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Abstract

We consider an optimization problem with positively homogeneous functions in its
objective and constraint functions. Examples of such positively homogeneous func-
tions include the absolute value function and the p-norm function, where p is a
positive real number. The problem, which is not necessarily convex, extends the
absolute value optimization proposed in [O. L. Mangasarian, Absolute value pro-
gramming, Computational Optimization and Applications 36 (2007) pp. 43–53].
In this work, we propose a dual formulation that, differently from the Lagrangian
dual approach, has a closed-form and some interesting properties. In particular, we
discuss the relation between the Lagrangian duality and the one proposed here, and
give some sufficient conditions under which these dual problems coincide. Finally,
we show that some well-known problems, e.g., sum of norms optimization and the
group Lasso-type optimization problems, can be reformulated as positively homo-
geneous optimization problems.

Keywords: Positively homogeneous functions, duality, nonconvex optimization

1 Introduction

Recently, the so-called absolute value equations (AVE) and absolute value optimization
(AVO) problems have been attracted much attention. The AVE were introduced in 2004
by Rohn [21]. Basically, if Ã, B̃ are given matrices, and b̃ is a given vector, one should
find a vector x that satisfies Ãx + B̃|x| = b̃, where |x| is a vector whose i-th entry is the
absolute value of the i-th entry of x. It is known that AVE are equivalent to the linear
complementarity problems (LCP) [9, 16, 20], which include many real-world applications.
As an extension of AVE, Mangasarian [14] proposed in 2007 the AVO problems, which
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have the absolute value of variables in their objective and constraint functions. More
precisely, the AVO problem considered is given by

min c̃Tx+ d̃T |x|
s.t. Ãx+ B̃|x| = b̃,

H̃x+ K̃|x| ≥ p̃,

where Ã, B̃, H̃, K̃ are given matrices, and c̃, d̃, b̃, p̃ are vectors with appropriate dimensions.
Since AVE and LCP are equivalent, the AVO include the mathematical programs with
linear complementarity constraints [12], which are one of the formulations of equilibrium
problems. As another application of AVO, Yamanaka and Fukushima [26] presented
facility location problems.

Since 2007, some methods for solving AVE have been presented in the literature. For
example, Rohn [22] considered an iterative algorithm using the sign of variables for the case
that Ã and B̃ are square matrices. For more general Ã and B̃, Mangasarian [14] provided a
method involving successive linearization techniques. Another methods include a concave
minimization approach, given by Mangasarian [13], and Newton-type methods, proposed
by Caccetta et al. [3], Mangasarian [15], and Zhang and Wei [28]. Some generalizations
of AVE were also proposed. For example, Hu et al. [10] considered an AVE involving
the absolute value of variables associated to the second-order cones. Miao et al. [18]
investigated an AVE with the so-called circular cones. In both papers, quasi-Newton
based algorithms were used.

As for AVO problems, Yamanaka and Fukushima [26] proposed to use a branch-and-
bound technique. In the branching procedure, two subproblems are generated by fixing
the sign of a variable as nonnegative or nonpositive. In the bounding procedure, the dual
information are considered. However, to the best of our knowledge, there is no other
method that can find a global solution of AVO. When comparing to AVE, the research
associated to AVO problems is insufficient and one of these reasons is the difficulty for
obtaining feasible solutions of the problems. In fact, their constraints include AVE, which
are known to be NP-hard [14].

Another optimization problem that is related to AVO was recently investigated by
Friedlander et al. [8] and Aravkin et al. [2]. It is called gauge optimization, which ba-
sically consists in an optimization problem with the so-called gauge function. However,
differently from AVO, this problem does not consider multiple constraints, but only one
gauge constraint. In [2, 8], the authors showed that the Lagrange dual of gauge optimiza-
tion problems can be written in a closed-form by using the polar of the gauge functions.

In this paper, similarly to [2, 8], we introduce a generalized AVO problem, and show
that it has a wider practical application comparing to AVO problems. It is also more
general than gauge optimization problems, because multiple constraints can be considered
here. The generalization is done by replacing absolute value functions with positively
homogeneous functions. So, the problem uses not only absolute value terms but also, for
instance, p-norm functions with p ∈ (0,∞]. This generalized problem is referred here as
positively homogeneous optimization (PHO).

Here, we introduce the PHO dual problem and compare it with the Lagrange dual.
2



We also show that the weak duality theorem holds, similarly to the AVO problems [14].
In addition, we investigate the relation between the positively homogeneous duality and
the Lagrange duality, proving that these dual problems are equivalent under some con-
ditions. In this case, the Lagrange dual of a positively homogeneous problem can be
written in a closed-form. We point out that the gauge functions are special cases of the
positively homogeneous functions, which are not necessarily convex, differently from the
gauge. Moreover, the proposed problems here have linear and positively homogeneous
terms in their objective functions and constraints, which is different from the problem
considered in [2, 8] that has only one gauge term. Here, we also give some applications
for the positively homogeneous problems, which include p-order cone optimization, sum
of norms optimization and group Lasso-type optimization problems, and we show that
their Lagrange dual can be written in a closed-form even without convexity assumptions.

The paper is organized as follows. In Section 2, we give the definition of positively
homogeneous functions as well as its dual, showing some of their properties. In Section
3, we define the PHO problems, and we prove that weak duality holds. In Section 4, the
relation between the Lagrangian dual and the positively homogeneous dual is discussed.
We give some applications for PHO problems in Section 5. We conclude the paper in
Section 6, with final remarks and some future works.

We consider the following notations throughout the paper. We denote by R++ the set
of positive real numbers. Let x ∈ Rn be a n-dimensional column vector, and A ∈ Rn×m

be a matrix with dimension n×m. We use T to denote transpose. For two vectors x and
y, we denote the vector (xT , yT )T as (x, y)T for simplicity. If x ∈ Rn, then its i-th entry is
denoted by xi, so x = (x1, . . . , xn)T . Moreover, if I ⊆ {1, . . . , n}, then xI corresponds to
the subvector of x with entries xi, i ∈ I. The notation #J denotes the number of elements
of a set J . The identity matrix with dimension n is given by En ∈ Rn×n. Also, we denote
by ‖ · ‖p and ‖ · ‖∞ the p-norm with p > 0 and the supremum norm, respectively. If no
distinction is made for the norm, we just use the notation ‖ · ‖.

2 Positively homogeneous functions

In this section, we first introduce the definitions of positively homogeneous and vector
positively homogeneous functions. Then, we define their dual, which will be used to
describe the dual of PHO problems. Moreover, we show some properties associated to
these functions.

Definition 1. (Positively homogeneous functions) A function ψ : Rn → R is positively
homogeneous if the following inequality holds:

ψ(λx) = λψ(x) for all x ∈ Rn, λ ∈ R++.

Definition 2. (Vector positively homogeneous functions) A mapping Ψ: Rn → Rm is a

3



vector positively homogeneous function if the following property holds:

Ψ(x) =

 ψ1(xI1)
...

ψm(xIm)

 for all x ∈ Rn,

where ψi : Rni → R is a positively homogeneous function for all i = 1, . . . ,m, n = n1 +
· · ·+ nm, Ii ⊆ {1, . . . , n} is a set of indices satisfying

Ii ∩ Ij = ∅, i 6= j, and #Ii = ni,

and xIi ∈ Rni is a disjoint subvector of x.

The above definition basically says that Ψ is vector positively homogeneous if its block
components are all positively homogeneous. We now introduce the dual function of ψ,
which can be seen as a generalization of the dual norm. Similarly, we also define the dual
of vector positively homogeneous functions.

Definition 3. (Dual positively homogeneous functions) Let ψ : Rn → R be a positively
homogeneous function. Then, ψ∗ : Rn → R ∪ {∞} defined by

ψ∗(y) := sup{xTy | ψ(x) ≤ 1} for all y ∈ Rn

is called the dual positively homogeneous function of ψ.

Note that ψ∗ is convex from definition. In fact, for all y, z ∈ Rn and α ∈ (0, 1), we
have

ψ∗(αy + (1− α)z) = sup{xT (αy + (1− α)z) | ψ(x) ≤ 1}
≤ α sup{xTy | ψ(x) ≤ 1}+ (1− α) sup{xT z | ψ(x) ≤ 1}
= αψ∗(y) + (1− α)ψ∗(z).

Definition 4. (Dual vector positively homogeneous functions) Let Ψ: Rn → Rm be a vec-
tor positively homogeneous function. A function Ψ∗ : Rn → Rm is a dual vector positively
homogeneous function associated to Ψ if the following property holds:

Ψ∗(y) =

 ψ∗1(yI1)
...

ψ∗m(yIm)

 , i = 1, . . . ,m, for all y ∈ Rn

where ψ∗i : Rni → R is the dual of positively homogeneous function ψi for each i = 1, . . .m.

In this paper, we assume two conditions for positively homogeneous functions.

Assumption 1. Let Ψ: Rn → Rm be a vector positively homogeneous function as in
Definition 2. Then, for all i = 1, . . . ,m, the positively homogeneous function ψi satisfies
the following conditions:
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1. ψi(xIi) ≥ 0 for all xIi ∈ Rni,

2. If xIi 6= 0, then ψi(xIi) > 0.

From the definition of positively homogeneous functions, we observe that ψi(0) = 0.
In fact, if x = 0 then 0 = ψ(λx) − λψ(x) = (1 − λ)ψi(0) for all λ ∈ R++. Moreover, the
second condition of the above assumption shows that zero is the only point that satisfies
ψi(x) = 0. We also observe that if ψi is taken as the usual vector norm, then it satisfies
these assumptions. Note that under the above assumption, the dual function ψ∗i always
takes finite values.

We now show an important property satisfied by vector positively homogeneous func-
tions and their dual.

Proposition 1. Let Ψ and Ψ∗ be a vector positively homogeneous function and its dual,
respectively. Suppose that Assumption 1 holds. Then, the following inequalities hold:

Ψ∗(y) ≥ 0,

Ψ(x)TΨ∗(y) ≥ xTy

for any x, y ∈ Rn.

Proof . For simplicity, we take an arbitrary index i and denote ψi and xIi as ψ and x,
respectively. From Definition 1, we have ψ(0) = 0. Using this result and Definition 3, we
obtain

ψ∗(y) = sup{xTy | ψ(x) ≤ 1} ≥ 0 for all y ∈ Rn.

This shows that Ψ∗(y) ≥ 0 for all y ∈ Rn from Definition 4.

If x = 0, then the second inequality of this proposition clearly holds. If x 6= 0, then
ψ(x) > 0 from Assumption 1 and so

ψ

(
x

ψ(x)

)
=

1

ψ(x)
ψ(x) = 1

holds once again from Definition 1. Therefore, we obtain

ψ∗(y) ≥
(

x

ψ(x)

)T

y for all y ∈ Rn.

Then, for all x, y ∈ Rn, we have

ψ(x)ψ∗(y) ≥ xTy,

which indicates that

Ψ(x)TΨ∗(y) =
m∑
i=1

ψIi(x)ψ∗Ii(y) ≥
m∑
i=1

xTIiyIi = xTy.
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3 Positively homogeneous optimization problems

We consider the following positively homogeneous optimization (PHO) problem:

(P)
min cTx+ dTΨ(x)
s.t. Ax+BΨ(x) = b,

Hx+KΨ(x) ≥ p,

where c ∈ Rn, d ∈ Rm, b ∈ Rk, p ∈ R`, A ∈ Rk×n, B ∈ Rk×m, H ∈ R`×n and K ∈ R`×m are
given constant vectors and matrices, and Ψ: Rn → Rm is a vector positively homogeneous
function satisfying Assumption 1.

Now we give the Lagrangian dual of the problem (P) as follows:

(DL) sup
u

v≥0

ω(u, v),

where ω : Rk × R` → R is given by

ω(u, v) := inf
x
L(x, u, v),

(1)

and L : Rn × Rk × R` → R is the Lagrangian function of (P) defined by

L(x, u, v) := cTx+ dTΨ(x) + uT (b− Ax−BΨ(x)) + vT (p−Hx−KΨ(x))

= bTu+ pTv − (ATu+HTv − c)Tx+ (d−BTu−KTv)TΨ(x),

with u ∈ Rk and v ∈ R` as the Lagrange multipliers associated to the equality and
inequality constraints, respectively. Notice that it is difficult to write concretely the
objective function of the problem (DL) because it is, in general, not convex with respect
to x.

In order to obtain a closed-form dual problem, we consider a convex relaxation of
the original problem (P) and its Lagrangian dual. For simplicity, we investigate the case
where Ψ(x) = |x| := (|x1|, . . . , |xn|)T , and (P) has a linear objective function and only
inequality constraints. More precisely, we analyze the following problem:

(Pa)
min cTx
s.t. Ax+B|x| ≥ b.

If we set x = x+− x− and |x| = x+ + x−, where x+i = max{0, xi} and x−i = max{0,−xi},
then we can write (Pa) as

min [cT | − cT ]

[
x+

x−

]
s.t. [A| − A]

[
x+

x−

]
+ [B|B]

[
x+

x−

]
≥ b,

6



which is equivalent to the following problem:

min [cT | − cT ]

[
y1
y2

]
s.t. [A| − A]

[
y1
y2

]
+ [B|B]

[
y1
y2

]
≥ b,

y1, y2 ≥ 0,
yT1 y2 = 0,

where y1, y2 ∈ Rn. Notice that the above problem is not convex due to the complemen-
tarity constraint yT1 y2 = 0. Therefore, we remove it from the problem and obtain the
following relaxed one:

min [cT | − cT ] y
s.t. [A+B| − A+B] y ≥ b,

y ≥ 0,

where y = (y1, y2)
T . This problem is just a linear programming, then its Lagrangian dual

can be written easily as

max bTu

s.t.

[
AT +BT

−AT +BT

]
u ≤

[
c
−c

]
,

u ≥ 0.

Observing that the first constraint is equivalent to |ATu− c|+BTu ≤ 0, we finally obtain
the following closed-form dual problem:

(Da)
max bTu
s.t. |ATu− c|+BTu ≤ 0,

u ≥ 0.

In fact, the problem (Da) is the AVO dual of (Pa) proposed by Mangasarian in [14], and
the weak duality clearly holds in this case.

Let us return to the general problem (P). Inspired by the above AVO dual problem
(Da), we consider the following problem as the positively homogeneous dual problem:

(D)
max bTu+ pTv
s.t. Ψ∗(ATu+HTv − c) +BTu+KTv ≤ d,

v ≥ 0,

where Ψ∗ is the dual vector positively homogeneous function associated to Ψ. Note that
(D) is a convex optimization problem since each component ψ∗i of Ψ∗ is a convex function.

The theorem below shows that the proposed dual problem (D) is reasonable, in the
sense that the weak duality holds between (P) and (D).

Theorem 2. (Weak duality) For problems (P) and (D), the following inequality holds:

cTx+ dTΨ(x) ≥ bTu+ pTv

for all feasible points x ∈ Rn and (u, v) ∈ Rk × R` of (P) and (D), respectively.
7



Proof . Let x ∈ Rn and (u, v) ∈ Rk × R` be feasible for (P) and (D), respectively. Then,
we have

cTx+ dTΨ(x) ≥ cTx+ (Ψ∗(ATu+HTv − c) +BTu+KTv)TΨ(x)

= cTx+ Ψ∗(ATu+HTv − c)TΨ(x) + uTBΨ(x) + vTKΨ(x),

where the inequality holds from the first constraint of (D) and the nonnegativity of Ψ.
From the second inequality of Proposition 1, we also obtain:

cTx+ dTΨ(x) ≥ cTx+ (ATu+HTv − c)Tx+ uTBΨ(x) + vTKΨ(x)

= uT (Ax+BΨ(x)) + vT (Hx+KΨ(x)).

Finally, the constraints of (P) gives

cTx+ dTΨ(x) ≥ bTu+ pTv,

which completes the proof.

The weak duality theorem itself is a powerful theoretical result, but it does not mention
how large the duality gap between (P) and (D) is. And the duality gap can be large
depending on problems, then the dual problem (D) may be useless. Therefore, in the
next section, we investigate the relation between the Lagrangian dual problem (DL) and
the one (D) proposed here. As a result, surprisingly, we find that (DL) and (D) are
equivalent.

4 The positively homogeneous duality and the

Lagrangian duality

In this section, we consider the relation between the positively homogeneous duality and
the more traditional Lagrangian duality of problem (P), investigating conditions under
which the Lagrangian dual problem (DL) and the positively homogeneous dual problem
(D) are equivalent. Notice that the equivalence means the optimal values of (D) and (DL)
are the same if they are finite. Recalling (1), we first show a condition that makes ω(ū, v̄),
the objective function of (DL), unbounded from below for some (ū, v̄).

Lemma 3. Let ψ∗i be the dual of the positively homogeneous functions ψi for i = 1, . . . ,m.
Suppose that Assumption 1 holds. Also, assume that there exists (ū, v̄) and an index i0
satisfying

ψ∗i0(αIi0
) > βi0 ,

where α := AT ū + HT v̄ − c ∈ Rn, and β := d − BT ū − KT v̄ ∈ Rm. Then, there exists
a sequence {xk} such that ‖xk‖ → +∞ and L(xk, ū, v̄) → −∞ as k → +∞. Therefore,
ω(ū, v̄) is unbounded from below.
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Proof . Firstly, we denote ᾱ and ᾱ(λ) as follows:

ᾱ := (αI1 , αI2 , . . . , αIi0
, . . . , αIm) ∈ Rn,

ᾱ(λ) := (αI1 , αI2 , . . . , λx̂, . . . , αIm) ∈ Rn,

where λ ∈ R++ and x̂ ∈ Rni0 is defined as the supreme point of the following problem:

sup{xTαIi0
| ψi0(x) ≤ 1}.

From the definition of x̂, we obtain ψi0(x̂) ≤ 1. Then, from Definition 3, we have

x̂TαIi0
= ψ∗i0(αIi0

) ≥ ψi0(x̂)ψ∗i0(αIi0
).

The above equality and the definition of the Lagrangian function give

L(ᾱ(λ), ū, v̄) = bT ū+ pT v̄ − ᾱT ᾱ(λ) + βTΨ(ᾱ(λ))

= bT ū+ pT v̄ −
∑
i 6=i0

αT
Ii
αIi − λx̂TαIi0

+
∑
i 6=i0

βiψi(αIi) + βi0ψi0(λx̂)

= γ − λx̂TαIi0
+ βi0ψi0(λx̂)

≤ γ − λψi0(x̂)ψ∗i0(αIi0
) + βi0ψi0(λx̂),

where γ := bT ū+ pT v̄ −
∑

i 6=i0
αT
Ii
αIi +

∑
i 6=i0

βiψi(αIi) ∈ R is constant with respect to λ.
Moreover, Definition 1 shows that

L(ᾱ(λ), ū, v̄) = γ − λψi0(x̂)ψ∗i0(αIi0
) + λβi0ψi0(x̂)

= γ + λψi0(x̂)(βi0 − ψ∗i0(αIi0
))

≤ γ + λ(βi0 − ψ∗i0(αIi0
)).

Therefore, L(ᾱ(λ), ū, v̄) converges to minus infinity when λ increases. Finally, if we set
xk = ᾱ(λk) where λk → +∞ as k → +∞, then L(xk, ū, v̄) → −∞ and we complete the
proof.

We now show that the positively homogeneous dual problem (D) and the Lagrangian
one (DL) are equivalent under some conditions.

Lemma 4. Suppose that Assumption 1 holds. Assume also that the positively homoge-
neous dual problem (D) has a feasible solution (ū, v̄) ∈ Rk × R`, and that there exists
x∗ ∈ Rn satisfying the following equality:

(d−BT ū−KT v̄)TΨ(x∗)− (AT ū+HT v̄ − c)Tx∗ = 0.

(2)

Then, the positively homogeneous dual problem (D) and the Lagrangian dual problem (DL)
are equivalent.
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Proof . From Lemma 3, the function ω is unbounded from below if there exists an index i0
such that ψ∗i0(αIi0

) > βi0 , where α := AT ū+HT v̄−c ∈ Rn, and β := d−BT ū−KT v̄ ∈ Rm.
Therefore, the problem (DL) is equivalent to

(D′L)
sup ω(u, v)
s.t. Ψ∗(ATu+HTv − c) ≤ d−BTu−KTv,

v ≥ 0.

Let (ū, v̄) ∈ Rk×R` be the feasible solution of (D′L). From the definition of the Lagrangian
function, we obtain:

L(x, ū, v̄) = cTx+ dTΨ(x) + ūT (b− Ax−BΨ(x)) + v̄T (p−Hx−KΨ(x))

= bT ū+ pT v̄ − (AT ū+HT v̄ − c)Tx+ (d−BT ū−KT v̄)TΨ(x).

Then, taking x∗ ∈ Rn that satisfies (2), we have

L(x∗, ū, v̄) = bT ū+ pT v̄.

Notice that x∗ is the solution of the problem

inf
x
L(x, ū, v̄),

because L(x, ū, v̄) ≥ bT ū + pT v̄ holds from Proposition 1. Therefore, the problem (D′L)
can be described as follows:

sup bTu+ pTv
s.t. Ψ∗(ATu+HTv − c) ≤ d−BTu−KTv,

v ≥ 0,

which is equivalent to the positively homogeneous dual problem (D).

As a consequence of the above lemma, we obtain the following result.

Theorem 5. Suppose that the Lagrangian dual problem (DL) has a feasible solution.
Assume also that the vector positively homogeneous function Ψ satisfies Assumption 1.
Then, the positively homogeneous dual problem (D) and the Lagrangian dual problem
(DL) have the same optimal value and solutions.

Proof . From Definition 1 and Assumption 1, we have Ψ(0) = 0. It means that equation
(2) holds at x∗ = 0. Thus, from Lemma 4, the problems (D) and (DL) have the same
optimal value.

Moreover, we denote SD and SDL as the sets of optimal solutions of problems (D) and
(DL), respectively. Let us take (u∗, v∗) ∈ SD. Then, it is clearly feasible for (DL). It
follows from Theorem 5 that the optimal values of (D) and (DL) are the same, which is
bTu∗ + pTv∗, and so (u∗, v∗) ∈ SDL . Conversely, let us take (ū, v̄) ∈ SDL . Then, the point
(ū, v̄) is feasible for (DL). Note that Lemma 3 indicates that if (u, v) is feasible for (DL)
and the objective function value of (DL) at the point (u, v) is finite, then it is also feasible
for (D). Thus, (ū, v̄) is feasible for (D). Once again from Theorem 5, the optimal values
of (D) and (DL) are the same, which means that (ū, v̄) ∈ SD. Consequently, we obtain
SD = SDL .
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The above theorem shows that the Lagrangian dual problem (DL) can be written in
a closed-form when the function Ψ is positively homogeneous and satisfies Assumption 1.
The paper [14] does not show that the same property holds for the AVO problem. We
now give it as a direct consequence of Theorem 5.

Corollary 1. If the dual of an AVO problem has a feasible solution, then it is equivalent
to the Lagrangian dual problem (DL).

Proof . It holds from Theorem 5 and the fact that the absolute value function is positively
homogeneous and satisfies Assumption 1.

Corollary 2. If the optimal values of an AVO primal problem and its Lagrangian dual
problem (DL) are the same, then the strong duality holds between the AVO primal and
the AVO dual problem.

Proof . It holds straightforward from Corollary 1.

From the above result, AVO can be applied to solve 0-1 integer optimization prob-
lems. To solve such problems, their Lagrangian dual are often considered, which is, in
general, nondifferentiable due to the integer constraints. On the other hand, a 0-1 integer
constraint, that is x ∈ {0, 1}, is equivalent to |2x−1| = 1. Then, 0-1 integer optimization
problems can be reduced to AVO, and we obtain their AVO dual, which are actually
linear programming (LP) problems. These LP dual problems are much easier to solve
compared to the nondifferentiable ones. Therefore, it might be worth considering AVO
dual problems from the computational point of view.

5 Examples of positively homogeneous optimization

problems

In this section, we present several applications that are formulated as PHO, and show
their closed-form dual problems.

First, we observe that any p-norm function with p ∈ [1,∞) is positively homogeneous.
So, if ψ is the p-norm, then ψ∗ becomes the q-norm, where 1/p+ 1/q = 1. Therefore, if ψ
is taken as ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞, then ψ∗ becomes ‖ · ‖∞, ‖ · ‖2, ‖ · ‖1, respectively. Moreover,
in the case that p ∈ (0, 1), the dual function ψ∗ is equal to ‖ · ‖∞ for all p ∈ (0, 1),
which is proved in Proposition 6 of Appendix A. From the result, we can consider any
p-norm functions as ψ in PHO problems. And, even if such functions are nonconvex with
p ∈ (0, 1), the Lagrangian dual problem can be written in a closed-form from Theorem 5.

We now show some positively homogeneous problems using these p-norm functions.
The first example is the so-called linear second-order cone optimization problem [1], which
is one of the famous convex optimization problem.
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Example 1. Let x = (x1, x2)
T ∈ R × Rn−1. Then, we consider the linear second-order

cone optimization problem written by

(P1)
min cTx
s.t. Ax = b,

x1 − ‖x2‖2 ≥ 0,

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. The above problem can be written in PHO form as

min cTx+ 0TΨ(x)
s.t. Ax+ 0Ψ(x) = b,

Hx+KΨ(x) ≥ 0,

with H = (1, 0, . . . , 0) ∈ R1×n, K = (0,−1) ∈ R1×2 and Ψ: Rn → R2,Ψ(x) = (|x1|, ‖x2‖2)T .
Then, recalling (D), its dual problem is given by

max bTu
s.t. Ψ∗(ATu+HTv − c) +KTv ≤ 0,

v ≥ 0,

where Ψ∗ is identical to Ψ in this case. Then, from the definition of Ψ, we have

max bTu
s.t. |(ATu)1 + v − c1| ≤ 0,

‖(ATu)2 − c2‖2 ≤ v,
v ≥ 0,

with (ATu)1 as the first component of ATu, (ATu)2 is the rest of it, and c = (c1, c2)
T ∈

R× Rn−1. The first constraint of the above problem shows that

v = c1 − (ATu)1,

and v ≥ 0 automatically holds from the second constraint. Then, we obtain

max bTu
s.t. ‖(ATu)2 − c2‖2 ≤ c1 − (ATu)1

as the dual problem of (P1). In fact, the above problem is the standard dual of the linear
second-order cone optimization problem [1].

Although we use the 2-norm in the above example, any p-norm function with p ∈ (0,∞]
can be considered. In this case, if p ∈ [1,∞], then the primal and dual problems are p-
order cone and q-order cone optimization problems, respectively, where 1/p + 1/q = 1
[25]. If p ∈ (0, 1), then the dual is ∞-order cone optimization problem.

In the next example, we consider a gauge optimization problem, which is also a convex
problem with multiple gauge functions in its objective and constraint functions. Here,
we recall that f is a gauge function if and only if it is nonnegative, convex, positively
homogeneous and satisfies f(0) = 0 [7]. For such a problem, we introduce its dual in PHO
form.
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Example 2. Let x ∈ Rn. We consider the following problem:

(P2)
min

s∑
i=1

αifi(Aix− ai)

s.t. gj(Bjx− bj) ≤ βj, j = 1, . . . , t,

where αi, βj ∈ R+, Ai ∈ Rmi×n, Bj ∈ Rkj×n, ai ∈ Rmi and bj ∈ Rkj are given for all
i = 1, . . . , s and j = 1, . . . , t, and fi : Rmi → R and gj : Rkj → R are gauge functions.
Letting yi := Aix− ai and zj := Bjx− bj, (P2) can be written as

min
s∑

i=1

αifi(yi)

s.t. gj(zj) ≤ βj, j = 1, . . . , t,
Aix− yi = ai, i = 1, . . . , s,
Bjx− zj = bj, j = 1, . . . , t.

The above problem does not have a gauge function defined for the variable x, so we intro-
duce such a gauge function x 7→ ψ(x) and rewrite the problem into the following way:

min 0× ψ(x) +
s∑

i=1

αifi(yi) + 0×
t∑

j=1

gj(zj)

s.t. 0× ψ(x) ≤ 0,
0× fi(yi) ≤ 0, i = 1, . . . , s,
gj(zj) ≤ βj, j = 1, . . . , t,
Aix− yi = ai, i = 1, . . . , s,
Bjx− zj = bj, j = 1, . . . , t.

Note that ψ : Rn → R is a dummy gauge function with x as its domain.

Let
x̂ := (x, y1, . . . , ys, z1, . . . , zt) ∈ Rn+

∑s
i=1 mi+

∑t
j=1 kj

and
Ψ(x̂) := (ψ(x), f1(y1), . . . , fs(ys), g1(z1), . . . , gt(zt))

T .

Then the above problem can be rewritten as

min dTΨ(x̂)
s.t. KΨ(x̂) ≤ p,

Âx̂ = b̂,

where d = (0, α1, . . . , αs, 0, . . . , 0)T ∈ R1+s+t, p = (0, . . . , 0, β1, . . . , βt)
T ∈ R1+s+t,

K =

[
0 0
0 Et

]
, Â =



A1 −Em1

...
. . . 0

As −Ems

B1 −Ek1
... 0

. . .

Bt −Ekt


, and b̂ =



a1
...
as
b1
...
bt


.
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Moreover, its positively homogeneous dual problem is given by

max b̂Tu− pTv
s.t. Ψ∗(ÂTu)−KTv ≤ d,

v ≥ 0.

For simplification, let u = (u11, . . . , u1s, u21, . . . , u2t)
T with u1i ∈ Rmi , i = 1, . . . , s and

u2j ∈ Rkj , j = 1, . . . , t. Then the above problem is rewritten as

(D2)

max
s∑

i=1

aTi u1i +
t∑

j=1

bTj u2j −
t∑

`=1

β`v1+s+`

s.t.
s∑

i=1

AT
i u1i +

t∑
j=1

BT
j u2j = 0,

f ∗i (−u1i) ≤ αi, i = 1, . . . , s,
g∗j (−u2j) ≤ v1+s+j, j = 1, . . . , t.

Notice that the last constraint implies v ≥ 0 because g∗j is also a gauge function. Moreover,
(D2) does not include the dual function ψ∗ of the dummy gauge function ψ.

The next example is the group Lasso-type problems [17, 27], which is a special case
of (P2) and consist in unconstrained minimizations of the sum of certain norms. Such
problems have many applications, in particular they appear in compressed sensing area
[6, 23], where the sparsity of solutions are important. As an example, we consider a
primal problem with p1-norm and p2-norm where p1, p2 ∈ R+, which are used in the
regularization terms.

Example 3. Let x ∈ Rn and p1, p2 ∈ R+. We consider the following problem:

(P3) min ‖Ax− b‖2 + λ1

m′∑
i=1

‖xIi‖p1 + λ2

m∑
i=m′+1

‖xIi‖p2

where λ1, λ2 ∈ R+, b ∈ Rm, A ∈ Rm×n and 0 < m′ < m.

Notice that the first term of the objective function of group Lasso-type problems are
usually the square of 2-norm functions. However, it is not positively homogeneous, so we
removed the square and considered just the 2-norm functions.

We obtain the above problem by setting, in (P2), s = m+ 1,

αi =


λ1, if i = 1, . . . ,m′,
λ2, if i = m′ + 1, . . . ,m,
1, if i = m+ 1,

Ai =

{
EIi , if i = 1, . . . ,m,
A, if i = m+ 1,
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where EIi is a submatrix of En with Ej, j ∈ Ii as its rows,

ai =

{
0, if i = 1, . . . ,m,
b, if i = m+ 1,

and

fi(·) =


‖ · ‖p1 , if i = 1, . . . ,m′,
‖ · ‖p2 , if i = m′ + 1, . . . ,m,
‖ · ‖2, if i = m+ 1.

Then, recalling (P2) and (D2), the dual of (P3) can be written as

max bTu1(m+1)

s.t.
m∑
i=1

ET
Ii
u1i + ATu1(m+1) = 0,

‖ − u1i‖q1 ≤ λ1, i = 1, . . . ,m′,
‖ − u1i‖q2 ≤ λ2, i = m′ + 1, . . . ,m,
‖ − u1(m+1)‖2 ≤ 1,

where qi, i = 1, 2 are obtained by

(3) qi =

{ pi
pi − 1

, if pi > 1,

∞, if pi ∈ (0, 1],

from Proposition 6 of Appendix A. Notice that the first equality constraint can be rewrit-
ten as

u1i + (AT )Iiu1(m+1) = 0, i = 1, . . . ,m.

Then, the above problem is described as

max bTu
s.t. ‖(AT )Iiu‖q1 ≤ λ1, i = 1, . . . ,m′,

‖(AT )Iiu‖q2 ≤ λ2, i = m′ + 1, . . . ,m,
‖ − u‖2 ≤ 1,

where we denote u1(m+1) as u for simplicity.

The next example is also a Lasso-type problem. In this case, the objective function is
a gauge, because the sum of gauge functions is also gauge. In order to obtain the dual of
a gauge optimization problem, the polar of the objective function should be considered
[2, 8]. However, it may be difficult to obtain the polar of a sum of gauge functions. To
overcome this drawback, we use here the PHO framework.

Example 4. Let x ∈ Rn and p1, p2 ∈ R+. We consider the following problem:

(P4)
min λ1‖x‖p1 + λ2‖x‖p2
s.t. ‖Ax− b‖2 ≤ β,
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where λ1, λ2, β ∈ R+, A ∈ Rm×n and b ∈ Rm. The above problem can be obtained if we
set, in (P2), s = 2, t = 1, α1 = λ1, α2 = λ2, A1 = A2 = En, a1 = a2 = 0, B1 = A,
b1 = b, f1(·) = ‖ · ‖p1, f2(·) = ‖ · ‖p2, g1(·) = ‖ · ‖2. Then, recalling (D2), the dual of (P4)
is written by

max bTu21 − βv4
s.t. u11 + u12 + ATu21 = 0,

‖ − u11‖q1 ≤ λ1,
‖ − u12‖q2 ≤ λ2,
‖ − u21‖ ≤ v4,

which is finally rewritten as

max bTu2 − βv
s.t. ‖u1 + ATu2‖q1 ≤ λ1,

‖ − u1‖q2 ≤ λ2,
‖ − u2‖ ≤ v,

where we set u12, u21 and v4 as u1, u2 and v, respectively, and q1 and q2 are defined in (3).

In order to control the sparsity of the solutions of the above Lasso-type problems,
we can use any combination of p-norm functions, with p ∈ (0,∞], as the regularization
terms. Especially, it is reported that the p-norm functions with p ∈ (0, 1) in (P3) is useful
because they give sparser solutions than 1-norm functions [4, 5, 19].

We now give another example: the sum of norms optimization problems, which are
generally nonconvex. Such problems have applications, for example, in facility location,
where locations of new facilities should be decided by analyzing the distance between the
new and the existing facilities [24]. Moreover, the problem of the following example can
be applied not only to the minimization of the distance but also maximization of it by
taking the constant λi as −λi. Such a situation can be found for instance in locating
obnoxious facilities in residential areas.

Example 5. Let x ∈ Rn. We consider the following problem:

(P5)
min

s∑
i=1

λifi(Aix− ai),

s.t. Bx ≤ b,

where λi ∈ R, Ai ∈ Rmi×n, B ∈ Rk×n, ai ∈ Rmi and b ∈ Rk are given, and fi : Rmi →
R, i = 1, . . . , s are positively homogeneous functions. We now introduce its positively
homogeneous dual by taking almost the same procedure as in Example 2. Let yi := Aix−ai,
then (P5) is equivalent to

min
s∑

i=1

λifi(yi)

s.t. Aix− yi = ai, i = 1, . . . s,
Bx ≤ b.
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By introducing additional constraints, we consider the following problem:

min
s∑

i=1

λifi(yi)

s.t. Aix− yi = ai, i = 1, . . . s,
Bx ≤ b,
cifi(yi) ≤ di, i = 1, . . . s,

where ci and di are strictly positive constants. Notice that the additional constraints
ensure the boundedness of the each term of the objective function especially when λi is
strictly negative. Without such constraints, (P5) can be unbounded depending on the linear
constraint, and then its dual becomes infeasible. Note that the additional constraints do
not change solutions, when we choose ci and di so that the constraint cifi(yi) ≤ di will
include reasonable solutions.

Let x̂ := (x, y1, . . . , ys)
T ∈ Rn+

∑s
i=1 mi and Ψ(x̂) := (ψ(x), f1(y1), . . . , fs(ys))

T ∈ R1+s,
where ψ(·) is a dummy positively homogeneous function. Then the above problem can be
described as

min dTΨ(x̂)

s.t. Âx̂ = â,
Hx̂+KΨ(x̂) ≥ p,

where d = (0, λ1, . . . , λs)
T , â = (a1, . . . , as)

T , p = (−b,−d1, . . . ,−ds)T ,

Â =

 A1 −Em1 0
...

. . .

As 0 −Ems

 , H =

[
−B 0
0 0

]
, and K =


0 0
−c1

0
. . .

−cs

 .
Then, recalling the positively homogeneous dual (D), the dual of the above problem can be
written as

max âTu+ pTv

s.t. Ψ∗(ÂTu+HTv) ≤ d−KTv,
v ≥ 0,

which is rewritten by

max
s∑

i=1

aTi ui − bTv1 −
s∑

i=1

dTi vi+1

s.t.
s∑

i=1

AT
i ui −BTv1 = 0,

f ∗i (−ui) ≤ λi + ci, , i = 1, . . . s,
v ≥ 0,

where v = (v1, . . . , vs+1)
T .
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6 Conclusion

In this paper, we proposed an optimization problem with positively homogeneous func-
tions, which we call positively homogeneous optimization problem. We also introduced
its dual problem and showed the weak duality theorem between these problems. More-
over, we gave sufficient conditions for the equivalency between the proposed dual and the
Lagrangian dual problems. Finally, we presented some examples of positively homoge-
neous problems to show their value in real-world applications. One natural future work
will be to propose methods that obtain approximate solutions of positively homogeneous
optimization problems. We believe the theoretical results described here are essential for
that.
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A Appendix

The following proposition shows that the dual of the p-norm function is the∞-norm even
when p is less than 1.

Proposition 6. Suppose that p ∈ (0, 1). Then, the dual of the p-norm function is equal
to the ∞-norm.

Proof . Let y ∈ Rn be an arbitrary vector. If y = 0, this proposition clearly holds. If
y 6= 0, from Definition 3, we obtain

‖y‖∗p = sup{xTy | ‖x‖p ≤ 1}
≤ sup{|xTy| | ‖x‖p ≤ 1}

≤ sup

{ n∑
i=1

|xi||yi| | ‖x‖p ≤ 1

}

≤ max
j
|yj|

(
sup

{ n∑
i=1

|xi| | ‖x‖p ≤ 1

})

= max
j
|yj|
(

sup{‖x‖1 | ‖x‖p ≤ 1}
)
.

Since p ∈ (0, 1), we note that ‖x‖1 ≤ ‖x‖p holds [11]. Then, we have

‖y‖∗p ≤ max
j
|yj|
(

sup{‖x‖p | ‖x‖p ≤ 1}
)

= max
j
|yj| = ‖y‖∞.

Now, take an arbitrary i0 ∈ argmax
i
|yi|, and define x̄i as follows:

x̄i =

{
sign(yi), if i = i0,
0, otherwise,
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where

sign(yi) =


1, if yi > 0,
0, if yi = 0,
−1, if yi < 0.

Then, ‖x̄‖p = 1 and we have

‖y‖∗p = sup{xTy | ‖x‖p ≤ 1} ≥ x̄Ty = max
i
|yi| = ‖y‖∞,

which completes the proof.
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