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Abstract We study the convergence of the Augmented Decomposition Algo-
rithm (ADA) proposed in [32] for solving multi-block separable convex min-
imization problems subject to linear constraints. We show that the global
convergence rate of the exact ADA is o(1/ν) under the assumption that there
exists a saddle point. We consider the inexact Augmented Decomposition Al-
gorithm (iADA) and establish global and local convergence results under some
mild assumptions, by providing a stability result for the maximal monotone
operator T associated with the perturbation from both primal and dual per-
spectives. This result implies the local linear convergence of the inexact ADA
for many applications such as the lasso, total variation reconstruction, ex-
change problem and many other problems from statistics, machine learning
and engineering with `1 regularization.

Keywords Separable convex minimization · convergence rate · augmented
decomposition algorithm · distributed computing

1 Introduction

Consider the following convex optimization problem of minimizing the sum
of K separable, potentially nonsmooth convex functions subject to the linear
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constraints

min
x

f(x) = f1(x1) + · · ·+ fK(xK)

s.t. Ex = E1x1 + · · ·+ EKxK = q,

xk ∈ Xk, k = 1, 2, . . . ,K,

(1.1)

where every fk is a closed proper convex function (possibly nonsmooth) and
each Xk is a closed convex set in Rnk . Let x = (x1, . . . , xK) ∈ Rn be a partition
of the variable x and X = X1×· · ·×XK ⊂ Rn1×· · ·×RnK = Rn be the domain
of x. For the linear constraint, E = (E1, . . . , EK) ∈ Rm×n is a partition of the
matrix E consistent with the partition of x and q ∈ Rm is a column vector. A
linear inequality constraint of the form Ex ≤ q can be easily transformed to
the equality case by introducing a slack variable xK+1 ≥ 0.

Optimization problems in the form of (1.1) arise in many application areas
such as signal processing, statistics and machine learning. [26] summarizes a
list of applications arising from many areas when more than two blocks are
involved (K ≥ 3).

Many decomposition algorithms have been proposed to solve the above
optimization problem; see [4,5,7,12,27,34,35] and references therein. Among
them, the ADMM method is perhaps the most popular approach to solve
the decomposition problem due to its suitable parallel implementation and
outstanding computational performance. When K = 2, the convergence of
the ADMM was well studied in the framework of Douglas-Rachford splitting
method [12]. The paper [10] proved the linear convergence of the ADMM when
at least one of fi(·) is strongly convex and E satisfies some additional assump-
tions. For the K ≥ 3 case, it was shown in [15] that the global convergence
is guaranteed if all objective functions fk are strongly convex. However, for
general convex objective functions, it is acknowledged that the direct exten-
sion of the original ADMM may diverge [6]. Therefore, most recent researches
have been focused on either analyzing problems with additional assumptions
or showing the convergence results for variants of the ADMM; see [21,36].

As an alternative to the ADMM algorithm for multi-block convex optimiza-
tion problems, a new primal-dual algorithm called the augmented decomposi-
tion algorithm (ADA) was introduced in [32]. This method is closely related
to the decomposition algorithm based on the partial inverses proposed in [34]
but is derived from the proximal saddle point algorithm (PSPA) which is as-
sociated with a special primal-dual saddle function. It was shown in [32] that
the algorithm is guaranteed to converge on the basis of convergence results of
the proximal point algorithm (PPA) in [30]. What is more exciting is that the
calculation of each iteration in PSPA can be carried out in parallel and its
parallel implementation leads to the ADA.

Although the global convergence result for the ADA has been well studied
under a general condition, the convergence rate result remained unknown. In
the first part of this paper, we focus on the convergence analysis of the ADA
applied to problem (1.1). For that, we first provide a detailed proof for its
convergence. Then, we show the O(1/ν) convergence rate in an ergodic sense.
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Finally, we improve the convergence result from O(1/ν) to o(1/ν) in a non-
ergodic sense. These ideas are inspired by recent works on the ADMM and
variants of the proximal method of multiplier [9,18,33].

Then, we consider the inexact ADA (iADA) in the second part. We first
establish the global convergence result under certain approximation criteria.
Then, under some mild assumptions on the function fk and the structure of
feasible set Xk, we show the local linear convergence of the iADA. This work
is invoked by recent convergence rate results for the ADMM algorithm in [10,
21]. However, our proof is different from them in which we show the stability
of a maximal monotone operator associated with the saddle function for a
variant of (1.1). Denote the Lagrangian function by L for (1.1):

L(x, y) =

{
f(x) + 〈Ex− q, y〉, ∀(x, y) ∈ X × Rm,
∞, ∀x /∈ X.

(1.2)

The corresponding maximal monotone operator TL [30] is defined by

TL(x, y) = {(u, v)|(u,−v) ∈ ∂L(x, y)} (1.3)

where ∂L(x, y) denotes the subgradient of the convex-concave function L. The
inverse of TL is given by

T −1
L (u, v) = {(x, y)|(u,−v) ∈ ∂L(x, y)}. (1.4)

A solution to (0, 0) ∈ TL(x, y) is a saddle point of L. Classical convergence rate
results for PPA [31] rely on the assumption that T −1

L is Lipschitz continuous
at (0, 0). This result was extended in [25] for situations in which T −1

L (0, 0) is
not a singleton and the following holds:

∃a > 0, ∃δ > 0 : ∀w ∈ B((0, 0), δ), ∀z ∈ T −1
L w, dist(z, T −1

L (0, 0)) ≤ a||w||. (1.5)

It has been pointed out in many works that understanding the Lipschitzian
behavior of T −1

L at the origin is crucial to the study of the local convergence
results for algorithms in the PPA framework; see [8,14,22,23]. For instance,
[22] showed the metric subregularity defined in [11] of TL which is closely re-
lated to (1.5) under the so-called second order sufficient condition. However,
this result inherently requires the solution uniqueness for problem (1.1). Com-
pared with those assumptions, our assumptions in this part mainly rely on the
polyhedral property of the feasible set X and the optimal solution set for (1.1)
needs not to be a singleton. Our proof is based on Robinson’s celebrated work
on the error bound result for polyhedral multifunctions [29] and uses some
ideas in the analysis for the satisfaction of a certain error bound condition in
[21,24].

Organization The remainder of this paper is organized as follows. Section
2 first summarizes the basic idea of the proximal saddle point algorithm and
its implementation, the ADA. Then, we show the convergence result for the
ADA and compare it with the ADMM. In Section 3, we introduce the iADA
and make some basic assumptions on the problem (1.1) for further discussion.
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Section 4 studies the stability results of the maximal monotone operator TL̄.
Section 5 establishes the global convergence and local linear convergence rate
results of the iADA. Finally, some numerical examples are presented in Section
6 to demonstrate the performance the ADA and iADA.

Notation We use 〈·, ·〉 and || · || to denote the standard inner product and
L2-norm in the Euclidean space respectively. For any positive definite matrix
G ∈ Sn++ and x, y ∈ Rn, the inner product 〈x, y〉G is defined by xTGy and
its induced norm is denoted by || · ||G. For 1 ≤ q ≤ ∞, || · ||q represents the
Lq-norm. For any E ∈ Rm×n, ||E|| denotes the spectral norm, i.e., the largest
singular value of E. For any function f , let domf be the effective domain of
the function f and int(domf) be the interior of domf . For any point x ∈ Rn
and a closed convex set C ⊂ Rn, dist(x,C) = miny∈C ||y − x||.

2 Global convergence of the ADA

In this paper, we make the following standard assumption.

Assumption 2.1 The global minimum of (1.1) is attainable and

int(X) ∩ domf ∩ {x|Ex = q} 6= ∅. (2.1)

If X is polyhedral, an alternative assumption for (2.1) can be that

X ∩ int(domf) ∩ {x|Ex = q} 6= ∅. (2.2)

Assumption 2.1 guarantees the existence of a saddle point of L. Namely,
there exist x̄ and ȳ such that

x̄ ∈ argmin
x∈X

L(x, ȳ), ȳ ∈ argmax
y∈Rm

L(x̄, y). (2.3)

The dual function for problem (1.1) is

d(y) = min
x∈X

L(x, y) = min
x∈X
{f(x) + 〈y,Ex− q〉} (2.4)

and its associated dual problem is given by

max
y∈Rm

d(y). (2.5)

Let X∗ and Y ∗ be the optimal solution sets of (1.1) and (2.5) respectively.
The set of saddle points for the Lagrangian (1.2) is given by X∗ × Y ∗.

2.1 Augmented Decomposition Algorithm

Here, we first summarize the basic idea of PSPA and its parallel implementa-
tion, the ADA. For that, the original problem (1.1) is equivalently transformed
into

min
x,w

f(x) = f1(x1) + · · ·+ fK(xK)

s.t. Ejxj − wj = 0, j = 1, . . . ,K − 1,

EKxK − q − wK = 0,

w1 + · · ·+ wK = 0,

xk ∈ Xk, k = 1, 2, . . . ,K.

(2.6)
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If x = (x1, . . . , xK) ∈ Rn is an optimal solution of (1.1), then (x,w) =
(x1, . . . , xK , E1x1, . . . , EK−1xK−1, EKxK − q) will be an optimal solution to
(2.6). Instead of adding a multiplier vector for w1 + · · ·+ wK = 0, [32] intro-
duced W as a subspace of (Rm)K which is defined as

W = {w = (w1, . . . , wK)|w1 + · · ·+ wK = 0} ⊂ (Rm)K . (2.7)

The orthogonal complement subspace of W is given by

W⊥ = {w = (w1, . . . , wK)|w1 = · · · = wK} ⊂ (Rm)K . (2.8)

For any w = (w1, . . . , wK) ∈ (Rm)K , we use PW⊥(w) to denote the projection
of w onto the subspace W⊥. In [32], the author proposed to add increments
ui ∈ Rm, i = 1, . . . ,K to the first K linear constraints in (2.6) and in addition,
add to w ∈ W a perturbation v ∈ W⊥. The Lagrangian function associated
with this perturbation finally works out in terms of the subspace

S = {(η, ζ)|PW⊥(η) = ζ} ⊆ (Rm)K ×W⊥, (2.9)

and the functions

Lj(xj , ηj) =

{
fj(xj) + ηj · Ejxj , if j = 1, . . . ,K − 1,

fK(xK) + ηK · (EKxK − q), o.w.
(2.10)

to mean that

L̄(w, x, η, ζ) =


∑K
j=1[Lj(xj , ηj)− ηj · wj ], if (w, x) ∈W ×X, (η, ζ) ∈ S,

−∞, if (w, x) ∈W ×X, (η, ζ) /∈ S,
+∞, if (w, x) /∈W ×X.

(2.11)
The next lemma shows the relationship between L(x, y) and L̄(w, x, η, ζ).

Lemma 1 If (w̄, x̄, η̄, ζ̄) is a saddle point of the Lagrangian function in (2.11),
then η̄1 = η̄2 = · = η̄K and (x̄, η̄1) is a saddle point of (1.2). Conversely, let
(x̄, ȳ) be a saddle point of (1.2), and define w̄ = (E1x̄1, . . . , EK−1x̄K−1, EK x̄K−
q) ∈ (Rm)K , η̄ = (ȳ, . . . , ȳ) ∈ (Rm)K and ζ̄ = η̄. Then (w̄, x̄, η̄, ζ̄) is a saddle
point of (2.11).

Proof. The dual problem associated with (2.11) is

max
(η,ζ)∈S

{ḡ(η, ζ) = inf
(w,x)∈W×X

L̄(w, x, η, ζ)} (2.12)

with its feasible set given by

{(η, ζ)|ḡ(η, ζ) > −∞} ⊂ S.

As w · η cannot be ∞, this implies η1 = η2 = · = ηK . As a consequence, the
dual problem reduces to

max
(η,ζ)∈S

{ḡ(η, ζ) = inf
x∈X

f(x) + 〈η1, Ex− q〉} (2.13)
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which is equivalent to the dual problem corresponding to (1.2). So we can con-
clude the first part. The second part is similarly based on the above observation
for the dual whose proof is omitted here. �

Based on [30], the proximal method of multipliers is derived by adding both
primal and dual proximal terms into the Lagrangian (2.11). More explicitly,
the proximal saddle point algorithm in [32] can be described as the following:

Generate a sequence of elements (wν , xν) ∈ W × X and (ην , ζν) ∈ S by
letting

L̄
ν
(w, x, η, ζ) = L̄(w, x, η, ζ)+

ρ

2
||w−wν ||2 +

1

2c
||x−xν ||2−

1

2ρ
||η−ην ||2−

1

2ρ
||ζ−ζν ||2 (2.14)

and calculating

(wν+1, xν+1, ην+1, ζν+1) = unique saddle point of L̄ν(w, x, η, ζ)

with respect to minimizing over (w, x) ∈W ×X and maximizing over (η, ζ) ∈
S. According to [30], the sequence (wν , xν , ην , ζν) generated by the above
algorithm from any initial (w1, x1) ∈ W × X and (η1, ζ1) ∈ S is certain
to converge to some saddle point (w̄, x̄, η̄, ζ̄) of the Lagrangian L̄. With the
special structure of the saddle point problem, the calculation of the saddle
point in (2.14) can be carried out in the following parallel algorithm ADA. For
simplicity, we denote

φνk,ρ,c(xk) =

{
fk(xk) + ρ

4
||Ekxk − wνk + 2

ρ
yνk ||

2
2 + 1

2c
||xk − xνk||

2
2, k = 1, . . . ,K − 1,

fK(xK) + ρ
4
||EKxK − q − wνK + 2

ρ
yνK ||

2
2 + 1

2c
||xK − xνK ||

2
2, k = K.

(2.15)

Algorithm 1 Augmented decomposition algorithm

1: Given w0 ∈W,x0 ∈ X, y0 ∈ (Rm)K

2: for ν = 0, 1, . . . do
3: xν+1

k = argminxk∈Xk φ
ν
k,ρ,c(xk), k = 1, . . . ,K

4: ην+1
k =

{
yνk + ρ

2
[Ekx

ν+1
k − wνk ], if k = 1, . . . ,K − 1

yνK + ρ
2

[EKx
ν+1
K − q − wνK ], if k = K

5: for k = 1, . . . ,K do
6: ζν+1

k = 1
K

∑K
j=1 η

ν+1
j

7:
8: wν+1

k = wνk + 1
ρ

[ην+1
k − ζν+1

k ]
9:

10: yν+1
k = 1

2
[ην+1
k + ζν+1

k ]
11: end for
12: end for
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2.2 Convergence of the ADA

In this subsection, we assume q = 0 for notational simplicity which will not
influence the proofs below. Define the matrix

G :=


ρImK

1
c In

1
ρImK

1
ρImK

 . (2.16)

Hence G � 0 and || · ||G defines a norm. Let û = (ŵ, x̂, η̂, ζ̂) and uν =
(wν , xν , ην , ζν) where û is a saddle point of the Lagrangian function (2.11)
and uν is the current iteration point. The convergence result for ADA was es-
tablished in [32] on the basis of convergence results for the classic PPA. Here,
we import the result and provide an alternative proof for it.
Theorem 2.2 Under Assumption 2.1, for any ρ > 0 and c > 0, the sequence
{(wν , xν , yν)}∞ν=1 generated in W ×X× (Rm)K by the ADA from any starting
point converges to some (w̄, x̄, ȳ) such that
(a) (w̄, x̄) solves (2.6), hence x̄ solves (1.1),
(b) ȳ1 = · · · = ȳq ∈ Rm, and this common multiplier vector solves (2.5).

Proof. From Assumption 2.1 and Lemma 1, there exists a saddle point (ŵ, x̂, η̂, ζ̂) ∈
W × X × S of the Lagrangian function (2.11). For each iteration ν + 1, due
to the minimax operation on (2.14), from the primal perspective, we have the
following inequality

K∑
k=1

fk(xk) +

K∑
k=1

〈ην+1
k , Ekxk − wk〉

≥
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈ην+1
k , Ekx

ν+1
k − wν+1

k 〉+
1

c

K∑
k=1

〈xk − xν+1
k , xνk − xν+1

k 〉

+ ρ

K∑
k=1

〈wk − wν+1
k , wνk − wν+1

k 〉

(2.17)
for any x ∈ X and w ∈ W . Applying (w, x) = (ŵ, x̂) to (2.17) and noticing
that Ex̂k = ŵk, k = 1, . . . ,K, we obtain

minP :=

K∑
k=1

fk(x̂k) ≥
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈ην+1
k , Ekx

ν+1
k − wν+1

k 〉

− 1

c

K∑
k=1

〈xν+1
k − x̂k, xνk − xν+1

k 〉 − ρ
K∑
k=1

〈wν+1
k − ŵk, wνk − wν+1

k 〉.

(2.18)
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Similarly, from the dual perspective and the saddle-point property of (ŵ, x̂, η̂, ζ̂),
the following inequality

minP =

K∑
k=1

fk(x̂k) ≤
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈η̂k, Ekxν+1
k − wν+1

k 〉

≤
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈ην+1
k , Ekx

ν+1
k − wν+1

k 〉

+
1

ρ

K∑
k=1

〈ην+1
k − η̂k, ηνk − ην+1

k 〉+
1

ρ

K∑
k=1

〈ζν+1
k − ζ̂k, ζνk − ζν+1

k 〉

(2.19)
holds. Combining the above two inequalities with the following identity

2〈a− b, c− a〉 = ||c− b||22 − ||c− a||22 − ||b− a||22, (2.20)

we have

K∑
k=1

(
1

c
||xνk − x̂k||22 + ρ||wνk − ŵk||22 +

1

ρ
||ηνk − η̂k||22 +

1

ρ
||ζνk − ζ̂k||22)

−
K∑
k=1

(
1

c
||xν+1

k − x̂k||22 + ρ||wν+1
k − ŵk||22 +

1

ρ
||ην+1
k − η̂k||2 +

1

ρ
||ζν+1
k − ζ̂k||22)

≥
K∑
k=1

(
1

c
||xν+1

k − xνk||22 + ρ||wν+1
k − wνk ||22 +

1

ρ
||ην+1
k − ηνk ||22 +

1

ρ
||ζν+1
k − ζνk ||22)

(2.21)
which is equivalent with

||uν − û||2G − ||uν+1 − û||2G ≥ ||uν − uν+1||2G. (2.22)

From this inequality, we can easily conclude that

(i)
∑∞
ν=0 ||uν − uν+1||2G <∞;

(ii) {uν = (wν , xν , ην , ζν)} lies in a compact region;
(iii) ||uν − û||G is a monotonically non-increasing sequence and thus converges.

From (ii), by passing to a subsequence if necessary, there exists at least
one limiting point of {(wν , xν , ην , ζν)}, denoted as ū = (w̄, x̄, η̄, ζ̄). It follows
from (i) that xν − xν+1 → 0, wν −wν+1 → 0 and ην − ην+1 → 0. The update
rule for w implies that η̄1 = · · · = η̄K and thus ȳ1 = · · · = ȳK = η̄1. Since
ην+1
k = yνk + ρ

2 [Ekx
ν+1
k −wνk ], Ekx̄k = w̄k holds and thus Ex̄ = 0 which implies

the feasibility of x̄. Due to the optimality condition for each block in iteration
ν + 1, we have

0 ∈ ∂fk(xν+1
k ) + ETk η

ν+1
k +

1

c
(xν+1
k − xνk) +NXk(xν+1

k ), k = 1, . . . ,K.

By passing to the limit, we obtain

0 ∈ ∂f(x̄) + ET η̄1 +NX(x̄).
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As a result, (w̄, x̄, η̄, ζ̄) is a saddle point of the Lagrangian function (2.11).
Next, we show the uniqueness of the limit point to complete the proof. Let
ū1 = (w̄1, x̄1, η̄1, ζ̄1) and ū2 = (w̄2, x̄2, η̄2, ζ̄2) be any two different limit points
of uν = (wν , xν , ην , ζν). By the previous argument, both of them are saddle
points of (2.11). From (iii), we know the existence of the following limits

lim
ν→∞

||uν − ūi||G = βi, i = 1, 2.

With the following equality

||uν − ū1||2G − ||uν − ū2||2G = −2〈uν , ū1 − ū2〉G + ||ū1||2G − ||ū2||2G
and by passing to the limit, we have

β2
1 − β2

2 = −2〈ū1, ū1 − ū2〉G + ||ū1||2G − ||ū2||2G = −||ū1 − ū2||2G
and

β2
1 − β2

2 = −2〈ū2, ū1 − ū2〉G + ||ū1||2G − ||ū2||2G = ||ū1 − ū2||2G.

Thus we obtain ||ū1−ū2||G = 0 which implies that the sequence (wν , xν , ην , ζν)
converges to some saddle point of the Lagrangian function (2.11) and hence
(a) and (b) hold. �

2.3 Rate of Convergence

In this subsection, we study the global convergence rate for the ADA. We first
show the sublinear convergence result of the ADA in an ergodic sense. The
proof follows the same idea as that in [33].

Theorem 2.3 Let {uν = (wν , xν , ην , ζν)} in W × X × S be the infinite se-
quence generated by the ADA. For any integer N > 0, define x̃N by

x̃N =
1

N

N∑
ν=1

xν . (2.23)

Then for any saddle point û = (ŵ, x̂, η̂, ζ̂) ∈W ×X × S of (2.11),

f(x̃N ) + 〈η̂1, Ex̃N 〉 −minP ≤ ||û− u
0||2G

N
. (2.24)

Proof. For any saddle point (ŵ, x̂, η̂, ζ̂) ∈W×X×S of the Lagrangian function
(2.11), it follows from (2.18) and (2.19) that

||uν − û||2G − ||uν+1 − û||2G

≥||uν − uν+1||2G +

K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈η̂k, Ekxν+1
k 〉 −minP

≥
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈η̂k, Ekxν+1
k 〉 −minP.

(2.25)
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Summing (2.25) for ν = 0, 1, . . . , N − 1, we obtain

||u0 − û||2G

≥
N−1∑
ν=0

{
K∑
k=1

fk(xν+1
k ) +

K∑
k=1

〈η̂k, Ekxν+1
k 〉} −N minP

≥N [f(x̃N ) + 〈η̂1, Ex̃N 〉 −minP ]

(2.26)

where the second inequality results from the convexity of f(·) and the fact
η̂1 = η̂2 = · · · = η̂K . The assertion (2.24) follows immediately from the above
inequality. �

Next, we shall prove the o(1/ν) convergence of the ADA. Motivated by [9,
19], we use the quantity ||uν−uν+1||2G as a measure of the convergence rate. In
fact, if ||uν−uν+1||2G = 0, then uν+1 is an optimal solution, i.e., (xν+1, ην+1

1 ) ∈
X∗ × Y ∗. More explicitly, ||uν − uν+1||2G = 0 implies the following:

xν = xν+1 and wν = wν+1. (2.27)

By the update step for w, we can conclude ην+1
1 = · · · = ην+1

K . Combining this
with xν = xν+1, we obtain

0 ∈ ∂f(xν+1) + ET ην+1
1 +NX(xν+1), (2.28)

or equivalently, (xν+1, ην+1
1 ) ∈ X∗ × Y ∗. Conversely, if the quantity ||uν −

uν+1||2G is relatively large, uν+1 should not be close to the optimal solution
set. Based on previous analysis, ||uν − uν+1||2G is a reasonable measure to
quantify the distance between uν+1 and the optimal solution set.

To show the convergence rate, we first prove the following lemma on the
monotonicity property of the iterations:

Lemma 2 Let uν be defined as in Theorem 2.3. Then

||uν − uν+1||2G ≤ ||uν−1 − uν ||2G. (2.29)

Proof. For notational simplicity, for each iteration ν, we introduce

∆uν+1 =


∆wν+1

∆xν+1

∆ην+1

∆ζν+1

 =


wν − wν+1

xν − xν+1

ην − ην+1

ζν − ζν+1

 . (2.30)

By the optimality of xν+1
k in iteration ν + 1 and the update rule of ην+1

k , we
have

1

c
(xνk − xν+1

k )−ETk ην+1
k ∈ ∂fk(xν+1

k ) +NXk(xν+1
k ), k = 1, . . . ,K. (2.31)

Considering the ν-th and ν + 1-th iteration, such optimality yields

1

c
〈∆xν+1

k , ∆xνk −∆xν+1
k 〉︸ ︷︷ ︸

(a)

−〈Ek∆xν+1
k , ∆ην+1

k 〉 ≥ 0, k = 1, . . . ,K. (2.32)
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For the second term in the above inequality,

−
K∑
k=1

〈Ek∆xν+1
k , ∆ην+1

k 〉 =

K∑
k=1

〈Ekxν+1
k − Ekxνk, ∆ην+1

k 〉

=

K∑
k=1

〈
ην+1
k − yνk
ρ/2

−
ηνk − y

ν−1
k

ρ/2
+ wνk − wν−1

k , ∆ην+1
k 〉

=

K∑
k=1

〈
ην+1
k − ηνk+ζνk

2

ρ/2
−
ηνk −

ην−1
k +ζν−1

k

2

ρ/2
+
ηνk − ζνk

ρ
,∆ην+1

k 〉

=

K∑
k=1

1

ρ
〈∆ηνk −∆ην+1

k , ∆ην+1
k 〉+

K∑
k=1

1

ρ
〈∆ζνk , ∆ην+1

k 〉+

K∑
k=1

1

ρ
〈ην+1
k − ηνk , ηνk − ην+1

k 〉+

K∑
k=1

1

ρ
〈ηνk − ζνk , ∆ην+1

k 〉

=

K∑
k=1

1

ρ
〈∆ηνk −∆ην+1

k , ∆ην+1
k 〉︸ ︷︷ ︸

(b)

+

K∑
k=1

1

ρ
〈∆ζνk −∆ζν+1

k , ∆ζν+1
k 〉︸ ︷︷ ︸

(c)

+

K∑
k=1

1

ρ
〈ην+1
k − ζν+1

k , ηνk − ην+1
k 〉︸ ︷︷ ︸

(d)

.

(2.33)

For term (d),

2

K∑
k=1

1

ρ
〈ην+1
k − ζν+1

k , ηνk − ην+1
k 〉

=

K∑
k=1

1

ρ
||ηνk − ζν+1

k ||22 −
K∑
k=1

1

ρ
||ηνk − ην+1

k ||22 −
K∑
k=1

1

ρ
||ην+1
k − ζν+1

k ||22

=

K∑
k=1

1

ρ
||ηνk − ζνk + ζνk − ζν+1

k ||22 −
K∑
k=1

1

ρ
||ηνk − ην+1

k ||22 −
K∑
k=1

1

ρ
||ην+1
k − ζν+1

k ||22

=

K∑
k=1

1

ρ
||ηνk − ζνk ||22 +

K∑
k=1

2

ρ
〈ηνk − ζνk , ζνk − ζν+1

k 〉︸ ︷︷ ︸
=0

+
1

ρ
||ζν − ζν+1||22−

K∑
k=1

1

ρ
||ηνk − ην+1

k ||22 −
K∑
k=1

1

ρ
||ην+1
k − ζν+1

k ||22.

(2.34)



12 Hongsheng Liu, Shu Lu

Applying the equality (2.20) to (a), (b) and (c) and combining them with the
above transformation for term (d), the inequality (2.32) yields

||∆uν ||2G − ||∆uν+1||2G ≥
K∑
k=1

1

c
||∆xνk −∆xν+1

k ||22 +

K∑
k=1

1

ρ
||∆ηνk −∆ην+1

k ||22+

K∑
k=1

1

ρ
||∆ζν −∆ζν+1||22 +

K∑
k=1

1

ρ
(||ηνk − ην+1

k ||22 − ||ζνk − ζν+1
k ||22)︸ ︷︷ ︸

≥0

≥ 0.

(2.35)
The nonnegativity of the last term is a direct result of the definition ζν1 =

· · · = ζνK = 1
K

∑K
j=1 η

ν
j and Cauchy–Schwarz inequality. Hence the inequality

(2.29) holds. �

The following elementary lemma helps to improve the convergence rate
from O(1/ν) to o(1/ν).

Lemma 3 Suppose a sequence {aν}∞ν=0 ⊆ R satisfies the following: (a) aν ≥
0; (b)

∑∞
ν=0 aν < ∞; and (c) aν is monotonically non-increasing. Then, we

have aν = o(1/ν).

Proof. See Lemma 1.1 in [9]. �

Combining the results from previous two lemmas, we present the o(1/ν)
convergence of the ADA.

Theorem 2.4 Let {uν = (wν , xν , ην , ζν)} in W × X × S be the infinite se-
quence generated by the ADA, then

||uν − uν+1||2G = o(1/ν) (2.36)

holds and thus

||xν − xν+1||22 = o(1/ν) (2.37)

and

||
K∑
k=1

Ekx
ν+1
k ||22 = o(1/ν). (2.38)

Proof. In the proof of Theorem 2.2, we have shown that

∞∑
ν=0

||uν − uν+1||2G <∞.

On the other hand, Lemma 2 proved the non-increasing property of ||uν −
uν+1||2G. Hence, (2.36) follows directly from Lemma 3 and then (2.37) holds.
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For the estimate for the constraint in (2.38), we have

||
K∑
k=1

Ekx
ν+1
k ||22 = ||

K∑
k=1

(Ekx
ν+1
k − wνk)||22 =

4

ρ2
||

K∑
k=1

(ην+1
k − yνk)||22

≤4K

ρ2

K∑
k=1

||ην+1
k − 1

2
(ηνk + ζνk )||22

=
K

ρ2

K∑
k=1

||ην+1
k − ηνk + ην+1

k − ζν+1
k + ζν+1

k − ζνk ||22

≤3K

ρ2
||ην+1 − ην ||22 + 3K||wν+1 − wν ||22 +

3K

ρ2
||ζν+1 − ζν ||22 = o(1/ν),

(2.39)
where the first two equalities result from wν ∈ W and the updating rule for
ην+1. This finishes the proof for (2.38). �

From Theorem 2.4, a reasonable stopping criterion for the ADA can be
either

||xν − xν+1||
max{1, ||xν ||}

≤ ε (2.40)

or
||Exν+1 − q||
max{1, ||q||}

≤ ε (2.41)

for some given tolerance ε.

2.4 Relation to the ADMM

The ADA is closely related to the ADMM. Here, we compare the ADA with two
variants of ADMM, namely, the Variable Splitting ADMM and the Proximal
Jacobian ADMM. For simplicity of notation, we assume q = 0.

Applying the classical two-block ADMM to the transformation in (2.6), [36]
proposed the following Variable Splitting ADMM (VSADMM), see Algorithm
2. The convergence result for VSADMM was established on the basis of the

Algorithm 2 Variable Splitting ADMM

1: Given w0 ∈W,x0 ∈ X, y0 ∈ (Rm)K , β > 0
2: for ν = 0, 1, . . . do

3: xν+1
k = argminxk∈Xk fk(xk) + β

2
||Ekxk − wνk +

yνk
β
||22, k = 1, . . . ,K,

4: wν+1 = argminw∈W
β
2

∑K
k=1 ||Ekx

ν+1
k − wk +

yνk
β
||22,

5: yν+1
k = yνk + β[Ekx

ν+1
k − wν+1

k ], k = 1, . . . ,K.
6: end for

classical two-block ADMM. Compared to the ADA, we notice that no proximal
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terms exist during the x-update in the VSADMM. Therefore, the full column
rank assumption of Ek is necessary for the VSADMM to guarantee the solution
uniqueness in each iteration. The w-update step in the VSADMM also differs
from that in the ADA as it does not use the information on the previous
iteration explicitly.

The Proximal Jacobian ADMM (Prox-JADMM) provided in [9] solves
problem (1.1) directly by adding a proximal term in the Jacobian-type ADMM,
see Algorithm 3. It is worth noting that the ADA shares the same o(1/ν) con-

Algorithm 3 Proximal Jacobian ADMM

1: Given x0 ∈ X,λ0 ∈ Rm, β > 0
2: for ν = 0, 1, . . . do
3: for k = 1, . . . ,K do
4: xν+1

k = argminxk∈Xk fk(xk) + β
2
||Ekxk +

∑
j 6=k Ejx

ν
j −

λν

β
||22 + 1

2
||xk − xνk||

2
Pk
,

5: end for
6: λν+1 = λν − γβ

∑K
k=1 Ekx

ν+1
k ,

7: end for

vergence rate as the Prox-JADMM. However, the Prox-JADMM requires the
constraints Ek, the proximal terms Pk and the damping parameter γ to satisfy
certain relationships to guarantee the convergence. Because the convergence
results for the ADA are established using a very different approach, we impose
no restriction on the proximal terms.

3 The Inexact Augmented Decomposition Algorithm

Here, we first review the general convergence theory of the (inexact-)proximal
point algorithm (PPA) developed in [30,31]. Let T : X ⇒ X be a maximally
monotone operator. In order to solve the inclusion problem:

0 ∈ T (z), (3.1)

PPA takes the form of

zk+1 ≈ (I + ckT )−1(zk), ∀k ≥ 0, (3.2)

in the (k+1)-th iteration with a given sequence ck ↑ c∞ ≤ ∞. The convergence
result of PPA can be guaranteed as long as the approximation computation
satisfies certain criteria; see [30,31]. In addition, the local linear convergence
result could be established when T −1 is Lipschitz continuous at the origin. In
accordance with the PPA, the inexact version of the ADA comes out naturally
as follows in Algorithm 4. The iADA allows the subproblems to be solved
inexactly which is very important in many applications as it might be very
expensive to solve these subproblems exactly.

Two natural concerns arise for the iADA: (1) the global convergence and
(2) the local convergence rate. For that, we make the following assumptions
on f for the rest of the paper:
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Algorithm 4 Inexact augmented decomposition algorithm

1: Given w0 ∈W,x0 ∈ X, y0 ∈ (Rm)K

2: for ν = 0, 1, . . . do
3: xν+1

k ≈ argminxk∈Xk φ
ν
k,ρ,c(xk), k = 1, . . . ,K

4: ην+1
k =

{
yνk + ρ

2
[Ekx

ν+1
k − wνk ], if k = 1, . . . ,K − 1

yνK + ρ
2

[EKx
ν+1
K − q − wνK ], if k = K

5: for k = 1, . . . ,K do
6: ζν+1

k = 1
K

∑K
j=1 η

ν+1
j

7:
8: wν+1

k = wνk + 1
ρ

[ην+1
k − ζν+1

k ]
9:

10: yν+1
k = 1

2
[ην+1
k + ζν+1

k ]
11: end for
12: end for

Assumption 3.1 (a) f = f1(x1) + · · ·+ fK(xK), with each fk given by

fk(xk) = gk(Akxk) + hk(xk) (3.3)

where gk and hk are both closed proper convex functions and Ak’s are some
given matrices.
(b) Every gk is strongly convex and continuously differentiable on int(domgk)
with a Lipschitz continuous gradient

||ATk∇gk(Akxk)−ATk∇gk(Akx
′
k)|| ≤ Lkg ||Ak(xk − x′k)||, ∀xk, x′k ∈ Xk

(3.4)
where Lkg ≥ 0, k = 1, . . . ,K.
(c) The epigraph of each hk is a polyhedral convex set.
(d) The feasible sets Xk, k = 1, . . . ,K are polyhedral convex sets.
(e) The feasible sets Xk, k = 1, . . . ,K are compact sets.

Here are several comments on the above assumptions.

– Either gk or hk can be absent in fk. Although gk is assumed to be strongly
convex, we do not impose any condition on Ak. Therefore, fk is not neces-
sarily strongly convex in general and the optimal solution is not necessarily
unique.

– We do not assume any condition for the rank of Ek, k = 1, . . . ,K which is
required to have full column rank in [21]. For the ADMM, this assumption
is necessary to ensure that in each iteration, the subproblem for the k-th
block is strongly convex. But for the iADA, this assumption is no longer
required as there exists a proximal term in each subproblem which makes
its optimality attainable and unique.

– The compactness assumption of Xk, k = 1, . . . ,K will facilitate the proof
in Section 4 and is not necessary for the convergence result in Section 5
due to the boundedness of the sequence generated by the iADA.

Based on these assumptions, we can simply write f as

f(x) = g(Ax) + h(x) =

K∑
k=1

gk(Akxk) +

K∑
k=1

hk(xk) (3.5)
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where g(Ax) =
∑K
k=1 gk(Akxk) and h(x) =

∑K
k=1 hk(xk) represent the smooth

and nonsmooth parts respectively. In addition, g(·) is strongly convex and h(·)
is convex with a polyhedral epigraph. The strong convexity of g(·) implies the
following proposition, whose proof is omitted.

Proposition 1 For any x in the solution set X∗, Akxk, k = 1, . . . ,K are
constant and hence Ax is constant.

In the next section, we will discuss the stability result of the Lagrangian
function under some perturbations which is essential to the local linear con-
vergence result.

4 On the stability results of TL̄

In this section, we establish the stability result of the maximal monotone oper-
ator TL̄ defined in (4.2) corresponding to the perturbations of both primal and
dual solutions under Assumption 3.1. This property serves the key ingredient
for the local convergence rate analysis of the iADA.

Recall the definition of L̄(w, x, η, ζ) in (2.11). For each (w, x, η, ζ) ∈ W ×
X × S, TL̄(w, x, η, ζ) is defined as

TL̄(w, x, η, ζ) = {(v1, v2, v3, v4)|(v1, v2,−v3,−v4) ∈ ∂L̄(w, x, η, ζ)}, (4.1)
or equivalently, TL̄(w, x, η, ζ) is the set of v = (v1, v2, v3, v4) ∈ (Rm)K × Rn ×
(Rm)K × (Rm)K such that

L̄(w′, x′, η, ζ)− 〈w′, v1〉 − 〈x′, v2〉+ 〈η, v3〉+ 〈ζ, v4〉
≥L̄(w, x, η, ζ)− 〈w, v1〉 − 〈x, v2〉+ 〈η, v3〉+ 〈ζ, v4〉
≥L̄(w, x, η′, ζ ′)− 〈w, v1〉 − 〈x, v2〉+ 〈η′, v3〉+ 〈ζ ′, v4〉

for all (w′, x′) ∈W ×X, (η′, ζ ′) ∈ S.

(4.2)

Any solution to (0, 0, 0, 0) ∈ TL̄(w, x, η, ζ) is a saddle point of L̄. Denote
v1 = (v1,1, . . . , v1,K) ∈ (Rm)K , v2 = (v2,1, . . . , v2,K) ∈ Rn1 × · · · × RnK ,
v3 = (v3,1, . . . , v3,K) ∈ (Rm)K and PW⊥(v4) = (v⊥4 , . . . , v

⊥
4 ) ∈ (Rm)K . We

consider the following perturbed form of problem (2.6):

min
x,w

f1(x1) + · · ·+ fK(xK)− 〈w, v1〉 − 〈x, v2〉

s.t. Ekxk − wk + v3,k + v⊥4 = 0, k = 1, . . . ,K − 1,

EKxK − q − wK + v3,K + v⊥4 = 0,

w1 + · · ·+ wK = 0,

xk ∈ Xk, k = 1, 2, . . . ,K

(4.3)

Its corresponding KKT conditions are given by

−ETk ηk + v2,k ∈ ∂fk(xk) +NXk(xk), k = 1, . . . ,K

−ηk + µ = v1,k, k = 1, . . . ,K

Ekxk − wk + v3,k + v⊥4 = 0, k = 1, . . . ,K − 1

EKxK − q − wK + v3,K + v⊥4 = 0,

w1 + · · ·+ wK = 0.

(4.4)
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One can easily check that

T −1
L̄

(v1, v2, v3, v4) = set of all (w, x, η, PW⊥(η)) ∈W ×X × S
such that there exists µ ∈ Rm satisfying that (w, x, η, µ)

is a solution of the KKT conditions (4.4).

(4.5)

Based on the above observation, we first study the stability results of the
KKT system (4.4) under perturbations considered above. Under Assumption
3.1, every fk(xk) is the sum of a smooth function gk(Akxk) and a nonsmooth
function hk(xk) with a polyhedral epigraph. By introducing a variable s =
(s1, . . . , sK) ∈ RK , for each k, we can rewrite the polyhedral set {(xk, sk) :
xk ∈ Xk, hk(xk) ≤ sk} compactly as Ckxxk + Cks sk ≥ ck for some matrices
Ckx ∈ Rjk×nk , Cks ∈ Rjk×1 and ck ∈ Rjk×1, where jks are some positive

integers with
∑K
k=1 jk = j. Then, we can transform (2.6) equivalently into

min
x,w,s

K∑
k=1

gk(Akxk) + sk

s.t. Ekxk − wk = 0, k = 1, . . . ,K − 1,

EKxK − q − wK = 0,

w1 + · · ·+ wK = 0,

Ckxxk + Cks sk − ck ≥ 0, k = 1, 2, . . . ,K.

(4.6)

For the perturbed problem (4.3), similarly, we have the following equivalent
transformation:

min
x,w,s

K∑
k=1

gk(Akxk) + sk − 〈w, v1〉 − 〈x, v2〉

s.t. Ekxk − wk + v3,k + v⊥4 = 0, k = 1, . . . ,K − 1,

EKxK − q − wK + v3,K + v⊥4 = 0,

w1 + · · ·+ wK = 0,

Ckxxk + Cks sk − ck ≥ 0, k = 1, 2, . . . ,K.

(4.7)

The canonical Lagrangian function for (4.7) is given by

Lv(w, x, s, η, λ, µ) =

K∑
k=1

gk(Akxk) + sk − 〈w, v1〉 − 〈x, v2〉

+

K−1∑
k=1

〈Ekxk − wk + v3,k + v⊥4 , ηk〉+ 〈EKxK − q − wK + v3,K + v⊥4 , ηK〉

−
K∑
k=1

〈Ckxxk + Cks sk − ck, λk〉+ 〈w1 + · · ·+ wK , µ〉.

(4.8)



18 Hongsheng Liu, Shu Lu

We use Sol(P (v1, v2, v3, v4)) to denote the set of saddle points for the La-
grangian function Lv(w, x, s, η, λ, µ) defined above corresponding to the per-
turbed problem (4.7). Let (v1, v2, v3, v4) = (0, 0, 0, 0), then Sol(P (0, 0, 0, 0))
represents the set of saddle points for the Lagrangian function of problem (4.6).
In order to show the stability results for the KKT system (4.4), we define a
set-valued mappingM that assigns the vector (d, e, f) ∈ Rn×(Rm)K×(Rm)K

to the set of (w, x, s, η, λ, µ) ∈ (Rm)K × Rn × RK × (Rm)K × Rj × Rm that
satisfy the following equations

−ETk ηk + (Ckx)Tλk = dk, k = 1, . . . ,K

−ηk + µ = ek, k = 1, . . . ,K

wk − Ekxk = fk, k = 1, . . . ,K − 1

wK − EKxK + q = fK ,

w1 + · · ·+ wK = 0,

0 ≤ λk ⊥ Ckxxk + Cks sk − ck ≥ 0, k = 1, . . . ,K

(Cks )Tλk = 1, k = 1, . . . ,K.

(4.9)

One can easily verify that

(w, x, s, η, λ, µ) ∈M(AT∇g(Ax)− v2, v1, v3 + PW⊥(v4))

if and only if (w, x, s, η, λ, µ) ∈ Sol(P (v1, v2, v3, v4)),
(4.10)

i.e., a solution of the KKT system of (4.7) is also a saddle point of the La-
grangian function (4.8). By taking (v1, v2, v3, v4) = (0, 0, 0, 0), we see that
(w∗, x∗, s∗, η∗, λ∗, µ∗) ∈M(AT∇g(Ax∗), 0, 0) if and only if (w∗, x∗, s∗, η∗, λ∗, µ∗) ∈
Sol(P (0, 0, 0, 0)). It is easily seen that M is a polyhedral multifunction; i.e.,
the graph ofM is the union of a finitely many polyhedral convex sets. In [29],
Robinson established the following proposition thatM enjoys the local upper
Lipschitzian continuity property; see also [20].

Proposition 2 There exists a positive scalar θ that depends on A,E,Cx, Cs
only, such that for each (d̄, ē, f̄) there is a positive δ′ satisfying

M(d, e, f) ⊆M(d̄, ē, f̄)+θ||(d, e, f)−(d̄, ē, f̄)||B whenever ||(d, e, f)−(d̄, ē, f̄)|| ≤ δ′
(4.11)

where B is the unit Euclidean ball in (Rm)K ×Rn ×Rk × (Rm)K ×Rj ×Rm.

Based on this proposition, we claim that

Lemma 4 Suppose Assumptions 2.1 and 3.1 hold. Then there exist positive
scalars δ, τ depending on A,E,Cx, Cs only, such that for all v = (v1, v2, v3, v4) ∈
(Rm)K×Rn×(Rm)K×(Rm)K and ||v|| ≤ δ, any (w(v), x(v), s(v), η(v), λ(v), µ(v)) ∈
Sol(P (v1, v2, v3, v4)), we have

dist((w(v), x(v), s(v), η(v), λ(v), µ(v)), Sol(P (0, 0, 0, 0))) ≤ τ ||v||. (4.12)
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Proof. By the previous proposition,M is locally upper Lipschtizian with mod-
ulus θ at (AT∇g(Ax∗), 0, 0) for any x∗ ∈ X∗. First we show that as v → 0,
AT∇g(Ax(v))→ AT∇g(Ax∗). For that, take a sequence vi = (vi1, v

i
2, v

i
3, v

i
4) ∈

(Rm)K × Rn × (Rm)K × (Rm)K , i = 1, 2, · · · , such that ||vi|| → 0. Based on
Assumption 3.1(e), the sequence x(vi), i = 1, 2, · · · lies in a compact set and
so the other sequence s(vi) and w(vi) also belong to some compact sets, given
the fact s(vi) = h(x(vi)) and the linear relationship among x(vi), vi and w(vi).
By passing to a subsequence if necessary, let (w∞, x∞, s∞) be a cluster point
of {(w(vi), x(vi), s(vi)}. Due to the continuity of ∇g(·), (AT∇g(Ax(vi)) −
vi2, v

i
1, v

i
3 + PW⊥(vi4)) converges to (AT∇g(Ax∞), 0, 0) as i → ∞. For all i,

{(w(vi), x(vi), s(vi), AT∇g(Ax(vi))− vi2, vi1, vi3 + PW⊥(vi4))} lies in the set

{(w, x, s, d, e, f)|(w, x, s, η, λ, µ) ∈M(d, e, f) for some (η, λ, µ)}

which is a closed polyhedral set. By passing to the limit, we can conclude

(w∞, x∞, s∞, η∞, λ∞, µ∞) ∈M(AT∇g(Ax∞), 0, 0)

for some (η∞, λ∞, µ∞) ∈ (Rm)K × Rj × Rm. From Proposition 1, we know
Ax∞ = Ax∗ for any x∗ ∈ X∗ which further implies that AT∇g(Ax(v)) →
AT∇g(Ax∗). Then there exists a positive scalar δ such that for all v satisfying
||v|| ≤ δ, the following inequality

||AT∇g(Ax(v))−AT∇g(Ax∗)||+ ||v|| ≤ δ′

holds. Based on Proposition 2, there exists (w∗, x∗, s∗, η∗, λ∗, µ∗) ∈M(AT∇g(Ax∗), 0, 0),
satisfying

||(w(v), x(v), s(v), η(v), λ(v), µ(v))− (w∗, x∗, s∗, η∗, λ∗, µ∗)||
≤ θ(||AT∇g(Ax(v))−AT∇g(Ax∗)||+ ||v||).

(4.13)

Since (w(v), x(v), s(v), η(v), λ(v), µ(v)) ∈M(AT∇g(Ax)−v2, v1, v3+PW⊥(v4)),
by the definition of M we have

−ETk ηk(v) + (Ckx)Tλk(v) = ATk∇gk(Akxk(v))− v2, k = 1, . . . ,K

−ηk(v) + µ(v) = v1,k, k = 1, . . . ,K

wk(v)− Ekxk(v) = v3,k + v⊥4 , k = 1, . . . ,K − 1

wK(v)− EKxK(v) + q = v3,K + v⊥4 ,

w1(v) + · · ·+ wK(v) = 0,

0 ≤ λk(v) ⊥ Ckxxk(v) + Cks sk(v)− ck ≥ 0, k = 1, . . . ,K

(Cks )Tλk(v) = 1, k = 1, . . . ,K.
(4.14)



20 Hongsheng Liu, Shu Lu

Similarly, since (w∗, x∗, s∗, η∗, λ∗, µ∗) ∈M(AT∇g(Ax∗), 0, 0), it follows that

−ETk η∗k + (Ckx)Tλ∗k = ATk∇gk(Akx
∗
k), k = 1, . . . ,K

−η∗k + µ∗ = 0, k = 1, . . . ,K

w∗k − Ekx∗k = 0, k = 1, . . . ,K − 1

w∗K − EKx∗K + q = 0,

w∗1 + · · ·+ w∗K = 0,

0 ≤ λ∗k ⊥ Ckxx∗k + Cks s
∗
k − ck ≥ 0, k = 1, . . . ,K

(Cks )Tλ∗k = 1, k = 1, . . . ,K.

(4.15)

Due to the strong convexity of gk(·) and the Lipschitzian continuity of its
derivative ∇gk(·) in Assumption 3.1, there exist positive scalars σkg , L

k
g such

that for all xk1 , x
k
2 ∈ Xk

〈ATk∇gk(Akx
k
1)−ATk∇gk(Akx

k
2), xk1 − xk2〉 ≥ σkg ||Akxk1 −Akxk2 ||2, (4.16)

and

||ATk∇gk(Akx
k
1)−ATk∇gk(Akx

k
2)|| ≤ Lkg ||Akxk1 −Akxk2 ||. (4.17)

Define σg = mink σ
k
g and Lg = maxk L

k
g . Taking x1 = x(v), x2 = x∗, we obtain

σg

K∑
k=1

||Ak(x(v)k − x∗k)||2

≤
K∑
k=1

〈ATk∇gk(Akx(v)k)−ATk∇gk(Akx
∗
k), x(v)k − x∗k〉

=

K∑
k=1

〈−ETk (η(v)k − η∗k) + (Ckx)T (λ(v)k − λ∗k) + v2,k, x(v)k − x∗k〉

=

K∑
k=1

〈λ(v)k − λ∗k, C
k
xx(v)k − Ckxx∗k〉+

K∑
k=1

〈η(v)k − η∗k,−Ekx(v)k + Ekx
∗
k〉

+

K∑
k=1

〈v2,k, x(v)k − x∗k〉

where the first inequality comes from (4.16) and the equalities come from
(4.14) and (4.15). Moreover, we have

K∑
k=1

〈λ(v)k − λ∗k, Ckxx(v)k − Ckxx∗k〉

=

K∑
k=1

〈λ(v)k − λ∗k, Ckxx(v)k − Ckxx∗k〉+ 〈
K∑
k=1

λ(v)k − λ∗k, Cks s(v)k − Cks s∗k〉

=

K∑
k=1

〈λ(v)k − λ∗k, (Ckxx(v)k + Cks s(v)k − ck)− (Ckxx
∗
k + Cks s

∗
k − ck)〉

= −
K∑
k=1

[〈λ∗k, Ckxx(v)k + Cks s(v)k − ck〉+ 〈λ(v)k, C
k
xx
∗
k + Cks s

∗
k − ck〉] ≤ 0
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where the first equality follows from the fact that (Cks )Tλ(v)k = (Cks )Tλ∗k =
1, k = 1, . . . ,K and the last equality and inequality both result from the
complementary conditions in (4.14) and (4.15). Consequently, we obtain that

σg

K∑
k=1

||Ak(x(v)k − x∗k)||2

≤
K∑
k=1

〈η(v)k − η∗k,−Ekx(v)k + Ekx
∗
k〉+

K∑
k=1

〈v2,k, x(v)k − x∗k〉

=

K∑
k=1

〈µ(v) + v1,k − µ∗,−w(v)k + w∗k + v3,k + v⊥4 〉+

K∑
k=1

〈v2,k, x(v)k − x∗k〉

=

K∑
k=1

〈µ(v)− µ∗, v3,k + v⊥4 〉+

K∑
k=1

〈µ(v)− µ∗,−w(v)k + w∗k〉︸ ︷︷ ︸
=0

+

K∑
k=1

〈v1,k,−w(v)k + w∗k + v3,k + v⊥4 〉+

K∑
k=1

〈v2,k, x(v)k − x∗k〉

≤ ||µ(v)− µ∗||(||v3||+ ||v4||) + ||w(v)− w∗||||v1||+ ||v1||(||v3||+ ||v4||) + ||(x(v)− x∗)||||v2||

≤ ||(w(v), x(v), µ(v))− (w∗, x∗, µ∗)||||v||+ ||v||2.

Finally, based on Proposition 2 and the above inequality, we have

||(w(v), x(v), s(v), η(v), λ(v), µ(v))− (w∗, x∗, s∗, η∗, λ∗, µ∗)||2

≤ θ2(||AT∇g(Ax(v))−AT∇g(Ax∗)||+ ||v||)2

≤ 2θ2(

K∑
k=1

||ATk∇gk(Akx(v)k)−ATk∇gk(Akx
∗
k)||2 + ||v||2)

≤ 2θ2(L2
g

K∑
k=1

||Ak(x(v)k − x∗k)||2 + ||v||2)

≤ 2θ2 max{
L2
g

σg
, 1}(σg

K∑
k=1

||Ak(x(v)k − x∗k)||2 + ||v||2)

≤ 2θ2 max{
L2
g

σg
, 1}(||(w(v), x(v), µ(v))− (w∗, x∗, µ∗)||||v||+ 2||v||2)

≤ 2θ2 max{
L2
g

σg
, 1}(||(w(v), x(v), s(v), η(v), λ(v), µ(v))− (w∗, x∗, s∗, η∗, λ∗, µ∗)||||v||+ 2||v||2)

.

We see the above inequality is quadratic in ||(w(v), x(v), s(v), η(v), λ(v), µ(v))−
(w∗, x∗, s∗, η∗, λ∗, µ∗)||/||v||, so we have

||(w(v), x(v), s(v), η(v), λ(v), µ(v))− (w∗, x∗, s∗, η∗, λ∗, µ∗)||/||v|| ≤ τ

for some scalar τ depending on θ, Lg, σg only. We conclude that

dist((w(v), x(v), s(v), η(v), λ(v), µ(v)), Sol(P (0, 0, 0, 0))) ≤ τ ||v||.
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�

In view of the operator TL̄, combining Lemma 4 with the observation in
(4.5), we have the following corollary.

Corollary 1 Suppose Assumptions 2.1 and 3.1 hold. Then there exist positive
scalars δ, τ depending on A,E,Cx, Cs only, such that for all v = (v1, v2, v3, v4) ∈
(Rm)K × Rn × (Rm)K × (Rm)K and ||v|| ≤ δ, any (w(v), x(v), η(v), ζ(v)) ∈
T −1
L̄

(v) satisfies

dist((w(v), x(v), η(v), ζ(v)), T −1
L̄

(0, 0, 0, 0)) ≤ 2τ ||v||. (4.18)

Proof. From Lemma 4 and observation in (4.5) , we know that for any
(w(v), x(v), η(v), ζ(v)) ∈ T −1

L̄
(v), there exists a (w∗, x∗, η∗, ζ∗) ∈ T −1

L̄
(0, 0, 0, 0)

satisfying that

||(w(v), x(v), η(v))− (w∗, x∗, η∗)|| ≤ τ ||v||.

Since ζ(v) = PW⊥(η(v)) and ζ∗ = PW⊥(η∗), then

||(w(v), x(v), η(v), ζ(v))− (w∗, x∗, η∗, ζ∗)|| ≤ 2τ ||v||

holds which leads to (4.18). �

The compactness assumption of Xk is indeed necessary for Corollary 1.
However, if the generated sequence {x(vi)} lies in a compact set for a se-
quence {vi}∞i=1 converging to the origin, we claim the following result: under
Assumptions 2.1 and 3.1(a)-(d), there exist positive scalars δ, τ depending on
A,E,Cx, Cs only, when ||vi|| ≤ δ the following

dist((w(vi), x(vi), η(vi), ζ(vi)), T −1
L̄

(0, 0, 0, 0)) ≤ 2τ ||vi|| (4.19)

holds. This observation relaxes the compactness assumption forXk, k = 1, . . . ,K
(Assumption 3.1(e)) when we show the local linear convergence in Theorem
5.2 for the iADA in Section 5.

5 Convergence analysis of the inexact ADA

In this section, we study the convergence results of the inexact ADA for solving
the problem (1.1). For that, we first need to adopt the following stopping
criterion developed in [30,31] for approximately solving these subproblems

dist(0, ∂φνk,ρ,c(x
ν+1
k )) ≤ εν

cK(ρ||E||+ ||E||+ 1)
,

∞∑
ν=0

εν <∞. (A)

Theorem 5.1 Suppose Assumption 2.1 holds and let {(wν , xν , ην , ζν)} in W×
X × S be the infinite sequence generated by the ADA with the stopping crite-
rion (A). Then (wν , xν , ην , ζν) converges to some saddle point (w̄, x̄, η̄, ζ̄) of
(2.11) such that
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(a) (w̄, x̄) solves (2.6), hence x̄ solves (1.1),
(b) η̄1 = · · · = η̄K ∈ Rm, and this common multiplier vector solves (2.5).

Proof. In each iteration ν, we denote (wν+1
0 , xν+1

0 , ην+1
0 , ζν+1

0 ) = Pν(wν , xν , ην , ζν)
as the exact saddle point of L̄ν(w, x, η, ζ) and (wν+1, xν+1, ην+1, ζν+1) as the
inexact saddle point generated following the stopping criteria (A) respectively.
By the update rule, the following estimates hold:

||ην+1
0 − ην+1|| ≤ ρ||E||

2
||xν+1

0 − xν+1||,

||ζν+1
0 − ζν+1|| ≤ ρ||E||

2
||xν+1

0 − xν+1||,

and
||wν+1

0 − wν+1|| ≤ ||E||||xν+1
0 − xν+1||.

Thus, we can obtain

||(wν+1, xν+1, ην+1, ζν+1)−Pν(wν , xν , ην , ζν)|| ≤ (ρ||E||+||E||+1)||xν+1−xν+1
0 ||.

(5.1)
Observing that the function φνk,ρ,c defined in (2.15) is strongly convex with

modulus at least 1
c and xν+1

0,k minimize φνk,ρ,c(xk), we get

||xν+1 − xν+1
0 || ≤ c

K∑
k=1

dist(0, ∂φν+1
k,ρ,c(x

ν+1
k )). (5.2)

Combining criterion (A), (5.1) and (5.2), we have

||(wν+1, xν+1, ην+1, ζν+1)−Pν(wν , xν , ην , ζν)|| ≤ εν , with

∞∑
ν=1

εν <∞. (5.3)

From Assumption 2.1, there exists a saddle point of the Lagrangian (1.2).
Therefore based on the relationship between (1.2) and (2.11) in Lemma 1,
there exists at least one saddle point of the Lagrangian function L̄. On the
basis of [31], the sequence of elements (wν , xν , ην , ζν) generated in this manner
from any initial (w1, x1) ∈ W ×X and (η1, ζ1) ∈ S converges to some saddle
point (w̄, x̄, η̄, ζ̄) of the L̄. Then (w̄, x̄) solves (2.6) and (η̄, ζ̄) solves (2.12). By
Lemma 1, both (a) and (b) hold. �

For the local convergence analysis, we need the following stopping criteria

dist(0, ∂φνk,ρ,c(x
ν+1
k )) ≤ ε′ν

cK(ρ||E||+ ||E||+ 1)
min{1, ||xν+1

k −xνk||},
∞∑
ν=0

ε′ν <∞.

(B)
The iADA does not impose any condition on the choice of c. We set c = ρ for
simplicity of the following analysis. The coefficient ρ/2 for the primal proximal
term ||w−wν ||2 in (2.14) can be changed to 1/2ρ after the rescaling w′ = ρw
and such rescaling only applies to the magnitude of w and does not bring any
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other changes to the iADA. So this distinction from the standard proximal
point method for minimax problems in [30, Section 5] will not influence the
following convergence results.

Theorem 5.2 Suppose Assumptions 2.1 and 3.1 hold and let {(wν , xν , ην , ζν)}
in W ×X×S be the infinite sequence generated by the ADA with the stopping
criterion (B). Then, (wν , xν , ην , ζν) converges to some saddle point (w̄, x̄, η̄, ζ̄)
of (2.11) and there exists {θν} such that

dist((wν+1, xν+1, ην+1, ζν+1), T −1
L̄

((0, 0, 0, 0))) ≤ θνdist((wν , xν , ην , ζν), T −1
L̄

((0, 0, 0, 0)))

for sufficient large ν and limν→∞ θν = 2τ√
(4τ2+ρ2)

< 1 for some τ .

Proof. From Corollary 4.18, we have shown that there exist τ, δ > 0 such that
for all v = (v1, v2, v3, v4) ∈ (Rm)K × Rn × (Rm)K × (Rm)K and ||v|| ≤ δ, any
(w(v), x(v), η(v), ζ(v)) ∈ T −1

L̄
(v) satisfies

dist((w(v), x(v), η(v), ζ(v)), T −1
L̄

((0, 0, 0, 0))) ≤ 2τ ||v||. (5.4)

So this theorem follows from [25, Theorem 2.1]. �

Remark 1. In Theorem 5.1, we have shown that the sequence {uν =
(wν , xν , ην , ζν)} converges to some saddle point (w̄, x̄, η̄, ζ̄) of (2.11) and hence
{uν} lies in a compact set. Based on the observation in (4.19) and the proof of
[25, Theorem 2.1], the compactness of assumption of Xk (Assumption 3.1(e))
is no longer needed for Theorem 5.2.

Remark 2. When c 6= ρ, the local linear convergence still holds while the
convergence rate (limν→∞ θν) changes.

Next, we provide some well-known examples on which the iADA enjoys the
local linear convergence.

Convex regularization. Many problems from empirical risk minimiza-
tion and variable selection can be written as the following:

min
x
f(x; (A, b)) + r(x) (5.5)

where A ∈ Rn×d and b ∈ Rn, f(·) is the loss function which is often strongly
convex with Lipschitz continuous gradient and r(·) is a convex regularization
term which is possibly nonsmooth (e.g., the `1-norm and TV-norm). By adding
the constraint x− z = 0, the above problem can be reformulate as

min
x,z

f(x; (A, b)) + r(z)

s.t. x− z = 0.
(5.6)

Exchange problem. Consider a network with K agents exchanging n
commodities. Let xk ∈ Rn be the amount of commodities in each agent k and
fk : Rn → R be its corresponding cost function. The exchange problem is
given by

min
{xk}Kk=1

K∑
k=1

fk(xk) s.t.

K∑
k=1

xk = 0 (5.7)
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which minimizes the total cost subject to the equilibrium constraint on all
K agents. In this special case, Ek = I and q = 0. Optimization problems in
this form arise in many areas such as resource allocation [2,38], multi-agent
system [39] and image processing [37]. When the cost function fk in each agent
satisfies Assumption 3.1(a)-(c), based on Theorem 5.2, local linear convergence
result is valid for the iADA under certain approximation criteria.

6 Numerical Examples

In this section, we demonstrate the linear convergence of both the exact ADA
and the inexact ADA by some simple numerical examples. All the compu-
tational tasks for numerical experiments are implemented in Matlab 2017b
running on a MacBook Pro. Retina, 2.6 GHz Intel Core i7 with 16Gb 2133
MHz LPDDR3 memory.

6.1 The lasso problem

We perform some numerical experiments of Algorithm 1 for solving the fol-
lowing lasso problem:

min
x∈Rd

1

2
||Ax− b||22 + λ1||x||1 (6.1)

where A ∈ Rn×d, b ∈ Rn and λ1 is the regularization parameter. By introduc-
ing an auxiliary variable z ∈ Rd, the above problem is equivalent to

min
x,z∈Rd

1

2
||Ax− b||22 + λ1||z||1

s.t. x− z = 0.

(6.2)

Clearly, (6.2) is a two-block decomposition problem with f1(x1) = 1
2 ||Ax1−b||22

and f2(x2) = λ1||x2||1 by replacing x and z with x1 and x2. Notice that f1

and f2 are not necessarily strongly convex. In this case,

φν1,ρ,c(x1) =
1

2
||Ax1 − b||22 +

ρ

4
||x1 − wν1 +

2

ρ
yν1 ||22 +

1

2c
||x1 − xν1 ||22,

φν2,ρ,c(x2) = λ1||x2||1 +
ρ

4
||x2 + wν2 −

2

ρ
yν2 ||22 +

1

2c
||x2 − xν2 ||22.

(6.3)

For the first block, we can derive that

xν+1
1 = [ATA+ (

ρ

2
+

1

c
)Id]
−1(AT b+

ρ

2
wν1 +

xν1
c
− yν1 ). (6.4)

Though it may be time consuming to compute [ATA + (ρ2 + 1
c )Id]

−1 when d
is large, we only need to compute it at the initialization stage. The special
structure of ATA + (ρ2 + 1

c )Id can be exploited and substantially improve
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performance, see [3, Section 4.2]. For the second block, the exact solution to
the subproblem in each iteration is given by

xν+1
2 := S(

yν2 + xν2/c− ρwν2/2
ρ/2 + 1/c

,
λ1

ρ/2 + 1/c
) (6.5)

where the soft thresholding operator S is defined in [3].
We generate the matrix A and 0.05d nonzero entries of the sparse vector

x0 ∈ Rd from the standard Gaussian distribution N (0, 1). We then let the
response vector b ∈ Rn be given by b = Ax0 + ε where ε ∼ N (0, 10−3In) and
let the regularization parameter λ1 be 0.1||AT b||∞. We test the algorithm on
two different sets of (n, d): (1000, 4000), (2000, 20000).

In our test, we compare the result of ADA with two other methods for the
lasso problem: ADMM1[3] and P-PPA[1]. For the implementation of ADMM,
we take a widely-used step-length 1.618 and a fixed penalty parameter 1. For
P-PPA, we used the parameters suggested in [1] for solving the lasso. For
the ADA, we choose the following three pairs of (ρ, c): (1, 1), (5, 5), (10, 10).
In each iteration, we solve both subproblems exactly and the computational
time for all three algorithms is nearly the same. For all algorithms, we use the
same initial point (x0, y0) = (0,0) and run 300 iterations. For all comparison
algorithms, we report the objective value f(xν) = 1

2 ||Ax
ν
1 − b||2 + λ1||xν2 ||1,

and the residual norm ||xν1 − xν2 ||. The convergence results are presented in
Figures 1 and 2.

Fig. 1: Convergence results of ADA, ADMM and P-PPA for the lasso: (n, d) =
(1000, 4000).

From Figure 1, we notice that ADMM performs best in the case (n, d) =
(1000, 4000) while ADA achieves comparable performance with P-PPA when
(ρ, c) = (5, 5). This suggests that the convergence of ADA becomes slow if the
proximal parameter is either too big or too small. When (n, d) = (2000, 20000),
P-PPA shows the best convergence and ADA with (ρ, c) = (10, 10) converges a
little bit slower. Both ADMM and P-PPA methods use the Gauss-Seidel style
update which tends to converge faster in terms of iterations, since it is able

1 Available at http://web.stanford.edu/boyd/papers/admm/
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Fig. 2: Convergence results of ADA, ADMM and P-PPA for the lasso: (n, d) =
(2000, 20000).

to incorporate information from the other coordinates more quickly. However,
the Jacobi style update of ADA is more amenable for parallelization.

6.2 The exchange problem

For the exchange problem in (5.7), we consider the quadratic cost function
fk(xk) = 1

2 ||Akxk − bk||
2 where Ak ∈ Rp×n and bk ∈ Rp, k = 1, . . . ,K. Then,

the subproblems in each iteration can be written as

xν+1
k = argmin

xk

1

2
||Akxk − bk||2 + r||xk − dνk||2, ∀k = 1, . . . ,K, (6.6)

for some r ∈ R+ and dνk ∈ Rn. Notice that the matrices ATkAk + 2rIn, k =
1, . . . ,K are positive definite since r > 0. We only have to compute (ATkAk +
2rIn)−1 for one time before the iterations start. In the experiments, we ran-
domly generate the optimal solution x∗k, k = 1, . . . ,K − 1 by the standard

normal distribution and set x∗K = −
∑K−1
k=1 x∗k. The matrices Ak, k = 1, . . . ,K

are generated from standard Gaussian distribution and we let bk = Akx
∗
k. In

this setting, x∗ is an optimal solution to (5.7) but not necessarily the unique
one, and the optimal value is 0. We set K = 20, n = 1000, p = 800 , and
none of fk(xk), k = 1, . . . ,K is strongly convex. We compare the performance
of ADA with VSADMM and Prox-JADMM mentioned in Section 2.4. For
the implementation of VSADMM and Prox-JADMM, we use codes provided
in [9]. For the proximal parameters of ADA, we set (ρ, c) = (10, 10) in the
experiment.

For all of the algorithms, we start from the same initial point (x0, y0) =
(0,0) and run 500 iterations. Figure 3 shows the objective function value∑K
k=1 fk(xk) and the residual ||

∑K
k=1 xk|| of each iteration for the average

outcome of 10 random simulations. We can see that ADA shows a better con-
vergence of the objective value compared with VSADMM and is slower than
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Prox-JADMM in terms of iterations. However, Prox-JADMM requires extra
computational time to update the proximal parameters which is shown in Fig-
ure 4. Overall, ADA shows competitive convergence results in this experiment
compared with two variants of the classical ADMM method which facilitate
parallelization.

Fig. 3: Exchange Problem: K = 20, n = 1000, p = 800. Convergence results
versus iteration.

Fig. 4: Exchange Problem: K = 20, n = 1000, p = 800. Convergence results
versus time.

6.3 Distributed `1-regularized logistic regression

Here, we use iADA to solve the convex regularization problem (5.6) with a
modest number of features but a relative large number of training examples.
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Many statistical problems belong to this regime, with a large n and a small d
dataset. In particular, we consider the following `1-regularized logistic regres-
sion:

min
x∈Rd

F (x) =

n∑
j=1

`(x; (aj , bj)) + λ||x||1 (6.7)

where (aj , bj) ∈ Rd+1, j = 1, . . . , n and `(x; (aj , bj)) = log(1 + exp(−bjaTj x)).

For the purpose of parallel computation, we partition A ∈ Rn×d and b ∈ Rn
into N blocks

A =

A1

...
AN

 and b =

 b
1

...
bN

 ,
with Ai ∈ Rni×d and bi ∈ Rni . Define n̄i =

∑i
j=1 nj and we notice n̄0 = 0 and

n̄N =
∑N
j=1 nj = n. By introducing variables xi ∈ Rd, i = 1, . . . , N , (6.7) can

be transformed into the following:

min
xi,z∈Rd

N∑
i=1

`i(xi; (Ai, b
i)) + λ||z||1

s.t. xi − z = 0, i = 1, . . . , N.

(6.8)

where `i(xi; (Ai, b
i)) =

∑n̄i
j=n̄i−1+1 log(1 + exp(−bjaTj xi)). In our experiment,

we use two publicly available datasets: (1) the w8a dataset (49749 examples
and 300 features) and (2) the ijcnn1 dataset (49990 examples and 22 feature).
The main step of iADA algorithm is given by

xν+1
i ≈ argmin

xi

`i(xi; (Ai, b
i)) +

ρ

4
||xi − wνx,i +

2

ρ
yνx,i||22 +

1

2c
||xi − xνi ||22︸ ︷︷ ︸

φνi,ρ,c(xi)

,

zν+1 = argmin
z

λ1||z||1 +
ρ

4

N∑
i=1

||z + wνz,i −
2

ρ
yνz,i||22 +

1

2c
||z − zν ||22,

(6.9)
where wνx = (wνx,1, . . . , w

ν
x,N ) ∈ RNd, yνx = (yνx,1, . . . , y

ν
x,N ) ∈ RNd and wνz , y

ν
z ∈

RNd. The xi update involves an `2 regularized logistic regression which cannot
be solved exactly. Here, we use the L-BFGS algorithm to solve them until the
inexact criteria (A) and (B) are satisfied. Such criteria can be checked by
identifying the norm of the gradient ||∇φνi,ρ,c(xi)||. For the z update, exact
solutions can be derived by the soft threshold operator.

For comparison, we consider the inexact ADMM (iADMM) method pro-
posed in [12,16]. Similar subproblems as (6.9) will arise for xi and z updates.
An analogous inexact criterion as (A) are proposed in [12,16] to guarantee the
convergence of the inexact ADMM and can also be verified by examining the
norm of the gradient in the xi updates.
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In the experiment, we set εν = 1
νγ with γ = 1.0, 1.5, 2.0 to control the

inexactness of the xi updates in both algorithms. We also consider different
partitions with N = 20, 50. For the implementation of iADMM, we use a step-
length 1.618 and a fixed penalty parameter 10 after tuning. For iADA, we
choose the proximal parameters (ρ, c) = (10, 10). Both algorithms terminated
when ∑N

i=1 ||xνi − zν ||2
N ||zν ||2

≤ 10−6 and
|F (zν)− F (z∗)|
max{1, |F (z∗)|}

≤ 10−10

are satisfied. F (z∗) is the optimal solution of (6.8) derived by running iADMM
for 2000 iterations.

The computational results are presented in Table 1. The datasets are listed
in the first column. The numbers of partitions N and the inexactness param-
eter γ are given in columns two and three separately. The ∞ symbol in the
third column represents the exact xi updates achieved by setting εν = 1e− 10
in all iterations. The average number of iterations (upon round off) for iADA
and iADMM are given in the next two columns. The total amount of L-BFGS
updates for both methods are presented in columns 6-7 and the average CPU
time (in seconds) for these methods are given in the last two columns.

Table 1: Comparison of iADA and iADMM for solving (6.8).

Dataset N γ
Iteration L-BFGS CPU time

iADA iADMM iADA iADMM iADA iADMM

w8a

20

1.0 274 380 70361 83703 24.00 30.00
1.5 169 197 41089 58199 14.18 19.15
2.0 164 195 44616 65647 15.02 20.87
∞ 150 133 49945 54928 15.70 17.78

50

1.0 172 211 88460 127538 16.00 22.34
1.5 140 120 78594 72673 13.10 10.66
2.0 99 88 67909 60368 11.75 10.10
∞ 106 70 77627 62893 13.19 10.50

ijcnn1

20

1.0 202 276 49378 79120 17.02 26.80
1.5 114 135 29741 42142 10.16 14.10
2.0 112 134 31308 46742 10.50 15.11
∞ 190 186 73111 73193 23.02 22.15

50

1.0 106 228 68001 115891 11.74 22.05
1.5 107 112 58093 64195 10.97 11.58
2.0 99 88 57777 50099 10.69 9.27
∞ 95 83 68652 69291 11.32 11.21

From Table 1, we see that when γ = 1.5 or 2.0, iADA shows better perfor-
mance in the case N = 20 while iADMM converges faster when N = 50. For
both algorithms, the CPU time is much longer in the case of γ = 1.0 when
the convergence is not guaranteed in theory. Finally, compared with the exact
update, it takes more iterations for the inexact version of both algorithms to
converge but with shorter CPU time. This phenomenon results from the large
number of L-BFGS updates in each iteration of exact ADA and ADMM.
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7 Conclusions

In this paper, we study the convergence results of the ADA and its inex-
act version, the iADA, for solving multi-block separable convex minimization
problems subject to linear constraints. First, we prove the global convergence
and the o(1/ν) rate for the exact ADA when there exists a saddle point for the
corresponding Lagrangian function. Next, global convergence and local linear
convergence for the iADA are established under some mild assumptions and
certain approximation criteria.

Before ending this paper, we would like to discuss two possible directions
related to the ADA. Firstly, we notice that both the primal PPA [13] and
the Augmented Lagrangian Method [17] can be accelerated by utilizing the
idea from Nesterov’s seminal work [28]. It is natural to ask whether we can
accelerate the ADA based on similar techniques since all of them belong to
the general PPA framework. Secondly, the applicability of the approximation
criteria in (A) and (B) is limited in practice due to the summable require-
ment and more implementable approximation criteria are needed for practical
problems.
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