Skip to main content
Log in

Newton’s method with feasible inexact projections for solving constrained generalized equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper aims to address a new version of Newton’s method for solving constrained generalized equations. This method can be seen as a combination of the classical Newton’s method applied to generalized equations with a procedure to obtain a feasible inexact projection. Using the contraction mapping principle, we establish a local analysis of the proposed method under appropriate assumptions, namely metric regularity or strong metric regularity and Lipschitz continuity. Metric regularity is assumed to guarantee that the method generates a sequence that converges to a solution. Under strong metric regularity, we show the uniqueness of the solution in a suitable neighborhood, and that all sequences starting in this neighborhood converge to this solution. We also require the assumption of Lipschitz continuity to establish a linear or superlinear convergence rate for the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, M., AlShahrani, M., Ansari, Q.H., Iyiola, O.S., Shehu, Y.: Iterative methods for solving proximal split minimization problems. Numer. Algorithms 78(1), 193–215 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aragón Artacho, F.J., Belyakov, A., Dontchev, A.L., López, M.: Local convergence of quasi-Newton methods under metric regularity. Comput. Optim. Appl. 58(1), 225–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aragón Artacho, F.J., Dontchev, A.L., Gaydu, M., Geoffroy, M.H., Veliov, V.M.: Metric regularity of Newton’s iteration. SIAM J. Control Optim. 49(2), 339–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics. Springer, New York (2003)

    MATH  Google Scholar 

  5. Behling, R., Fischer, A., Herrich, M., Iusem, A., Ye, Y.: A Levenberg–Marquardt method with approximate projections. Comput. Optim. Appl. 59(1–2), 5–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellavia, S., Morini, B.: Subspace trust-region methods for large bound-constrained nonlinear equations. SIAM J. Numer. Anal. 44(4), 1535–1555 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific Optimization and Computation Series, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  8. Bonnans, J.F.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29(2), 161–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59(2), 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set-Valued Var. Anal. 20(2), 229–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daniel, J.W.: Newton’s method for nonlinear inequalities. Numer. Math. 21, 381–387 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dontchev, A.L.: Local analysis of a Newton-type method based on partial linearization. In: The Mathematics of Numerical Analysis (Park City, UT, 1995), Lectures in Applied Mathematics, vol. 32, pp. 295–306. American Mathematical Society, Providence (1996)

  13. Dontchev, A.L.: Uniform convergence of the Newton method for Aubin continuous maps. Serdica Math. J. 22(3), 283–296 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Dontchev, A.L., Rockafellar, R.T.: Convergence of inexact Newton methods for generalized equations. Math. Program. 139(1–2, Ser. B), 115–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings: A View from Variational Analysis. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2014)

    MATH  Google Scholar 

  16. Ferreira, O.P.: A robust semi-local convergence analysis of Newton’s method for cone inclusion problems in Banach spaces under affine invariant majorant condition. J. Comput. Appl. Math. 279, 318–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferreira, O.P., Silva, G.N.: Kantorovich’s theorem on Newton’s method for solving strongly regular generalized equation. SIAM J. Optim. 27(2), 910–926 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, O.P., Silva, G.N.: Local convergence analysis of Newton’s method for solving strongly regular generalized equations. J. Math. Anal. Appl. 458(1), 481–496 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Log. Q. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  21. Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12(2), 436–460 (electronic) (2001/2002)

  22. Gonçalves, M.L.N., Oliveira, F.R.: An inexact newton-like conditional gradient method for constrained nonlinear systems. Appl. Numer. Math. 132, 22–34 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gonçalves, M.L.N., Melo, J.G.: A Newton conditional gradient method for constrained nonlinear systems. J. Comput. Appl. Math. 311, 473–483 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic programming. In: Trends in Industrial and Applied Mathematics (Amritsar, 2001), Applied Optimization, vol. 72, pp. 149–179. Kluwer Academic Publications, Dordrecht (2002)

  25. He, H., Ling, C., Xu, H.K.: A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166(1), 213–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Izmailov, A.F., Solodov, M.V.: Inexact Josephy–Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization. Comput. Optim. Appl. 46(2), 347–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Josephy, N.H.: Newton’s method for generalized equations and the pies energy model. Ph.D. thesis, Department of Industrial Engineering, University of Wisconsin–Madison (1979)

  28. Kanzow, C.: An active set-type Newton method for constrained nonlinear systems. In: Complementarity: Applications, Algorithms and Extensions (Madison, WI, 1999), Applied Optimization, vol. 50, pp. 179–200. Kluwer Academic Publications, Dordrecht (2001)

  29. Kimiaei, M.: A new class of nonmonotone adaptive trust-region methods for nonlinear equations with box constraints. Calcolo 54(3), 769–812 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. La Cruz, W.: A projected derivative-free algorithm for nonlinear equations with convex constraints. Optim. Methods Softw. 29(1), 24–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lan, G., Zhou, Y.: Conditional gradient sliding for convex optimization. SIAM J. Optim. 26(2), 1379–1409 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marini, L., Morini, B., Porcelli, M.: Quasi-Newton methods for constrained nonlinear systems: complexity analysis and applications. Comput. Optim. Appl. 71(1), 147–170 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Monteiro, R.D.C., Pang, J.S.: A potential reduction Newton method for constrained equations. SIAM J. Optim. 9(3), 729–754 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150(2), 275–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  36. Robinson, S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robinson, S.M.: Generalized equations and their solutions, Part I: Basic theory. Math. Program. Stud. 10, 128–141 (1979)

    Article  MATH  Google Scholar 

  38. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5(1), 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Robinson, S.M.: Generalized equations and their solutions, Part II: applications to nonlinear programming. Math. Program. Stud. 19, 200–221 (1982)

    Article  MATH  Google Scholar 

  40. Robinson, S.M.: Generalized equations. In: Mathematical Programming: The State of the Art (Bonn, 1982), pp. 346–367. Springer, Berlin (1983)

  41. Uko, L.U.: Generalized equations and the generalized Newton method. Math. Program. 73(3, Ser. A), 251–268 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. International Series in Operations Research and Management Science, vol. 4. Kluwer Academic Publishers, Boston (1996)

    MATH  Google Scholar 

  43. Zhang, Y., Zhu, D.T.: Inexact Newton method via Lanczos decomposed technique for solving box-constrained nonlinear systems. Appl. Math. Mech. (English Ed.) 31(12), 1593–1602 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their constructive comments, which have helped to substantially improve the presentation of the paper. In particular, we thank one of the referees for drawing our attention to the use of general procedures to find a feasible inexact projection, rather than a specific one as we were using in our first version. The authors were supported in part by CNPq Grants 305158/2014-7 and 302473/2017-3, FAPEG/GO and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana R. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, F.R., Ferreira, O.P. & Silva, G.N. Newton’s method with feasible inexact projections for solving constrained generalized equations. Comput Optim Appl 72, 159–177 (2019). https://doi.org/10.1007/s10589-018-0040-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0040-0

Keywords

Mathematics Subject Classification

Navigation