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The robust truss topology optimization against the uncertain static exter-
nal load can be formulated as mixed-integer semidefinite programming. Al-
though a global optimal solution can be computed with a branch-and-bound
method, it is very time-consuming. This paper presents an alternative for-
mulation, semidefinite programming with complementarity constraints, and
proposes an efficient heuristic. The proposed method is based upon the
convex-concave procedure for DC (difference-of-convex) programming. It is
shown that the method can often find a practically reasonable truss design
within the computational cost of solving some dozen of convex optimization
subproblems.
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1 Introduction

Many studies have been done on robust optimization of structures against uncertainty in
external loads. A possibilistic (or bounded-but-unknown) model of uncertainty, assuming
only the set of values that the input data can possibly take, might be useful when
reliable statistical property of uncertainty, which is required for a probabilistic model
of uncertainty, is unavailable or imprecise. With a possibilistic model of uncertainty,
design optimization considering structural robustness against the uncertainty is treated
within the framework of robust optimization [5].

Attention of this paper is focused on robust topology optimization of truss structures
against uncertainty in the static nodal external load.1 Namely, we attempt to find a
truss design that minimizes the worst-case compliance, i.e., the maximal value of the
compliance among the specified set of external loads.2 The seminal work of Ben-Tal
and Nemirovski [7] shows that, based on the conventional ground structure method, this

†Mathematics and Informatics Center, The University of Tokyo, Hongo 7-3-1, Tokyo 113-8656, Japan.
E-mail: kanno@mi.tokyo-u.ac.jp.

1A truss is an assemblage of straight bars (called members) connected by pin-joints (called nodes) that
do not transfer moment. See section 2 for some concrete examples.

2The compliance of a truss, formally defined by (16), is equivalent to the twice strain energy of the
truss at the equilibrium state under the prescribed boundary conditions. It can be regarded as a
global measure of the displacements, and hence by minimizing the compliance the global stiffness of
the truss is maximized.
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optimization problem can be formulated as semidefinite programming (SDP).3 SDP is a
class of convex optimization, and can be solved efficiently with a primal-dual interior-
point method [3, 58]. Closely related formulations of continuum-based robust structural
optimization can be found in [10–13, 15, 24, 55, 56]. Furthermore, nonlinear SDP ap-
proaches to robust structural optimization have been proposed in [21, 23, 25, 32]. This
paper discusses and deals with intrinsic difficulty in robust truss topology optimization.

Suppose that uncertain external forces can possibly be applied to at any nodes, and
that no external force is applied at an intermediate point of a truss member. If the
set of exiting nodes is specified, then the robust truss optimization problem can be
recast as SDP [7]. In this approach, all the nodes in the specified set remain in the
obtained solution. Also, the obtained solution can possibly have some nodes other han
the specified ones, but at such extra nodes no uncertain external force is considered.
Thus, it is difficult to predict in advance the set of existing nodes in the robust optimal
truss. In other words, the uncertainty model of external forces should be treated as a
design-dependent model [31]. This design dependency can be addressed by introducing
0-1 variables to represent the set of existing members in a truss design [59]. The robust
truss topology optimization problem is then formulated as mixed-integer semidefinite
programming problem (MISDP), which can be solved globally with a branch-and-bound
method [59]. Unfortunately, due to large computational cost, this MISDP approach can
be applied only to small-scale problem instances [59].

Another issue that has not been considered in literature on robust truss topology
optimization [7, 31, 59] is the treatment of parallel consecutive members in the ground
structure method. Specifically, in robust truss topology optimization with uncertain
external load, overlapping members in the ground structure are not redundant.4 Such
non-redundancy of overlapping members has also been recognized in truss topology
optimization considering the self-weight load [8, 33] and the member buckling constraints
[22, 39]. Consider the conventional truss topology optimization. It is often that the
optimal solution has parallel consecutive members that are connected by nodes supported
only in the direction of those members. A sequence of such members is sometimes called
a chain [1]. If only the compliance is considered as the structural performance, one can
remove the intermediate nodes and replace the chain with a single longer member. This
procedure is called the hinge cancellation [1, 47]. Since the hinge cancellation does not
change the compliance, overlapping of members in a ground structure can be removed in
advance by deleting the longer member when two members overlap. In contrast, in robust
truss optimization under load uncertainties, a solution having a chain is infeasible,5 while
the one stabilized by hinge cancellation can be feasible. This means that, in general,
a global optimal truss topology cannot be captured without incorporating overlapping

3The ground structure method is commonly used in truss topology optimization. It prepares an initial
setting, called the ground structure, consisting of many members connected by nodes. The cross-
sectional areas of the members are treated as design variables, while the locations of the nodes are
specified. See section 2 for more account.

4With reference to concrete examples, we will thoroughly discuss this issue in section 2.
5A solution having a chain cannot be in equilibrium with uncertain loads applied at intermediate nodes

of the chain. Therefore, the worst-case compliance of the solution is infinitely large.
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members in a ground structure. However, on the other hand, presence of overlapping
members in a final truss design is not allowed from a practical point of view. Therefore,
a special treatment is required in a robust optimization method to prohibit the presence
of overlapping members.

This paper addresses the two difficulties in robust truss optimization explained above:
the design dependency of the uncertainty model of the external load and the necessity
of incorporating overlapping members in a ground structure. Both can be dealt with
by introducing, for each member, a 0-1 design variable indicating whether the member
vanishes or exists. Therefore, the robust truss topology optimization can be formulated
as MISDP; see section 4.2. However, as mentioned before, this approach is applicable
only to problems of small size. In contrast, in this paper we attempt to propose a heuristic
that can often find a feasible solution with a reasonable objective value. Through the
numerical experiments with problem instances having up to about 700 members, it is
shown that the proposed method usually converges after solving only a few dozen of
convex optimization subproblems, and that it finds a practically reasonable solution.

This paper is partially inspired by papers of Jara-Moroni et al. [29] and Lipp and Boyd
[37]. Jara-Moroni et al. [29] present a DC (difference-of-convex) programming approach
to finding a stationary point of linear programming with complementarity constraints;
see also [36, 41] for DC programming approaches to complementarity constraints. A
function is said to be a DC (difference-of-convex) function if it can be represented as
a difference of two convex functions. A DC programming problem is a minimization
problem of a DC function under some inequality constraints, where all the constraint
functions are DC functions. One of well-known local heuristics for finding a local optimal
solution of DC programming is the concave-convex procedure6 [14, 18, 42, 48]. Lipp
and Boyd [37] show that an extension of the concave-convex procedure can serve as an
efficient heuristic for diverse nonconvex optimization problems. For more account on the
DC programming and the concave-convex procedure, see section 3.1 and the references
therein. In this paper, we first formulate the robust truss topology optimization as
semidefinite programming with complementarity constraints (SDPCC). Following an idea
found in [29], we recast this problem as a DC programming problem. A variant of the
concave-convex procedure, which is similar to the one in [37], is then applied to this DC
programming formulation. Each iteration of the proposed method consists of solving an
SDP problem.

The paper is organized as follows. In section 2 we explain intrinsic difficulties in robust
truss topology optimization by using some illustrative examples. Section 3 provides an
overview of the necessary background of the DC programming and the concave-convex
procedure, and presents the general framework of the algorithm used in this paper.
Section 4 briefly reviews the existing MISDP formulation for robust truss topology op-
timization, and extends it to the problem setting with a ground structure incorporating
overlapping members. Section 5 presents a new formulation and solution method for ro-
bust truss topology optimization. Section 6 reports the results of numerical experiments.
Conclusions are drawn in section 7.

6The concave-convex procedure is also known as the convex-concave procedure [37, 60].
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In our notation, we use x> and X> to denote the transposes of vector x ∈ Rn and
matrix X ∈ Rm×n, respectively. For vectors x = (xi) ∈ Rn and y = (yi) ∈ Rn, we write
x ≥ y if xi ≥ yi (i = 1, . . . , n). Particularly, x ≥ 0 means xi ≥ 0 (i = 1, . . . , n). The
Euclidean norm of x is denoted by ‖x‖ =

√
x>x. We use 1 = (1, 1, . . . , 1)> to denote

the all-ones vector. Let Sn denote the set of n × n real symmetric matrices. We write
X � O if X ∈ Sn is positive semidefinite. We use diag(x) to denote a diagonal matrix,
the vector of diagonal components of which is x. For a finite set T , we use |T | to denote
the cardinality of T , i.e., the number of elements in T .

2 Motivation

In this section, we explain intrinsic difficulties in robust truss topology optimization,
which motivate us to develop the method proposed in this paper. Details of the examples
in this section appear in section 6.1.

Suppose that uncertain static external forces are applied at all the nodes, and only
at nodes, of a truss. The robust truss topology optimization is to find a truss design
that minimizes the worst-case compliance, i.e., the maximum value of the compliance
among possible realizations of the external load, under the upper bound constraint on
the structural volume.

With reference to the examples in Figure 1 and Figure 2, we explain that incorpo-
rating overlapping members into a ground structure is necessary for the robust truss
topology optimization. We begin with the conventional compliance minimization, with-
out considering uncertainties. Figure 1(a) shows a ground structure, which consists of
12 members and has no overlapping members. The ground structure is an initial set-
ting for truss topology optimization. The members consisting of a ground structure are
called the candidate members, and their cross-sectional areas are design variables to be
optimized. It is worth noting that the locations of the nodes are not treated as the
design variables. If the cross-sectional area of a member becomes equal to zero as a
result of optimization, then the member is removed from the truss. Thus, the connec-
tivity of members, called the topology in this research area, usually changes from the
ground structure. A vertical external load is applied at the rightmost bottom node, as
shown in Figure 1(a). The optimal solution is shown in Figure 1(b), where the width
of each member is proportional to its cross-sectional area. This solution has a chain
consisting of two members. The hinge cancellation yields the final truss design shown
in Figure 1(c). It should be clear that the objective value, i.e., the compliance, of the
solution in Figure 1(c) is same as the one in Figure 1(b). We next consider the ro-
bust optimization. Since uncertain external force is supposed to be applied also at the
intermediate node of the chain, the solution in Figure 1(b) becomes infeasible. As a
result, the optimal solution has one additional member to stabilize that node, as shown
in Figure 2(a). Alternatively, consider a ground structure in Figure 2(b), which consists
of 14 members. The newly added two members, depicted as slightly curved lines, are in
fact straight bars. Therefore, each of them overlaps with two shorter members, and is
called an overlapping members. Moreover, the middle node is exactly located on a line
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(a) (b) (c)

Figure 1: An example of the conventional compliance minimization. (a) The ground
structure (with 12 members); (b) the optimal solution; and (c) the final truss
design after hinge cancellation.

(a) (b) (c)

Figure 2: The robust optimization corresponding to the example in Figure 1. (a) The
optimal solution obtained from the ground structure in Figure 1(a); (b) the
ground structure including overlapping members (14 members in total); and
(c) the global optimal solution.

forming an overlapping member. Therefore, we say that the overlapping member lies
on the middle node. The robust optimal solution obtained from this ground structure
is shown in Figure 2(c).7 Namely, at the global optimal solution, the longer member is
selected instead of the chain and the intermediate node of the chain is removed. Thus,
overlapping members do not mean redundancy, because connection of two members via
an intermediate node introduces an extra uncertain load applied to that node. Similar
non-redundancy of overlapping members in a ground structure can be observed also in,
e.g., the compliance minimization of trusses under the self-weight loads [8, 33].

A key in this robust optimization is selecting the set of nodes which the optimal
solution has. This is because the uncertainty in external loads depends on the set of
existing nodes, in a manner that uncertain external forces are supposed to be applied to
all the existing nodes. Moreover, a node lying on an existing member should be removed.
The next example illustrates that selecting a optimal set of nodes in a heuristic manner
is indeed difficult.

Consider the problem setting shown in Figure 3(a). Figure 3(b) shows the optimal
solution of the nominal (i.e., not robust) optimization problem. A simple heuristic to
predict a set of existing nodes in a robust optimal solution is to adopt the set of nodes that
the nominal optimal solution has. Suppose that uncertain external forces are applied only

7It should be clear that the worst-case compliance for the solution in Figure 2(c) is smaller than that
for the solution in Figure 2(a).
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(a) (b)

(c) (d) (e)

Figure 3: Difficulties in the robust truss topology optimization. (a) The ground struc-
ture and the nominal external load; (b) the optimal solution for the nominal
load; (c) a solution obtained for a design-independent uncertainty model of
the external load; (d) the robust optimal solution for the design-dependent
uncertainty model and the ground structure without overlapping members
(the objective value is 3259.115 J); and (e) the robust optimal solution for the
design-dependent uncertainty model and the ground structure with overlap-
ping members (the objective value is 2442.708 J).

to the five free nodes that the solution in Figure 3(b) has. The optimal solution of this
robust optimization problem is shown in Figure 3(c). This solution has two extra nodes
that the solution in Figure 3(b) does not have. Therefore, the solution in Figure 3(c)
assumes that external forces are not applied to these two nodes (in this sense, this
solution is not truly robust). On the other hand, Figure 3(d) shows the optimal solution
of the robust topology optimization with a ground structure which does not include
overlapping members. It is observed that one of the nodes in Figure 3(c) is missing in
the solution in Figure 3(d). Furthermore, Figure 3(e) shows the optimal solution of the
robust topology optimization with a ground structure including overlapping members.
It is observed that the three intermediate nodes in Figure 3(b) are removed and the two
chains are replaced by longer members. As a result, the objective value of the solution in
Figure 3(d) is more than 1.33 times larger than that of the solution in Figure 3(e). Thus,
it is crucial to design an optimization process so as to allow vanishment of intermediate
nodes on chains.

It is also possible that a node which is not lying on a chain vanishes as a result of robust
optimization. Consider the problem setting in Figure 4(a). The optimal solution of the
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(a) (b)

(c) (d)

Figure 4: A node which is not on a chain can also vanish as a result of the robust topology
optimization. (a) The ground structure and the nominal external load; (b) the
optimal solution for the nominal load; (c) the robust solution obtained for
a design-independent uncertainty model of the external load (the objective
value is 13934.896 J); (d) the robust optimal solution for the design-dependent
uncertainty model (the objective value is 11093.750 J).

nominal optimization problem is shown in Figure 4(b). If we suppose that uncertain
external forces are applied to the eight free nodes in Figure 4(b), then the solution in
Figure 4(c) becomes optimal. Unlike the example in Figure 3(c), uncertain external
forces are supposed to be applied to all the nodes that the solution in Figure 4(c)
has. In this sense, the solution in Figure 4(c) is a local optimal solution of the robust
topology optimization. In contrast, the global optimal solution of the robust topology
optimization is shown in Figure 4(d).8 It is observed that three nodes in Figure 4(c) are
missing in Figure 4(d). The objective value of the solution in Figure 4(c) is more than
1.25 times larger than that of the solution in Figure 4(d). Thus, it is crucial to design
an optimization algorithm that can deal with the design-dependent uncertainty model
of the external load.

In section 4 and section 5, we propose a formulation and an algorithm for overcoming
the difficulties discussed in this section.

3 Algorithmic framework

As preliminaries, section 3.1 briefly introduces the notion of DC programming and the
concave-convex procedure for solving it. In section 3.2, we introduce the optimization
problem that we consider in this paper, and present an extension of the concave-convex
procedure.

8In this example, overlapping longer members are not incorporated into the ground structure, because
with overlapping members the global optimization method (YALMIP [38]) did not converge within
realistic computational time.
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3.1 Fundamentals: DC programming and concave-convex procedure

Let fi, gi : Rn → R (i = 0, 1, . . . ,m) be convex. The optimization problem having the
following form is called a DC programming problem:

Minimize f0(x)− g0(x) (1a)

subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m. (1b)

For simplicity, we assume that g0, g1, . . . , gm are differentiable.
The concave-convex procedure is known as a heuristic for finding a local optimal

solution of problem (1). Let x(k) ∈ Rn denote the (feasible) incumbent value of x at the
kth iteration. Define ĝi( · ;x(k)) : Rn → R (i = 0, 1, . . . ,m) by

ĝi(x;x(k)) = gi(x
(k)) +∇gi(x(k))>(x− x(k)). (2)

The concave-convex procedure updates the solution by letting x(k+1) be the optimal
solution of the following optimization problem:

Minimize f0(x)− ĝ0(x;x(k)) (3a)

subject to fi(x)− ĝi(x;x(k)) ≤ 0, i = 1, . . . ,m. (3b)

It is worth noting that this subproblem is convex.
For the sequence, {x(k)}, generated by the concave-convex procedure, it is known that

the objective value of (1), i.e., {f0(x(k)) − g0(x(k))}, converges. However, {x(k)} does
not necessarily converges to a local optimal solution; see, e.g., [37, § 1.3]. Applications
of the concave-convex procedure include transductive support vector machines (SVMs)
[14, 18], feature selection in SVMs [42], etc.

The concave-convex procedure can be considered as a version of DCA (difference of
convex algorithm) [43, 45]; see [37, 48] for accounts of this fact. For DCA and its applica-
tions we direct the reader to [35, 44]; an application of DCA in structural engineering can
be found in [50]. As shown in [48], the concave-convex procedure can also be viewed as
a variant of MM algorithms (majorization-minimization algorithms) [27, 34].9 The MM
algorithm is a generalization of the well-known EM algorithm (expectation-maximization
algorithm) [16]. The MM algorithms have been frequently employed in machine learning
and image processing as seen in, e.g, [17, 26, 28, 49, 52].

MMA (the method of moving asymptotes) [53, 54, 63], which is frequently used for
continuum-based topology optimization [9], also solves a sequence of convex optimization
approximations of the original problem. MMA approximates the objective function and
the constraint functions by convex linear fractional functions by using the function values
and gradients as well as some parameters controlling the vertical asymptotes of the
generated functions. Also, sequential parametric convex approximation methods with
application to truss optimization can be found in [4, 6].

9In fact, ĝi(· ;x(k)) defined by (2) is a majorization function of gi.
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3.2 Heuristic for convex optimization with complementarity constraints

In this paper we attempt to solve problems having the following form:

Minimize f(ξ,y, z) (4a)

subject to (ξ,y, z) ∈ Ω, (4b)

y ≥ 0, (4c)

z ≥ 0, (4d)

y>z = 0. (4e)

Here, f : Rl × Rn × Rn → R is convex, Ω ⊆ Rl × Rn × Rn is closed and convex, and
the optimization variables are ξ ∈ Rl, y ∈ Rn, and z ∈ Rn. Problem (4) is convex
optimization with complementarity constraints.

Following the idea in [29], we can reduce problem (4) to a DC programming problem
as follows. Consider a differentiable function φ : Rn × Rn → R satisfying

φ(y, z) = 0 ⇔ y>z = 0,

φ(y, z) ≥ 0 ⇐ y ≥ 0, z ≥ 0.

The complementarity constraints, (4e), can be replaced by a penalization term as follows:

Minimize f(ξ,y, z) + ρφ(y, z) (5a)

subject to (ξ,y, z) ∈ Ω, (5b)

y ≥ 0, (5c)

z ≥ 0. (5d)

Here, ρ > 0 is a penalty parameter. For sufficiently large ρ, problem (5) is equivalent to
problem (4). We next assume that φ can be decomposed as

φ(y, z) = φ+(y, z)− φ−(y, z),

where φ+ and φ− are convex. Then problem (5) is reduced to the following form:

Minimize (f(ξ,y, z) + ρφ+(y, z))− ρφ−(y, z) (6a)

subject to (ξ,y, z) ∈ Ω, (6b)

y ≥ 0, (6c)

z ≥ 0. (6d)

This is a DC programming problem, because f(ξ,y, z) + ρφ+(y, z) and ρφ−(y, z) are
convex. There exist several different choices for φ, φ+, and φ− [29, 36]. In this paper we
adopt

φ(y, z) = ‖y + z‖2 − ‖y − z‖2, (7)

φ+(y, z) = ‖y + z‖2, (8)

φ−(y, z) = ‖y − z‖2. (9)
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To solve problem (5), we apply the concave-convex procedure to problem (6) with
gradually increasing the penalty parameter, ρ. For point (y(k), z(k)) ∈ Rn × Rn, define
φ̂−( · ;y(k), z(k)) : Rn × Rn → R by

φ̂−(y, z;y(k), z(k)) = φ−(y(k), z(k))

+∇yφ−(y(k), z(k))>(y − yk) +∇zφ−(y(k), z(k))>(z − zk). (10)

The proposed algorithm updates the solution by letting (ξ(k+1),y(k+1), z(k+1)) be an
optimal solution of the following convex optimization problem:

Minimize f(ξ,y, z) + ρkφ+(y, z)− ρkφ̂−(y, z;y(k), z(k)) (11a)

subject to (ξ,y, z) ∈ Ω, (11b)

y ≥ 0, (11c)

z ≥ 0. (11d)

A reasonable stopping criterion is that the residual of the complementarity constraints
is small enough, i.e.,

φ(y(k+1), z(k+1)) ≤ ε1, (12)

and the update of the incumbent solution is small enough, i.e.,

‖(ξ(k+1),y(k+1), z(k+1))− (ξ(k),y(k), z(k))‖ ≤ ε2, (13)

where ε1, ε2 > 0 are thresholds. The algorithm is formally stated in Algorithm 1.10

Algorithm 1 penalty concave-convex procedure for convex optimization with comple-
mentarity constraints

Require: ξ(0) ∈ Rl, y(0) ∈ Rn, z(0) ∈ Rn, ρ0 > 0, ρmax > ρ0, and µ > 1.
1: k ← 0.
2: repeat
3: Let (ξ(k+1),y(k+1), z(k+1)) be an optimal solution of problem (11).
4: ρk+1 := min{µρk, ρmax}.
5: Set k ← k + 1.
6: until stopping criterion is satisfied.

Remark 3.1. Algorithm 1 is designed essentially based on the algorithm proposed by Lipp
and Boyd [37] for solving problem (1). In their algorithm, the following subproblem is
solved to update x(k):

Minimize f0(x)− ĝ0(x;x(k)) + ρk

m∑
i=1

si

subject to fi(x)− ĝi(x;x(k)) ≤ si, i = 1, . . . ,m,

si ≥ 0, i = 1, . . . ,m.

10Choice of an initial point in the numerical experiments is explained in section 6.
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Thus, penalization terms for all the constraints are added to the objective function by
using the `1-exact penalty function. In contrast, in Algorithm 1 only the complemen-
tarity constraints are penalized, and the other constraints of the original optimization
problem are satisfied at the solution of the subproblem. �

4 Mixed-integer semidefinite programming formulation for
robust truss topology optimization

In section 4.1, we recall the existing MISDP formulation for robust truss topology opti-
mization, without considering overlapping members in the ground structure. Section 4.2
presents treatment of overlapping members within the framework of MISDP.

4.1 Review of existing formulation

In this section we briefly review an MISDP formulation of the robust truss topology
optimization under the load uncertainty [59]; see also [7].

Following the ground structure method, consider a truss consisting of candidate mem-
bers connected by nodes. Let m and d denote the number of the members and the
number of degrees of freedom of the nodal displacements,11 respectively. We use xi
(i = 1, . . . ,m) to denote the member cross-sectional areas, which are design variables to
be optimized. Throughout the paper, we assume small deformation and linear elasticity.

Let ti ∈ {0, 1} be a variable that serves as an indicator of existence of member i such
that ti = 1 means that member i exists and ti = 0 means that it vanishes. We use x > 0
and x ∈ [0, x] to denote the specified upper and lower bounds for the cross-sectional area
of an existing member, i.e., xi should satisfy xi ∈ {0} ∪ [x, x]. This constraint can be
written by using ti as

xti ≤ xi ≤ xti. (14)

We next introduce sj ∈ {0, 1} (j = 1, . . . , d) to represent the existence of the jth
degree of freedom. A node in a ground structure is removed if and only if all the
members connected to the nodes vanish. Let sj = 1 mean that the node having the jth
degree of freedom exists, and sj = 0 mean that it vanishes. We use I(j) ⊆ {1, . . . ,m}
to denote the set of indices of the members connected to the node having the jth degree
of freedom. Then sj is related to t1, . . . , tm as follows:

ti ≤ sj , ∀i ∈ I(j). (15)

Let K(x) ∈ Rd×d denote the stiffness matrix of a truss, which is a (matrix-valued)
linear function of x. For a given external load, denoted p ∈ Rd, the compliance of the
truss is defined by

π(x;p) = sup{2p>u− u>K(x)u | u ∈ Rd}. (16)

11The degrees of freedom of a truss is the possible components of the nodal displacements that define
the configuration of the truss.
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The conventional compliance minimization problem is formulated in variables x as fol-
lows:

Minimize π(x;p) (17a)

subject to x ≥ 0, (17b)

c>x ≤ c. (17c)

Here, ci is the undeformed length of member i, c = (c1, . . . , cm)>, and c > 0 is the
specified upper bound for the structural volume.

The uncertainty model of the external load is defined as follows: Let p̃ ∈ Rd denote
the nominal value (or the best estimate) of the external load. Define a constant matrix
Q ∈ Rd×d by

Q =

p̃ αq1 · · · αqd−1

 ,
where q1, . . . , qd−1 ∈ Rd are the orthonormal basis vectors of the orthogonal complement
of p̃, and α > 0 is a constant representing the level of uncertainty. Then the uncertainty
set of the external load, i.e., the set of all possible realizations of the external load, is
defined by

P (s) = {diag(s)Qe | ‖e‖ ≤ 1}. (18)

For example, suppose that p̃ has only one nonzero component. Then, without loss of
generality we can assume p̃1 6= 0, and we have that

p̃ =


p̃1
0
0
...
0

 , Q =


p̃1 0 0 · · · 0
0 α 0 · · · 0
0 0 α · · · 0
...

...
...

. . .
...

0 0 0 · · · α

 . (19)

Let Jf ⊆ {1, . . . , d} denote the set of indices of nonzero components of p̃, i.e.,

Jf = {j ∈ {1, . . . , d} | p̃j 6= 0}.

The nodes to which the nominal external load, p̃, is applied should not be removed in
the course of optimization. Therefore, we impose the following constraint:

sj = 1, ∀j ∈ Jf . (20)

In robust optimization, we attempt to find a truss design that minimizes the maximal
compliance (i.e., the worst-case compliance) when the external load can take any value in
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P (s). With reference to (14), (15), (17), (18), and (20), we can see that this optimization
problem can be formulated as follows:

Minimize sup{π(x;p) | p ∈ P (s)} (21a)

subject to sj = 1, ∀j ∈ Jf , (21b)

ti ≤ sj , ∀i ∈ I(j); j = 1, . . . , d, (21c)

xt ≤ x ≤ xt, (21d)

c>x ≤ c, (21e)

s ∈ {0, 1}d, (21f)

t ∈ {0, 1}m. (21g)

For x ∈ Rm (x ≥ 0), s ∈ {0, 1}d, and w ∈ R, define W (x, s, w) ∈ Sd+1 by

W (x, s, w) =

[
wI (diag(s)Q)>

diag(s)Q K(x)

]
.

It is shown in [7, Lemma 2.2] that w ∈ R satisfies

w ≥ sup{π(x;p) | p ∈ P (s)}

if and only if [
wI (diag(s)Q)>

diag(s)Q K(x)

]
� O (22)

holds. Consequently, problem (21) is equivalently rewritten as follows:

Minimize w (23a)

subject to W (x, s, w) � O, (23b)

sj = 1, ∀j ∈ Jf , (23c)

ti ≤ sj , ∀i ∈ I(j); j = 1, . . . , d, (23d)

xt ≤ x ≤ xt, (23e)

c>x ≤ c, (23f)

s ∈ {0, 1}d, (23g)

t ∈ {0, 1}m. (23h)

Problem (23) is an MISDP problem. By relaxing the 0-1 constraints into linear in-
equality constraints, we obtain an SDP relaxation. Since SDP can be solved efficiently
with a primal-dual interior-point method, we can find a global optimal solution of prob-
lem (23) with a branch-and-bound method [59].
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Figure 5: A ground structure consisting of 18 members.

4.2 Treatment of members lying on a line

As explained in section 2, for the robust truss topology optimization it is necessary to
incorporate overlapping members to a ground structure. Since the existence of overlap-
ping members in a final truss design is not accepted, it is required to incorporate the
constraints prohibiting the presence of overlapping members in a truss design. To the
best of the author’s knowledge, such a consideration cannot be found in literature on
robust truss topology optimization.

Recall that, for each j = 1, . . . , d, sj = 1 means that the node having the jth degree
of freedom exists, and sj = 0 means that it vanishes. Also, ti = 1 means that member i
exists and ti = 0 means that it vanishes. Let L(j) ⊆ {1, . . . ,m} denote the set of indices
of the members lying on the node having the jth degree of freedom. Figure 5 shows an
example of ground structure with overlapping members. It has m = 18 members and
d = 12 degrees of freedom of nodal displacements. In this example, we have L(j) =
{16, 18} and I(j) = {1, 4, 13, 14, 17}. If sj = 1, then all the members in L(j) cannot
exist, i.e., ti = 0 (∀i ∈ L(J)). Also, if there exists an i ∈ L(j) such that ti = 1, then the
corresponding node cannot exist, i.e., sj = 0. These two conditions can be formulated
as

sj ≤ 1− ti, ∀i ∈ L(j). (24)

In the following, we add (24) to problem (23).
It is worth noting that a truss design involving a chain is infeasible for the presented

robust optimization problem, because it is unstable and cannot be in equilibrium with
uncertain forces applied to an intermediate node of the chain. Therefore, a solution
obtained by the proposed method does not involve a member that is longer than the
maximum member length of the ground structure. This might be considered an ad-
vantage of the robust topology optimization, because in a conventional truss topology
optimization an optimal solution may possibly have a long chain and special treatment,
such as the local buckling constraints [22, 39], is necessary for avoiding presence of a too
long member.
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5 Simple heuristic for robust truss topology optimization

The MISDP approach presented in section 4 is only applicable to small-size instances.
Alternatively, in this section we present a heuristic having small computational cost.
In section 5.1, we reformulate our robust truss topology optimization as SDPCC. A
concave-convex procedure is then applied to this formulation in section 5.2.

5.1 Formulation as semidefinite programming with complementarity
constraints

In this section, we reformulate problem (23) with constraint (24) as SDPCC, which is
well suited for applying the concave-convex procedure.

We begin with constraints (23d) and (23e), which describe the relation between sj
and x. Let rj (j = 1, . . . , d) denote the sum of the cross-sectional areas of the members
that are connected to the node having the jth degree of freedom, i.e.,

rj =
∑
i∈I(j)

xi. (25)

Observe that rj > 0 implies sj = 1, because at least one member connected to the
corresponding node exists and, hence, the node should exist. Also, sj = 0 implies that
the corresponding node vanishes, and hence rj = 0, i.e., all the members connected to
the node should vanish. These two assertions can be written as

(1− sj)rj = 0. (26)

Namely, constraint (23d) can be replaced with (26). For notational simplicity, in the
following we write (25) as

r = Rx

with a constant matrix R ∈ Rd×m.
We next consider constraints (23e) and (24), which describe the relation between sj

and x. Let vj (j = 1, . . . , d) denote the sum of the cross-sectional areas of the members
that lying across the node having the jth degree of freedom, i.e.,

vj =
∑

i∈L(j)

xi. (27)

Observe that vj > 0 implies sj = 0, because at least one member lying across the
corresponding node exists and, thence, the node should vanish. Also, sj = 1 implies
that the corresponding node exists, and hence all the members lying across the node
should vanish, i.e., vj = 0. These two assertions can be written as

sjvj = 0. (28)
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Namely, constraint (24) can be replaced with (28), For notational simplicity, we write
(27) as

v = V x

by using a constant matrix V ∈ Rd×m.
Finally, consider constraint (23e). For each i = 1, . . . ,m, we introduce a new variable

zi ∈ R so that x − zi corresponds to the lower bound for the cross-sectional area of
member i. If xi > 0, then member i exists and the lower bound should be x, which
means zi = 0. Also, when the lower bound becomes smaller than x (i.e., zi > 0), then
member i should vanish (i.e., xi = 0), and hence we set zi = x. These relations can be
written as follows:

x− zi ≤ xi ≤ x, (29)

0 ≤ zi ≤ x, (30)

xizi = 0. (31)

Consequently, constraints (23e) and (23h) can be replaced with (29), (30), and (31).
The upshot is that problem (23) incorporating constraint (24) is equivalently rewritten

as follows:

Minimize w (32a)

subject to W (x, s, w) � O, (32b)

sj = 1, ∀j ∈ Jf , (32c)

r = Rx, (32d)

v = V x, (32e)

0 ≤ s ≤ 1, (32f)

x1− z ≤ x ≤ x1, (32g)

0 ≤ z ≤ x1, (32h)

c>x ≤ c, (32i)

(1− sj)rj = 0, j = 1, . . . , d, (32j)

sjvj = 0, j = 1, . . . , d, (32k)

xizi = 0, i = 1, . . . ,m. (32l)

Here, x, z, s, r, v, and w are variables to be optimized. observe that any feasible
solution of problem (32) satisfies 1 − sj ≥ 0, rj ≥ 0, sj ≥ 0, vj ≥ 0, xi ≥ 0, and
zi ≥ 0. Therefore, constraints (32j), (32k), and (32l) are complementarity constraints.
Constraint (32b) is a linear matrix inequality constraint in terms of x, s, and w. Thus,
problem (32) has the form of SDPCC.

Remark 5.1. Since the algorithm presented in this paper consists of sequential approxi-
mation, adding some linear inequalities may possibly limit the search spae and enhance
the convergence. In the following, we consider linear valid inequalities, which naturally
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stem from the complementarity constraints and can be handled effectively in the numeri-
cal solution. Suppose that two variables, α, β ∈ R, are subjected to the complementarity
constraint and their upper bounds are given, i.e.,

0 ≤ α ≤ ᾱ, (33)

0 ≤ β ≤ β̄, (34)

αβ = 0, (35)

where ᾱ and β̄ are positive constants. It is known that the inequality

β̄α+ ᾱβ ≤ ᾱβ̄

serves as a valid constraint for (33), (34), and (35) [40, 61]. In the same manner, we can
construct valid constraints for problem (32). Concerning (32j), observe that we obtain

1− sj ≤ 1,

rj ≤ x|I(j)|

from (32f) and (25), respectively. Therefore, the constraints

−x|I(j)|sj + rj ≤ 0, j = 1, . . . , d (36)

are valid for (32j). Similarly, inequalities

x|L(j)|sj + vj ≤ x|L(j)|, j = 1, . . . , d, (37)

xxi + xzi ≤ xx, i = 1, . . . ,m (38)

are valid constraints for (32k) and (32l), respectively. In the following, we add constraints
(36), (37), and (38) to problem (32). �

5.2 Penalty concave-convex procedure for robust truss topology
optimization

Problem (32) has the form of problem (4) studied in section 3.2. To see this, it is
convenient to rewrite problem (32) as follows:

Minimize w (39a)

subject to (x, z, s, r,v, w) ∈ F, (39b)

1− s ≥ 0, r ≥ 0, (1− s)>r = 0, (39c)

s ≥ 0, v ≥ 0, s>v = 0, (39d)

x ≥ 0, z ≥ 0, x>z = 0. (39e)
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Here, F is defined by

F = {(x, z, s, r,v, w) |W (x, s, w) � O, r = Rx, v = V x,

0 ≤ s ≤ 1, sj = 1 (∀j ∈ Jf),
x1− z ≤ x ≤ x1, 0 ≤ z ≤ x1, c>x ≤ c,
−x|I(j)|sj + rj ≤ 0 (j = 1, . . . , d),

x|L(j)|sj + vj ≤ x|L(j)| (j = 1, . . . , d),

xx+ xz ≤ xx1},

which is a convex set. The complementarity constraints in (39c), (39d), and (39e) can
be replaced with penalization terms added to the objective function as follows:

Minimize w + ρφ(1− s, r) + ρφ(s,v) + ρφ(x, z) (40a)

subject to (x, z, s, r,v, w) ∈ F. (40b)

Here, ρ > 0 is a sufficiently large penality parameter, and φ has been defined by (7).
Problem (40) has the same form as problem (5).

We are now in position to apply Algorithm 1 to problem (40). Algorithm 1 solves the
subproblem in (11), which is explicitly written as follows:

Minimize w + ρkφ+(1− s, r) + ρkφ+(s,v) + ρkφ+(x, z)

− ρkφ̂−(1− s, r;1− s(k), r(k))− ρkφ̂−(s,v; s(k),v(k))

− ρkφ̂−(x, z;x(k), z(k)) (41a)

subject to (x, z, s, r,v, w) ∈ F. (41b)

Here, φ+ and φ̂− are defined by (8) and (10), respectively. Since the constant terms in
the objective function can be neglected, problem (41) can be reduced to the following
problem:

Minimize w + ρk(‖x+ z‖2 + ‖1− s+ r‖2 + ‖s+ v‖2)
− 2ρk(x(k) − z(k))>x− 2ρk(z(k) − x(k))>z

− 2ρk(2s(k) + r(k) − v(k) − 1)>s

− 2ρk(s(k) + r(k) − 1)>r − 2ρk(v(k) − s(k))>v (42a)

subject to (x, z, s, r,v, w) ∈ F. (42b)

Problem (42) is a minimization problem of a convex quadratic function under a linear
matrix inequality constraint. Hence, this problem can be recast as SDP. Thus, at each
iteration of Algorithm 1 we solve an SDP problem.

As mentioned in section 3.2, a reasonable stopping criterion is that (12) and (13) are
satisfied. In practice, however, we might use a relaxed criterion, which may save some
iterations before convergence. Specifically, we terminate the algorithm when either (12)
or

‖x(k+1) − x(k)‖ ≤ ε2 (43)
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is satisfied. Then, by using the obtained solution we can fix the set of existing members
and the set of existing nodes. Fixing these sets means that one variable in all the
complementarity constraints in problem (32) is fixed. Therefore, the problem is now
becomes SDP, which is to be solved as the post process. The solutions presented in
section 6 are obtained in this manner.

6 Numerical experiments

This section reports three numerical experiments.
The proposed algorithm was implemented in MATLAB ver. 9.0. At each iteration

we solved an SDP problem in (42) by using CVX, a MATLAB package for specifying
and solving convex optimization problems [19, 20]. SDPT3 ver. 4.0 [57] was used as the
solver. Computation was carried out on a 2.2 GHz Intel Core i5 processor with 8 GB
RAM. The Young modulus of the trusses in the following numerical examples is 20 GPa.

The initial point for Algorithm 1 is chosen as follows. We first solve problem (17)
for the nominal external load p̃, i.e., the compliance minimization without considering
uncertainties,12 and let x(0) be the obtained optimal solution. The initial values for the
other variables are given by z(0) = 0, s(0) = 1/2, r(0) = Rx(0), and v(0) = V x(0). The
parameters of Algorithm 1 are ρ0 = 10−2, ρmax = 106, and µ = 1.5. We terminate Algo-
rithm 1 if either (12) or (43) is satisfied, where ε1 = 2m×10−2 mm2 and ε2 = 10−2 mm2.
Then, as explained in section 5.2, we fix one variable in all the complementarity con-
straints in problem (32), and solve the resulting SDP problem to obtain the final solution.
The settings of the initial point and the parameters explained above were determined by
preliminary numerical experiments. In section 6.1, we consider three problem instances
that could be solved with a global optimization method. Cantilever truss examples with
two different loading conditions, which are frequently solved in structural optimization,
are considered in sections 6.2 and 6.3.

Table 1: Characteristics of the problem instances in example (I).

Problem m d c (mm3) Rob. opt. (J) Nom. opt. (J)

Figure 2 14 8 0.4× 106 8984.375 8000.000
Figure 3 98 24 1.8× 106 2442.708 2006.944
Figure 4 35 18 1.2× 106 11093.750 9375.000
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6.1 Example (I): Comparison with global optimization

In this section, we consider the small-size instances presented in section 2. For com-
parison, the MISDP formulation, i.e., problem (23) with constraint (24), is solved with
YALMIP [38]. YALMIP finds a global optimal solution of an MISDP problem with a
branch-and-bound method, at each iteration of which an SDP problem is solved. We
used YALMIP with the default setting, where SDP subproblems are solved with SeDuMi
ver. 1.3 [46, 51].

Consider the problem settings in Figure 2, Figure 3, and Figure 4. Table 1 lists the
number of members (m), the number of degrees of freedom of displacements (d), and the
upper bound for the structural volume (c). In Figure 2(b) and Figure 3(a), the nodes
are aligned on a 1 m×1 m grid. In Figure 4(a), we use a 1 m×0.5 m grid. In Figure 3(a),
the ground structure has all possible members connecting two nodes but are no longer
than 3 m. The nominal external load, p̃, is applied as shown in Figure 2(b), Figure 3(a),
and Figure 4(a). The uncertainty model of the external load is defined by using (19)
with p̃1 = 100 kN, α = 0.75p̃1 for Figure 2 and Figure 3, and α = 0.5p̃1 for Figure 4.
The lower and upper bounds for the member cross-sectional areas are x = 1 mm2 and
x = 700 mm2, respectively. In Table 1, “rob. opt.” reports the optimal value, obtained
by YALMIP, of the robust optimization problem. The obtained solutions are shown in
Figure 2(c), Figure 3(e), and Figure 4(d). For reference, the optimal solutions of the
(not robust) compliance minimization with the nominal external load, p̃, are shown in
Figure 1(b), Figure 3(b), Figure 4(b).13 The optimal values are listed in “nom. opt.” of
Table 1.

It is remarkable that, for every instance, the solution obtained by the proposed algo-
rithm coincides wit the global optimal solution (obtained by YALMIP). Table 2 reports
the computational costs of the two methods, where “#iter.” is the number of iterations,
and “time” is the required computational time. Note that the computational cost of

12Problem (17) is convex. Various reformulations are known in literature; see, e.g., [2, 30]. For example,
replacing diag(s)Q in (22) with p̃, one can readily obtain SDP that minimizes w under constraint[
w p̃>

p̃ K(x)

]
� O, (17b), and (17c). This formulation was used in the numerical experiments. It

should be clear that a ground structure with overlapping members is used for generating the initial
point, x(0).

13Ground structures without overlapping members are used to obtain the solutions in Figure 1(b),
Figure 3(b), and Figure 4(b).

Table 2: Computational costs for example (I).

Problem Proposed method YALMIP

#iter. Time (s) #iter. Time (s)

Figure 2 3 4.1 13 2.7
Figure 3 15 39.8 92 54.7
Figure 4 47 59.5 1141 300.3
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NX @1 m

NY @1 m

p̃

Figure 6: Example (II). The problem setting for (NX , NY ) = (6, 2).

the proposed method does not include the ones for generation of an initial point and
for the post-processing. It is also worth noting that the problem size of SDP solved
at each iteration of the proposed method is larger than tat of YALMIP, and hence the
computational time per an iteration required by the proposed method is larger than that
of YALMIP. For every instance, the number of SDP problems solved by the proposed
method is smaller than that of YALMIP.

In the experiments in this section, it has been observed that the proposed method
converges to a global optimal solution for a small-size problem instance. In section 6.2
and section 6.3, we examine large-scale instances that cannot be solved with a global
optimization method within realistic computational time.

6.2 Example (II)

Consider the ground structures shown in Figure 6. The nodes are aligned on a 1 m×1 m
grid, and the number of the nodes is (NX + 1)(NY + 1). The leftmost nodes are pin-

Table 3: Characteristics of the problem instances in example (II).

(NX , NY ) m d c (mm3)

(3,7) 250 48 4.2× 106

(4,6) 292 56 4.8× 106

(5,5) 306 60 5.0× 106

(6,4) 292 60 4.8× 106

(7,3) 250 56 4.2× 106

(8,2) 180 48 3.2× 106

Table 4: Computational results of example (II).

(NX , NY ) Obj. (J) #iter. Time (s) w̃ (J) Nom. opt. (J) Fixed s (J)

(3,7) 836.310 9 46.4 766.518 761.905 986.442
(4,6) 1807.714 39 242.9 1360.425 1185.185 2534.505
(5,5) 2382.377 35 249.6 2034.270 1929.012 3017.593
(6,4) 5913.978 21 142.1 4427.633 4143.551 7032.673
(7,3) 14912.232 40 193.9 10960.621 9918.356 17717.408
(8,2) 43467.983 32 103.9 34515.627 34515.626 71121.097
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(a) (b) (c) (d)

(e) (f)

Figure 7: Example (II). The optimal solutions of the compliance minimization for the
nominal external load. (a) (NX , NY ) = (3, 7); (b) (4, 6); (c) (5, 5); (d) (6, 4);
(e) (7, 3); and (f) (8, 2).

(a) (b) (c) (d)

(e) (f)

Figure 8: Example (II). The solutions obtained by the proposed method for the robust
optimization under the load uncertainty. (a) (NX , NY ) = (3, 7); (b) (4, 6); (c)
(5, 5); (d) (6, 4); (e) (7, 3); and (f) (8, 2).

supported. The candidate members are defined as follows. We first generate all possible
members such that any two nodes are connected by a member. Then we remove members
that are longer than 3 m. It should be clear that the ground structure retains overlapping
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(a) (b) (c) (d)

(e) (f)

Figure 9: The optimal solution of problem (44), where s̄ is defined from the solutions in
Figure 7.

members.
As for the nominal external load, p̃, a vertical force is applied to the bottom rightmost

node as shown in Figure 6. The uncertainty model of the external load is given as
explained in (19), where p̃1 = 100 kN and α = 0.5p̃1. The lower and upper bounds for
the member cross-sectional areas are x = 50 mm2 and x = 700 mm2. The upper bound
for the structural volume is c = 2NXNY × 105 mm3.

As for problem sizes, we consider six cases, (NX , NY ) = (3, 7), (4, 6), (5, 5), (6, 4),
(7, 3), and (8, 2). Table 3 lists the number of members, the number of degrees of free-
dom of the nodal displacements, and the upper bound for the structural volume. Figure 7
collects the optimal solutions of the conventional (i.e., not robust) compliance minimiza-
tion in (17) for the nominal external load, p̃. For the robust optimization, the solutions
obtained by the proposed method (Algorithm 1) are shown in Figure 8. It is observed in
Figure 8(a) that the three chains in Figure 7(a) are replaced with longer single members
and four intermediate nodes are removed. The length of the bottom horizontal chain
in Figure 7(c) is 5 m. This chain is replaced with two members in Figure 8(c), because
the maximum member length in the ground structure is 3 m. Similar observation can be
made also in Figure 8(d) and Figure 8(e). The nominal optimal solution in Figure 7(f)
has many thin members as well as many nodes. In contrast, the robust solution in
Figure 8(f) has simple topology, which may be considered practically preferable. In all
the solutions in Figure 8, the longest member is no longer than the maximum member
length in the ground structure, as explained in section 4.1.

The computational results are listed in Table 4. Here, “obj.” reports the objective
value of the solution obtained by the proposed method, and w̃ is the compliance of this
solution for the nominal external load, p̃. The optimal value of problem (17) for p̃ is
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NX @1 m

NY @1 m
p̃

Figure 10: Example (III). The problem setting for (NX , NY ) = (6, 2).

listed as “nom. opt.” Therefore, w̃ is no smaller than the value of “nom. opt.” It is
observed in Table 4 that these two values are very close. Namely, in these examples,
robustness can be achieved with compensation of only very small increase of the nominal
compliance.

As explained in section 2, one of difficulties of the robust truss topology optimization
is that the uncertainty model of the external load depends on the existing nodes, i.e.,
on s. For comparison, we fix s to obtain a robust solution. As a simple heuristic, we
construct an estimate of s, denoted s̄, from the existing nodes of a solution in Figure 7.
Then we solve the following robust optimization problem:

Minimize w

subject to sup{π(x;p) | p ∈ P (s̄)}
x ≥ 0,

c>x ≤ c,

which can be recast as SDP. For simplicity, the lower bound constraints on the cross-
sectional areas of the existing members are omitted. The obtained solutions are shown
in Figure 9. The optimal value is reported in “fixed s” of Table 4. It should be clear
that, at each solution in Figure 9, uncertain external forces are applied only to the nodes
that the corresponding solution in Figure 7 has. Nevertheless, the objective value of a
solution in Figure 9 is much larger than that of the corresponding solution in Figure 8.
In other words, the solution obtained by the proposed method has quite high quality.

6.3 Example (III)

Consider the problem setting shown in Figure 10. Ground structures are generated in
the manner explained in section 6.2. The maximum length of the members in a ground
structure is 3 m. The uncertainty model of the external load is defined by using (19)
with p̃1 = 100 kN and α = 0.75p̃1. The lower and upper bounds for the member cross-
sectional areas are x = 50 mm2 and x = 500 mm2, respectively. The upper bound for
the structural volume is c = 4NXNY × 105 mm3.

For problem instances with (NX , NY ) = (5, 2), (6, 2), . . . , (9, 2), Figure 11 shows the
optimal solutions of the compliance minimization for the nominal external load. For
the robust optimization, the solutions obtained by the proposed method are collected
in Figure 12. The instance sizes are listed in Table 5. The computational results are
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(a) (b) (c)

(d) (e)

Figure 11: Example (III)-1. The optimal solutions of the compliance minimization for
the nominal external load. (a) (NX , NY ) = (5, 2); (b) (6, 2); (c) (7, 2); (d)
(8, 2); and (e) (9, 2).

(a) (b) (c)

(d) (e)

Figure 12: Example (III)-1. The solutions obtained by the proposed method for the
robust optimization under the load uncertainty. (a) (NX , NY ) = (5, 2); (b)
(6, 2); (c) (7, 2); (d) (8, 2); and (e) (9, 2).

listed in Table 6. It is observed in Figure 12(a) and Figure 12(d) that the intermediate
nodes on chains in Figure 11(a) and Figure 11(d) are removed as a result of robust
optimization. Although the nominal optimal solutions in Figure 11(b), Figure 11(c),
and Figure 11(e) have very complicated forms, the robust solutions in Figure 12(b),
Figure 12(c), and Figure 12(e) are simple and practically preferable. Thus, it is often
that robustness against uncertain loads and the minimal cross-sectional area constraints
for the existing members yield simple truss topology.

The solutions obtained for the instances with (NX , NY ) = (5, 4), (6, 4), . . . , (9, 4) are
collected in Figure 13 and Figure 14. The robust optimal solution obtained by the
proposed method has a form similar to the corresponding nominal optimal solution, but
many chains in the nominal optimal solution are replaced with single members.

The solutions obtained for the instances with (NX , NY ) = (5, 6), (6, 6), . . . , (9, 6) are
collected in Figure 15 and Figure 16. It is observed that the nominal optimal solutions
in Figure 15(c) and Figure 15(e) have so many thin members. In contrast, the robust

25



(a) (b) (c)

(d) (e)

Figure 13: Example (III)-2. The optimal solutions of the compliance minimization for
the nominal external load. (a) (NX , NY ) = (5, 4); (b) (6, 4); (c) (7, 4); (d)
(8, 4); and (e) (9, 4).

(a) (b) (c)

(d) (e)

Figure 14: Example (III)-2. The solutions obtained by the proposed method for the
robust optimization under the load uncertainty. (a) (5, 4); (b) (6, 4); (c)
(7, 4); (d) (8, 4); and (e) (9, 4).

solutions in Figure 16(c) and Figure 16(e) have fewer members. The layout of thick
members in Figure 16(b) is different from that in Figure 15(b). Also, the layout of thick
members in Figure 16(d) is different from that in Figure 15(d).
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(a) (b) (c)

(d) (e)

Figure 15: Example (III)-3. The optimal solutions of the compliance minimization for
the nominal external load. (a) (5, 6); (b) (6, 6); (c) (7, 6); (d) (8, 6); and (e)
(9, 6).

(a) (b) (c)

(d) (e)

Figure 16: Example (III)-3. The solutions obtained by the proposed method for the
robust optimization under the load uncertainty. (a) (5, 6); (b) (6, 6); (c)
(7, 6); (d) (8, 6); and (e) (9, 6).

It is observed in Table 6 that the proposed method converged mostly within 40 iter-
ations. The computational time for the instance with about 600 members is about 10
minutes. Thus, the proposed method finds a reasonable feasible solution with relatively
small computational cost.
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7 Conclusions

In this paper, we have presented a new formulation and algorithm for robust truss topol-
ogy optimization considering uncertainty in the external load. Specifically, combinatorial

Table 5: Characteristics of the problem instances in example (III).

(NX , NY ) m d c (mm3)

(5,2) 108 30 4.0× 106

(6,2) 132 36 4.8× 106

(7,2) 156 42 5.6× 106

(8,2) 180 48 6.4× 106

(9,2) 204 54 7.2× 106

(5,4) 240 50 8.0× 106

(6,4) 292 60 9.6× 106

(7,4) 344 70 11.2× 106

(8,4) 396 80 12.8× 106

(9,4) 448 90 14.4× 106

(5,6) 372 70 12.0× 106

(6,6) 452 84 14.4× 106

(7,6) 532 98 16.8× 106

(8,6) 612 112 19.2× 106

(9,6) 692 126 21.6× 106

Table 6: Computational results of example (III).

(NX , NY ) Obj. (J) #iter. Time (s) w̃ (J) Nom. opt. (J)

(5,2) 7221.094 18 25.0 5708.559 5512.500
(6,2) 13698.325 43 70.4 9514.907 8760.417
(7,2) 19198.058 42 87.7 13108.577 12223.214
(8,2) 27245.117 23 64.5 17498.409 16531.250
(9,2) 49880.911 28 100.7 23510.654 22562.500

(5,4) 2514.685 16 62.1 1469.158 1304.012
(6,4) 4063.725 19 113.9 2160.081 1814.815
(7,4) 6563.146 40 320.6 3074.707 2484.871
(8,4) 9111.073 37 440.0 3946.944 3260.031
(9,4) 8988.477 24 286.4 5057.029 4255.319

(5,6) 1420.620 26 312.8 828.309 575.268
(6,6) 2168.363 19 208.0 1197.005 811.665
(7,6) 2811.740 15 226.7 1420.604 1123.393
(8,6) 4059.438 32 632.0 1890.087 1468.478
(9,6) 4242.989 35 863.0 2122.988 1829.790
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aspects of the problem has been dealt with in the framework of the complementarity
constraints. As for the uncertainty model of the external load, we have supposed that
uncertain external forces can be applied to all the nodes of a truss. This model de-
pends on the set of existing nodes, and hence on the set of existing members, while the
member cross-sectional areas are the design variables to be optimized. Thus, the robust
optimization problem involves design-dependent constraints. Also, it has been explained
that overlapping members should be incorporated to a ground structure. In the final
truss design, however, presence of overlapping members is not allowed from a practical
point of view. In this paper, the set of existing nodes, the selection among overlapping
members, and the lower bound constraints for the cross-sectional areas of the existing
members are treated by using the complementarity constraints.

In the conventional truss topology optimization, it is often that an optimal solution has
a sequence of parallel consecutive members, called a chain. To stabilize a truss, a chain is
replaced with a longer single member. Special consideration, such as the local buckling
constraints, is needed to avoid presence of a too long member converted from a chain. In
contrast, the solution obtained with the proposed method does not have a member which
is longer than the maximum member length of the ground structure, because a truss
design including a chain is infeasible for the presented robust optimization problem.

This paper has presented an SDPCC (semidefinite programming with complementarity
constraints) formulation of a structural optimization problem. Then, its DC program-
ming reformulation has been solved with a convex-concave procedure. This algorithm
is a version of MM algorithms and EM algorithms, which are widely used in machine
learning, image processing, etc. It has been shown through the numerical experiments
that the proposed heuristic can converge to a high-quality solution within relatively small
computational cost. The method can certainly handle complementarity constraints other
than the ones presented in this paper. An example is a set of constraints that prohibits
the presence of mutually crossing members in a truss design.
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[46] I. Pólik: Addendum to the SeDuMi User Guide: Version 1.1 . Technical Report,
Advanced Optimization Laboratory, McMaster University, Hamilton (2005). http:
//sedumi.ie.lehigh.edu/

[47] G. I. N. Rozvany: Difficulties in truss topology optimization with stress, local buck-
ling and system stability constraints. Structural Optimization, 11, 213–217 (1996).

[48] B. K. Sriperumbudur, G. R. G. Lanckriet: On the convergence of the concave-
convex procedure. Advances in Neural Information Processing Systems, 22, 1759–
1767 (2009).

[49] B. K. Sriperumbudur, D. A. Torres, G. R. G. Lanckriet: A majorization-
minimization approach to the sparse generalized eigenvalue problem. Machine
Learning, 85, 3–39 (2011).

[50] G. E. Stavroulakis, L. N. Polyakova: Nonsmooth and nonconvex structural analysis
algorithms based on difference convex optimization techniques. Structural Optimiza-
tion, 12, 167–176 (1996).

[51] J. F. Sturm: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optimization Methods and Software, 11/12, 625–653 (1999).

[52] Y. Sun, P. Babu, D. P. Palomar: Majorization-minimization algorithms in signal
processing, communications, and machine learning. IEEE Transactions on Signal
Processing, 65, 794–816 (2017).

[53] K. Svanberg: The method of moving asymptotes—a new method for structural
optimization. International Journal for Numerical Methods in Engineering, 24, 359–
373 (1987).

[54] K. Svanberg: A class of globally convergent optimization method based on conserva-
tive convex separable approximations. SIAM Journal on Optimization, 12, 555–573
(2002).

[55] A. Takezawa, S. Nii, M. Kitamura, N. Kogiso: Topology optimization for worst
load conditions based on the eigenvalue analysis of an aggregated linear system.
Computer Methods in Applied Mechanics and Engineering, 200, 2268–2281 (2011).

[56] C.-J. Thore: Multiplicity of the maximum eigenvalue in structural optimization
problems. Structural and Multidisciplinary Optimization, 53, 961–965 (2016).
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