Skip to main content
Log in

Completely positive tensor recovery with minimal nuclear value

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce the CP-nuclear value of a completely positive (CP) tensor and study its properties. A semidefinite relaxation algorithm is proposed for solving the minimal CP-nuclear-value tensor recovery. If a partial tensor is CP-recoverable, the algorithm can give a CP tensor recovery with the minimal CP-nuclear value, as well as a CP-nuclear decomposition of the recovered CP tensor. If it is not CP-recoverable, the algorithm can always give a certificate for that, when it is regular. Some numerical experiments are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  2. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, River Edge, NJ (2003)

    Book  MATH  Google Scholar 

  3. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. Ser. A 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation. Wiley, New York (2009)

    Book  Google Scholar 

  5. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Derksen, H.: On the nuclear norm and the singular value decomposition of tensors. Found. Comput. Math. 16, 779–811 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dickinson, P.J., Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Comput. Optim. Appl. 57, 403–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J., Zhou, A.: A semidefinite algorithm for completely positive tensor decomposition. Comput. Optim. Appl. 66, 267–283 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J. Funct. Anal. 263, 1682–1700 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedland, S., Lim, L.-H.: Nuclear norm of higher-order tensors. Math. Comput. (2017). https://doi.org/10.1090/mcom/3239

  11. Friedland, S., Lim, L.-H.: The computational complexity of duality. SIAM J. Optim. 26, 2378–2393 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedland, S., Ottaviani, G.: The number of singular vector tuples and uniqueness of best rank one approximation of tensors. Found. Comput. Math. 14, 1209–1242 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Prob. 27, 025010 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldfarb, D., Qin, Z.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35, 225–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hillar, C., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control, Lecture Notes in Control and Information Sciences, vol. 312, pp. 293–310. Springer, Berlin (2005)

  17. Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolda, Tamara G.: Numerical optimization for symmetric tensor decomposition. Math. Program. Ser. B 151, 225–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Landsberg, J.M.: Tensors: Geometry and Applications, Graduate Studies in Mathematics, vol. 128. American Mathematical Society, Providence, RI (2012)

    Google Scholar 

  20. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

    Google Scholar 

  21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasserre, J.B.: A semidefinite programming approach to the generalized problem of moments. Math. Program. 112, 65–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  24. Lim, L.-H.: Tensors and hypermatrices. In: Hogben, L. (ed.) Handbook of Linear Algebra, 2nd edn. CRC Press, Boca Raton, FL (2013)

    Google Scholar 

  25. Lim, L.-H., Comon, P.: Multiarray signal processing: tensor decomposition meets compressed sensing. Comptes Rendus de l’Acadmie des sciences, Series IIB Mechanics 338, 311–320 (2010)

    MATH  Google Scholar 

  26. Lim, L.-H., Comon, P.: Blind multilinear identification. IEEE Trans. Inform. Theory 60, 1260–1280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, Z., Qi, L.: Completely positive tensors: properties, easily checkable subclasses, and tractable relaxations. SIAM. J. Matrix Anal. Appl. 37, 1675–1698 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Marshall, M.: Optimization of polynomial functions. Can. Math. Bull. 46, 575–587 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: Proceedings of The 31st International Conference on Machine Learning, pp. 73–81 (2014)

  30. Nie, J.: The \({\cal{A}}\)-truncated K-moment problem. Found. Comput. Math. 14, 1243–1276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nie, J.: Linear optimization with cones of moments and nonnegative polynomials. Math. Program. Ser. B 153, 247–274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nie, J.: Optimality conditions and finite convergence of Lasserres hierarchy. Math. Program. Ser. A 146, 97–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nie, J.: Symmetric tensor nuclear norms. SIAM J. Appl. Algebra Geometry 1, 599–625 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peña, J., Vera, J.C., Zuluaga, L.F.: Completely positive reformulations for polynomial optimization. Math. Program. Ser. B 151, 405–431 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42, 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Alg. Appl. 439, 228–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi, L., Xu, C., Xu, Y.: Nonnegative tensor factorization, completely positive tensors and an hierarchical elimination algorithm. SIAM J. Matrix Anal. Appl. 35, 1227–1241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Semerci, O., Hao, N., Kilmer, M., Miller, E.: Tensor based formulation and nuclear norm regularizatin for multienergy computed tomography. IEEE Trans. Image Process. 23, 1678–1693 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sidiropoulos, N.D., Nion, N.: Tensor algebra and multi-dimensional harmonic retrieval in signal processing for mimo radar. IEEE Trans. Signal Process. 58, 5693–5705 (2010)

    Article  MathSciNet  Google Scholar 

  41. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. ACM International Conference Proceeding Series: Proceedings of the 22nd international conference on Machine Learning, vol. 119, pp. 792–799 (2005)

  42. Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by copositive projection. Math. Program. Ser. A 143, 211–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sturm, J.F.: Using SeDuMi 1.02: A MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11 & 12, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, C., Luo, Z., Qi, L.: 0,1 Completely positive tensors and multi-hypergraphs. Linear Algebra Appl. 510, 110–123 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yuan, M., Zhang, C.-H.: On tensor completion via nuclear norm minimization. Found. Comput. Math. 16, 1031–1068 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, X., Ling, C., Qi, L.: The best rank-1 approximation of a symmetric tensor and related spherical optimization problems. SIAM J. Matrix Anal. Appl. 33, 806–821 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhou, A., Fan, J.: The CP-matrix completion problem. SIAM J. Matrix Anal. Appl. 35, 127–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the associate editor and anonymous referees for their valuable comments and suggestions. Anwa Zhou is partially supported by the NSFC Grant 11701356, National Postdoctoral Program for Innovative Talents Grant BX201600097 and China Postdoctoral Science Foundation Grant 2016M601562. Jinyan Fan is partially supported by the NSFC Grant 11571234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwa Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Fan, J. Completely positive tensor recovery with minimal nuclear value. Comput Optim Appl 70, 419–441 (2018). https://doi.org/10.1007/s10589-018-0003-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0003-5

Keywords

Mathematics Subject Classification

Navigation