Skip to main content
Log in

Solving optimal control problems with terminal complementarity constraints via Scholtes’ relaxation scheme

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We investigate the numerical treatment of optimal control problems of linear ordinary differential equations with terminal complementarity constraints. Therefore, we generalize the well-known relaxation technique of Scholtes to the problem at hand. In principle, any other relaxation approach from finite-dimensional complementarity programming can be adapted in similar fashion. It is shown that the suggested method possesses strong convergence properties under mild assumptions. Finally, some numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Kidlington (2003)

    MATH  Google Scholar 

  2. Agarwal, R.P., O’Regan, D.: An Introduction to Ordinary Differential Equations. Springer, New York (2008)

    Book  MATH  Google Scholar 

  3. Barnett, S., Cameron, R.G.: Introduction to Mathematical Control Theory. Oxford University Press, New York (1990)

    MATH  Google Scholar 

  4. Beard, R.W., Lawton, J., Hadaegh, F.Y.: A coordination architecture for spacecraft formation control. IEEE Trans. Control Syst. Technol. 9(6), 777–790 (2001). https://doi.org/10.1109/87.960341

    Article  Google Scholar 

  5. Benita, F., Mehlitz, P.: Optimal control problems with terminal complementarity constraints. SIAM J. Optim. 28(4), 3079–3104 (2018). https://doi.org/10.1137/16M107637X

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2002)

    MATH  Google Scholar 

  7. Bonuccelli, M.A., Martelli, F., Pelagatti, S.: Optimal packet scheduling in tree-structured LEO satellite clusters. Mobile Netw. Appl. 9(4), 289–295 (2004). https://doi.org/10.1145/1023663.1023674

    Article  Google Scholar 

  8. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2016)

    Book  MATH  Google Scholar 

  9. Dontchev, A.L.: Discrete approximations in optimal control. In: Mordukhovich, B.S., Sussmann, H.J. (eds.) Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, pp. 59–80. Springer, New York (1996)

    Chapter  Google Scholar 

  10. Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  11. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005). https://doi.org/10.1007/s10589-005-4559-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinze, M., Rösch, A.: Discretization of Optimal Control Problems, pp. 391–430. Springer, Basel (2012). https://doi.org/10.1007/978-3-0348-0133-1_21

    Book  MATH  Google Scholar 

  13. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. Ser. A 137(1), 257–288 (2013). https://doi.org/10.1007/s10107-011-0488-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  15. Kalashnikov, V.V., Benita, F., Mehlitz, P.: The natural gas cash-out problem: a bilevel optimal control approach. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/286083

  16. Löber, J.: Optimal Trajectory Tracking of Nonlinear Dynamical Systems. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  17. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  18. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control. 51(3), 401–420 (2006). https://doi.org/10.1109/TAC.2005.864190

    Article  MathSciNet  MATH  Google Scholar 

  19. Outrata, J.V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  20. Robinson, S.M.: Stability theory for systems of inequalities, part II: differentiable nonlinear systems. SIAM J. Numer. Anal. 13(4), 497–513 (1976). https://doi.org/10.1137/0713043

    Article  MathSciNet  MATH  Google Scholar 

  21. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001). https://doi.org/10.1137/S1052623499361233

    Article  MathSciNet  MATH  Google Scholar 

  22. Schwartz, A., Polak, E.: Consistent approximations for optimal control problems based on Runge–Kutta integration. SIAM J. Control Optim. 34(4), 1235–1269 (1996). https://doi.org/10.1137/S0363012994267352

    Article  MathSciNet  MATH  Google Scholar 

  23. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. Ser. A 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49–62 (1979). https://doi.org/10.1007/BF01442543

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for some valuable comments which helped us to improve the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mehlitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benita, F., Mehlitz, P. Solving optimal control problems with terminal complementarity constraints via Scholtes’ relaxation scheme. Comput Optim Appl 72, 413–430 (2019). https://doi.org/10.1007/s10589-018-0050-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-018-0050-y

Keywords

Mathematics Subject Classification

Navigation