
ar
X

iv
:1

70
8.

07
47

3v
2

 [
m

at
h.

O
C

]
 1

 S
ep

 2
01

7

A FAST GRADIENT AND FUNCTION SAMPLING METHOD FOR
FINITE MAX-FUNCTIONS∗

ELIAS SALOMÃO HELOU† , SANDRA A. SANTOS‡ , AND LUCAS E. A. SIMÕES‡

Abstract. This paper tackles the unconstrained minimization of a class of nonsmooth and
nonconvex functions that can be written as finite max-functions. A gradient and function-based
sampling method is proposed which, under special circumstances, either moves superlinearly to a
minimizer of the problem of interest or superlinearly improves the optimality certificate. Global
and local convergence analysis are presented, as well as illustrative examples that corroborate and
elucidate the obtained theoretical results.

Key words. nonsmooth nonconvex optimization, gradient sampling, local superlinear conver-
gence, global convergence, unconstrained minimization

AMS subject classifications. 65K10, 90C26

1. Introduction. Problems involving continuous nonsmooth functions arise in
many fields of science [37, 45, 46], playing a primary or a secondary role (e.g. subprob-
lems) in different areas. A wide class of problems needs to cope with one or more min-
imizations of convex nonsmooth functions [42, 44], which has been successfully solved
by well established optimization algorithms known as Bundle Methods [1, 26, 35].
However, a significant amount of problems involve minimizations of nonsmooth func-
tions that are also nonconvex [12, 13], a property that usually introduces an undesir-
able complexity to the implementation of the aforementioned method. Nevertheless,
we can also find algorithms based on bundle ideas [16, 27] for such functions.

Recently, an algorithm known as Gradient Sampling (GS) [5, 28] has gained atten-
tion for providing good alternatives to the difficulties that the Bundle Methods need
to deal with if the function is not convex (see [35, 43] and references therein). Basi-
cally, the functioning of GS is very close to the steepest descent method for smooth
functions, since it works in every iteration with a descent direction computed just
with first order information and it finds the next iterate by a line search procedure
(in fact, when a nonnormalized version of GS is used to solve a smooth optimization
problem, its step asymptotically recovers the direction taken by the steepest descent
method). In contrast to the Bundle Method, the GS does not work with a memory of
the past iterations, but it tries to gain information about the function by computing
gradients at some sampled points obtained in each iteration. This behavior is less
complex than keeping a history of the last iterations, since in the nonconvex case, it is
hard to determine whether a past iteration is contributing to construct a good model
of the objective function or it is so far from the current iteration that its incorporation
to the model might lead to an erroneous information. As a counterpart, by evaluating
the gradients at the sampled points, the GS has a significant cost per iteration.

Since we can interpret the GS algorithm as a generalization of the steepest descent

∗Submitted to the editors DATE.
Funding: This work was supported by Brazilian Funding Agencies Fundação de Amparo à

Pesquisa do Estado de São Paulo - FAPESP (grants 2013/07375-0, 2013/05475-7, 2013/07375-0,
2013/14615-7, 2016/22989-2 and 2016/24286-9), Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico - CNPq (grants 311476/2014-7 and 302915/2016-8) and PRONEX Optimization.

†Institute of Mathematical Sciences and Computation, University of São Paulo. São Carlos - SP,
Brazil. (elias@icmc.usp.br).

‡Department of Applied Mathematics, University of Campinas. Campinas - SP, Brazil.
(sandra@ime.unicamp.br, simoes.lea@gmail.com).

1

http://arxiv.org/abs/1708.07473v2
mailto:elias@icmc.usp.br
mailto:sandra@ime.unicamp.br
mailto:simoes.lea@gmail.com

2 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

method, it is reasonable to think that, in the best-case scenario, the method would
have linear local convergence [22]. Therefore, this leads to a natural question: would
it be possible to have a GS algorithm that can be understood as a generalization of
Newton’s (or quasi-Newton) method for nonsmooth functions, meaning that it would
locally converge faster than linearly?

This manuscript has the intent to start answering this question. As we shall see,
the answer is, at least, partially affirmative. In fact, there are recent studies that
have introduced GS-like algorithms with quasi-Newton techniques [8, 9, 10], however
there are no proofs nor numerical results that corroborate a rapid local convergence.
Therefore, our affirmative answer is directly linked to the property that, in a good
sampling condition and, for a special class of nonsmooth functions, the method will
move superlinearly in some sense.

One might view our method as a GS algorithm that incorporates some elements
of Bundle Methods developed over the years [19, 34], but still keeps the GS facilities
to handle nonconvex functions. This last characteristic is in agreement with Kiwiel’s
expectation [28]

“We believe, however, that deeper understanding of their [GS and
Bundle Methods] similarities and differences should lead to new vari-
ants.”

In order to prove a rapid local convergence result, the theory developed in this
manuscript is based on the VU-decomposition of the space [32, 38]. However, the
method does not need to compute an estimate of such spaces. Roughly speaking,
we show that our trust-region algorithm emulates the quasi-Newton techniques into
the U-space (a subspace where the objective function is locally smooth), whereas it
combines effective cutting-plane features [15, 25] into the V-space (the orthogonal
complement of the U-space). For this purpose, we need not only to evaluate the gra-
dients at the sample points, but also their respective function values. This procedure
does not produce a significant increase in computational time, since, in most cases,
the computational effort of evaluating the function value is fundamental in evaluating
the gradient as well, so, by computing the gradient, one can obtain the function value
essentially for free.

As a consequence of our attempt to move superlinearly to the solution of the
optimization problem, the iterations of the proposed algorithm are more expensive
when compared to the GS method. Therefore, although the global convergence of
our algorithm is proven, the method should be viewed as an accelerator of the local
convergence speed of the GS algorithm. Consequently, we propose that a potential
user should use the GS method in the first iterations and switch to our algorithm
in the final iterations. Fortunately, by the way the GS was designed, this transition
moment can be well determined.

Finally, we believe that the results obtained in this text are a step further into the
study of a practical algorithm with rapid local convergence to minimize nonsmooth
and nonconvex functions (important studies on the matter for nonsmooth and convex
functions can be found in [29, 30, 31, 39]). The pursuit for such an algorithm has
raised many researchers’ efforts (an enlightening review can be found in [40]) and up
to our knowledge there is no method in the literature that fulfills those features. A
future work assessing its performance in an extensive class of nonsmooth functions
is needed to determine how efficient the proposed algorithm is. For now, we limit
ourselves to the global and local convergence theory and the presentation of some

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 3

illustrative examples.
For clarity, before we start to expose the main ideas of this study, we present

some notations that appear along this manuscript:
• coX is the convex hull of X ;
• clX is the closure of X ;
• intX is the interior of X ;
• |X | is the cardinality of X ;
• B(x, r) is the Euclidean closed ball with center at x and radius r;
• ‖ · ‖ is the Euclidean norm in R

n;

• ‖x‖H :=
√
xTHx, for any symmetric positive definite matrix H ;

• e is a vector with ones in all entries;
• P [x ∈ X] is the probability of x to be in X , whereas P [x ∈ X | x ∈ Y] is the
conditional probability of x to be in X given that x ∈ Y.

2. Basic concepts and the GS algorithm. The GS method has the goal of
solving the following unconstrained optimization problem

(1) min
x∈Rn

f(x),

where f : Rn → R is a locally Lipschitz function, continuously differentiable in an
open dense subset with full measureD ⊂ R

n. The function f is not necessarily convex.
For a map with the properties above, it is possible to define the Clarke’s subdif-

ferential set for f at x [6, 7]. This set can be interpreted as a generalization of the
gradient for nonsmooth functions.

Definition 2.1 (Subdifferential set, subgradient, stationary point). The set given
by

∂f(x) := co

{

lim
j→∞

∇f(xj) | xj → x, xj ∈ D
}

is called the Clarke’s subdifferential set of f at x and any v ∈ ∂f(x) is known as a
subgradient of f at x. Moreover, if 0 ∈ ∂f(x), then we say that x is a stationary point
for f .

A set that fits best with the idea of sampled points and is more general than the
previous one can be defined [18].

Definition 2.2 (ǫ-Subdifferential set, ǫ-subgradient, ǫ-stationary point). The ǫ-
subdifferential set of f at x is given by

∂ǫf(x) := co ∂f(B(x, ǫ)).
Any v ∈ ∂ǫf(x) is known as an ǫ-subgradient of f at x. Moreover, if 0 ∈ ∂ǫf(x), then
we say that x is an ǫ-stationary point for f .

With a great importance for our study, we present the generalized directional deriva-
tive for the function f [6].

Definition 2.3 (Generalized directional derivative). The generalized directional
derivative of a continuous locally Lipschitz function f : Rn → R at x in the direction
v ∈ R

n is given by

f◦(x; v) := lim sup
y→x

t↓0

f(y + tv)− f(y)

t
.

4 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

Finally, it is possible to link Definition 2.3 with the subdifferential set. Indeed,
the following relation holds [6]

f◦(x; v) = max{sT v | s ∈ ∂f(x)}.

With the above sets in mind, one can interpret the sampled points used in GS method
as an attempt to approximate the ǫ-subdifferential set of f at x [4, Theorem 2.1].

For a more complete idea of the GS functioning, we present the nonnormalized
version of the GS algorithm [28].

Algorithm 1 Nonnormalized version of the GS method.

Step 0. Given x0 ∈ D, m ∈ N with m ≥ n + 1, fixed real numbers 0 ≤ νopt < ν0,
0 ≤ ǫopt < ǫ0 and 0 < θν , θǫ, γ, β < 1, set k = 0.

Step 1. Choose {xk,1, . . . , xk,m} ⊂ B(xk, ǫk) with randomly, independently and
uniformly sampled elements. If {xk,1, . . . , xk,m} 6⊂ D, then STOP!

Step 2. Set Gk = [∇f(xk), ∇f(xk,1), . . . , ∇f(xk,m)] and find gk = Gkλ
k, where λk

solves

min
λ

1

2
λTGT

kGkλ

s.t. eTλ = 1, λ ≥ 0.

Step 3. If ‖gk‖ ≤ νopt and ǫk ≤ ǫopt, then terminate. Otherwise, if ‖gk‖ ≤ νk, then
ǫk+1 = θǫǫk, νk+1 = θννk, tk = 0, xk+1 = xk and go to Step 6.

Step 4. Do a backtracking line search and find the maximum tk ∈ {1, γ, γ2, . . .}
such that

f(xk + tkdk) < f(xk)− βtk‖gk‖2, where dk = −gk,

and set ǫk+1 = ǫk and νk+1 = νk.

Step 5. If xk + tkdk ∈ D, then set xk+1 = xk + tkdk. Otherwise, find

xk+1 ∈ B(xk + tkdk,min{tk, ǫk}‖dk‖) ∩ D,

such that f(xk+1) < f(xk)− βtk‖gk‖2.
Step 6. Set k ← k + 1 and go back to Step 1.

Since the sampled points are chosen in an uniform and independent way, one
can show that the GS method, with probability one, will never stop due to Step
1. Moreover, it is possible to show that if xk ∈ D, then the vector dk used at
Step 4 is a descent direction for f at xk [5], which evinces the importance of Step 5
for the finiteness of the line search procedure (in fact, this procedure is a delicate
matter [21]). Moreover, given the random nature of the method, nondeterministic
results of convergence with probability one are expected [28].

Once we have presented some basic notions about nonsmooth functions and the
GS methods, we are able to proceed with the main ideas of this paper.

3. Motivation and the new algorithm. Henceforward, we will be interested
in solving a class of problems more structured than (1). Let us consider the minimax

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 5

optimization problem

(2) min
x∈Rn

(

f(x) := max
1≤i≤p

{φi(x)}
)

,

where the functions φi : Rn → R are all of class C2, but they are not necessarily
known. Here, we only ask that the function f may be represented as a maximum
of functions, i.e., the functions φi are not inputs for the method. This situation is
distinct from the case in which the functions that comprise f are known. For such a
case, many studies have been developed (see [14] and references therein).

3.1. Motivational example. Suppose we have f(x) = |x| = max{x,−x} and
we want to start an iteration of Algorithm 1. If

m = 2, ǫ0 = 1, ǫopt < 1, x0 = 0.5, x0,1 < 0 and x0,2 > 0,

then f ′(x0,1) = −1, f ′(x0,2) = 1 and g0 = 0 in Step 2. Consequently, by Step 3, we
skip Steps 4 and 5 and go directly to Step 6, which starts a new iteration. Although
this routine indicates that we have an ǫ0-stationary point for f , this procedure does
not allow us to move. Moreover, it prevents the algorithm to take an action when it
has a complete information about the function, that is, when we have points sampled
in the sets

X− = {x ∈ R | x < 0} and X+ = {x ∈ R | x > 0}.

As a consequence, we see that the method only gets a chance to move when either xk

and the sampled points are all in X− or all in X+. Moreover, in this scenario, the
GS method behaves exactly as the steepest descent method.

This undesirable behavior can be explained by the lack of information about the
function values at the sampled points. Indeed, taking a careful look into the quadratic
optimization problem that is solved in Step 2, it is possible to see that its dual problem
is given by

min
d,z

z +
1

2
dTd

s.t. GT
k d ≤ ze,

where z ∈ R and d ∈ R
n. Equivalently, considering xk,0 := xk, the same direction dk

can be obtained if we solve

(3) min
d∈Rn

max
0≤i≤m

{

f(xk) +∇f(xk,i)
T d+

1

2
dTd

}

.

Notice, however, that if we use the function values of each sampled point instead of
f(xk) and an enriched second-order information (other GS-like methods use different
second-order approaches [8, 9]), i.e., if we solve

(4) min
d∈Rn

max
1≤i≤m

{

f(xk,i) +∇f(xk,i)
T (xk + d− xk,i) +

1

2
dTHkd

}

,

we would have a better model for the function f than the original one (closer to a
cutting-plane method). Furthermore, the new quadratic optimization problem allows
us to move when we have sampled in both “faces” of f , that is, in X− and X+. Lastly,

6 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

observe that in (4), we do not use the objective function value at the current iterate
xk neither the gradient ∇f(xk). As we shall see later, these omissions do not prevent
the algorithm to converge and introduce an advantage over the GS method, since the
differentiability check inside Step 5 is no longer necessary.

Unfortunately, this new quadratic programming problem comes at a price: the
vector dk might not be a descent direction for f at xk (especially under a bad sampling
condition), a property that is always true if we solve (3). Therefore, to have an
algorithm that uses the function values at all sampled points, we must overcome this
issue.

3.2. New algorithm. In order to surpass the difficulty of not having a descent
direction under a bad sampling, we replace the Armijo’s line search by a trust-region
procedure. Besides, aiming at a smooth problem, instead of dealing with (4), we solve
at each iteration the following quadratic optimization problem

min
d,z

z +
1

2
dTHkd

s.t. f̃k +GT
k d ≤ ze

‖d‖∞ ≤ ∆k,

(5)

where f̃k = [f(xk,1) +∇f(xk,1)
T (xk − xk,1), . . . , f(xk,m) +∇f(xk,m)T (xk − xk,m)]T ,

Gk = [∇f(xk,1) . . .∇f(xk,m)] and ‖d‖∞ ≤ ∆k stands for the trust-region constraints,
for some ∆k > 0. Consequently, its dual optimization problem, after a changing of
variables, can be viewed as

max
λ,ω

λT f̃k −
1

2
(Gkλ+ ω)TH−1

k (Gkλ+ ω)−∆k‖ω‖1

s.t. λT e = 1

λ ≥ 0,

where λ ∈ R
m and ω ∈ R

n are the dual variables. With these modifications in mind,
we introduce the proposed algorithm (Algorithm 2), also referred as GraFuS, which
stands for Gradient and Function Sampling. Together with the exhibition of our new
method, we must highlight that the generated sequence of function values might not
be monotone decreasing (the reason for this choice will be better explained in the
local convergence subsection). Additionally, with the same argument used for the GS
method, GraFuS, with probability one, will never stop at Step 1.

In order to guarantee the global convergence of the method, we suppose, from
now on, the following assumption.

Assumption 1. For every k ∈ N, the matrix Hk ∈ R
n×n is symmetric positive

definite and there exist positive real numbers ς and ς such that

ς‖d‖2 ≤ dTHkd ≤ ς‖d‖2, for all d ∈ R
n.

Glossary of Notation

k: outer iteration counter νk: optimality certificate
l: inner iteration counter νopt: optimality certificate tolerance
xk: current iterate ̺ and δ: constants for updating νk
m: number of sampled points ǫk,l: related to the current sampling size
γ∆: constant related to the trust region ∆k,l: current trust-region size
γǫ: constant related to the sampling size θ: reduction factor for ǫk,l and ∆k,l

ρ: parameter of step acceptance σk: power related to the sampling size

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 7

Algorithm 2 Gradient and Function Sampling-based method (GraFuS).

Step 0. Set k, l = 0, x0 ∈ R
n, 1 ≤ σ0 ≤ 2, m ∈ N with m ≥ n+ 1 and fixed real

numbers γǫ > 0, γ∆ > 0, 0 < ν0, θ, ρ, δ < 1, 0 ≤ νopt < ν0 and ̺ > 1. Define
the initial sampling radius as ǫ0,0 = γǫν0 and the maximum step size as
∆0,0 = γ∆ν0.

Step 1. Choose
{

xl
k,1, . . . , x

l
k,m

}

⊂ B (xk, (ǫk,l)
σk)

with randomly, independently and uniformly sampled elements.

If
{

xl
k,1, . . . , x

l
k,m

}

6⊂ D, then STOP! Otherwise, set f̃k,l ∈ R
m with

(

f̃k,l

)

j
= f(xl

k,j) +∇f(xl
k,j)

T (xk − xl
k,j), 1 ≤ j ≤ m,

and

Gk,l = [∇f(xl
k,1), . . . ,∇f(xl

k,m)].

Step 2. Find (dk,l, zk,l) and (λk,l, ωk,l) that solve, respectively, (5) and its dual
problem, where Hk ∈ R

n×n is a symmetric and positive definite matrix.

Step 3. If ‖H−1
k Gk,lλk,l‖ ≥ νk and ∆k,l < +∞, then proceed to the next step.

Otherwise,

• if ‖dk,l‖∞ < ∆k,l : choose σk+1 ∈ [1, 2], set the optimality certificate
νk+1 = min{max{‖H−1

k Gk,lλk,l‖, (νk)̺}, δνk} and
go to Step 6.

• if ‖dk,l‖∞ = ∆k,l : set ∆k,l+1 = +∞, Gk,l+1 = Gk,l, f̃k,l+1 = f̃k,l,
l← l + 1 and go back to Step 2.

Step 4. Compute

Aredk,l := f(xk)− f(xk + dk,l)

and

Predk,l := max
i

{

f(xl
k,i) +∇f(xl

k,i)
T (xk − xl

k,i)
}

−
(

zk,l +
1

2
dTk,lHkdk,l

)

.

Step 5. If Aredk,l ≤ ρPredk,l, then set ∆k,l+1 = θ∆k,l, ǫk,l+1 = θǫk,l,
l← l + 1 and go back to Step 1. Otherwise, set νk+1 = νk and σk+1 = σk.

Step 6. If νk+1 < νopt, then terminate. Otherwise, set xk+1 = xk + dk,l,
ǫk+1,0 = γǫνk+1, ∆k+1,0 = γ∆νk+1, k← k + 1, l← 0 and go back to Step 1.

The updating procedure of the matrices Hk is a delicate matter, since a bad
sampling at one single iteration might damage some required properties for the con-
vergence theory. For that reason, we give a detailed explanation of how one may
update Hk properly in Subsection 5.1.

8 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

4. Convergence. Before we proceed with the convergence analysis, we should
state a property for the functions φi that define f . It is a common assumption when
we are dealing with nonsmooth functions of the kind defined in (2), cf. [11, 38].
Considering that

I(x) := {i | φi(x) = f(x)},

the required hypothesis follows.

Assumption 2. For all x ∈ R
n with |I(x)| ≥ 2, the gradients {∇φi(x)}i∈I(x)

compose an affinely independent set, that is,

∑

i∈I(x)

αi∇φi(x) = 0 and
∑

i∈I(x)

αi = 0 ⇐⇒ αi = 0, for all i ∈ I(x).

Remark 4.1. It is worth pointing out that Assumption 2 can be viewed as a way
to guarantee that, for any fixed j ∈ I(x), the set

{∇φi(x)−∇φj(x)}i∈I(x)\{j}

is linearly independent for all x ∈ R
n with |I(x)| ≥ 2 (the proof is provided in

Lemma 4.2 below). This association will be of great importance for both the global
and the local convergence results.

Additionally, if x∗ is a local minimizer for f , Assumption 2 also gives us that there
exists only one possible convex combination of the gradients ∇φi(x∗), with i ∈ I(x∗),
that generates the null vector.

4.1. Global convergence. First, we present a technical lemma guaranteeing
that at most n+ 1 functions will assume the maximum of f at a fixed point x ∈ R

n.
In addition, we prove that, for each φj , with j ∈ I(x), there is a sufficiently small
open set such that φj strictly assumes the maximum value at this specific set.

Lemma 4.2. Under Assumption 2, let x be any point in R
n and j be any fixed

index in I(x). Then, |I(x)| ≤ n + 1. Moreover, there exists ǫ > 0 such that for
all ǫ ∈ (0, ǫ), we can find a set Cj(x, ǫ) ⊂ B(x, ǫ) with int(Cj(x, ǫ)) 6= ∅, for which
x /∈ Cj(x, ǫ) and

φj(x
j) > max

1≤i≤p

i6=j

φi(x
j), for all xj ∈ Cj(x, ǫ).

Proof. First, let us prove that |I(x)| ≤ n+1. If |I(x)| = 1, the statement trivially
holds. Therefore, we assume that |I(x)| ≥ 2. Besides, we suppose without any loss of
generality that I(x) = {1, . . . , r}. Then, let α2, . . . , αr ∈ R be any real numbers such
that

r
∑

i=2

αi (∇φi(x) −∇φ1(x)) = 0.

Then, it follows that

−
(

r
∑

i=2

αi

)

∇φ1(x) +

r
∑

i=2

αi∇φi(x) = 0,

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 9

and, by Assumption 2, we have α2 = . . . = αr = 0. Consequently,

A := {∇φi(x)−∇φ1(x)}i∈I(x)\{1}

forms a linearly independent set. So, |A| ≤ n, which implies that |I(x)| ≤ n+ 1.
Now, for the other result, we also have that, if |I(x)| = 1, then the proof is

straightforward by a continuity argument. So, let us suppose that |I(x)| ≥ 2 and
I(x) = {1, . . . , r}. By Assumption 2, given a fixed s ∈ I(x) and any j ∈ I(x) with
j 6= s, we have that vj := ∇φj(x)−∇φs(x) cannot be written as a linear combination
of {vi | i ∈ I(x), i 6= j} (to see this, just use the same arguments that we have used
to prove |I(x)| ≤ n+ 1 and notice that the set formed by the vectors vj ’s is linearly
independent). Thus, it is possible to find a unitary dj ∈ R

n such that vTj dj > 0 and

vTi dj = 0, i 6= j with i ∈ I(x).1

Consequently, it follows that ∇φj(x)
T dj > ∇φs(x)

T dj and

∇φi(x)
T dj = ∇φs(x)

T dj , i 6= j with i ∈ I(x).

So, since φi ∈ C2, for all i ∈ I(x), we have that for all fixed wj ∈ R
n it follows that

φi(x+ ǫ(dj + wj)) = φi(x) + ǫ∇φi(x)
T (dj + wj) +O(ǫ2), i ∈ I(x), i 6= j,

φj(x+ ǫ(dj + wj)) = φj(x) + ǫ∇φj(x)
T (dj + wj) +O(ǫ2).

Now, subtracting the first equation above from the second one and dividing the result
by ǫ, we obtain, for all i ∈ I(x) with i 6= j, that

φj(x+ ǫ(dj + wj))− φi(x+ ǫ(dj + wj))

ǫ
= ∇φj(x)

T (dj + wj)

−∇φi(x)
T (dj + wj) +O(ǫ).

Consequently, supposing that

wj ∈ B (0, δ(x)) ⊂ R
n,

where

(6) δ(x) := min
i∈I(x)

i6=j

{

[∇φj(x)−∇φi(x)]
T dj

2‖∇φj(x)−∇φi(x)‖

}

> 0,

we must have, for all i ∈ I(x) with i 6= j, that

φj(x+ ǫ(dj + wj))− φi(x+ ǫ(dj + wj))

ǫ
= [∇φj(x) −∇φi(x)]

T dj

+ [∇φj(x)−∇φi(x)]
Twj +O(ǫ)

≥ [∇φj(x) −∇φi(x)]
T dj

− ‖∇φj(x) −∇φi(x)‖‖wj‖+O(ǫ)

≥ [∇φj(x) −∇φi(x)]
T dj

2
+O(ǫ).

1For example, setting sj as the orthogonal projection of vj over the hyperplane generated by
{vi | i ∈ I(x), i 6= j}, one can consider dj = (vj − sj)/‖vj − sj‖.

10 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

From the inequality above and noticing that [∇φj(x)−∇φi(x)]
T dj > 0, for all i ∈ I(x)

with i 6= j, it is possible to find ǫj > 0 small enough such that for all ǫ ∈ (0, ǫj) the
following relation holds

φj(x+ ǫ(dj + wj)) > φi(x+ ǫ(dj + wj)), i ∈ I(x), i 6= j.

To complete the proof, notice that the functions φi are continuous, and therefore, it
is possible to find ǫ̃ > 0 such that for all y ∈ B(x, ǫ̃) the following holds

φa(y) > φb(y), a ∈ I(x), b /∈ I(x).

So, setting ǫ := min{ǫ1, . . . , ǫr, ǫ̃} and choosing ǫ ∈ (0, ǫ), we have that the set

Cj(x, ǫ) := {x+ τ(dj + wj) | 0 < τ < ǫ/2, wj ∈ B (0, δ(x)) , j ∈ I(x)} ,

where δ(x) is the value defined in (6), satisfies the properties previously claimed.

From the above result, we can see that, for any ǫ > 0 (even when ǫ ≥ ǫ, since in
this case we have B(x, ǫ) ⊂ B(x, ǫ)), the following set is not empty

(7) Sj(x, ǫ) := int











y ∈ B(x, ǫ)
∣

∣ φj(y) > max
1≤i≤p

i6=j

φi(y)











, j ∈ I(x).

So, we can proceed with two additional results. They guarantee that GraFuS is
well defined, i.e., the algorithm will not cycle forever from Step 5 to Step 1. Specifi-
cally, the first result tells us that under a good set of sampled points, it is possible to
obtain Ared > ρPred (the proof of the result is based on ideas from [47]).

Lemma 4.3. Suppose that Assumptions 1 and 2 hold. In Algorithm 2, consider
fixed outer and inner iterations, denoted by k and l, respectively. Let x ∈ R

n be a
nonstationary point for the function f : Rn → R, ρ ∈ (0, 1) be a fixed real number and
Sj(x, ǫ) be the set defined in (7) for any ǫ > 0. Therefore, there exist ∆ and δ strictly
greater than zero such that, if the following hypotheses hold

i) xk ∈ B(x, δ);
ii) 0 < ∆k,l < ∆;
iii) there exist ǫ ≡ ǫ(k, l) > 0 and M > 0 such that

a) for all j ∈ I(x), we have Sj(x, ǫ) ⊂ B(xk,M ·∆k,l);
b) for all j ∈ I(x), there exists i ∈ {1, . . . ,m} such that xl

k,i ∈ Sj(x, ǫ);
c) for all i ∈ {1, . . . ,m}, there exists j ∈ I(x) such that xl

k,i ∈ Sj(x, ǫ),
then

Aredk,l > ρPredk,l.

Proof. First, we choose h > 0 as a sufficiently small number such that for all
x ∈ B(x, h), we have

φj(x) > max
1≤i≤p

i/∈I(x)

φi(x), for all j ∈ I(x).

Since x is not a stationary point for f , we must have that 0 /∈ ∂f(x). Recalling that
∂f(x) is a closed and convex set, it follows by the Hyperplane Separation Theorem [3,

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 11

Section 2.5] that there exist a unitary vector v ∈ R
n and a scalar τ > 0 such that

sT v ≤ −τ , for all s ∈ ∂f(x).

Since the generalized directional derivative of f at x in the direction v is given by

f◦(x; v) = lim sup
x→x
t↓0

f(x+ tv)− f(x)

t
= max{sT v : s ∈ ∂f(x)},

we have that f◦(x; v) ≤ −τ . Thus, there exist ∆ ∈ (0, h) and δ ∈ (0, h) such that for
all x ∈ B

(

x, δ
)

and ∆ ∈ (0,∆), we have

(8) f(x+∆v) − f(x) < −τ

2
∆.

Now, let us keep this information in mind and proceed with a parallel idea. Let
us suppose that the hypotheses i), ii) and iii) hold for δ and ∆ found above. Then,
because the conditions inside iii) ensure a good sampling, we have

f(xk) = max
j∈I(x)

{φj(xk)}

= max
1≤i≤m

{f(xl
k,i) +∇f(xl

k,i)
T (xk − xl

k,i)}+ o(∆k,l)

(notice that xl
k,i ∈ B(xk,M ·∆k,l))

(9)

and

f(xk + dk,l) = max
j∈I(x)

{φj(xk + dk,l)}

= max
1≤i≤m

{f(xl
k,i) +∇f(xl

k,i)
T (xk + dk,l − xl

k,i)}+ o(∆k,l)

(notice that xl
k,i ∈ B(xk,M ·∆k,l) and that ‖dk,l‖∞ ≤ ∆k,l).

So, we have Aredk,l = f(xk) − f(xk + dk,l) = Predk,l + o(∆k,l). Consequently, to
prove the statement, we just need to show that ∆k,l = O(Predk,l), since we would
have, for any η = (1 − ρ) ∈ (0, 1), a sufficiently small ∆ > 0 such that

Aredk,l − Predk,l = o(∆k,l) > −ηPredk,l,

which yields that Aredk,l > (1 − η)Predk,l = ρPredk,l. So, to show that such a
condition holds, we define

ẑ := max
1≤i≤m

{f(xl
k,i) +∇f(xl

k,i)
T (xk +∆k,lv − xl

k,i)}.

Notice that, by the same reasoning used before, we have

(10) ẑ = f(xk +∆k,lv) + o(∆k,l).

Moreover, since (dk,l, zk,l) is the solution of the quadratic programming problem at
Step 2, we have zk,l ≤ ẑ + o(∆k,l), and hence,

Predk,l ≥ max
1≤i≤m

{f(xl
k,i) +∇f(xl

k,i)
T (xk − xl

k,i)} −
(

ẑ +
∆2

k,l

2
vTHkv

)

+ o(∆k,l).

12 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

Consequently, recalling (9) and (10), it yields that

Predk,l ≥ f(xk)− f(xk +∆k,lv) + o(∆k,l)

>
τ

2
∆k,l + o(∆k,l),

where the last inequality comes from (8). Therefore, if ∆ is small enough, we obtain
the desired result.

With the above result, we present the following lemma, which states that if Gra-
FuS is at an iteration k and xk is not a stationary point for f , then the index l of the
inner iteration has an upper limit (with probability one).

Lemma 4.4. Suppose that Assumptions 1 and 2 hold. Moreover, for an itera-
tion k, assume that xk is not a stationary point for f . Then, with probability one,
there exists l ∈ N such that the indices of the inner iterations satisfy l ≤ l.

Proof. Let us assume, for contradiction, that such l does not exist, i.e., l →∞ at
the iteration k. Consequently, we must have, for all l ∈ N, that

‖H−1
k Gk,lλk,l‖ ≥ νk

and Aredk,l ≤ ρPredk,l. Additionally, by the way we have designed our algorithm, we
see that

ǫk,l =
γǫ
γ∆

∆k,l, for all k, l ∈ N,

and, by the contradiction hypothesis, the following holds: ∆k,l → 0 as l→∞.
Therefore, setting x := xk in Lemma 4.3, it is straightforward to see that at

some ñ ∈ N, if l ≥ ñ, then hypotheses i) and ii) of Lemma 4.3 are valid. Moreover,
considering ǫ := (ǫk,l)

σk and M := max{γǫγ−1
∆ , γ2

ǫ γ
−2
∆ } for a fixed inner iteration l,

we will satisfy hypothesis iii) item a) of Lemma 4.3. Therefore, if at this specific
inner iteration l we do not have Aredk,l > ρPredk,l, it is due to the fact that we did
not sample the points properly, i.e, the items b) and/or c) of hypothesis iii) were not
fulfilled. So, since l → ∞ by the contradiction hypothesis we have made, it is also
true that the next inner iteration will not satisfy items b) and/or c) and so on. We
claim that this behavior has probability zero to occur.

Indeed, let us assume a fixed j ∈ I(xk) and notice that, by the way we have
defined dj and Cj(xk, (ǫk,l)

σk) in the proof of Lemma 4.2, we have that (for (ǫk,l)
σk

sufficiently small) Bk,l
j ⊂ Cj(xk, (ǫk,l)

σk), where

Bk,l
j := B



xk +
(ǫk,l)

σk

4
dj ,

(ǫk,l)
σk

8
min

i∈I(xk)
i6=j

{

[∇φj(xk)−∇φi(xk)]
T dj

2‖∇φj(xk)−∇φi(xk)‖

}



 .

Consequently, the volume of Bk,l
j in R

n is given by

Vol
(

Bk,l
j

)

=
πn/2

Γ(n/2 + 1)



 min
i∈I(xk)

i6=j

{

[∇φj(xk)−∇φi(xk)]
T dj

2‖∇φj(xk)−∇φi(xk)‖

}





n
(

(ǫk,l)
σk

8

)n

,

where Γ is the Gamma function [24]. On the other hand, it follows that

Vol(B(xk, (ǫk,l)
σk)) =

πn/2

Γ(n/2 + 1)
((ǫk,l)

σk)
n
.

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 13

Therefore, since the sampled points are chosen in B(xk, (ǫk,l)
σk) and

Bk,l
j ⊂ Cj(xk, (ǫk,l)

σk) ⊂ Sj(xk, (ǫk,l)
σk),

we must have, for all i ∈ {1, . . . ,m}, that the conditional probability

P(xl
k,i ∈ Sj(xk, (ǫk,l)

σk) | xl
k,i ∈ B(xk, (ǫk,l)

σk)) =
Vol(Sj(xk, (ǫk,l)

σk))

Vol(B(xk, (ǫk,l)σk))

must be greater than the following strictly positive number

1

8n



 min
i∈I(xk)

i6=j

{

[∇φj(xk)−∇φi(xk)]
T dj

2‖∇φj(xk)−∇φi(xk)‖

}





n

.

With this inequality, we conclude that the probability of the items b) and c) of hy-
pothesis iii) to occur simultaneously is strictly positive and does not depend on l.
Therefore, the probability of l→∞ is zero, which concludes the proof.

We are close to reach the convergence theorem of GraFuS. For that goal, we
need to prove two additional technical lemmas. Furthermore, to have a clearer proof,
from now on we will denote by lk the largest value of the index l at the iteration k,
established by Lemma 4.4.

Lemma 4.5. Let us consider the GraFuS algorithm under Assumptions 1 and 2.
If there exists an infinite index set K̃ ⊂ N such that Predk,lk/∆k,lk

→
k∈K̃

0, then

‖Gk,lk
λk,lk

‖ →
k∈K̃

0.

Proof. First, notice that the quadratic programming problem presented in (5)
satisfies the Slater’s condition. Indeed, if one considers dk = 0 and zk = max{f̃k}+1
in (5), then we see that all inequalities are strictly satisfied. Thus, since the problem
is also convex, we can guarantee that the quadratic programming problem satisfies
strong duality. So, we have

zk,lk +
1

2
dT
k,lk

Hkdk,lk = λT
k,lk

f̃k,lk

− 1

2

(

Gk,lk
λk,lk

+ ωk,lk

)T

H−1
k

(

Gk,lk
λk,lk

+ ωk,lk

)

−∆k,lk
‖ωk,lk

‖1.

Thus, defining

(11) αk :=
1

2

(

Gk,lk
λk,lk

+ ωk,lk

)T

H−1
k

(

Gk,lk
λk,lk

+ ωk,lk

)

+∆k,lk
‖ωk,lk

‖1,

14 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

it yields

λT
k,lk

f̃k,lk − αk = zk,lk +
1

2
dT
k,lk

Hkdk,lk ⇒ αk = λT
k,lk

f̃k,lk

−
(

zk,lk +
1

2
dT
k,lk

Hkdk,lk

)

⇒ αk ≤ Predk,lk

(since λk,lk
≥ 0 and eTλk,lk

= 1)

⇒ αk

∆k,lk

≤
Predk,lk
∆k,lk

⇒ αk

∆k,lk

→
k∈K̃

0.

Consequently, by Assumption 1 and (11), we obtain ‖Gk,lk
λk,lk

‖ →
k∈K̃

0.

Finally, we present the last result before our main statement of the global con-
vergence analysis.

Lemma 4.6. Suppose that Assumptions 1 and 2 hold and GraFuS has generated
an infinite sequence {xk} ⊂ R

n. Moreover, assume that there exists a cluster point
x of this sequence that is a stationary point for f . Then, with probability one, the
sequence {νk} must converge to zero.

Proof. By hypothesis, we have that 0 ∈ ∂f(x). Moreover, all the functions that
comprise f are of class C2. So, it is possible to find, for any given δ1, δ2 > 0, nonempty
and open sets X1, . . . ,Xm ⊂ D and a fixed vector λ ∈ R

m satisfying λ ≥ 0 and eTλ = 1
such that

(12) Xj ⊂ B(x, δ1), for all j ∈ {1, . . . ,m},

and

(13)

∥

∥

∥

∥

∥

∥

m
∑

j=1

λj∇f(xj)

∥

∥

∥

∥

∥

∥

≤ δ2, for all (x1, . . . , xm) ∈ X1 × · · · × Xm.

By contradiction, let us assume that {νk} does not go to zero, i.e., there exists
ν > 0 such that νk = ν for all k ∈ N sufficiently large. This condition yields that
ǫk,0 = γǫν and ∆k,0 = γ∆ν for all k ∈ N large enough. Moreover, noticing that
Lemma 4.5 also holds if we consider the inner iteration 0 instead of lk, we have that

(14)
Predk,0
∆k,0

≥ µ,

for some µ > 0. Otherwise, ‖Gk,0λk,0‖ would go to zero, implying that νk would also
go to zero.

Defining K as an infinite index set such that {xk}k∈K converges to x, it is possible
to find δ1 small enough such that (12) holds and

(15) Xj ⊂ B(xk, (ǫk,0)
σk), for all j ∈ {1, . . . ,m} and k ∈ K large enough.

So, let us suppose that for some k ∈ K sufficiently large, we have x0
k,j ∈ Xj , for all

j ∈ {1, . . . ,m}. Then, considering λk,0 and ωk,0 the solutions obtained at Step 2, we

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 15

must have

λ
T
f̃k,0 −

1

2
λ
T
Gk,0H

−1
k Gk,0λ ≤ λT

k,0f̃k,0

− 1

2
(Gk,0λk,0 + ωk,0)

T H−1
k (Gk,0λk,0 + ωk,0)

−∆k,0‖ωk,0‖1.

Adding

max
1≤j≤m

{

(

f̃k,0

)

j

}

to both sides of the inequality that comes from multiplying the previous one by (−1)
and considering the strong duality of the quadratic problem that is solved in Step 2,
we have

Predk,0 ≤ max
1≤j≤m

{

(

f̃k,0

)

j

}

− λ
T
f̃k,0 +

1

2
λ
T
Gk,0H

−1
k Gk,0λ.

Since f(x) = φi(x), for any i ∈ I(x), it is possible to select a sufficiently small δ1,
such that (12), (15) and

∣

∣

∣

∣

max
1≤j≤m

{

(

f̃k,0

)

j

}

− λ
T
f̃k,0

∣

∣

∣

∣

≤ µ
γ∆ν

4
,

are valid for any k ∈ K large enough. Moreover, by Assumption 1, it is possible to
choose δ2 sufficiently small such that (13) holds and

1

2
λ
T
Gk,0H

−1
k Gk,0λ ≤ µ

γ∆ν

4
,

for any k ∈ K large enough.
As a result, there are δ1, δ2 > 0 sufficiently small and k ∈ K sufficiently large,

such that, if x0
k,j ∈ Xj , for all j ∈ {1, . . . ,m}, we have

Predk,0
∆k,0

≤ µ
γ∆ν

2∆k,0
=

µ

2
.

Since we have supposed that νk does not go to zero, it implies that GraFuS never
samples in the nonempty and open set X1 × · · · × Xm during the iterations k ∈ K,
since, otherwise, we would have a contradiction with (14). This is an event that has
probability zero to occur. Therefore, with probability one, the sequence {νk} must
converge to zero.

Now, we present the main result of this subsection. Using the result below, we
can prove the global convergence of GraFuS.

Theorem 4.7. Under Assumptions 1 and 2, suppose that f has bounded level sets
and GraFuS produces an infinite sequence {xk} with νopt = 0. Then, with probability
one, the sequence {νk} converges to zero.

Proof. We split the proof in two complementary cases:
i) There are an infinite set of indices K1 ⊂ N and a real number ǫ > 0 such that

ǫk,lk ≥ ǫ for all k ∈ K1.

16 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

ii) The sampling radius along the iterations satisfy ǫk,lk →k∈N

0.

Initially, let us suppose that case i) holds. So, noticing that ǫk,lk ≤ γǫνk, for all k ∈ N,
and that {νk} is a monotonically decreasing sequence, we see clearly that there must
exist ν such that νk ≥ ν, for all k ∈ N. Therefore, by the way GraFuS was designed,
it means that for a sufficiently large index k and any inner iteration l, the inequality

‖H−1
k Gk,lλk,l‖ < νk

will never hold, and consequently, the sequence generated by the values f(xk) will
decrease monotonically. Additionally, we claim that there exists µ > 0 such that
∆k,lk

µ ≤ Predk,lk , for all k ∈ N. Indeed, if this statement were false, there would

exist an infinite set of indices K̃ such that

Predk,lk/∆k,lk
→
k∈K̃

0.

However, by Lemma 4.5, it would yield that

‖Gk,lk
λk,lk

‖ →
k∈K̃

0.

Therefore, we would have νk → 0, and consequently, that ǫk,lk → 0, which is a
contradiction with case i). Thus, there must exist µ > 0 such that ∆k,lk

µ ≤ Predk,lk ,
for all k ∈ N sufficiently large. Moreover, since

ǫk,l =
γǫ
γ∆

∆k,l, for all k, l ∈ N,

we see that ∆k,lk
≥ (γ∆/γǫ)ǫ, for all k ∈ K1. Consequently, since we have

Aredk,lk > ρPredk,lk , for all k ∈ K1 sufficiently large,

we obtain

(16) f(xk)− f(xk+1) > ρµ
γ∆
γǫ

ǫ, for all k ∈ K1 sufficiently large.

Now, since f has bounded level sets, there must exist an infinite set of indices K2 ⊂ K1

such that

xk →
k∈K2

x̂, for some x̂ ∈ R
n.

So, considering sK2
(k) as the index in K2 that comes right after k ∈ K2 and recalling

that, for the case at hand, it is possible to find a sufficiently large k̂ ∈ K2, where the
sequence of function values will be a decreasing sequence for all k ∈ N and k ≥ k̂, it
yields that

∑

k∈K2,k≥k̂

(f(xk)− f(xk+1)) ≤
∑

k∈K2,k≥k̂

(

f(xk)− f
(

xsK2
(k)

))

= f
(

xk̂

)

− f(x̂) <∞.

However, this is a relation that goes against (16). Therefore, the case i) is an impos-
sible event and we must consider case ii).

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 17

So, suppose that case ii) holds and, by contradiction, that the sequence {νk} does
not converge to zero. Again, we must have that the inequality

‖H−1
k Gk,lλk,l‖ < νk

will never hold for k sufficiently large, and consequently, the sequence generated by
the values f(xk) will decrease monotonically. Thus, there must exist at least one
cluster point x of {xk}. Consequently, there is K̃ ⊂ N such that

xk →
k∈K̃

x.

Now, because of Lemma 4.6, x is not a stationary point for f . Then, we choose δ,∆
as presented in Lemma 4.3 for the point x. Since νk remains bounded away from zero
by our assumption and ǫk,lk → 0, we have, by the way we have designed GraFuS,

that ǫk,lk just keeps going smaller because lk → ∞. As a consequence, there exist
k′, l′ ∈ N such that for all k ≥ k′ we have

∆k,l′ = ∆̃ :=
(

θl
′
)

γ∆νk < ∆ and ǫk,l′ = ǫ̃ :=
(

θl
′
)

γǫνk =
γǫ
γ∆

∆̃.

Moreover, since x is a cluster point for the sequence of iterates, we can find k̂ ≥ k′

such that for all k ≥ k̂ and k ∈ K̃, we have

xk ∈ B(x,min{ǫ̃2, δ}/4) ⊂ B(x,min{ǫ̃σk , δ}/4)

So, for all j ∈ I(x), we have

xk ∈ B
(

x,min
{

ǫ̃σk , δ
}

/4
)

and Sj(x,min{ǫ̃, δ}/4) ⊂ B
(

xk,
γǫ
γ∆

∆̃

)

.

Therefore, the hypotheses i), ii) and iii) item a) of Lemma 4.3 are all satisfied.
Thus, since lk →∞, we must have that items b) and/or c) of hypothesis iii) are not

satisfied for every k ≥ k̂ and l = l′. However, this is an event with probability zero of
happening, since the sets Sj(x,min{ǫ̃, δ}/4) are open and not empty. Consequently,
with probability one, the sequence {νk} must converge to zero.

In the light of the above theorem, the next corollary ensures that GraFuS will
find, in a finite number of iterations, an ǫ-stationary point under any given tolerance.
Furthermore, it justifies calling νk an optimality certificate.

Corollary 4.8. Under Assumptions 1 and 2, suppose that f has bounded level
sets and the parameter value νopt in GraFuS is strictly positive. Then, with probability
one, GraFuS terminates in a finite number of iterations. Moreover, there exists v ∈ R

n

such that

v ∈ ∂ǫ̃f
(

xk̂

)

with ‖v‖ ≤ ν̃ := ς · νk̂,

where k̂ is the final iteration of GraFuS, ǫ̃ := γǫνk̂ and ς is the constant presented in
Assumption 1. In other words, xk̂ is an ǫ̃-stationary point under the tolerance ν̃.

Proof. The proof follows immediately from Theorem 4.7, Assumption 1 and by
the way GraFuS was designed.

18 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

The next result guarantees that if the sequence {xk} produced by GraFuS is
bounded, then we also obtain an asymptotic result.

Corollary 4.9. Under Assumptions 1 and 2, suppose that GraFuS produces an
infinite and bounded sequence {xk} with νopt = 0. Then, with probability one, there
is at least one cluster point of this sequence such that it is a stationary point for f .

Proof. The result follows immediately from Theorem 4.7. Notice that replacing
the boundness of the level sets by the boundness of {xk} does not invalidate the proof
of Theorem 4.7. Additionally, defining the infinite index set

K := {k ∈ N | νk+1 < νk},

we have that, since {xk} is bounded, there must exist a point x ∈ R
n and an infinite

index set K̃ ⊂ K such that

xk →
k∈K̃

x.

Therefore, since νk → 0 and there exists vk ∈ R
n such that

vk ∈ ∂(γǫνk)f(xk) with ‖vk‖ ≤ ς · νk, for any k ∈ K̃,

we have the desired result (see item iii) of [28, Lemma 3.2]), i.e., 0 ∈ ∂f(x) with
probability one.

In the next subsection, we show that, under a good sampling, the method super-
linearly either moves to a local minimizer of f or reduces the optimality certificate.
For such a goal, our analysis will involve the concept of U and V spaces.

4.2. Local convergence. In this subsection our efforts will be focused in en-
lightening the role played by the quadratic programming problem (5). In fact, under
special circumstances, it is possible to see this quadratic problem as a local approxi-
mation of a new optimization problem that involves the smooth functions φi. Under
this new perspective, we can analyze the local convergence of the proposed method
and obtain interesting results. However, since our method has a random nature and
a good local information about the function is restricted to a good set of sampled
points, it is reasonable to think that a good rate of convergence will not be achieved
at every iteration. Therefore, the results presented here will be sustained on hypothe-
ses that guarantee a good sampling. Additionally, the following definition presents
key concepts for our analysis (a more general definition can be found in [32]).

Definition 4.10 (U ,V-spaces). Suppose that f : Rn → R is the continuous ob-
jective function of problem (2) and x is any point in R

n. Then, we define

U(x) := {s ∈ R
n | [∇φi(x)−∇φj(x)]

T s = 0, ∀i, j ∈ I(x), i 6= j}

and V(x) := U(x)⊥ as the smooth and nonsmooth subspaces of f at x, respectively.

To accomplish the aim of this subsection, under Assumption 2, we start supposing,
without any loss of generality, that

I(x∗) = {1, . . . , r + 1}, for some r ≤ n.

Moreover, we assume that x∗ ∈ R
n is a local minimizer of the optimization problem

presented in (2) and that x∗ is also a strong minimizer for f [39, Section 5.1].

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 19

Assumption 3. The local minimizer x∗ of problem (2) is a strong minimizer,
i.e., 0 ∈ ri ∂f(x∗) and there exists µ > 0 such that

(17) dT

(

r+1
∑

i=1

(λ∗)i∇2φi(x∗)

)

d ≥ µ‖d‖2, for all d ∈ U(x∗),

where λ∗ ∈ R
r+1 is the unique vector such that

λ∗ ≥ 0,

r+1
∑

i=1

(λ∗)i = 1 and

r+1
∑

i=1

(λ∗)i∇φi(x∗) = 0.

Below, we present our first technical result that will prove helpful for the subse-
quent statements.

Lemma 4.11. Suppose that Assumptions 1, 2 and 3 hold and {xk} is an infinite
sequence generated by GraFuS with νk → 0 and xk → x∗. Then, there exists an
infinite index set K ⊂ N such that, for any fixed k ∈ K, the following holds:

i) for each j ∈ {1, . . . ,m}, there exists i ∈ I(x∗), such that

∇f
(

xlk
k,j

)

= ∇φi

(

xlk
k,j

)

;

ii) for each i ∈ I(x∗), there exists j ∈ {1, . . . ,m}, such that

a) ∇f
(

xlk
k,j

)

= ∇φi

(

xlk
k,j

)

;

b)
(

λk,lk

)

j
> 0, i.e., the constraint

f
(

xlk
k,j

)

+∇f
(

xlk
k,j

)T (

xk + d− xlk
k,j

)

≤ z

is active at the optimal solution of the quadratic programming that is
solved in Step 2.

Proof. We claim that, for a sufficiently large k ∈ N, the following infinite index
set

(18) K := {k ∈ N | νk+1 < νk, k ≥ k}

has the required properties. Indeed, recalling that ǫk,0 → 0 (since νk → 0), xk → x∗

and φi are all continuous functions, then, for any large outer iteration, there exists
W ⊂ R

n such that

xl
k,j ∈ W , for all j ∈ {1, . . . ,m} and l ∈ N,

where W is a neighborhood of x∗ such that only the functions φi, with i ∈ I(x∗),
assume the maximum in this set, which gives us i).

Now, by the way we have designed Step 3, there exists λ̂ ∈ R
m such that

‖H−1
k Gk,lk

λ̂‖ < νk, for any k ∈ K.

Additionally, because we assume that 0 ∈ ri ∂f(x∗) and Assumption 2 holds, it follows,
by [23, Remark III.2.1.4], that

(19)
∑

i∈I(x∗)

λi∇φi(x∗) = 0⇒ λi > 0, for all i ∈ I(x∗).

20 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

Therefore, since the functions that comprise f are assumed to be of class C2, it is not
possible to have νk → 0 without having ii), item a).

Finally, let us suppose for contradiction that there exists i ∈ I(x∗) such that, for

any j ∈ {1, . . . ,m} with ∇f(xlk
k,j) = ∇φi(x

lk
k,j) and k ∈ K, we have (λk,lk

)j = 0. So,
since the trust-region constraints are not active for the (outer, inner) iteration pair
(k, lk), whenever k ∈ K, and recalling that λk,lk

is the optimal solution of

max
λ∈Rm

λT f̃k,lk −
1

2
λTGT

k,lk
H−1

k Gk,lk
λ

s.t. λT e = 1

λ ≥ 0,

we see, by implication (19), that, if k presented in (18) is sufficiently large, there must
exist M > 0 such that

M <
1

2
λT
k,lk

GT
k,lk

H−1
k Gk,lk

λk,lk
, for all k ∈ K.

This implies that λk,lk
cannot be the optimal solution, since any λ̂ ∈ R

m, with

‖H−1
k Gk,lk

λ̂‖ < νk, will give a better function value whenever k ∈ K is large enough
(i.e. νk is small enough). In conclusion, we must have that ii), item b), holds.

Along this subsection, every time we refer to the set written as K, we are referring
to the set K defined in (18). Moreover, recalling the result obtained above and rear-
ranging properly the sampled points, we can suppose, without any loss of generality,
that

∇f
(

xlk
k,i

)

= ∇φi

(

xlk
k,i

)

and
(

λk,lk

)

i
> 0, for all k ∈ K and i ∈ I(x∗).

Additionally, for the sake of simplicity, we assume from now on that, for k ∈ K,
(λk,lk

)i = 0, if i /∈ I(x∗). We lead the reader to the Appendix of this study to see
that the same local convergence result presented in this subsection can be obtained
without this additional assumption. We also stress that when k ∈ K, the trust-region
constraints are not active for the last inner iteration lk.

So, for any k ∈ K, one can rewrite (5) as the following optimization problem

min
(d,z)∈Rn+1

z +
1

2
dTHkd

s.t. φi

(

xlk
k,i

)

+∇φi

(

xlk
k,i

)T (

xk + d− xlk
k,i

)

= z, 1 ≤ i ≤ r + 1.

(20)

Alternatively, it can also be viewed as

min
d∈Rn

φr+1

(

xlk
k,r+1

)

+∇φr+1

(

xlk
k,r+1

)T (

xk + d− xlk
k,r+1

)

+
1

2
dTHkd

s.t. Φ̃k + J̃kd = 0,

(21)

where Φ̃k ∈ R
r with

(Φ̃k)i := φi

(

xlk
k,i

)

+∇φi

(

xlk
k,i

)T (

xk − xlk
k,i

)

−
[

φr+1

(

xlk
k,r+1

)

+∇φr+1

(

xlk
k,r+1

)T (

xk − xlk
k,r+1

)

]

, i ∈ {1, . . . , r},

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 21

and

J̃k :=













∇φ1

(

xlk
k,1

)T

−∇φr+1

(

xlk
k,r+1

)T

...

∇φr

(

xlk
k,r

)T

−∇φr+1

(

xlk
k,r+1

)T













.

So, the minimization problem (5) can be viewed as a quadratic approximation of

min
x∈Rn

φr+1(x)

s.t. Φ(x) = 0,
(22)

where

Φ(x) :=







φ1(x) − φr+1(x)
...

φr(x) − φr+1(x)






.

With this initial analysis, we are ready to understand why we have chosen to
design a method that produces a sequence of function values that is not monotonically
decreasing. When one tries to move superlinearly to a solution of a smooth constrained
optimization problem, the Maratos effect [36, 41] must be taken into consideration.
Sometimes, a good movement towards x∗ might be not accepted because the candidate
for the next iterate does not improve the function value. Normally, a correction step is
made to prevent this undesirable property to happen and the superlinear convergence
can be assured.

We have seen above that the quadratic problem that is solved in Step 2 can be
seen as a smooth constrained optimization problem and one might expect that we can
do the same correction step to ensure a superlinear movement towards the solution.
However, since we suppose that we do not know the functions φi, such a correction
becomes very hard to perform. One could try to numerically approximate J̃k during
the execution of the algorithm to create a correction step, but this estimation can be
very tricky. For these reasons, we have chosen, for some specific iterations, to accept
the step computed by our method without giving attention to the function value. As
we will see later, this choice allows us to maintain a superlinear convergence result.

Notice that for any s ∈ U(x), we have that f behaves smoothly along s at x, since
the s-directional derivatives of φi are all the same for i ∈ I(x). Consequently, the
kernel of the Jacobian of Φ(x) will be of great importance to us, because it tends to
recover the smooth subspace of f at x∗ when x approaches x∗. Therefore, we denote
by Jx the Jacobian of Φ(x) and by Z⊳

x the matrix whose columns form a basis for the
kernel of Jx. Moreover, from now on, our analysis will be restricted to the case that
r ∈ {1, . . . , n− 1}. The cases r = 0 and r = n will be treated later (see Remark 4.15).

In light of Remark 4.1, due to Assumption 2, it is possible to see that the map
Jx : Rn → R

r is surjective for all x in a small neighborhood N of x∗. Hence, for
x ∈ N , there must exist J⊳

x ∈ R
n×r such that JxJ

⊳
x = Ir. Moreover, by [2, Lemma

14.3], one can see that there is only one map

Z : Rn −→ R
(n−r)×n

x 7−→ Zx

22 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

such that ZxJ
⊳
x is a null matrix, ZxZ

⊳
x = In−r and the following relations hold

(23) Z⊳
xZx + J⊳

xJx = In and JxZ
⊳
x = 0.

So, we may divide R
n into two subspaces, generated by the columns of Z⊳

x and J⊳
x ,

respectively.
Now, coming back to the optimization problem (22), we define its Lagrangian

function L(x, λ) : Rn × R
r → R as

(24) L(x, λ) = φr+1(x) + λTΦ(x).

By Remark 4.1, the feasible set of problem (22) satisfies the linear independence
constraint qualification and thus there is only one λ∗ ∈ R

r such that ∇xL(x∗, λ∗) is
the null vector. So, in possession of this vector λ∗, we define g : Rn → R

n−r, where

(25) g(x) := Z⊳
x
T∇xL(x, λ∗)

(23)
= Z⊳

x
T∇φr+1(x).

Moreover, for not overloading the proofs that will follow, we also define

(26) Ak := In − Z⊳
xk
Ĥ−1

k Z⊳
xk

THk,

with

Ĥk := Z⊳
xk

THkZ
⊳
xk
.

Below, we present a theorem that establishes the exact solution dk,lk obtained
in (5) whenever it is equivalent to (21). For this result and the subsequent ones, we
define

(27) τk,lk := max
1≤i≤r+1

∥

∥

∥x
lk
k,i − xk

∥

∥

∥ .

Theorem 4.12. Under Assumptions 1, 2 and 3, suppose we are at a fixed outer
iteration k of GraFuS and at the last inner iteration indexed by lk. Then, if k ∈
K, where K is the index set defined in (18), and xk ∈ N , where N is the small
neighborhood in which the map Jx is surjective, we have that

dk,lk = dU
k,lk

+ dV
k,lk

,

where

dU
k,lk

:= −Z⊳
xk
Ĥ−1

k g(xk) + ρUk and dV
k,lk

:= −AkJ
⊳
xk
Φ(xk) + ρVk ,

with

ρUk = −Z⊳
xk
Ĥ−1

k Z⊳
xk

Tρk and ρVk = −AkJ
⊳
xk
ρ̂k,

for some ρk ∈ R
n and ρ̂k ∈ R

r satisfying

‖ρk‖ = O
(

τk,lk

)

and ‖ρ̂k‖ = O
(

τ2
k,lk

)

+O
(

τk,lk

)

O
(

‖dk,lk‖
)

,

with τk,lk defined in (27).

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 23

Proof. First, we consider the Karush-Kuhn-Tucker conditions of problem (21),
which tell us that the solution dk,lk must satisfy

(28) Φ̃k + J̃kdk,lk = 0

and

(29) ∇φr+1

(

xlk
k,r+1

)

+Hkdk,lk + J̃T
k λ̃ = 0,

for some λ̃ ∈ R
r. Since the functions that comprise f satisfy φi ∈ C2, for i ∈

{1, . . . , p}, we have, by relations (28) and (29) that

0 = Φ(xk) + Jxk
dk,lk +

[

Φ̃k − Φ(xk)
]

+
[

J̃k − Jxk

]

dk,lk

= Φ(xk) + Jxk
dk,lk + ρ̂k

(30)

and

(31) ∇φr+1 (xk) +Hkdk,lk + JT
xk
λ̃+ ρk = 0,

where ‖ρ̂k‖ = O
(

τ2
k,lk

)

+O
(

τk,lk

)

O
(

‖dk,lk‖
)

and ‖ρk‖ = O
(

τk,lk

)

. Then, because

AkJ
⊳
xk

is a right inverse for Jxk
(see [2, Section 14.2] or simply use the fact that

Jxk
Z⊳
xk

= 0), it is possible to decompose R
n in two subspaces generated by the

columns of Z⊳
xk

and AkJ
⊳
xk
. As a consequence, we can consider two vectors dU

k,lk
and

dV
k,lk

such that there exist αU and αV that imply

dk,lk = dU
k,lk

+ dV
k,lk

,

with

dU
k,lk

= Z⊳
xk
αU and dV

k,lk
= AkJ

⊳
xk
αV .

Hence, looking at relation (30), we obtain that

αV = −Φ(xk)− ρ̂k,

which yields

dV
k,lk

= −AkJ
⊳
xk
Φ(xk) + ρVk , with ρVk = −AkJ

⊳
xk
ρ̂k.

Finally, pre-multiplying relation (31) by Z⊳
xk

T , we have

g(xk) + Z⊳
xk

THk

[

Z⊳
xk
αU −AkJ

⊳
xk

(Φ(xk) + ρ̂k)
]

+ Z⊳
xk

Tρk = 0.

Then, since Z⊳
xk

THkAk = 0, we complete the proof by noticing that

αU = −Ĥ−1
k g(xk)− Ĥ−1

k Z⊳
xk

Tρk ⇒ dU
k,lk

= −Z⊳
xk
Ĥ−1

k g(xk) + ρUk ,

where ρUk = −Z⊳
xk
Ĥ−1

k Z⊳
xk

T ρk.

24 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

Below, we present the last technical result before providing the key theorem of
this subsection. As an hypothesis of this statement, we assume that the matrices Hk

must converge to a matrix H∗, where

(32) H∗ = ∇2
xxL(x∗, λ∗) + γJT

x∗
Jx∗

, for some γ ≥ 0.

By Assumption 3, we see that the Hessian of the Lagrangian must be a positive
definite matrix with respect to the subspace U(x∗). So, for γ > 0 sufficiently large,
H∗ becomes also a positive definite matrix.

Theorem 4.13. Under Assumptions 1, 2 and 3, suppose that xk → x∗, where
x∗ ∈ R

n is a local minimizer for f presented in (2). Assume that k ∈ K, where K
is the index set defined in (18), and xk ∈ N , where N is the small neighborhood in
which the map Jx is surjective. Also, close to x∗, suppose that the maps

Z⊳ : R
n −→ R

n×(n−r)

x 7−→ Z⊳
x

and
J⊳ : R

n −→ R
n×r

x 7−→ J⊳
x

are all Lipschitz continuous functions and that the reduced gradient given in (25) sat-
isfies g ∈ C1 with g′ being also a Lipschitz continuous function close to x∗. Moreover,
assume that Hk → H∗ with H∗ being the matrix presented in (32). Additionally,
suppose that, close to x∗, we have ‖Hk −H∗‖ = O(‖xk − x∗‖). Then, the following
relation holds

‖xk+1 − x∗‖ = O(‖xk − x∗‖2) + ρUk + ρVk , for k ∈ K,

with ρUk and ρVk from Theorem 4.12.

Proof. First, let us define x̃k+1 := xk+dV
k,lk

, with k ∈ K. Now, observe that, from
the definition (26), for xk close enough to x∗, we have ‖Ak − A∗‖ = O(‖xk − x∗‖),
where

A∗ := In − Z⊳
x∗
Ĥ−1

∗ Z⊳
x∗

TH∗, with Ĥ∗ := Z⊳
x∗

TH∗Z
⊳
x∗
.

Using this fact, considering the Taylor expansion of the map Φ around x∗ and re-
membering that Φ(x∗) = 0 in the equality (∗) below and noticing that J⊳ is Lipschitz
continuous and a bounded map around x∗ in (∗∗), we have, for a sufficiently small
neighborhood of x∗, that

x̃k+1 − x∗ = xk − x∗ −AkJ
⊳
xk
Φ(xk) + ρVk

(∗)
= xk − x∗ −AkJ

⊳
xk
Jx∗

(xk − x∗) +O(‖xk − x∗‖2) + ρVk

= xk − x∗ −A∗J
⊳
x∗
Jx∗

(xk − x∗) +O(‖xk − x∗‖2) + ρVk

−
[

Ak

(

J⊳
xk
− J⊳

x∗

)

+ (Ak −A∗)J
⊳
x∗

]

Jx∗
(xk − x∗)

(∗∗)
= xk − x∗ −A∗J

⊳
x∗
Jx∗

(xk − x∗) +O(‖xk − x∗‖2) + ρVk .

Consequently, taking into account the relation (see [2, Section 14.5])

g′(x∗) = Z⊳
x∗

T∇2
xxL(x∗, λ∗)

in (•), the Lipschitz property around x∗ of the maps Z⊳ and Ĥ−1 in (••), the rela-

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 25

tion (32) in (N) and the relation (23) in (NN), we have

xk+1 − x∗ = xk + dV
k,lk

+ dU
k,lk
− x∗

= x̃k+1 − x∗ − Z⊳
xk
Ĥ−1

k g(xk) + ρUk (recall that x̃k+1 := xk + dV
k,lk

)

(•)
= x̃k+1 − x∗ − Z⊳

xk
Ĥ−1

k Z⊳
x∗

T∇2
xxL(x∗, λ∗)(xk − x∗)

+O(‖xk − x∗‖2) + ρUk
(••)
= x̃k+1 − x∗ − Z⊳

x∗
Ĥ−1

∗ Z⊳
x∗

T∇2
xxL(x∗, λ∗)(xk − x∗)

+O(‖xk − x∗‖2) + ρUk
(N)
= x̃k+1 − x∗ − Z⊳

x∗
Ĥ−1

∗ Z⊳
x∗

TH∗(xk − x∗) +O(‖xk − x∗‖2) + ρUk

= A∗(xk − x∗)−A∗J
⊳
x∗
Jx∗

(xk − x∗) +O(‖xk − x∗‖2)
+ ρUk + ρVk

= A∗(I − J⊳
x∗
Jx∗

)(xk − x∗) +O(‖xk − x∗‖2) + ρUk + ρVk
(NN)
= A∗Z

⊳
x∗
Zx∗

(xk − x∗) +O(‖xk − x∗‖2) + ρUk + ρVk .

Hence, since A∗Z
⊳
x∗

= 0, it yields that

‖xk+1 − x∗‖ = O(‖xk − x∗‖2) + ρUk + ρVk ,

which concludes the proof.

Finally, we are able to prove the most important result of this manuscript, which
ensures that, under special circumstances, the method either moves superlinearly to
a minimizer of the problem or superlinearly reduces the optimality certificate.

Theorem 4.14. Under Assumptions 1, 2 and 3, suppose that {xk} is an infinite
sequence generated by GraFuS with νk → 0 and that we are under the conditions of
Theorem 4.13. Then, if σk > 1 for all k ∈ K, we have

min

{

νk+1

νk
,
‖xk+1 − x∗‖
‖xk − x∗‖

}

→
k∈K

0.

Proof. Suppose, by contradiction, that there exist an infinite index set K̂ ⊂ K
and M > 0 such that

(33) min

{

νk+1

νk
,
‖xk+1 − x∗‖
‖xk − x∗‖

}

> M , for all k ∈ K̂.

Therefore,

νk+1

νk
> M , for all k ∈ K̂,

which yields, by the way the algorithm was designed, that

‖H−1
k Gk,lk

λk,lk
‖ ≥Mνk, for all k ∈ K̂.

Now, since ǫk = O(νk) and dk,lk = −H−1
k Gk,lk

λk,lk
is a valid relation for the primal-

dual variables that solve the quadratic programming problem that appears in Step 2

26 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

(when the trust-region constraints are not active), we have that

ǫk = O(‖dk,lk‖) = O(‖xk+1 − xk‖), for all k ∈ K̂.

Therefore, because (33) is assumed, we have

‖xk+1 − xk‖
‖xk+1 − x∗‖

≤ 1 +
‖xk − x∗‖
‖xk+1 − x∗‖

< 1 +
1

M
=

M + 1

M
,

which assures that ǫk = O(‖xk+1 − x∗‖). Consequently, since σk > 1, it yields that

τk,lk = O
((

ǫk,lk

)σk
)

= o(‖xk+1 − x∗‖),

and, by Theorem 4.12, we see that

‖ρ̂k‖ = o(‖xk+1 − x∗‖) and ‖ρk‖ = o(‖xk+1 − x∗‖),

which ensures, by Theorem 4.13, that

‖xk+1 − x∗‖ = O(‖xk − x∗‖2) + o (‖xk+1 − x∗‖) , for all k ∈ K̂.

So, for all k ∈ K̂ sufficiently large, the following holds

‖xk+1 − x∗‖ = O(‖xk − x∗‖2).

However, the above relation contradicts the initial assumption (33). Therefore, we
must have

min

{

νk+1

νk
,
‖xk+1 − x∗‖
‖xk − x∗‖

}

→
k∈K

0.

Remark 4.15. The local convergence results were developed assuming r ∈ {1, . . . , n−
1}. For the case r = 0, we have that the method is approaching a point for which the
function f is smooth in the whole neighborhood. For such a situation, it is straightfor-
ward to see that the direction dk,lk will have only the U-component, i.e., dk,lk = dU

k,lk
with Z⊳

x = In for all x around x∗. Now, considering r = n, we see that the method is
approaching a point where f is nonsmooth in any direction. For that case, it is also
clear that the direction dk,lk will have only the V-component, i.e., dk,lk = dV

k,lk
with

Ak ≡ In for all xk around x∗. Therefore, in both cases, the result of Theorem 4.14
will be preserved, but, for the case that r = n, the value σk does not need to be
strictly greater than one, i.e., in such a case Theorem 4.14 holds for σk = 1.

5. Numerical Results. This section has the intent to illustrate the main local
convergence results obtained. However, by no means we had the ambition to present
an extensive set of tests nor to recommend our method over any other one. Here, our
main goal is to provide the reader with proof-of-concept numerical results.

All the problems were solved using Matlab in an Intel Core 2 Duo T6500, 2.10
GHz and 4 Gb of RAM. We have used quadprog as the tool for solving the quadratic
minimizations needed in each iteration, setting active-set as the algorithmic choice
and 10−12 as the tolerances TolX and TolFun and 10−8 (default value) as TolCon.
Moreover, for all functions we have chosen random starting points such that ‖x0‖∞ ≤

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 27

2 and solved each of them twenty times in order to have statistical relevance of the
results.

We have solved each optimization problem with two algorithms: (i) the GS
method presented by the original authors [5] but with a nonnormalized search di-
rection (a variant introduced by Kiwiel [28], that has the advantage to asymptotically
recover the steepest descent method when applied to smooth functions) and (ii) the
GraFuS method. We have used the original GS implementation without any modi-
fication (with the exception of using a nonnormalized search direction)2. For com-
pleteness, we present the parameter values used in Algorithm 1: m = 2n; ν0 = 10−6;
ǫ0 = 10−1; νopt = 10−6; ǫopt = 10−6; θν = 1; θǫ = 10−1; γ = 0.5; β = 0 and αk = 1.

The parameter values used in GraFuS were: m = 2n; ν0 = 10−2; νopt = 10−6;
γǫ = 4; γ∆ = 4; δ = 0.90; ̺ = 1.50; ρ = 10−8 and θ = 0.5. The value of σk in Step
1 was set as follows. We start the algorithm with σ0 = 1 and, setting |λ|# as the
number of entries of λ greater than 10−3/(n + 1), we have updated σk every time a
reduction on νk was performed in such a way that

σk+1 =

{

1, |λk,lk
|# ≥ n+ 1

1.5, otherwise
.

Notice that |λ|# − 1 tries to approximate the dimension of the subspace V(x∗).
An important aspect that we must recall here is that the iterations of GraFuS are

more expensive than those of GS. While the GS routine finds a search direction and
does an Armijo line search to find the next iterate, GraFuS constantly solves quadratic
programming problems until it finds a good set of sampled points and a good trust
region to move. Therefore, one could take advantage of the way GS was designed as
a bootstrap to start performing GraFuS iterations, deciding if the current iterate is
close to the solution indirectly by means of the size of the current sampling radius.
As a result, we only start to run the GraFuS algorithm after the second reduction
of the sampling radius in GS (i.e. when ǫk < 10−2), and that is the reason why in
the figures that follow below, we see that in the first iterations both methods remain
together.

We also must stress that although the optimality certificates of Algorithms 1 and 2
are very similar, they are not the same (specially because the quadratic programming
problem of each method is different). Therefore, one might be more rigorous than the
other one. Thus, although in most problems the GraFuS method appears to be closer
to the solution, this does not mean that GS is not able to reach the same precision
(maybe a tighter optimality parameter would allow it).

Finally, the way we have chosen the matrices Hk is a delicate matter and, for
that reason, we have reserved the following subsection to explain our procedure. It is
worth pointing out that we have used BFGS ideas to update the matrices, but we do
not have any theoretical guarantee that the matrices Hk will converge to a matrix of
the form presented in (32). Nevertheless, the choice on how we update the matrices
has a strong foundation, since it uses the same reasoning of a Sequential Quadratic
Programming (SQP) updating [17] for the optimization problem that appears in (22).

5.1. Hk updates in GraFuS method. As we have seen in the last section, if
some hypotheses are satisfied, it is possible to see the quadratic programming problem
that is solved in every iteration of GraFuS as a smooth constrained optimization
problem. Moreover, the matrix that we would like to approximate (at least in its null

2The GS code can be found at http://cs.nyu.edu/overton/papers/gradsamp/alg/.

28 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

space) is the Hessian of (24). Therefore, a natural attempt to reach that goal is to
update the positive definite matrix Hk as it is done in SQP routines. In other words,
it would be desirable to have the following relation

Hk(x+ − x−) = ∇xL(x+, λ+)−∇xL(x−, λ−),

where L is the Lagrangian function defined in (24) and λ+ and λ− are vectors that
try to approximate the multiplier λ∗ that fulfills (25). In addition,

∇xL(x, λ) = ∇φr+1(x) +

r
∑

i=1

λi(∇φi(x)−∇φr+1(x))

=

(

1−
r
∑

i=1

λi

)

∇φr+1(x) +

r
∑

i=1

λi∇φi(x).

Therefore, defining λ̂ ∈ R
r+1 as λ̂i = λi, for i ∈ {1, . . . , r}, and

λ̂r+1 = 1−
r
∑

i=1

λi,

we have eT λ̂ = 1 and one can rewrite ∇xL(x, λ) = Ĝλ̂, where

Ĝ := [∇φ1(x) . . .∇φr+1(x)].

Hence, if in two fixed pairs (k+, l+) and (k−, l−) of (outer, inner) iterations we have
good sets of sampled points (in the sense that the conditions i) and ii) of Lemma 4.11
are valid), it is natural to ask that the following secant relationship holds

Hk(xk+
− xk−

) = Gk+,l+λk+,l+ −Gk−,l−λk−,l− .

The problem here is how one can identify a good set of sampled points. In fact,
because of Lemma 4.11, we could say that all iterations in K must produce a good
set of sampled points, but to restrain the update of Hk just for those iterations can
lead us to very few updates during the execution of the method. So, although there is
no straightforward response, we know that a good set of sampled points is associated
with a small norm of the convex combination of its gradients. Hence, a good strategy
would be to update the matrix Hk only if such a condition is verified.

Based on the previous reasoning, we present next the routine that provides the
sequence of matrices Hk that are used within GraFuS.

Step 0. Start setting H = I and let the GraFuS algorithm run until it finds two
pairs (k+, l+) and (k−, l−) of (outer, inner) iterations such that

∥

∥Gk+,l+λk+,l+

∥

∥ ≤ √νk+
and

∥

∥Gk−,l−λk−,l−

∥

∥ ≤ √νk−
.

Set
x+ := xk+

and x− := xk−
;

v+ := Gk+,l+λk+,l+ and v− := Gk−,l−λk−,l− .

Step 1. Set p := x+− x− and q := v+− v−. If q
T p < 0.2pTHp then compute a new

vector q by Powell’s correction (see [2, Subsection 18.2]).

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 29

Step 2. Update H :

H ← H − HppTH

pTHp
+

qqT

qT p
.

Step 3. Use the subsequent matrices Hk as H until the GraFuS algorithm finds
another iteration k̂ and an inner iteration l̂ such that

∥

∥

∥Gk̂,l̂λk̂,l̂

∥

∥

∥ ≤ √νk̂.

Then, x− ← x+, x+ ← xk̂, v− ← v+, v+ ← Gk̂,l̂λk̂,l̂. Go back to Step 1.

Clearly, other ways of updating Hk are possible. Indeed, even the pure BFGS
update as considered in [33] can be performed (although, in such a case, we have to
assume that for all iterates the function f will be differentiable and Assumption 1 will
no longer be satisfied). We believe that an improvement on the updating of Hk may
be an important advance on the performance of GraFuS.

5.2. Illustrative examples. The functions that were solved to illustrate our
algorithm are the following [20]:
F1) Chained CB3 I

f(x) =

n−1
∑

i=1

max
{

x4
i + x2

i+1, (2− xi)
2 + (2 − xi+1)

2, 2 exp(−xi + xi+1)
}

;

F2) Chained CB3 II

f(x) =max

{

n−1
∑

i=1

(

x4
i + x2

i+1

)

,

n−1
∑

i=1

(

(2− xi)
2 + (2− xi+1)

2
)

,

n−1
∑

i=1

2 exp(−xi + xi+1)

}

;

F3) Nonsmooth generalization of Brown function 2

f(x) =

n−1
∑

i=1

(

|xi|x
2
i+1+1 + |xi+1|x

2
i+1
)

;

F4) Chained crescent I

f(x) =max

{

n−1
∑

i=1

(

x2
i + (xi+1 − 1)2 + xi+1 − 1

)

,

n−1
∑

i=1

(

−x2
i − (xi+1 − 1)2 + xi+1 + 1

)

}

.

The first two functions are convex, whereas the last two ones are nonconvex
functions. In addition, F1 and F3 satisfy U(x∗) = {0}, a condition that does not
hold for F2 and F4.

To observe the GraFuS functioning and to put it into perspective with GS, we have
comparatively examined the CPU time and the number of iterations versus f(xk)−f∗,

30 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

where f∗ is set as the best function value obtained by the methods in all of the runs.
Because of the nondeterministic nature of the methods, we have used the median and
quartiles (25% and 75%) of the twenty runs. As a complementary tool for assessing
how fast our method goes towards the optimal function value, in the plots with the
number of iterations, we have represented the value

min

{

f(xk+1)− f∗
f(xk)− f∗

, 1

}

with color scales along the plotted curves of GraFuS, where a brighter hue stands for
a value close to zero, and a darker color for the values near one. Notice that the values
above 1 must have a safeguard, because since our method might not be monotone,
the ratio (f(xk+1)− f∗)/(f(xk)− f∗) could be greater than one. The reader will see
that a few increases on the function value appears in the figures that are shown below.
This is due to the fact that the measure (quartiles) used to represent the twenty runs
somehow absorbs the nonmonotone behavior of the function values.

Additionally, we have examined the values

νk+1

νk
and

‖xk+1 − x∗‖
‖xk − x∗‖

for k such that νk+1 < νk. For this two measures, a detailed explanation must be given
on how we have plotted the corresponding curves. As we have mentioned before, we
have solved each function more than once. However, an iteration k for which νk+1 < νk
occurs is not necessarily the same iteration where a second run will have νk+1 < νk.
It is only possible to track these values for different runs if instead of looking at the
iteration k, we monitor the actual occurrences of νk+1 < νk. Therefore, we have
proceeded in the following way. For each run, we set the w-dimensional vectors

vecν ←
[

νk1+1

νk1

, . . . ,
νkw+1

νkw

]

and vecx∗
←
[‖xk1+1 − x∗‖
‖xk1

− x∗‖
, . . . ,

‖xkw+1 − x∗‖
‖xkw

− x∗‖

]

,

where ki is the iteration that for the i-th time, νki+1 < νki
has occurred. Moreover,

for the case that w < 30, we enlarge the vectors vecν and vecx∗
by copying the last

value of each vector, respectively, until it reaches 30 dimensions. This is necessary
because not every run of GraFuS will give vectors with equal dimensions. Then, the
quartiles are computed using the vectors vecν and vecx∗

of each run.
In Figures 1 and 2, we see the results obtained by the runs related to the first

function F1. It is possible to observe that GraFuS has a good performance in all the
measures. Not only a high precision is achieved, but one can also see

(34) min

{

νk+1

νk
,
‖xk+1 − x∗‖
‖xk − x∗‖

}

approaching zero, in accordance with the result of Theorem 4.14. On the other hand,
although Figure 3 presents good results for the function F2, the sequence that appears
in Theorem 4.14 does not approach zero as fast as it happens for F1 (see Figure 4).
This has a reasonable explanation. Notice that the result of Theorem 4.14 is condi-
tioned by Theorem 4.13, which has, as an assumption, that the matrices Hk must
converge to H∗ satisfying (32). However, H∗ must converge to the Hessian of the
Lagrangian only with respect to the subspace U(x∗). Since F1 has U(x∗) = {0}, the
matrices Hk do not need to contain any kind of second-order information to guarantee

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 31

10−8

10−6

10−4

10−2

100

0.5 1 1.5 2 2.5 3 3.5 4 4.5

f
(x

k
)
−
f ∗

Time (seconds)

(a) n = 5

10−8

10−6

10−4

10−2

100

10 20 30 40 50 60

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(b) n = 5

10−6

10−5

10−4

10−3

10−2

10−1

100
101
102

0 5 10 15 20

f
(x

k
)
−
f ∗

Time (seconds)

(c) n = 10

10−6

10−5

10−4

10−3

10−2

10−1

100
101
102

10 20 30 40 50 60 70 80 90

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(d) n = 10

Fig. 1. Medians and quartiles of twenty runs of GS and GraFuS methods for the function
F1. The black line plots represent the GS method, whereas the grey/colored continuous ones with ♦

marks stand for GraFuS. For both n = 5 and n = 10, we have x∗ = e.

10−3

10−2

10−1

100

0 5 10 15 20 25 30
Number of reductions of νk

(a) n = 5

10−3

10−2

10−1

100

0 5 10 15 20 25 30
Number of reductions of νk

(b) n = 10

Fig. 2. The simple black line plot and the one with ♦ marks represent, respectively, the medians
of the vectors vecν and vecx∗ for the function F1. For both n = 5 and n = 10, we have x∗ = e.

Theorem 4.14 to hold, which is the reason why (34) approaches quickly to zero when
GraFuS is applied to this function. However, F2 has dimU(x∗) = n− 2, which means
that the result of Theorem 4.14 will be conditioned to how good is the approximation
of Hk to H∗ at each iteration.

The function F3 has some interesting features, since it does not admit a maximum
representation. Indeed, let us consider the function h(a, b) = a(1+b2), for a ≥ 0. Then,
it yields that

lim
ε↓0

∂h

∂a
(ε, ε) = lim

ε↓0
(1 + ε2)εε

2

= 1;

lim
ε↓0

∂h

∂a
(2−1/ε3 , ε) = lim

ε↓0
(1 + ε2)2−1/ε = 0.

32 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

10−10

10−8

10−6

10−4

10−2

100

0.5 1 1.5 2 2.5 3

f
(x

k
)
−
f ∗

Time (seconds)

(a) n = 5

10−10

10−8

10−6

10−4

10−2

100

20 40 60 80 100 120 140 160

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(b) n = 5

10−10

10−8

10−6

10−4

10−2

100

0 2 4 6 8 10 12 14 16

f
(x

k
)
−
f ∗

Time (seconds)

(c) n = 10

10−10

10−8

10−6

10−4

10−2

100

20 40 60 80 100120140160180

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(d) n = 10

Fig. 3. Medians and quartiles of twenty runs of GS and GraFuS methods for the function
F2. The black line plots represent the GS method, whereas the grey/colored continuous ones with ♦

marks stand for GraFuS. For both n = 5 and n = 10, we have x∗ = e.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30
Number of reductions of νk

(a) n = 5

0

0.5

1

1.5

2

0 5 10 15 20 25 30
Number of reductions of νk

(b) n = 10

Fig. 4. The simple black line plot and the one with ♦ marks represent, respectively, the medians
of the vectors vecν and vecx∗ for the function F2. For both n = 5 and n = 10, we have x∗ = e.

So, it is possible to see that any representation of F3 that might involve a maximum
of functions cannot have smooth functions. Therefore, this function does not satisfy
the requirements of our convergence analysis. However, this does not prevent GraFuS
to have a good performance (see Figures 5 and 6).

Finally, looking at the results obtained for the function F4 in Figures 7 and 8,
the analysis follows very closely the one that was presented for function F2. Since
F4 satisfies U(x∗) = n− 1, as depicted in Figure 8, the value (34) does not go to zero
as quickly as it could be expected. Nevertheless, the results obtained in Figure 7 also
show a good behavior of GraFuS.

6. Conclusions. This manuscript presents an implementable algorithm for solv-
ing unconstrained nonsmooth and nonconvex optimization problems. Using the ideas
of the Gradient Sampling algorithm and taking advantage of some notions developed

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 33

10−12

10−10

10−8

10−6

10−4

10−2

100

0.2 0.4 0.6 0.8 1 1.2 1.4

f
(x

k
)
−
f ∗

Time (seconds)

(a) n = 5

10−12

10−10

10−8

10−6

10−4

10−2

100

10 20 30 40 50 60

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(b) n = 5

10−12

10−10

10−8

10−6

10−4

10−2

100

0.5 1 1.5 2 2.5 3 3.5 4

f
(x

k
)
−
f ∗

Time (seconds)

(c) n = 10

10−12

10−10

10−8

10−6

10−4

10−2

100

10 20 30 40 50 60 70

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(d) n = 10

Fig. 5. Medians and quartiles of twenty runs of GS and GraFuS methods for the function
F3. The black line plots represent the GS method, whereas the grey/colored continuous ones with ♦

marks stand for GraFuS. For both n = 5 and n = 10, we have x∗ = 0.

10−5

10−4

10−3

10−2

10−1

100

0 5 10 15 20 25 30
Number of reductions of νk

(a) n = 5

10−6

10−5

10−4

10−3

10−2

10−1

100

0 5 10 15 20 25 30
Number of reductions of νk

(b) n = 10

Fig. 6. The simple black line plot and the one with ♦ marks represent, respectively, the medians
of the vectors vecν and vecx∗ for the function F3. For both n = 5 and n = 10, we have x∗ = 0.

over the years for the Bundle Method, we were able to produce an algorithm that,
in some sense, can be viewed as a generalization of the well established Newton’s
(quasi-Newton) method for nonconvex nonsmooth unconstrained minimization.

Additionally, we believe that an important step has been taken in the direction
of obtaining a rapid method for minimizing nonconvex and nonsmooth functions.
It was shown that a rapid move towards the solution is a reliable behavior for some
iterations of GraFuS. Moreover, at least for the illustrative examples considered in the
numerical experiments, one can see that fast moves are not rare and can be expected
for a reasonable amount of iterations. However, it must be stressed that the iterations
of GraFuS are computationally expensive when compared to GS, and for this reason,
the rapid behavior of GraFuS might not be translated to a faster method for some
functions.

34 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

10−12

10−10

10−8

10−6

10−4

10−2

100

0.5 1 1.5 2 2.5

f
(x

k
)
−
f ∗

Time (seconds)

(a) n = 5

10−12

10−10

10−8

10−6

10−4

10−2

100

20 40 60 80 100

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(b) n = 5

10−12

10−10

10−8

10−6

10−4

10−2

100

0 2 4 6 8 10 12

f
(x

k
)
−
f ∗

Time (seconds)

(c) n = 10

10−12

10−10

10−8

10−6

10−4

10−2

100

50 100 150 200 250 300 350

f
(x

k
)
−
f ∗

Number of iterations

0

0.2

0.4

0.6

0.8

1

(d) n = 10

Fig. 7. Medians and quartiles of twenty runs of GS and GraFuS methods for the function
F4. The black line plots represent the GS method, whereas the grey/colored continuous ones with ♦

marks stand for GraFuS. For both n = 5 and n = 10, we have x∗ = 0.

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30
Number of reductions of νk

(a) n = 5

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30
Number of reductions of νk

(b) n = 10

Fig. 8. The simple black line plot and the one with ♦ marks represent, respectively, the medians
of the vectors vecν and vecx∗ for the function F4. For both n = 5 and n = 10, we have x∗ = 0.

The matters of efficiency and applicability of the method have not been treated
properly in this manuscript, since our aim here was, first, to produce a mathematical
theory that would support a rapid convergence to a solution and second, to provide
proof-of-concept numerical instances that corroborate the main theoretical results.
There are many possibilities of improvements on the algorithm (e.g. different forms
of updating the matrices Hk and efficient ways of selecting the sampled points with-
out affecting the global convergence) and we hope that future studies explore these
possibilities.

Finally, we end these final remarks with two questions that naturally arise from
some of the numerical results obtained in the previous section:

• under which conditions could we establish ‖Hk − H∗‖ = O(‖xk − x∗‖) in
Theorem 4.13?

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 35

• would it be possible to have convergence results with more general assump-
tions?

Appendix. The aim of this appendix is to show that the assumption (λk,lk
)i = 0,

whenever i /∈ I(x∗) and k ∈ K, with K defined in (18), is not necessary. For this
goal, we will show that even without such an assumption, the results from the local
convergence subsection remain the same.

We divide our reasoning in two cases and remind the reader that we have assumed
I(x∗) = {1, . . . , r + 1}:
A1) The cardinality of I(x∗) is n+ 1;
A2) The cardinality of I(x∗) is r + 1 with r < n.

Suppose first that A1 holds and let us consider an iterate xk sufficiently close
to x∗. Moreover, assume that k ∈ K, where K is the index set defined in (18).
Then, looking at the optimization problem in (21), we see that any additional active
constraint will generate an additional active constraint to (21) in a way that it will be
a linear combination of the first n+1 active constraints (by Remark 4.1 and because
the rank of J̃k remains constant in a close neighborhood of x∗). Hence, the solution
obtained with, or without, this additional constraint is the same, which yields that
the results presented at the local convergence subsection do not change for this special
case.

So, let us consider the more intricate case A2. Moreover, let us assume that
there is only one additional constraint, i.e., the number of active constraints is r + 2
(we will see that the occurrence of more than one additional constraint will be a
straightforward generalization of this simpler case). In other words, we are saying
that solving (5) is equivalent to minimize

min
(d,z)∈Rn+1

z +
1

2
dTHkd

s.t. f
(

xlk
k,i

)

+∇f
(

xlk
k,i

)T (

xk + d− xlk
k,i

)

= z, 1 ≤ i ≤ r + 2,

where here we assume that rearrangements were done in order to have the additional
constraint as the (r + 2)-th constraint and that it has the associated sampled point

xlk
k,r+2. Therefore, for an iterate xk sufficiently close to the solution and a sufficiently

small sampling radius, we have, by the continuity of the functions φi, that only the
functions φ1, . . . , φr+1 can assume the maximum at any sampled point. So, there

exists j ∈ {1, . . . , r + 1} such that f(xlk
k,r+2) = φj(x

lk
k,r+2). Consequently, recalling

that k ∈ K, the above minimization problem can be seen as

min
(d,z)∈Rn+1

z +
1

2
dTHkd

s.t. φi

(

xlk
k,i

)

+∇φi

(

xlk
k,i

)T (

xk + d− xlk
k,i

)

= z, 1 ≤ i ≤ r + 1

φj

(

xlk
k,r+2

)

+∇φj

(

xlk
k,r+2

)T (

xk + d− xlk
k,r+2

)

= z,

36 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

whose dual optimization problem is written as

max
λ∈Rr+2

r+1
∑

i=1

λi

[

φi

(

xlk
k,i

)

+∇φi

(

xlk
k,i

)T (

xk − xlk
k,i

)

]

+ λr+2

[

φj

(

xlk
k,r+2

)

+∇φj

(

xlk
k,r+2

)T (

xk − xlk
k,r+2

)

]

− 1

2

∥

∥

∥

∥

∥

r+1
∑

i=1

λi∇φi(x
lk
k,i) + λr+2∇φj(x

lk
k,r+2)

∥

∥

∥

∥

∥

2

H−1

k

s.t. eTλ = 1.

(35)

Therefore, we can turn this last constrained maximization problem into an uncon-
strained one by making the following substitution λr+2 = 1−∑r+1

i=1 λi. So, we have

max
λ∈Rr+1

r+1
∑

i=1

λi

[

φi

(

xlk
k,i

)

+∇φi

(

xlk
k,i

)T (

xk − xlk
k,i

)

− φj

(

xlk
k,r+2

)

−∇φj

(

xlk
k,r+2

)T (

xk − xlk
k,r+2

)

]

+ φj

(

xlk
k,r+2

)

+∇φj

(

xlk
k,r+2

)T (

xk − xlk
k,r+2

)

− 1

2

∥

∥

∥

∥

∥

r+1
∑

i=1

λi

[

∇φi(x
lk
k,i)−∇φj(x

lk
k,r+2)

]

+∇φj(x
lk
k,r+2)

∥

∥

∥

∥

∥

2

H−1

k

.

Since the above problem is concave and smooth, its solution λ ∈ R
r+1 can be

obtained by equalling the derivative of the objective function to the null vector. Con-
sequently, assuming without loss of generality that the function φj involved in the
additional constraint is φr+1, we have























∇φ1

(

x
lk
k,1

)

T

− ∇φr+1

(

x
lk
k,r+2

)

T

.

.

.

∇φr+1

(

x
lk
k,r+1

)T

− ∇φr+1

(

x
lk
k,r+2

)T























H
−1

k























∇φ1

(

x
lk
k,1

)

T

− ∇φr+1

(

x
lk
k,r+2

)

T

.

.

.

∇φr+1

(

x
lk
k,r+1

)T

− ∇φr+1

(

x
lk
k,r+2

)T























T

λ =























φ1

(

x
lk
k,1

)

+ ∇φ1

(

x
lk
k,1

)

T
(

xk − x
lk
k,1

)

.

.

.

φr+1

(

x
lk
k,r+1

)

+ ∇φr+1

(

x
lk
k,r+1

)

T
(

xk − x
lk
k,r+1

)























−























φr+1

(

x
lk
k,r+2

)

+ ∇φr+1

(

x
lk
k,r+2

)T (

xk − x
lk
k,r+2

)

.

.

.

φr+1

(

x
lk
k,r+2

)

+ ∇φr+1

(

x
lk
k,r+2

)

T
(

xk − x
lk
k,r+2

)























−























∇φ1

(

x
lk
k,1

)T

− ∇φr+1

(

x
lk
k,r+2

)T

.

.

.

∇φr+1

(

x
lk
k,r+1

)T

− ∇φr+1

(

x
lk
k,r+2

)T























H
−1

k
∇φr+1

(

x
lk
k,r+2

)

.

Now, changing the points xlk
k,r+2 for xlk

k,r+1 and redefining

τk,lk := max
1≤i≤r+2

∥

∥

∥x
lk
k,i − xk

∥

∥

∥ ,

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 37

we get



























∇φ1

(

x
lk
k,1

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T

.

.

.

∇φr

(

x
lk
k,r

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T

0T



























H
−1

k



























∇φ1

(

x
lk
k,1

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T

.

.

.

∇φr

(

x
lk
k,r

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T

0T



























T

λ =



























φ1

(

x
lk
k,1

)

+ ∇φ1

(

x
lk
k,1

)T (

xk − x
lk
k,1

)

− φr+1

(

x
lk
k,r+1

)

− ∇φr+1

(

x
lk
k,r+1

)T (

xk − x
lk
k,r+1

)

.

.

.

φr

(

x
lk
k,r

)

+ ∇φr

(

x
lk
k,r

)

T
(

xk − x
lk
k,r

)

− φr+1

(

x
lk
k,r+1

)

− ∇φr+1

(

x
lk
k,r+1

)

T
(

xk − x
lk
k,r+1

)

0T



























−



























∇φ1

(

x
lk
k,1

)T

− ∇φr+1

(

x
lk
k,r+1

)T

.

.

.

∇φr

(

x
lk
k,r

)T

− ∇φr+1

(

x
lk
k,r+1

)T

0T



























H
−1

k
∇φr+1

(

x
lk
k,r+1

)

+ O

(

τ
k,lk

)

.

This last linear system yields























∇φ1

(

x
lk
k,1

)T

− ∇φr+1

(

x
lk
k,r+1

)T

.

.

.

∇φr

(

x
lk
k,r

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T























H
−1

k























∇φ1

(

x
lk
k,1

)T

− ∇φr+1

(

x
lk
k,r+1

)T

.

.

.

∇φr

(

x
lk
k,r

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T























T











λ1

.

.

.

λr











=























φ1

(

x
lk
k,1

)

+ ∇φ1

(

x
lk
k,1

)T (

xk − x
lk
k,1

)

− φr+1

(

x
lk
k,r+1

)

− ∇φr+1

(

x
lk
k,r+1

)T (

xk − x
lk
k,r+1

)

.

.

.

φr

(

x
lk
k,r

)

+ ∇φr

(

x
lk
k,r

)

T
(

xk − x
lk
k,r

)

− φr+1

(

x
lk
k,r+1

)

− ∇φr+1

(

x
lk
k,r+1

)

T
(

xk − x
lk
k,r+1

)























−























∇φ1

(

x
lk
k,1

)

T

− ∇φr+1

(

x
lk
k,r+1

)

T

.

.

.

∇φr

(

x
lk
k,r

)T

− ∇φr+1

(

x
lk
k,r+1

)T























H
−1

k
∇φr+1

(

x
lk
k,r+1

)

+ O

(

τ
k,lk

)

.

Therefore, following the same reasoning used by us to get here, it is possible to see
that the first r components of the dual variable λ̂ ∈ R

r+1 linked to the problem (20)
must satisfy the last linear system obtained above (not considering the remaining
error vector) and, moreover,

(36) λ̂r+1 = 1−
r
∑

i=1

λ̂i.

Therefore, considering λ∗ ∈ R
r+2 the solution of (35) and using equation (36), we

must have

λ∗ =















λ̂1

...

λ̂r

λ∗
r+1

1−∑r
i=1 λ̂i − λ∗

r+1















+O
(

τk,lk

)

=















λ̂1

...

λ̂r

λ∗
r+1

λ̂r+1 − λ∗
r+1















+O
(

τk,lk

)

.

38 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

So, to complete our reasoning, we write the following relation between the primal-dual
variables

dk,lk = −H−1
k

[

r+1
∑

i=1

λ∗
i∇φi(x

lk
k,i) + λ∗

r+2∇φr+1(x
lk
k,r+2)

]

= −H−1
k

[

r
∑

i=1

λ∗
i∇φi(x

lk
k,i) +

(

λ∗
r+1 + λ∗

r+2

)

∇φr+1(x
lk
k,r+1)

]

+O
(

τk,lk

)

= −H−1
k

r+1
∑

i=1

λ̂i∇φi(x
lk
k,i) +O

(

τk,lk

)

.

Hence, dk,lk is exactly the search direction obtained in (20) with an additional er-

ror vector. Therefore, the term O
(

τk,lk

)

is absorbed by the other error vectors in

Theorem 4.13 and the result is still valid.
Finally, remember that we have considered just one additional active constraint

to the others r+1 active constraints. However, it is straightforward to see that exactly
the same reasoning can be used to prove the result for any other number of additional
constraints.

REFERENCES

[1] M. L. Balinski and P. Wolfe, Nondifferentiable Optimization, vol. 3, Math. Programming
Studies., USA, 1975.

[2] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal, Numerical op-
timization: theoretical and practical aspects, Springer-Verlag Berlin Heidelberg, 2nd ed.,
2006.

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York,
2004.

[4] J. V. Burke, A. S. Lewis, and M. L. Overton, Approximating subdifferentials by random
sampling of gradients, Mathematics of Operations Research, 27 (2002), pp. 567–584.

[5] J. V. Burke, A. S. Lewis, and M. L. Overton, A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization, SIAM Journal on Optimization, 15 (2005), pp. 751–
779.

[6] F. H. Clarke, Optimization and nonsmooth analysis, vol. 5, SIAM, Montreal, Canada, 1990.
[7] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and

control theory, vol. 178, Springer, New York, 2008.
[8] F. E. Curtis and M. L. Overton, A sequential quadratic programming algorithm for non-

convex, nonsmooth constrained optimization, SIAM Journal on Optimization, 22 (2012),
pp. 474–500.

[9] F. E. Curtis and X. Que, An adaptive gradient sampling algorithm for non-smooth optimiza-
tion, Optimization Methods and Software, 28 (2013), pp. 1302–1324.

[10] F. E. Curtis and X. Que, A quasi-Newton algorithm for nonconvex, nonsmooth optimization
with global convergence guarantees, Mathematical Programming Computation, 7 (2015),
pp. 399–428.

[11] A. Daniilidis, C. Sagastizábal, and M. Solodov, Identifying structure of nonsmooth convex
functions by the bundle technique, SIAM Journal on Optimization, 20 (2009), pp. 820–840.

[12] T.-M.-T. Do and T. Artières, Regularized bundle methods for convex and non-convex risks,
The Journal of Machine Learning Research, 13 (2012), pp. 3539–3583.

[13] D. Dotta, A. S. Silva, and I. C. Decker, Design of power system controllers by nonsmooth,
nonconvex optimization, in Power Energy Society General Meeting, 2009. PES ’09. IEEE,
2009, pp. 1–7.

[14] D.-Z. Du and P. M. Pardalos, Minimax and applications, vol. 4, Springer US, 2013.
[15] A. Fuduli, M. Gaudioso, and G. Giallombardo, A DC piecewise affine model and a bundling

technique in nonconvex nonsmooth minimization, Optimization Methods and Software, 19
(2004), pp. 89–102.

A FAST GRADIENT AND FUNCTION SAMPLING METHOD 39

[16] M. Gaudioso, E. Gorgone, and M. F. Monaco, Piecewise linear approximations in noncon-
vex nonsmooth optimization, Numerische Mathematik, 113 (2009), pp. 73–88.

[17] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Review, 47 (2005), pp. 99–131.

[18] A. A. Goldstein, Optimization of Lipschitz continuous functions, Mathematical Program-
ming, 13 (1977), pp. 14–22.

[19] A. Grothey and K. McKinnon, A superlinearly convergent trust region bundle method, Re-
port, Department of Mathematics & Statistics, Edinburgh University, (1998).

[20] M. Haarala, K. Miettinen, and M. M. Mäkelä, New limited memory bundle method
for large-scale nonsmooth optimization, Optimization Methods and Software, 19 (2004),
pp. 673–692.

[21] E. S. Helou, S. A. Santos, and L. E. A. Simões, On the differentiability check in gradient
sampling methods, Optimization Methods and Software, 31 (2016), pp. 983–1007.

[22] E. S. Helou, S. A. Santos, and L. E. A. Simões, On the local convergence analysis of the
gradient sampling method for finite max-functions, Journal of Optimization Theory and
Applications (to appear), (2017).

[23] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I,
Springer Verlag, New York, 1993.

[24] G. Huber, Gamma function derivation of n-sphere volumes, The American Mathematical
Monthly, 89 (1982), pp. 301–302.

[25] J. E. Kelley, Jr, The cutting-plane method for solving convex programs, Journal of the Society
for Industrial and Applied Mathematics, 8 (1960), pp. 703–712.

[26] K. C. Kiwiel, Methods of descent for nondifferentiable optimization, vol. 1133, Springer Berlin
Heidelberg, 1985.

[27] K. C. Kiwiel, Restricted step and Levenberg--Marquardt techniques in proximal bundle meth-
ods for nonconvex nondifferentiable optimization, SIAM Journal on Optimization, 6 (1996),
pp. 227–249.

[28] K. C. Kiwiel, Convergence of the gradient sampling algorithm for nonsmooth nonconvex op-
timization, SIAM Journal on Optimization, 18 (2007), pp. 379–388.

[29] C. Lemaréchal and R. Mifflin, Global and superlinear convergence of an algorithm for one-
dimensional minimization of convex functions, Mathematical Programming, 24 (1982),
pp. 241–256.

[30] C. Lemaréchal, F. Oustry, and C. Sagastizábal, The U-Lagrangian of a convex function,
Transactions of the American Mathematical Society, 352 (2000), pp. 711–729.

[31] C. Lemaréchal and C. Sagastizábal, Practical aspects of the moreau–yosida regularization:
Theoretical preliminaries, SIAM Journal on Optimization, 7 (1997), pp. 367–385.

[32] A. S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM Journal on Optimization, 13
(2002), pp. 702–725.

[33] A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Math-
ematical Programming, 141 (2013), pp. 135–163.

[34] L. Lukšan and J. Vlček, A bundle-Newton method for nonsmooth unconstrained minimiza-
tion, Mathematical Programming, 83 (1998), pp. 373–391.

[35] M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optimization Methods
and Software, 17 (2002), pp. 1–29.

[36] N. Maratos, Exact penalty function algorithms for finite dimensional and control optimization
problems, PhD thesis, Imperial College, London, 1978.

[37] P. Maréchal and J. J. Ye, Optimizing condition numbers, SIAM Journal on Optimization,
20 (2009), pp. 935–947.

[38] R. Mifflin and C. Sagastizábal, VU-decomposition derivatives for convex max-functions,
in Ill-posed Variational Problems and Regularization Techniques, M. Théra and
R. Tichatschke, eds., vol. 477 of Lecture Notes in Economics and Mathematical Systems,
Springer Berlin Heidelberg, 1999, pp. 167–186.

[39] R. Mifflin and C. Sagastizábal, A VU-algorithm for convex minimization, Mathematical
Programming, 104 (2005), pp. 583–608.

[40] R. Mifflin and C. Sagastizábal, A science fiction story in nonsmooth optimization orig-
inating at IIASA, in Documenta Mathematica Optimization Stories, M. Grötschel, ed.,
Deutschen Mathematiker-Vereinigung, Bielefeld, 2012, pp. 291–300.

[41] S. A. Miller and J. Malick, Newton methods for nonsmooth convex minimization: connec-
tions among U-Lagrangian, Riemannian Newton and SQP methods, Mathematical pro-
gramming, 104 (2005), pp. 609–633.

[42] J. J. Moreau and P. D. Panagiotopoulos, Nonsmooth mechanics and applications, vol. 302,
Springer, Vienna, 2014.

40 ELIAS SALOMÃO HELOU, SANDRA S. SANTOS, AND LUCAS E. A. SIMÕES

[43] W. Oliveira and C. Sagastizábal, Bundle methods in the XXIst century: A bird’s-eye view,
Pesquisa Operacional, 34 (2014), pp. 647–670.

[44] J. Outrata, M. Kočvara, and J. Zowe, Nonsmooth approach to optimization problems with
equilibrium constraints: theory, applications and numerical results, vol. 28, Kluwer Aca-
demic Publishers, The Netherlands, 2013.

[45] C. Peng, X. Jin, and M. Shi, Epidemic threshold and immunization on generalized networks,
Physica A: Statistical Mechanics and its Applications, 389 (2010), pp. 549–560.

[46] F.-C. Wang and H.-T. Chen, Design and implementation of fixed-order robust controllers for
a proton exchange membrane fuel cell system, International Journal of Hydrogen Energy,
34 (2009), pp. 2705–2717.

[47] J. Zhang, N.-H. Kim, and L. Lasdon, An improved successive linear programming algorithm,
Management Science, 31 (1985), pp. 1312–1331.

	1 Introduction
	2 Basic concepts and the GS algorithm
	3 Motivation and the new algorithm
	3.1 Motivational example
	3.2 New algorithm

	4 Convergence
	4.1 Global convergence
	4.2 Local convergence

	5 Numerical Results
	5.1 Hk updates in GraFuS method
	5.2 Illustrative examples

	6 Conclusions
	References

