), and also note p = 0 and n > L, + B||A|>. We have
E @@ 2, X4 + (8 p)Ir+1 7]
< (1= 00 [B(a, 2,4 + BIrH12] — 3B [~ al2 4y — ot — 12y _gara]

Summing the above inequality over k = 1 through ¢ and noting p < 673 give

t—1
E[®( 2, A 4+ (8 = p)[rTH1P] + 0 ER T 2, A (59)
k=1

1
< (1=0E[@(z!,z,\") + B[r|°] + §||w1 — |2 _gara

By the update of A, it follows that

1
ezq)(l‘k—i—l,iﬂ,)\k—i—l) _ 02 |:(I)( k+1 l‘,)\) _<>\k+1 A, )\k+1 _ )\k>:|
k=1 k=1 P
t—1 0 t—1
_ k1 g v E+1  y112 vk v 12 k41 k|2
—0> o g D I A = IV = X R 3P

=1

t—1
||At AP = AT = A2 AR - W]( 0)
k=1

and

O(z 2, N = (2t 2, \) — (A = X — prt Lt
= Oz 2, A) = (A = A ) 4|l 2 (61)



Since p < 05, by Young’s inequality, it holds
0
BHrt 1H2 — <)\t - )\,rt+1> + —2p|])\t — )\H2 > 0.

Then plugging (60) and (61) into (59), we have
t—1
E® (2", 2, 0) + 0 ED(aF 2, ))
k=1

1 0
< (L= 0B[22, X) + 81! IP] + 5lle’ — 2l _para+ 5oEIN - A
< E¢2($7/\)7 (62)
1H2

where in the last inequality we have used A = 0, > 0 and ||r |zt — xHBATA

Therefore, from the convexity of F, it follows that E®(z",2*,\) < 7 +9 1y Ed2 (z*,\), YA, and we

obtain the desired result from Lemmas 1.2 and 1.3.

B.3 Proof of Theorem 3.3

We first establish a few inequalities below.
Proposition B.1 If (21e), (21f) and (21g) hold, then

t
L
Z (k+ko+1E [AnkI_BkATA(a:kH,xk,x) |k — )2

-
+ko+1 L0k +ko+1)—1
RIS ot Dot — gt - 3o £OETRED D)o
k=2
m (ko + 2) (t+ko+1)
< ME g gpp ERF Vg g aara (63)

Proof. This inequality can be easily shown by noting that for any 1 < k£ < ¢, the weight matrix of
Sl — a¥(% is By (k + ko + 1) AT A — (k+ ko + 1)(nk — Ly,)I, which is negative semidefinite, and
for any 2 < k < t, the weight matrix of 3[2* — z|? is

[Be—1(k + ko) — Be(k + ko + 1)JAT A+ [(k+ ko + 1)k — (k + ko)mk—1 — p(0(k + ko + 1) — 1)] I,

which is also negative semidefinite. O

Proposition B.2 If (21a), (21c) and (21d) hold, then

t
_tthkotl 1EA()\t+1, OIS Ot ko+1) = 1EA(>\’“, AP
Pt 2 Pk—1
-1
< Wt Zlp e (64)
2p1



Proof. On the left hand side of (64), the coefficient of each %[[A**! — A¥||2 is negative. For

2 <k <t—1, the coefficient of 1[|A\F — A||? is 6(k+k£:2)_1 - 6(k+pk£:1)_l

: . 6(t+ko+1)—1 S . .
coefficient of 3[|A"— A||? is tHZ‘zH & +pf: )=1 which is nonpositive; the coefficient of LA — A2
is also nonpositive. Hence, dropping these nonpositive terms, we have the desired result. ]

, which is nonpositive; the

Now we are ready to prove Theorem 3.3.
Proof. [of Theorem 3.3]
Multiplying k + ko + 1 to both sides of (19), summing it up from k& = 1 through ¢, and moving the

terms about ®(2*,z, \*) + &|2* — z[|> and ||r*||? to the left hand side for 2 < k < t give

(t+ ko + DE [0, A1) + (8 — po)Ir' |2 + Sl — 2]

+Z (k+ko+1)— 1)E [cp(xk,g;, AF) 4+ ngk - xH2]

+Z ((Br=1 = pr—1)(k + ko) — (1 = 0)(k + ko + 1) B ) E["?
k=2

(1= 0)(ko + 2)E [0’ 2,21) + Bu[lr'|? + & 12" - ]/ (65)

IN

t

L

_Z(k + ko + 1)E [Ankl—ﬁkATA(xk-H,xk,‘T) — Tmek+1 _ ka2:| .
k=1

Hence, from (21b) and (63), it follows that

t
(t+ ko + DER (2 2, XY 43 (0(k + ko + 1) — 1)EQ(aF, 2, AF)
k=2

< (1= 0)(ko + 2B [2(z", 2, X) + ol + £ 1" — o] (%)
771(k0+2) 1 2 t"‘k()"_]. 1 2
+ fE”x - .Z'H - TEH t+ - xH(LH‘Ut)I_BtATA'
In addition, from the update of A in (17¢), we have
1 1
<)\k+1 - )\,Axk“ - b> — __<)\k+1 -\ )\k+1 o )\k> — __A()\k—l—l,)\k,)\), (67)
Pk Pk
and thus
t
(t+ ko + DEAT — X\, Az —b) 4>~ (0(k + ko + 1) — I)E(N* — X, Az¥ — b)
k=2
t
1 1)—1
AL R YNGUSIUS VI LG R Bk VNS USUS Y
Pt 2 Pk—1
649 O(ko+3)—1
< Mot g e
2p1
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Since ® (2, z,\) = ®(zF 2, \¥) + (\F — X\, Az¥ — b), we obtain the desired result by adding the
above inequality to (66). O

B.4 Proof of Proposition 3.4

Note that (24) implies kg > 3, and thus (21a) must hold. Also, it is easy to see that (21d) holds
AT A
IA113

with equality from the second equation of (23b). Since I > , we can easily have (21f) by

plugging in S and 7 defined in (23a) and (23c) respectively.

To verify (21c), we plug in pj, defined in the first equation of (23b), and it is equivalent to requiring
that for any 2 <k <t —1
O(k+ko+1) -1 - Ok +ko+2)—1 O(ko+1)—3 - 1+9(k0+1)—3

1+ —— _—
k-1 +2+6 — Ok+2+60 T ek+2 T ohy210

The inequality on the right hand side obviously holds, and thus we have (21c¢).

Plugging in the formula of S, (21e) is equivalent to
Ok +24+0)(k+ko+1) > (0k +2)(k + ko),

which holds trivially, and thus (21e) follows.

With the given 84 and py, (21b) becomes 5 (0k+2)(k+ko) > (k+ko+1)(0k+2+0), V2 < k < ¢,

which is equivalent to 6_659 > Ezgiggggigg Note that igig is decreasing with respect to kg > 0 and
6 (3+3)(30+2)

also g5 > ra)eer2)” Hence, (21b) is satisfied from the fact kg > %.

Finally, we show (21g). Plugging in 7y, we have that (21g) becomes

[ [
(k + ko) <§(9k+2)+Lm> (0 + ko +1) = 1) > (k+ ko + 1) <§(Ok+2+9)+Lm> Yk > 2,
which is equivalent to ko +1 > 5 + 25/—/:”. Hence, for ko given in (24), (21g) must hold. Therefore,

we have verified all conditions in (21).

B.5 Proof of Theorem 3.5

From Proposition 3.4, we have the inequality in (22) that, as A! = 0, reduces to

t
(t+ko + DEQ(@ 2, 0) + Y (0(k + ko + 1) — 1)EQ(zF, 2, \)
k=2
t+ko+1

< ¢3(337)‘) - 9

EH:Et_Fl o :I:H?H"r??t)[—ﬁtATA' (68)
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For p > 1, we have
(n+n)I — BATA = <%(9t+0+2)+u+Lm> I. (69)
Letting x = x* and using the convexity of F', we have from (68) and the above inequality that
E[F@E*) — F(a*) — (\ AT —b)] < %mg(gg*,x), W, (70)

which together with Lemmas 1.2 and 1.3 with v = max(2[|\*[|, 1 + ||\*||) indicates (25).

In addition, note
(@t 2" X 2 Bl — a2

Hence, letting (2, \) = (z*,\*) in (68) and using (5), we have from (69) that

t+ko+1 [((p—1)p
2 2p

(0t + 6 +2) + 24 + Lm> B[z — 2%||2 < ¢g(2*, \*), (71)

and the proof is completed.

C Technical proofs: Section 4

In this section, we provide the proofs of the lemmas and theorems in section 4.

C.1 Proof of Lemma 4.1
Note 7¥+1 — ¢k = A(zh+1 — 2F) + B(yF*! — y*). Hence by (6), we have

<A(xk+1 — 1), _5rk> - _3 <A(3§k+1 _ $)’rk+1> 48 <A($k+l —2), Byt — yk)> 2
+ 2 1A 2 — JAGH — )P + 4G - b)) "

In addition, (A(zFT! —z), \F) = (A(zF+ —2), \FTL + prh+l). Plugging this equation and (72) into
(45) with z° = 2% \° = \F, ot = 251 W = 5, T and taking expectation yield

E [F(W) ~ F(z) + ngkH — a2 = (AR = 2), MY (8 — p) (AR — ), r’f“ﬂ
+ 5B (I = alfh — ot = o+ b~ aHB ]
<(1-0E [F(xk) — F(z) + guxk — 2| = (A" — 2), Ak - ﬁr'ﬂ (73)
+ BE (A" — 2), B — ),
where P = n,I — BAT A.
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From (30), the optimality condition for g*+! is
Vh(GET) — BTAF 4 BBTrET3 4 (751 — k) = 0. (74)
Since Prob(y**! = §#+1) = 6§, Prob(y**! = y*) = 1 — 0, we have

1
E <yk+1 _ y,Vh(yk“) _BTA IBBTTIH—Q + ny(yk—l—l _ yk)>
= (1= O)E(y" —y, Vh(y") — BTN + 8BTr3),

or equivalently,

E <yk+1 _y, Vh(yk—i-l) _ BTk 4 (8 — p)BTrk-i-l _ ﬁBTB(ka _ yk) i ny(yk-i-l _ yk)>
= (1= O)E(y* —y, Vh(y") — BTN + BBTr*) + 51 — 0)E (B — ), A1 — b)) . (75)

Recall Q = n,I — BBT B. We have
1
(4! =y =BBT B =) 4,0 b)) = 5 Iy = wld — Iy — ol + Iy = oF113)

Therefore adding (75) to (73), noting Ax + By = b, and plugging (67) with pr = p, we have the
desired result.

C.2 Proof of Theorem 4.2

Before proving Theorem 4.2, we establish a few inequalities. First, using Young’s inequality, we
have the following results.

Lemma C.1 For any 1,1 > 0, it holds that
x 1 x 1
(A —2%), By — b)) < 2—ﬁ|’A(xk+1 —a")|* + EHB(yk“ -y (76)

X 1 X T2
(By* —y*), A(z"t! — 2F)) < 2—72||B(yk —y)|I* + 5\|A($k+1 —2F)|2. (77)

In addition, we are able to bound the A-term by y-term and the residual r. The proofs are given
in Appendix C.4 and C.5.

Lemma C.2 For any d > 0, we have

E|BT(\ =22 = (1 - 0)(1 + O)E|BT (A — A2
< AE[LZ T — ot + QT — ) 12] + 2(8 — p)’E||B TR 2 (78)

1
+2p%(1 = 0)(1+ DE[| BT +|BTBy* = "))
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Lemma C.3 Assume (38). Then
Umin(BBT) % « 1
—E (I = P = (1= A = T SN ]

< BT AP = A=)+ )[BT = AP+ k| BTATE A2 (79)

where amin(BBT) denotes the smallest singular value of BBT.

Lemma C.4 Let ¢, 0,1, and k be constants satisfying the conditions in Theorem 4.2. Then
BE(A@"! — %), B/ — ")) + B(1 - O)E(B(Y" — y"), A" - o))
c N N 1
+ §Umin(BBT)E[HA’”1 = NP = (=N = NP+ EIWH — 217

1
< Impett bz, DEjAE - o) (20)
2 27’1
1 B(1—06 . .
+ gl*i\ly’“+1 — M5 + (272 )EIIB(y'“ — y")|1? + 4cLZE ||y — |2

- [cp2 </£ +2(1-0)(1+ %)) + 2¢(B — p)2] E||BTrr+1) 2.

Now we are ready to show Theorem 4.2.
Proof. [of Theorem 4.2]

Letting (z,y,\) = (z*,y*, \*) in (34), plugging (32) into it, and noting Az* + By* = b, we have

* * L
EU(z"2%) + (8 — )l ? +E | Ap(a*Hh 2, a%) — |2 — o)

2
1
FEAQ( o y7) + GBI - ot + SEAGKTL A XY
< (1= ORVGH )+ 61— OB + T TEAnt 11, x) 4 LU Dk oo
HAE(A(2H = 2*), By" ! —yh) + (1L - OE(B(* — "), A" —ah)), (81)

where VU is defined in (36). Note

%A(Ak“,)\k,A*)

N T T Y ko oae2 .y Liyker kg2 Pl k+12_£ E yx)2
= 5, [INFF = X2 = (1= )X = AP o N = W] = G = IR = o A = X
and

10 HA(Ak, A=)

p
_i Eoy*2 _ (1 _ k—l_*21k_k—12_£1_ B kz_i E (2
—QP[HA AT = (1 =) AT+ AT = A 1] 5 (5 = (=)l 2pHA A
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Adding (80) to (81) and plugging the above two equations yield

\ . L
BU(H, ) 4 (3 pEIAHP 4 B (et ot a7) = T2t ot

HEAQU ) + GBI =P~ G — DBl — B - X

+ <$ + gamin(BBT)> E[AHE = X2 = (1= 0)[|AF = X*)12 + %H)\k—l—l ]
< (11— OEY(F, 2%) + B(1 - OE|r*|*> - g(g —(1— 0)E|rF|? - %EH)\/& PO

+$E[W N ¢ )| P L L %W — ARL2)

erEHx’g et %Enxk—i—l T — 2_€1E||A($k+1 B

B(1—6)
279

- [cp2 </€ +2(1-0)(1+ %)) + 2¢(B — p)ﬂ E||BTrF+Y2.

1 * *
+=Elly =y 1E + E|By* — y*)|* + 4cL;E|y" T — y*|?
2

Using the definition in (2) to expand Ap (2%, 2% 2*) and Ag(y**1, y*, y*) in the above inequality,
and then rearranging terms, we have

* Pl
EW(F %) + ((B—p) — 5(5 — 1) ) E|lr*tY)2

1
- {Cf (fﬂ +2(1-0)(1+ 5)) +2¢(8 — ,o)ﬂ E||BTrk+L|2
1
+E |:§H$k+l - ZE*H%D + g‘|$k+l _ l‘*||2 - 2/31 HA(l‘k+1 o $*)||2

1 * *
+E |34 = — aeRl - o P

1 c )
=+ Somm(BBT) ) E[IAFFT — A2 = (1 — 0)AF — X*[|2 + AR+ — A2
(2 + Somn(BBT) ) BIN X — (1= O = X[+ I+ = X417

x Pl 1 .
(1= O)BY(,2%) + B(1 — OE[rH” — 55 — (1= O)E|r*|* + SE[2* — [}

p(1—0) B(1-0)
2 279

1 . e 1 _
+%E[HA'“ — NP = @ =)\ =P+ EHA'“ — AP (82)

IN

* 1 * *
- E|z* — z*|% + gEIIy’“ — 5 + E|B(y* —y")|?

Since p = 04, it holds

B-n-LG-0="02 sa—0-La - < 20

and thus the inequality (82) implies

- 1
EW(z5,2%) + %IEHT"C“H2 - [c/ﬂ </€ +2(1—0)(1 + 5)) +2¢(f — p)ﬂ E|BTrk+ |2
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1
HE et = a4 St =0t P - Ak - )

1 *
B |31+ = 57— deLf - oI

2
< ¢(zk7Z*;P7Qvﬁvp7ch2)7 (83)

where 9 is defined in (37).

1 c " " 1
+ (55 Somn(BE ) B[N - NP2 - (1= 0)A% = W[+ A — ¥

From (33), it follows that
* ap * * *
(1= @ U(H, =) 4 LY 4 a7 < W) (34)

In addition, note that

P2 = AR+ By (g + By
< 2\\1‘10|J§|!f€l‘“’1 —z|* + 2HVBH§Hyk+1 —y*|?
< (SFlt =2t 2 4 S - )
4 4
and thus
,U *
Lk < e g Sty (55)
Adding (84) and (85) to (83) gives the desired result. O

C.3 Proof of Theorem 4.3

From 0 < a < 6, the full row-rankness of B, and the conditions in (41), it is easy to see that n > 1.
Next we find lower bounds of the terms on the left hand of (40). Since < =%, we have

n(l — )W (M1 2*) < (1 — a)W(FH 2%). (86)

Note ||A]l2 < 1 and

au B8 ap 8
Qap s +O0u— 5 T g HO0u— o
-+ I>— ol —BA'A) + ——r— (1 — 0)] + (1 — 0)1.
< 2 T 7'1> e + (1 — 9)( A =gy 0
+9N_T£ T .
Hence, from n <1+ m and P =mn,I — BA' A, it follows that
77H33k+1 - ”P—i—u 1-6)1 < ”xk—H €T HP+(Q“+M)I /J’ AT A" (87)
Similarly, since
— 8¢ L2 B(-0) 30cl/ — 8¢ L2 M _ _
2 T,y + T2 le + I T2 T2
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Q=nyl — BB B, and B' B < I, we have

k+1 2
N Q-+ (1*0)BTB S ||y

2

* k+1 * |12
nlly™ ™ =y =Y G 2ar _gerzyr

For the r-term, we note from the definition of 7 that

5(12—9) <=0 1y <cp2(ﬁ+2(1—9)(1+§>) +2@<5—P)2>'

n 5 S

In addition, since ||B|l2 < 1, it holds ||[BTr*+1|| < ||r*+1||, and thus

?’]/8(1 —9)Hrk+1H2 < (5(1 _6)+%)H7’k+1”2—<6p2(/€+2(1 _9)(1 + 1)) +20(5—p)2> HBTT]H_1H2.

2 2 0
(89)
Finally, it is obvious to have
n . . 1
L1t - v = 1= o)t = 4 e = e
1 1 (90)
c * *
< (g5 + omm(BET)) [V < X2 = (1= 6)IN* = W24 1A - 2]
p
Therefore, we obtain (42) by the definition of ¥ and adding (86) through (90).
C.4 Proof of Lemma C.2
Let M+l = \F — p(AzF+1 + BgFt1 — b). Then from the update of y, we have
EHBT(}\k-{—l _/\*)H2 (91)

— B[ BT (W — M)+ (1 0)E[ BT (N — X* — p(Aa*! + Byt — b))
Below we bound the two terms on the right hand side of (91). First, the definition of A**! together
with (74) implies
BN = VA + QM =) + (8- p) BT (A" + Byt ). (92)
Hence, by the Young’s inequality and the condition in (32b), we have

HEHBT(:\IH—I o /\*)H2

93
< EIVHGH) — VA + QT — PP +20(5 — pPEIBT (4 4+ m+ -y
Since Prob(y**! = §#+1) = # and Prob(y**! = ¢*) =1 — 6, it follows that

E|Vh(y* ) — Vh(y*) + Q" — yF)|1?
= 0E||VA(G"™) — Vh(y*) + Q@ — y")|12 + (1 — O)E|Vh(y*) — VA(y")|?,
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and thus
OE|VA(G™ ) = VAy") + QI — ") > < E|IVAY™) = VAy") + Q" — )|
Similarly,
0(5 — p)’E| BT (Az"*! + By —b)|> < (8 — p)’E|| BT (A" + By**! — )%,

Plugging the above two equations into (93) and applying the Young’s inequality and also the
Lipschitz continuity of VA give

OE|| BT (N — A <4E[L7[y" — ' + Q™ — y*)IP] +2(8 — p)°EIIB T r*FH%. (94)
In addition, from the Young’s inequality, it follows for any ¢ > 0 that
* * 1
IBT (N = A" = p(Az™++ By —0))|> < (1+0)|BT (A" = A )H2+p2(1+5)HBT(Awk+1+Byk—b)ll2-

Note ||BT(Az**t + Byk —b)||2 < 2||BTr* % 4+ 2| BT B(y**! — y*)||?. Therefore, plugging (94)
and the above two inequalites into (91), we complete the proof.

C.5 Proof of Lemma C.3

It is straightforward to verify

1B =X = (1= 0) (1 + )BT (A" = A2 + 6] BT A = A2

[ ey T (1= (1—0)(1+0)) (1—6)(1+96) % BBT (AFFL =A%)
T ARk (1—0)(1+90) (k—(1—0)(1+0)) ()\k—i—l_)\k) )
and
ARHL o y* T 0 (1 _ 9) ; AR y*
AL \k (1-6) (% —(1-9)) ® AR+ )k

= I (- - X 4 gl

Hence, we have the desired result from (38) and the inequality U @ V' = opin(V)U ® I for any PSD
matrices U and V.

C.6 Proof of Lemma C.4

From (39a) and (39b), we have

2
B =) F A =M < Sl = 2Mb_y, s

N |
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and

B1

1
4| QM = yP)IIP + 2¢p*(1 - 0)(1 + S)HBTB(Zfchl oI+ 7||B(yk+1 -7

1
< §Hy"”1 — "5

The desired result is then obtained by adding the above two inequalities together with S times of
(76), B(1 — 0) times of (77), ¢ times of both (78) and (79), and also noting \¥+1 — \F = — ppk+1,
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