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Abstract The optimal control of a system of nonlinear reaction-diffusion
equations is considered that covers several important equations of mathemat-
ical physics. In particular equations are covered that develop traveling wave
fronts, spiral waves, scroll rings, or propagating spot solutions. Well-posedness
of the system and differentiability of the control-to-state mapping are proved.
Associated optimal control problems with pointwise constraints on the con-
trol and the state are discussed. The existence of optimal controls is proved
under weaker assumptions than usually expected. Moreover, necessary first-
order optimality conditions are derived. Several challenging numerical exam-
ples are presented that include in particular an application of pointwise state
constraints where the latter prevent a moving localized spot from hitting the
domain boundary.
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1 Introduction

We consider a class of optimal control problems for a general system of nonlin-
ear reaction-diffusion equations that covers a variety of particular cases with
important applications in mathematical physics. Control problems of this type
received increasing attention in the recent past, we refer for instance to [16,
24,29,33] with respect to control methods of theoretical physics or [3,4,13,12,
11] from a more mathematical perspective.

The general system is posed in Q := Ω×(0, T ), where Ω ⊂ Rd is a bounded
spatial domain and T > 0 is a finite time. It has the form

E
∂y

∂t
−D∆y +R(x, t, y) +A(x, t) y = B(x, t)u (1.1)

subject to appropriate initial and boundary conditions. Here, y : Q 7→ Rn is the
state vector function and u : Q 7→ Rnc is the control vector function. Moreover,
constant diagonal (n, n)-matrices E, D, and matrix-valued functions A, B of
suitable dimensions are given, where E has positive diagonal entries and the
ones of D are non-negative. The nonlinearity of the system is defined by the
function R : Q× Rn → Rn that we suppose to have a diagonal structure, i.e.
the j-th component of the vector function R depends only on (x, t, yj). The
assumptions on A, B, and R are detailed in the next section.

In particular, the system (1.1) includes the following special cases that we
recall with increasing order of complexity.

(i) The Schlögl model

This model is defined upon the cubic nonlinearity R : R→ R,

R(y) = ρ(y − y1)(y − y2)(y − y3) (1.2)

with given real numers y1 ≤ y2 ≤ y3 and ρ > 0. The equation has the form

∂y

∂t
−∆y +R(y) = u (1.3)

Here, we have n = nc = 1, the matrices E = D = B reduce to the real
number 1 and A is equal to the real number 0. The system (1.3) is known
to exhibit traveling waves as typical solutions. We refer to [28] and to the
standard textbooks [14,22,31] on reaction-diffusion equations. The optimal
control of (1.3) was investigated in [4] with focus on the numerical analysis
and in [16] from a physical point of view; we also refer to various examples
in [29].

(ii) The FitzHugh-Nagumo system

A standard type of this well-known system is

σy
∂y

∂t
−Dy∆y +R(y) + α z = u

σz
∂z

∂t
+ β z − γ y + δ = 0,

(1.4)
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where σy, σz, and Dy are positive and α, β, δ, γ are real numbers. This
system fits in (1.1) with n = 2, nc = 1; A has the rows (0 α) and (−γ β),
B = (1 0)>, and R(x, t, y, z) = (R(y), δ)>.
For spatial dimension d = 1, the system has impulses as typical solutions,
while it develops turning spirals or scroll rings for d = 2 and d = 3,
respectively. We refer to [14,22,31] for general results on the equation, to
[24,33] on applications of control methods in theoretical physics and to [11,
12] with respect to the optimal control from a mathematical perspective.

(iii) Coupling of (1.3) with a linear system of ODEs

More general than the FitzHugh-Nagumo system and more diverse in the
behavior of the solutions is the system

σy
∂y

∂t
−Dy∆y +R(y) +

m∑
j=1

αj zj = u, (1.5)

σj
∂zj
∂t

+ βj zj − γj y + δj = 0, j = 1, . . . ,m, (1.6)

for the state vector (y, z1, . . . , zm). Here, we have n = m+ 1, nc = 1, A ∈
Rn×n has the first row (0, α1, . . . , αm), the first column −(0, γ1, . . . , γm)>,
and the (m,m)-submatrix diag(β1, ..., βm) in the lower right corner. The
other matrices are E = diag(σy, σ1, ..., σm),D = diag(Dy, 0, ..., 0), and B =
(1, 0, . . . , 0)>. Moreover, we have R(·, y, z1, . . . , zm) = (R(y), δ1, . . . , δm)>;
we refer to the PhD thesis [23] for the treatment of this system.

(iv) Coupling of (1.3) with a linear system of PDEs

In this more general system, the equation (1.5) is coupled with the linear
equations

σj
∂zj
∂t
−Dj∆zj + βj zj − γj y + δj = 0, j = 1, . . . ,m. (1.7)

Here, we have almost the same quantities as in (iii), butD has to be defined
by D = diag(Dy, D1, . . . , Dm) with positive numbers Dj .
This system was discussed in the PhD thesis [23], too.

Other similar reaction-diffusion-equations covered by the general system
(1.1) and associated control strategies have been of great interest during recent
years. We mention exemplarily [1,20,21,25,27,32].

We will present several numerical examples for the different types of equa-
tions listed above. All of them are adopted from the thesis [23]. Our mathe-
matical analysis is developed for the more general system (1.1) that includes
all these particular cases for the case of unit matrices E and D.

Our paper contains the following novelties: We extend the analysis on exis-
tence, uniqueness, and differentiability of the control-to-state mapping to the
general state equation (1.1). Here, we apply a different method of proof than
in [23] and avoid the application of analytic semigroups that turns out to be
too technical for the general case. We prove the existence of optimal controls
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under weaker assumptions than usually expected: In the unconstrained case
a = −∞ or b = ∞ it seems that the existence of optimal controls cannot be
shown. The L2-Tikhonov term ensures only the L2(Q)nc-boundedness of the
set of controls, where the infimum of the problem can be attained. However,
with exception of d = 1, the control-to-state mapping G is not continuous from
L2(Q)nc to the state space. Therefore, this boundedness in L2(Q)nc seems to
be useless. Nevertheless, we are able to prove the existence of optimal controls.

Moreover, we consider problems with pointwise state constraints and prove
associated necessary optimality conditions.

The consideration of the state constraints is motivated by an interesting
application in theoretical physics, namely the problem of preventing localized
moving spots from reaching the boundary of the spatial domain. This issue is
discussed in Example 3 of Section 4.

Remark 1.1 We will develop our analysis for (n, n)-unit matrices E = D = Id,
since this is less technical. If E and D have positive diagonal entries, then
the results remain true with E and D substituted for Id in the associated
positions. The proofs need only minor modifications. If some of the diagonal
entries of D are vanishing as in (1.4) or (1.6), then some equations of (1.1) are
ordinary differential equations w.r. to t. In these equations, x plays the role of a
parameter and boundary conditions are not given. If they are linear as in (1.6),
then the associated vector function z can be represented by the variation-of-
constants formula in terms of y and herafter eliminated. Then a system for y
of the form (1.1) is obtained, where D has positive diagonal elements again.
If z and y appear nonlinearly in the ordinary differential equations, then the
situation is more complicated. This case is not covered by our theory. The
matrices E and D will be needed in our numerical examples.

2 Control constrained problem

2.1 State equation.

We shall consider the following system of parabolic partial differential equa-
tions

∂y

∂t
−∆y +R(x, t, y) +A(x, t)y = B(x, t)u in Q = Ω × (0, T ),

∂νy = 0 on Σ = Γ × (0, T ),

y(x, 0) = y0(x) in Ω,

(2.1)

where Ω is an open bounded domain in Rd with d ∈ {1, 2, 3}, Γ is the boundary
of Ω that we assume to be Lipschitz, ν is the unit outward normal vector
to Γ , 0 < T < ∞ is fixed, A ∈ L∞(Q,Rn×n), B ∈ L∞(Q,Rn×nc), y0 ∈
L∞(Ω)n, and the function R : Q × Rn −→ Rn is defined by R(x, t, y) =
(R1(x, t, y1), . . . , Rn(x, t, yn))> with Carathéodory functions Rj : Q×R −→ R
for 1 ≤ j ≤ n. Given a control u : Q −→ Rnc , we look for the corresponding
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solution yu : Q −→ Rn of (2.1). The analysis of this equation will be done
below under the following assumptions on R. We assume that every function
Rj is of class C1 with respect to the last variable and satisfies for 1 ≤ j ≤ n

Rj(·, 0) ∈ Lp̂(0, T ;Lq̂(Ω)) with p̂, q̂ ∈ [2,∞] and
1

p̂
+

d

2q̂
< 1, (2.2)

∃CR ∈ R :
∂Rj
∂yj

(x, t, yj) ≥ CR for a.a. (x, t) ∈ Q, ∀yj ∈ R, (2.3)

∀M > 0 ∃CM :
∣∣∣∂Rj
∂yj

(x, t, yj)
∣∣∣ ≤ CM for a.a. (x, t) ∈ Q, ∀|yj | ≤M. (2.4)

Along this paper, we take ‖A‖L∞(Q,Rn×n) := ess sup(x,t)∈Q‖A(x, t)‖, where
‖A(x, t)‖ denotes the matrix norm induced by the Euclidean norm in Rn.
Analogously, we define ‖B‖L∞(Q,Rn×nc ).

We will use the function space

W (0, T ) = {y ∈ L2(0, T,H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)∗)}.

and set Y = W (0, T )n ∩L∞(Q)n. This is a Banach space when endowed with
the norm

‖y‖Y =
{ n∑
j=1

‖yj‖2L2(0,T ;H1(Ω)) + ‖∂ty‖2L2(0,T ;H1(Ω)∗)

}1/2

+ max
1≤j≤n

‖yj‖L∞(Q).

Theorem 2.1 Under the above assumptions, for every u ∈ Lp̄(0, T ;Lq̄(Ω))nc

with p̄, q̄ ∈ [2,+∞] and 1
p̄ + d

2q̄ < 1, (2.1) has a unique solution y ∈ Y .
Furthermore, there exists a constant CY independent of u such that

‖y‖Y ≤ CY
(
‖y0‖L∞(Ω)n +‖u‖Lp̄(0,T ;Lq̄(Ω))nc +‖R(·, 0)‖Lp̂(0,T ;Lq̂(Ω))n

)
. (2.5)

For y0 ∈ C(Ω̄), we have that y ∈ C(Q̄).

Proof For every M > 0, we set RM (x, t, y) = R(x, t,Proj[−M,+M ]n(y)). Now,
given w ∈ L2(Q)n, we consider the system

∂y

∂t
−∆y +A(x, t)y = B(x, t)u−RM (x, t, w(x, t)) in Q,

∂νy = 0 on Σ,

y(x, 0) = y0(x) in Ω.

(2.6)

For every η > ‖A‖L∞(Q,Rn×n), the operator −∆+A+ηI is coercive in H1(Ω)n,
hence there exists a unique solution yw ∈ L2(0, T ;H1(Ω))n of (2.6); see, for
instance, [30, page 112]. Further, from the partial differential equation we
get that ∂tyw ∈ L2(0, T ;H1(Ω)∗)n as well, hence yw ∈ W (0, T )n. For fixed
M > 0, the right hand side of the partial differential equation (2.6) is bounded
in L2(Q), hence the Schauder fixed point theorem applied to the mapping
w ∈ L2(Q)n → yw ∈ L2(Q)n along with the compactness of the embedding
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W (0, T ) ⊂ L2(Q), implies the existence of a fixed point yM ∈ L2(0, T ;H1(Ω))n

that satisfies the equation
∂yM
∂t
−∆yM +RM (x, t, yM (x, t)) +A(x, t)yM = B(x, t)u in Q,

∂νyM = 0 on Σ,

yM (x, 0) = y0(x) in Ω.

(2.7)

Next, we derive some estimates for yw. Let us set η = |CR|+‖A‖L∞(Q,Rn×n)+1
and take 0 < T ′ ≤ T . Multiplying (2.7) by e−2ηtyM and integrating in Q′ =
Ω × (0, T ′), we get

∫ T ′

0

e−2ηt
(∂yM
∂t

, yM
)

[H1(Ω)n]∗,H1(Ω)n
dt+

∫ T ′

0

e−2ηt

∫
Ω

|∇yM |2 dx dt

+

∫
Q′

e−2ηt[RM (x, t, yM )−R(x, t, 0)] · yM dxdt+

∫
Q′

e−2ηty>MA(x, t)yM dxdt

=

∫
Q′

e−2ηt[B(x, t)u−R(x, t, 0)] · yM dx dt. (2.8)

For the first term of the left hand side of the above identity we have

∫ T ′

0

e−2ηt
(∂yM
∂t

, yM
)

[H1(Ω)n]∗,H1(Ω)n
dt =

1

2

∫ T ′

0

e−2ηt d

dt
‖yM (t)‖2L2(Ω)n dt

=
1

2

{
e−2ηT ′‖yM (T ′)‖2L2(Ω)n − ‖y0‖2L2(Ω)n

}
+ η

∫ T ′

0

e−2ηt‖yM (t)‖2L2(Ω)n dt.

(2.9)

Moreover, applying the mean value theorem and using (2.3) we obtain

[RM (x, t, yM )−R(x, t, 0)] · yM ≥ CR|yM |2.

We also have that y>MA(x, t)yM ≥ −‖A‖L∞(Q,Rn×n)|yM |2. Using these two
inequalities, inserting (2.9) in (2.8), and taking into account the definition of
η, we infer by the Schwarz inequality that

1

2
e−2ηT ′‖yM (T ′)‖2L2(Ω)n +

∫ T ′

0

e−2ηt‖yM (t)‖2L2(Ω)n dt

+

∫ T ′

0

e−2ηt

∫
Ω

|∇yM |2 dx dt ≤
1

2
‖y0‖2L2(Ω)n

+
(∫

Q′
e−2ηt|Bu−R(x, t, 0)|2 dx dt

)1/2(∫
Q′

e−2ηt|yM |2 dx dt
)1/2

.
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Applying Young’s inequality and multiplying the resulting inequality by 2 we
get

e−2ηT ′‖yM (T ′)‖2L2(Ω)n +

∫ T ′

0

e−2ηt‖yM (t)‖2L2(Ω)n dt

+ 2

∫ T ′

0

e−2ηt

∫
Ω

|∇yM |2 dx dt

≤ ‖y0‖2L2(Ω)n + ‖B‖L∞(Q,Rn×nc )‖u‖L2(Q)nc + ‖R(·, ·, 0)‖L2(Q)n .

Therefore, dropping the second term, using e−2ηt ≥ e−2ηT ′ with 0 < T ′ ≤ T ,
and multiplying the inequality by e2ηT ′ , we conclude

‖yM (T ′)‖2L2(Ω)n + 2

∫ T ′

0

∫
Ω

|∇yM |2 dx dt

≤ e2ηT
(
‖y0‖2L2(Ω)n + ‖B‖L∞(Q,Rn×nc )‖u‖L2(Q)nc + ‖R(·, ·, 0)‖L2(Q)n)

)
.

(2.10)

Since T ′ was arbitrary, we deduce that {yM}M is uniformly bounded in the
space L∞(0, T ;L2(Ω))n ∩ L2(0, T ;H1(Ω))n.

It remains to prove the boundedness of yM in L∞(Q)n. To this end, consider
the functions fj : Q× R −→ R and gj , 1 ≤ j ≤ n, defined by

fj(x, t, y) = RM,j(x, t, y)−Rj(x, t, 0) + (1 + |CR|)y,

gj = (Bu)j −Rj(·, ·, 0) + (1 + |CR|)yM,j − (AyM )j .

From (2.7), it is obvious that yM,j satisfies the equation
∂yM,j

∂t
−∆yM,j + fj(x, t, yM,j(x, t)) = gj in Q,

∂νyM,j = 0 on Σ,

yM,j(x, 0) = y0,j(x) in Ω.

(2.11)

Due to the regularity of gj and the fact that fj is monotone non decreasing,
we can use the methods of [15, §III.7] to infer the existence of a constant Cj
independent of M such that

‖yM,j‖L∞(Q) ≤ Cj
(
‖y0;j‖L∞(Ω) + ‖(Bu)j‖Lp̄(0,T ;Lq̄(Ω))

+ ‖Rj(·, ·, 0)‖Lp̂(0,T ;Lq̂(Ω)) + ‖(1 + |CR|)yM,j − (AyM )j‖L∞(0,T ;L2(Q))

)
≤ C ′j

(
‖y0‖L∞(Ω)n + ‖u‖Lp̄(0,T ;Lq̄(Ω))nc

+ ‖R(·, ·, 0)‖Lp̂(0,T ;Lq̂(Ω))n + ‖yM‖L∞(0,T ;L2(Ω))n
)
. (2.12)

Combining (2.10) and (2.12), we obtain the boundedness in L∞(Q)n of every
yM by a constant C independent of M . Hence, taking M > C, we see that
RM (x, t, yM (x, t)) = R(x, t, y(x, t)). This implies that yM is solution of (2.1).
Moreover, (2.5) follows from (2.10) and (2.12).
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Now, we prove the uniqueness of a solution. Let us assume that y1, y2 ∈ Y
are two solutions of (2.1). We set y = y2 − y1. Subtracting the equations
satisfied by these functions, we obtain

∂y

∂t
−∆y +R(x, t, y2)−R(x, t, y1) +A(x, t)y = 0 in Q,

∂νy = 0 on Σ,

y(x, 0) = 0 in Ω.

Setting again η = 1 + |CR| + ‖A‖L∞(Q,Rn×n), multiplying this equation by
e−2ηty, integrating in Q, using that

[R(x, t, y2)−R(x, t, y1)] · y ≥ CR|y|2,

and arguing as above, we get

1

2
e−2ηT ‖y(T )‖2L2(Ω)n +

∫ T

0

e−2ηt‖y(t)‖2L2(Ω)n dt

+

∫ T

0

e−2ηt

∫
Ω

|∇y|2 dx dt ≤ 0.

This shows that y = 0.
Finally, if y0 ∈ C(Ω̄)n, then we can apply the results of [15, §III.7] to

deduce that y ∈ C(Q̄)n. ut

Remark 2.2 Of course the previous theorem remains valid if we consider a
more general elliptic operator with L∞(Q) coefficients. Moreover, the space
Y = W (0, T )n ∩ L∞(Q)n introduced previously can be substituted by Y =
W (0, T )n ∩ C(Q̄)n, provided that y0 ∈ C(Ω̄)n. Then, Theorem 2.1 and the
next results are true under this new definition of Y . We also mention that the
diagonal structure of R could be avoided under some additional assumptions.
For instance, Theorem 2.1 is valid assuming that R is of polynomial order with
respect to y and certain kind of monotonicity is satisfied: there exist constants
Ci > 0, i = 1, 2, 3, such that for almost all (x, t) ∈ Q and all y, y′ ∈ Rd

|R(x, t, y)| ≤ C1(1 + |y|r) with r > 0 arbitrary if d ≤ 2 and r < 2 if d = 3,

∃C2 > 0 : (R(x, t, y)−R(x, t, y′)) · (y − y′) ≥ −C2|y − y′|2,
∃C3 > 0 : R(x, t, y) · y ≥ −C3|y|2.

The difficulty of dealing with more general functions is due to the lack of
L∞-estimates, which are crucial in the above analysis.

Remark 2.3 As usual, assuming more regularity of y0 and Ω, we get extra
regularity of y: If y0 ∈ H1(Ω)n, then y belongs to H1(Q)n, and an associated
estimate is valid. If, in addition to this regularity of y0, Γ is of class C1,1 or
Ω is convex, then y ∈ H2,1(Q)n.
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Due to Theorem 2.1, we can define a mapping G : Lp̄(0, T ;Lq̄(Ω))nc −→ Y
by G(u) = yu, where yu is the solution of (2.1) associated with u. The next
theorem states the differentiability of this mapping.

Theorem 2.2 The mapping G is of class C1 and the derivatives zv = G′(u)v
are the solutions of the system

∂z

∂t
−∆z +

∂R

∂y
(x, t, yu)z +A(x, t)z = B(x, t)v in Q,

∂νz = 0 on Σ,

z(x, 0) = 0 in Ω.

(2.13)

Moreover, we have that zv ∈ [H1(Q) ∩ C(Q̄)]n.

Proof We define the space

V =
{
y ∈ Y :

∂y

∂y
−∆y ∈ Lp̄(0, T ;Lq̄(Ω))n + Lp̂(0, T ;Lq̂(Ω))n

}
endowed with the norm

‖y‖V = ‖y‖Y +
∥∥∥∂y
∂t
−∆y

∥∥∥
Lp̄(0,T ;Lq̄(Ω))n+Lp̂(0,T ;Lq̂(Ω))n

;

then V is a Banach space. Moreover, we introduce a mapping

F : V ×Lp̄(0, T ;Lq̄(Ω))n −→ [Lp̄(0, T ;Lq̄(Ω))n+Lp̂(0, T ;Lq̂(Ω))n]×L∞(Ω)n

given by

F(y, u) =
(∂y
∂t
−∆y +R(x, t, y) +A(x, t)y −B(x, t)u, y(·, 0)− y0

)
.

By the definition of V and assumption (2.2)–(2.4), it is clear that F is well
defined and is of class C1. Moreover, the identity F(G(u), u) = 0 holds for
all u ∈ Lp̄(0, T ;Lq̄(Ω))n. We want to apply the implicit function theorem to
deduce the differentiability of G and to obtain zv = G′(u)v as the solution of
(2.13). To this end, we only need to prove that the linear operator

∂F
∂y

(G(u), u) : V −→ [Lp̄(0, T ;Lq̄(Ω))n + Lp̂(0, T ;Lq̂(Ω))n]× L∞(Ω)n

is an isomorphism. From the expression

∂F
∂y

(G(u), u)z =
(∂z
∂t
−∆z +

∂R

∂y
(x, t, yu)z +A(x, t)z , z(·, 0)

)
,

we have that ∂F
∂y (G(u), u) is an isomorphism if and only if for every element

(f, g, z0) ∈ [Lp̄(0, T ;Lq̄(Ω))n + Lp̂(0, T ;Lq̂(Ω))n]× L∞(Ω)n, the system
∂z

∂t
−∆z +

∂R

∂y
(x, t, yu)z +A(x, t)z = f + g in Q,

∂νz = 0 on Σ,

z(x, 0) = z0 in Ω
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has a unique solution in V and the solution z depends continuously on the data
(f, g, z0). This existence, uniqueness and continuity follows from Theorem 2.1.
Therefore, G is of class C1. Finally, (2.13) follows from the identity

∂F
∂y

(G(u), u)(G′(u)v) +
∂F
∂u

(G(u), u)v = (0, 0) ∀v ∈ Lp̄(0, T ;Lq̄(Ω))n

and the fact that ∂F
∂u (G(u), u)v = −Bv.

The additional regularity of zv is a consequence of the initial condition
zv(0) = 0, because zv(0) is continuous and belongs to H1(Ω). ut

2.2 Optimal control problem.

In this section, associated with the state equation (2.1), we consider the fol-
lowing control problem

(P) min
u∈Ua,b

J(u),

where

J(u) =
1

2

∫
Q

|CQ(x, t)yu(x, t)− yQ(x, t)|2 dx dt

+
1

2

∫
Ω

|CΩ(x)yu(x, T )− yΩ(x)|2 dx dt+
λ

2

∫
Q

|u(x, t)|2 dx dt

with λ ≥ 0, matrix functions CQ ∈ L∞(Q,RnQ×n), CΩ ∈ L∞(Ω,RnΩ×n),
functions yQ ∈ L2(Q)nQ , yΩ ∈ L2(Ω)nΩ , and the admissible set

Ua,b = {u ∈ L2(Q)nc : a ≤ u(x, t) ≤ b a.e. in Q},

where a = (a1, . . . , anc)
>, b = (b1, . . . , bnc)

>, and −∞ ≤ aj < bj ≤ +∞,
1 ≤ j ≤ nc. Of course, the relations a ≤ u(x, t) ≤ b are to be understood
componentwise. Obviously, this assumption implies that Ua,b 6= ∅.

As an immediate consequence of Theorem 2.2, we deduce the following
corollary just by an application of the chain rule.

Corollary 2.1 The mapping J : Lp̄(0, T ;Lq̄(Ω))n −→ R is of class C1 and
we have

J ′(u)v =

∫
Q

(B>ϕu + λu) · v dx dt ∀u, v ∈ Lp̄(0, T ;Lq̄(Ω))n, (2.14)

where ϕu ∈ L2(0, T ;H1(Ω))n is the unique solution of the adjoint state equa-
tion
−∂ϕ
∂t
−∆ϕ+

∂R

∂y
(x, t, yu)ϕ+A(x, t)>ϕ = C>Q [CQyu − yQ] in Q,

∂νϕ = 0 on Σ,

ϕ(·, T ) = C>Ω [CΩyu(·, T )− yΩ ] in Ω.
(2.15)
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Using this result, we can derive the optimality condition for a local solution
to (P).

Theorem 2.3 Assume that a, b ∈ Rnc . Then there exists at least one solu-
tion of the control problem (P). Any local solution ū satisfies the variational
inequality ∫

Q

(B>ϕ̄+ λū) · (u− ū) dx dt ≥ 0 ∀u ∈ Ua,b, (2.16)

where ϕ̄ = ϕū is the adjoint state associated with ū.

Since Ua,b was assumed to be bounded in L∞(Q)nc , the proof of the exis-
tence of an optimal control is standard by taking a minimizing sequence that
converges weakly∗ in L∞(Q) to some ū ∈ Ua,b. Moreover, we mention that
uk

∗
⇀ u weakly∗ in L∞(Q) implies that yuk → yu strongly in L2(Q). This

follows from Theorem 2.1 and the Aubin-Lions Theorem.
Finally, we take p̄ = q̄ = +∞ and apply Corollary 2.1 to deduce the

optimality conditions.
Let us now analyze the case where Ua,b is not bounded, which in particular

includes the case without control constraints. Here, we slightly extend ideas
of [8]. First we observe that Theorem 2.1 cannot be applied to deduce the
existence of a solution of the state equation for arbitrary elements in Ua,b be-
cause the L∞-estimates for the states fail. We need to assume more regularity
for the elements of Ua,b, the assumed L2(Q)nC regularity in the definition of
Ua,b is not enough. Therefore, we have to work with a control space of type
Lp̄(0, T ;Lq̄(Ω))nc with p̄, q̄ ∈ [2,+∞] and 1

p̄ + d
2q̄ < 1.

The reader can easily identify the difficulty of proving a solution of the
corresponding control problem because of the lack of coercivity of the cost
functional in these spaces. Notice that the Tikhonov regularization term yields
only coercivity in the space L2(Q)nc but not in the control space introduced
above. Let us redefine

Ua,b = {u ∈ L∞(0, T ;L2(Ω))nc : a ≤ u(x, t) ≤ b for a.a. (x, t) ∈ Q}.

Theorem 2.4 Let λ be strictly positive. Then, the optimal control problem
(P) has at least one solution ū. Any local solution in this space satisfies the
variational inequality (2.16).

Proof For every 1 ≤ j ≤ nc, we select an element ξj ∈ R such that aj <
ξj < bj . We set ξ = (ξj)

nc
j=1 ∈ Rnc and M0 = |ξ|

√
|Ω|, where |Ω| denotes the

Lebesgue measure of Ω. For every M ≥M0, we define

UM = {u ∈ Ua,b : ‖u‖L∞(0,T ;L2(Ω))nc ≤M}.

Take u0(x, t) = ξ ∀(x, t) ∈ Q. Then we have that u0 ∈ UM ∀M ≥ M0 and,
consequently, UM 6= ∅. According to Theorem 2.1 we know that (2.1) has a
unique solution yu ∈ Y for every u ∈ L∞(0, T ;L2(Ω))nc . We formulate the
following optimal control problem

(PM ) min
u∈UM

J(u).
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For every M ≥ M0, this problem has at least one solution uM . Indeed, any
minimizing sequence {uk} is bounded in L∞(0, T ;L2(Ω))nc , hence the se-
quence of corresponding states {yk} is bounded in Y . Moreover, from (2.1) we
also obtain the boundedness of {yk} in W (0, T )n. Then we can select subse-
quences, denoted in the same way, such that uk

∗
⇀ uM in L∞(0, T ;L2(Ω))nc

and yk → yM strongly in L2(Q)n due to the compactness of the embedding
W (0, T ) ⊂ L2(Q). Now, it is easy to pass to the limit in the state equation
and to deduce that yM is the state associated with uM . Finally, we have that

uM ∈ UM and J(uM ) ≤ lim inf
k→∞

J(uk) = inf (PM ).

Therefore, uM is a solution of (PM ). Then from (2.14) we infer that∫
Q

(B>ϕM + λuM ) · (u− uM ) dx dt ≥ 0 ∀u ∈ UM ,

where ϕM is the adjoint state associated with uM . This relation implies that

uM = ProjUM
(
− 1

λ
B>ϕM

)
, (2.17)

where the projection is taken in the L2(Q)nc norm. Let us prove that there
exists M̄ ≥ M0 such that {uM}M≥M̄ is bounded in L∞(0, T ;L2(Ω))nc . To
this end, we first observe that J(uM ) ≤ J(u0) < ∞ ∀M ≥ M0. This implies
that

‖uM‖2L2(Q)nc ≤
2

λ
J(u0) ∀M ≥M0. (2.18)

Since yM ∈ L∞(Q)n, we can multiply the state equations (2.1) by e−2ηtyM
with η = 1 + |CR| + ‖A‖L∞(Q,Rn×n) and argue as in the proof of Theorem
2.1, without any truncation of R (replace RM by R in that proof), to obtain
(2.10). Then, using (2.18), we deduce from (2.10) the existence of a constant
C1 such that

‖yM‖L∞(0,T ;L2(Ω))n ≤ C1 ∀M ≥M0.

Since yM ∈W (0, T )n ⊂ C(0, T ;L2(Ω))n, we infer from the above inequality

‖yM‖L2(Q)n ≤ C1

√
T and ‖yM (T )‖L2(Ω)n ≤ C1 ∀M ≥M0. (2.19)

Now, from the adjoint state equation satisfied by ϕM , it follows the existence
of a constant C2 such that

‖ϕM‖L∞(0,T ;L2(Ω))n

≤ C2

(
‖CQ‖L∞(Q,RnQ×n)

[
‖CQ‖L∞(Q,RnQ×n)‖yM‖L2(Q)n + ‖yQ‖L2(Q)nQ

]
+ ‖CΩ‖L∞(Ω,RnΩ×n)

[
‖CΩ‖L∞(Ω,RnΩ×n)‖yM (T )‖L2(Ω)n + ‖yΩ‖L2(Ω)nΩ

])
.

Combining this inequality and (2.19), we conclude that

∃C∞ > 0 :
1

λ
‖B‖L∞(Q;Rn×nc )‖ϕM‖L∞(0,T ;L2(Ω))n ≤ C∞ ∀M ≥M0. (2.20)
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Let us introduce the index sets

Ia = {j ∈ [1, . . . , n] : aj ∈ R} and Ib = {j ∈ [1, . . . , n] : bj ∈ R},

and define

M̄ = max{C∞,M0}+
(

max
j∈Ia
|aj |+ max

j∈Ib
|bj |
)√
|Ω|.

Notice that Ia or Ib or both can be empty. In any of these cases, the corre-
sponding maximum is taken as 0. If we define ũ ∈ Ua,b by

ũj(x, t) = max
{
aj ,min

{
bj ,
(
− 1

λ
B>ϕM (x, t)

)
j

}}
,

we have

|ũj(x, t)| ≤
∣∣∣(− 1

λ
B>ϕM (x, t)

)
j

∣∣∣+ min{0, |aj |}+ min{0, |bj |},

therefore

‖ũ‖L∞(0,T ;L2(Ω))nc ≤ C∞ +
(

max
j∈Ia
|aj |+ max

j∈Ib
|bj |
)√
|Ω| ≤ M̄.

This, along with (2.17), implies

uM = ProjUM

(
− 1

λ
B>ϕM

)
= ProjUa,b

(
− 1

λ
B>ϕM

)
= ũ. (2.21)

In this way, we have proved that ‖uM‖L∞(0,T ;L2(Ω))nc ≤ M̄ ∀M ≥ M̄ .
Now, we show that, for every M ≥ M̄ , uM is a solution of (P). Let us

take u in the space L∞(0, T ;L2(Ω))nc and set M ′ = ‖u‖L∞(0,T ;L2(Ω))nc . If
M ′ ≤ M , then u ∈ UM and J(uM ) ≤ J(u). If M ′ > M , consider uM ′ , a
solution of (PM ′). We have that ‖uM ′‖L∞(0,T ;L2(Ω))nc ≤ M̄ ≤ M , and hence
uM ′ ∈ UM , so J(uM ) ≤ J(uM ′) ≤ J(u), and the proof is complete.

Finally, an application of the Corollary 2.1 with p̄ = +∞ and q̄ = 2 leads
to (2.16). ut

Remark 2.4 Let us notice that the optimal controls, whose existence is proved
in Theorems 2.3 and 2.4, belong to C([0, T ];L2(Ω))nc ∩ L2(0, T ;H1(Ω))nc

assuming that bij ∈ C([0, T ];W 1,∞(Ω)) for every entry of B. Indeed, this
regularity is well known for the adjoint state. Since the associated optimal
control is taken as a projection on Ua,b, this regularity is transferred to the
control. The projection formula in the first case follows from (2.6) and it is
given in (2.21) in the second case.
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3 State constrained control problem

3.1 Optimal control problem and existence of a solution

In this section we analyze the following state constrained control problem

(PS)

min J(u)
subject to u ∈ Ua,b and
g1(x, t) ≤ g(x, t, yu(x, t)) ≤ g2(x, t) ∀(x, t) ∈ K.

We impose the following assumptions on the data of the control problem.

(A1) The control u is related to the state yu through the system (2.1). We
assume that (2.2)–(2.4) hold and y0 ∈ C(Ω̄). We set Y = L2(0, T ;H1(Ω))n ∩
C(Q̄)n. Notice that according to Theorem 2.1, the states yu ∈ Y due to the
continuity of y0; see Remark 2.2.

(A2) The cost functional is given as in §2.2 with λ ≥ 0 and the same regularity
for matrix functions CQ, CΩ , and functions yQ, and yΩ .

(A3) We assume that a, b ∈ Rnc with aj < bj for 1 ≤ j ≤ nc.

(A4) K is a compact subset of Q̄ and the function g : K × Rn −→ R is
continuous, together with its partial derivatives ∂g/∂yj ∈ C(K × Rn), j =
1, . . . , n. We also assume that g1, g2 : K −→ R are continuous functions with
g1(x, t) < g2(x, t) ∀(x, t) ∈ K, and that either K ∩ (Ω̄×{0}) = ∅ or g1(x, 0) <
g(x, t, y0(x)) < g2(x, 0) holds for every (x, 0) ∈ K ∩ (Ω̄ × {0}). We introduce
the sets

Yg = {y ∈ C(K) : g1(x, t) ≤ y(x, t) ≤ g2(x, t) ∀(x, t) ∈ K}

and

Uad = {u ∈ Ua,b : g1(x, t) ≤ g(x, t, yu(x, t)) ≤ g2(x, t) ∀(x, t) ∈ K}.

Under the above assumptions, we have that Ua,b is a closed, convex and
bounded subset of L∞(Q)nc and the mapping G : L∞(Q)nc −→ Y , defined as
in §2.1 by G(u) = yu, is of class C1. The derivative zv = G′(u)v ∈ Y is the
solution of (2.13). From Corollary 2.1 we know that J : L∞(Q)nc −→ R is of
class C1 and its derivative J ′(u)v is given by (2.14).

By using the above assumptions we can prove the following theorem on
existence of an optimal control.

Theorem 3.1 Under the assumptions (A1)–(A4), if Uad 6= ∅, then (PS) has
at least a solution.

Proof The proof follows classical arguments. Indeed, since Uad 6= ∅ there exists
a minimizing sequence {uk}∞k=1 ⊂ Uad of (PS). This sequence is bounded in
L∞(Q)nc and the associated states {yk}∞k=1 are bounded in Y . Additionally,
this boundedness along with the partial differential equation (2.1) implies that
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{∂tyk}∞k=1 is bounded in L2(0, T ;H1(Ω)∗)n. Hence, {yk}∞k=1 is bounded in
W (0, T )n, which is compactly embedded in L2(Q)n.

Therefore, we can take subsequences, denoted in the same way, such that
uk

∗
⇀ ū in L∞(Q)nc with ū ∈ Ua,b, and yk → ȳ strongly in L2(Q)n and

yk(x, t) → ȳ(x, t) for almost all (x, t) ∈ Q. Now, it is easy to pass to the
limit in the state equation (2.1) as k → ∞ and to prove that ȳ ∈ Y is the
state associated to ū. Moreover, using the continuity of g we can pass to the
limit in the inequality g1(x, t) ≤ g(x, t, yk(x, t)) ≤ g2(x, t) to obtain g1(x, t) ≤
g(x, t, ȳ(x, t)) ≤ g2(x, t) for almost all (x, t) ∈ K. But the continuity of the
functions ȳ, g1, g2 and g implies that the above inequality holds for all (x, t) ∈
K. Hence, we have that ū ∈ Uad. Finally it is obvious that

J(ū) ≤ lim inf
k→∞

J(uk) = inf (PS),

which proves that ū is solution of (PS). ut

3.2 Optimality system

Hereafter, ū will denote a local minimum of (PS) with associated state ȳ. In
order to get the optimality conditions satisfied by ū in a qualified form we
make the following linearized Slater condition.

(A5) There exists u0 ∈ Ua,b such that

g1(x, t) < g(x, t, ȳ(x, t))+
∂g

∂y
(x, t, ȳ(x, t))z0(x, t) < g2(x, t) ∀(x, t) ∈ K, (3.1)

where z0 ∈ Y is the unique solution of the linearized equation


∂z

∂t
−∆z +

∂R

∂y
(x, t, ȳ)z +A(x, t)z = B(x, t)(u0 − ū) in Q,

∂νz = 0 on Σ,

z(x, 0) = 0 in Ω.

(3.2)

This section is devoted to the proof of the following theorem.

Theorem 3.2 Let ū be a local solution of (PS) and suppose that the assump-
tions (A1)–(A4) hold. Then there exist a real number µ̄0 ≥ 0, a regular Borel
measure µ̄ ∈M(K), and a function ϕ̄ ∈ Lr(0, T ;W 1,s(Ω)), for all s, r ∈ [1, 2)
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with 2
r + d

s > d+ 1, such that

µ̄0 + ‖µ̄‖M(K) > 0, (3.3)
−∂ϕ̄
∂t
−∆ϕ̄+

∂R

∂y
(x, t, ȳ)ϕ̄+A(x, t)>ϕ̄

= µ̄0C
>
Q [CQȳ − yQ] +∇yg(x, t, ȳ)µ̄Q in Q,

∂νϕ̄ = ∇yg(x, t, ȳ)µ̄Σ on Σ,

ϕ̄(·, T ) = µ̄0C
>
Ω [CΩ ȳ(·, T )− yΩ ] +∇yg(x, t, ȳ)µ̄Ω in Ω̄,

(3.4)

∫
K

(z(x, t)− g(x, t, ȳ(x, t))dµ̄(x, t) ≤ 0 ∀z ∈ Yg, (3.5)∫
Q

(B>ϕ̄+ µ̄0λū) · (u− ū) dx dt ≥ 0 ∀u ∈ Ua,b. (3.6)

If in addition the Slater assumption (A5) holds, then the above optimality
system is satisfied with µ̄0 = 1.

In the optimality system, the measures µ̄Q, µ̄Σ and µ̄Ω are the restrictions
of µ̄ to K ∩Q, K ∩Σ and K ∩ (Ω̄ × {T}), respectively.

Before proving this theorem, we recall what a solution of (3.4) is. We
will do it in an abstract framework. We consider a vector of real and regular
Borel measures µ ∈ M(Q̄)

n such that |µj |(Ω̄ × {0}) = 0 for 1 ≤ j ≤ n. We
decompose µ = µQ + µΣ + µΩ by taking the restrictions of µ to Q, Σ and
Ω̄ × {T}, respectively. Now, we consider the system

−∂ϕ
∂t
−∆ϕ+D(x, t)ϕ = µQ in Q,

∂νϕ = µΣ on Σ,

ϕ(·, T ) = µΩ in Ω̄,

(3.7)

where D ∈ L∞(Q,Rn×n).

Definition 3.1 We say that a function ϕ ∈ L1(Q)n is a weak solution of (3.7)
if ∫

Q

ϕ ·
[∂φ
∂t
−∆φ+D(x, t)>φ

]
dx dt =

∫
Q̄

φ · dµ ∀φ ∈ Φ (3.8)

with

Φ =
{
φ ∈ [H1(Q) ∩ C(Q̄)]n :

∂φ

∂t
−∆φ ∈ L∞(Q)n, ∂νφ = 0, φ(·, 0) = 0

}
.

Notice that the last integral in Q̄ of (3.8) can be expanded as∫
Q̄

φ · dµ =

∫
Q

φ · dµQ +

∫
Σ

φ · dµΣ +

∫
Ω

φ(T ) · dµΩ .
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Theorem 3.3 System (3.7) has a unique solution ϕ in L1(0, T ;W 1,1(Ω))n.
Moreover, ϕ belongs to Lr(0, T ;W 1,s(Ω))n for all s, r ∈ [1, 2) with 2

r + d
s >

d+ 1, and there exists Cr,s such that

‖ϕ‖Lr(0,T ;W 1,s(Ω))n ≤ Cr,s‖µ‖M(Q̄)n .

The reader is referred to [6] or [10] for the proof of this theorem in the case of a
scalar equation. The arguments are identical for the above system. In the proof
of theorem some regularity results for the adjoint system to (3.7) are required,
they are deduced from Theorem 2.1 just taking R ≡ 0. From the regularity of
φ established in the above theorem and using a density argument, it is easy
to prove that∫

Q

ϕ ·
[∂φ
∂t
−∆φ+D(x, t)>φ

]
dx dt+

∫
Σ

ϕ · ∂νφdx dt =

∫
Q̄

φ · dµ

for every φ ∈ [H1(Q)∩C(Q̄)]n such that ∂νφ ∈ L∞(Σ)n and φ(·, 0) = 0 in Ω.
Now, we can apply Theorem 3.3 to the system (3.4) with

D(x, t) =
∂R

∂y
(x, t, ȳ(x, t)) +A(x, t)>

taking into account that ȳ ∈ C(Q̄)n and using (2.4). For the right hand side
of the equations we consider the measures

µQ(A) =

∫
A

µ̄0C
>
Q [CQȳ − yQ] dx dt+

∫
K∩A

∇yg(x, t, ȳ(x, t)) dµ̄Q,

µΣ(B) =

∫
K∩B

∇yg(x, t, ȳ(x, t)) dµ̄Σ ,

µΩ(C) =

∫
C

µ̄0C
>
Ω [CΩ ȳ(·, T )− yΩ ] dx dt+

∫
K∩C

∇yg(x, T, ȳ(x, T )) dµ̄Ω ,

for arbitrary Borel sets A ⊂ Q, B ⊂ Σ and C ⊂ Ω̄ × {T}.
The optimality conditions (3.3)–(3.6) can be deduced from the following

abstract theorem, whose proof can be found in [5, Theorem 5.2].

Theorem 3.4 Let U and Z be two Banach spaces and K ⊂ U and C ⊂ Z
two convex subsets, C having a nonempty interior. Let ū ∈ K be a solution of
the optimization problem:

(Q)

{
Min J(u)
u ∈ K and F (u) ∈ C,

where J : U −→ (−∞,+∞] and F : U −→ Z are two Gâteaux differentiable
mappings at ū. Then there exist a real number µ̄0 ≥ 0 and an element µ ∈ Z∗
such that

µ̄0 + ‖µ̄‖Z′ > 0, (3.9)
〈µ̄, z − F (ū)〉Z∗,Z ≤ 0 ∀z ∈ C, (3.10)
〈µ̄0J

′(ū) + [DF (ū)]?µ̄, u− ū〉U∗,U ≥ 0 ∀u ∈ K. (3.11)
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Moreover µ̄0 can be taken equal to 1 if the following linearized Slater condition
is satisfied:

∃u0 ∈ K such that F (ū) +DF (ū) · (u0 − ū) ∈ intC. (3.12)

Now, Theorem 3.3 follows by taking U = L∞(Q)nc , K = Ua,b, Z = C(K),
C = Yg, J is the cost functional of (PS) and F (u) = g(·, ·, G(u)). Then, we
have that (3.9) and (3.10) coincide with (3.3) and (3.5), respectively. Let us
prove that (3.11) is the same as (3.6). To this end, we first introduce ϕ̄ as the
solution of the system (3.4). We observe that the chain rule along with the
expression of zv = G′(ū)v provided in (2.13) leads to

〈[DF (ū)]∗µ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc = 〈µ̄, [DF (ū)]v〉M(K),C(K)

= 〈µ̄, ∂g
∂y

(·, ·, ȳ)[G′(ū)v]〉M(K),C(K) =

∫
K

∂g

∂y
(x, t, ȳ(x, t))zv(x, t) dµ̄.

From here we get, once again with the chain rule,

〈µ̄0J
′(ū) + [DF (ū)]?µ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc

= µ̄0

(∫
Q

[C>Q (CQȳ − yQ)] · zv dx dt+

∫
Ω

[C>Ω (CΩ ȳ(T )− yΩ)] · zv(T ) dx

+ λ

∫
Q

ū · v dx dt
)

+

∫
K

∂g

∂y
(x, t, ȳ(x, t))zv(x, t) dµ̄

= µ̄0λ

∫
Q

ū · v dx dt+

∫
Q̄

zv · dµ,

where µ = µQ+µΣ+µΩ is the measure above introduced. Now, we notice that
Theorem 2.2 implies zv ∈ Φ and ∂νzv = 0. Then from Definition 3.1 applied
to the system (3.4) with φ = zv, and recalling that D = ∂g

∂y + A> we obtain
with (2.13)∫

Q̄

zv · dµ =

∫
Q

ϕ̄ ·
[∂zv
∂t
−∆zv +

∂R

∂y
(x, t, ȳ)zv +Azv

]
dx dt

=

∫
Q

ϕ̄ ·Bv dx dt =

∫
Q

(B>ϕ̄) · v dx dt.

The last two identities lead to

〈µ̄0J
′(ū) + [DF (ū)]?µ̄, v〉[L∞(Q)nc ]∗,L∞(Q)nc =

∫
Q

(B>ϕ̄+ µ̄0λū) · v dx dt.

Hence, taking v = u− ū with u ∈ Ua,b, we conclude that (3.11) and (3.6) are
identical. It is obvious that (3.1) and (3.12) are equal, hence the possibility of
taking µ̄0 = 1 under the Slater assumption follows from Theorem 3.4.

After having proved Theorem 3.2, let us draw some conclusion, namely
some information on µ̄ that follows from (3.5).
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Theorem 3.5 Assume that (A4) holds and µ̄ ∈ M(K) satisfies (3.5). Then
the following embeddings hold{

supp(µ̄+) ⊂ {(x, t) ∈ K : g(x, t, ȳ(x, t)) = g2(x, t)},
supp(µ̄−) ⊂ {(x, t) ∈ K : g(x, t, ȳ(x, t)) = g1(x, t)},

(3.13)

where µ̄ = µ̄+ − µ̄− is the Jordan decomposition of µ̄,

The proof follows the lines of [9, Proposition 2.5] with obvious modifica-
tions. As a consequence of this theorem and the assumption (A4) we have that
|µ̄|(K ∩ (Ω̄ × {0})) = 0. Hence, the identity µ̄ = µ̄Q + µ̄Σ + µ̄Ω holds.

3.3 A regularity result for local solutions

As in the previous section, ū will denote a local minimum of (PS) with associate
state and adjoint state ȳ and ϕ̄, respectively. In this section we impose the
following additional assumption on the problem (PS).

(A6) The following structure is assumed for B = (bij)

bij(x, t) =

{
0 if i 6= j,

bj(x, t) if i = j,
with bj ∈ L∞(0, T ;W 1,∞(Ω)), 1 ≤ j ≤ nc.

Moreover, there exists a constant b̄ > 0 such that |bj(x, t)| ≥ b̄ for almost all
(x, t) ∈ Q and 1 ≤ j ≤ nc. We also assume that λ > 0 and (3.4)–(3.6) holds
with µ̄0 = 1.

Under this assumption, the well known regularity ū ∈ Lr(0, T ;W 1,s(Ω))nc

for all r, s ∈ [1, 2) with 2
r + d

s > d+ 1 follows from the projection formula

ū(x, t) = Proj[a,b]

(
− 1

λ
B(x, t)>ϕ̄(x, t)

)
equivalent to

ūj(x, t) = Proj[aj ,bj ]

(
− 1

λ
bj(x, t)ϕ̄j(x, t)

)
, 1 ≤ j ≤ nc, (3.14)

which is well known to be deduced from (3.6). However, this projection formula
leads to higher regularity, namely ū ∈ L2(0, T ;H1(Ω))nc . The next lemma,
proved in the appendix, is the key tool to establish this regularity.

Lemma 3.1 Assume that (A6) holds, and let ϕ̄ be the solution of (3.4). Given
M > 0, we set

ϕM (x, t) = Proj[−M,+M ]n(ϕ̄(x, t)).

Then, ϕM ∈ L2(0, T ;H1(Ω))n and there exists a constant C depending on Ω,
CR, and ‖A‖L∞(Q,Rn×n), but independent of M , such that

‖ϕM‖L2(0,T ;H1(Ω))n ≤ C
[
‖C>Q [CQȳ − yQ]‖L2(Q)n

+ ‖C>Ω [CΩ ȳ(·, T )− yΩ ]‖L2(Ω)n +
√
M‖∇yg(·, ·, ȳ)‖C(K)n‖µ̄‖M(K)

]
. (3.15)
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Theorem 3.6 Assume that (A6) holds. Then, ū belongs to L2(0, T ;H1(Ω))nc .

Proof Let us take

M >
λ

b̄
max{|a|, |b|} and ϕM (x, t) = Proj[−M,+M ]n(ϕ̄(x, t)).

Then, from Lemma 3.1 we know that ϕM ∈ L2(0, T ;H1(Ω))n. Due to the
regularity of the functions bj we also have that bjϕM,j ∈ L2(0, T ;H1(Ω)) for
every 1 ≤ j ≤ nc. Now, from (3.14) we have

ūj(x, t) = Proj[aj ,bj ]

(
− bj(x, t)ϕ̄j(x, t)

λ

)
= Proj[aj ,bj ]

(
− bj(x, t)ϕM,j(x, t)

λ

)
.

This implies that ūj ∈ L2(0, T ;H1(Ω))n as well for 1 ≤ j ≤ nc. It remains to
prove that both projections coincide. This is obviously the case if |ϕ̄j(x, t)| ≤
M . If |ϕ̄j(x, t)| > M , the reader can easily confirm the following facts

1)− bj(x, t)

λ
ϕ̄j(x, t) 6∈ [aj , bj ],

2) if− bj(x, t)

λ
ϕ̄j(x, t) < aj , then −

bj(x, t)

λ
ϕ̄j(x, t) < −

bj(x, t)

λ
ϕM,j(x, t) < aj ,

3) if− bj(x, t)

λ
ϕ̄j(x, t) > bj , then −

bj(x, t)

λ
ϕ̄j(x, t) > −

bj(x, t)

λ
ϕM,j(x, t) > bj .

In either case the equality of the projections follows. ut

4 Examples

As applications, we consider systems of equations in two-dimensional spatial
domains (d = 2) that develop spiral waves or moving localized spots as solu-
tions. Spiral waves appear for the FitzHugh-Nagumo equations, a system of
2 equations, while localized spots arise for a system of 3 equations. In all the
examples, the aim is to move the appearing state function in a prescribed way.
All examples are numerically very challenging but show, on the other hand, the
geometrical beauty of solutions to the selected reaction-diffusion equations.

Example 1: Translation of a spiral wave along a circle
We consider the FitzHugh-Nagumo system (1.4) in Ω = (0, LΩ)2 with

LΩ := 75, for T = 1000, and subject to homogeneous Neumann boundary
conditions. The parameters of the system read σy = σz = Dy = 1, α = 1,
β = 0.05, γ = 0.0125, δ = 0, and the nonlinearity is R(y) = y(y− 0.01)(y− 1).

As pointed out in Remark 1.1, the system (1.4) does not directly fit to (1.1),
since the second diagonal element of D is zero. However, our theory remains
true with obvious modifications. For the necessary optimality conditions and
the adjoint equation we refer to [12], where this example was not considered.
Here, our control task is to translate a naturally developed spiral wave pattern
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along a given circle. By a standard method that is explained in [23, p. 48], a
rotation of the states is triggered: Spiral waves y0 and z0 are computed in Ω
as initial states for the system (1.4); they are depicted in Fig.1.

The area of the center of the spiral, the so-called “core”, is located around
the position (3/4LΩ , 1/2LΩ) = (56.25, 37.5).

Fig. 1 Initial states y0 (left) and z0 (right) for equation (1.4)

The desired trajectory yQ equals the uncontrolled natural state y evolving
from (y0, z0) that is translated in counter-clockwise direction along a circular
shape with radius 1/4LΩ around the center of the domain (1/2LΩ , 1/2LΩ).
Due to the Neumann boundary conditions, this is delicate issue.

However, the position of a spiral pattern is basically determined by the
location of its core. Translating the core, the arm of the spiral follows accord-
ingly with some delay. Hence, we consider the desired trajectory only in a
circle-shaped area of radius 15 around the desired center X(t) of the spiral,
given by X(t) := (1/2LΩ + 1/4LΩ cos(2πt/T ), 1/2LΩ + 1/4LΩ sin(2πt/T )).
We set

CQ(x, t) :=

 1 if |x−X(t)| ≤ 7.5,
|x−X(t)|/7.5− 1 if 7.5 < |x−X(t)| < 15,

0 if |x−X(t)| ≥ 15.

Fig. 2 displays CQ at t = 0 as well as the product CQ yQ for some times
t. The remaining parameters of the optimal control problem (P) are set to
ua = −1, ub = 1, and CΩ = yΩ ≡ 0.

As optimization algorithm, a projected gradient-method with non-linear
CG-step was chosen. Due to the large time-horizon with 3001 time-steps, and
the circumstance that an entire desired trajectory yQ is given,

We employed Model Predictive Control with 4 time-steps of length τ in
each sub-problem. This means that we solve a sequence of (discretized) short
time optimal control problems in a time horizon of length 4τ starting with the
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Fig. 2 Support function CQ(·, 0) (left) and product CQ(·, t) yQ(·, t) (right) for t ∈
{0, 210, 420, 630, 840}, where the pattern that is most faded away indicates the associated
product for the earliest time t = 0 and so on. The dashed white line illustrates the center
X(t) of the circle-shaped support function CQ for t ∈ (0, 840).

interval [0, 4τ ]. From the 4 values computed for the discretized optimal control
in this short time interval, we keep the first value for the final suboptimal
control. Next we move the time horizon one time step to the right, compute
the next optimal control for this shifted time horizon and keep again its first
value. After having solved a finite number of small optimal control problems,
we arrive at a suboptimal control on [0, T ]. The short time control problems
were solved by a nonlinear CG-step.

Moreover, since the chosen discretization of 101× 101 grid points in space
still leads to fairly high computation times, only a semi-implicit Euler-scheme
for solving the discrete systems was applied. Yet, 13.42 hours for computing
the suboptimal control ū was quite large.

Fig. 3 illustrates the computed (sub-)optimal control ū with associated
activator state ȳ at several times t. As shown, the control task is satisfied; the
suboptimal value of the objective functional was f(ū, ȳ) = 9.899 · 10−3.

One should expect that the optimal control concentrates at the support
of the function CQ. However, the highest amplitudes of the control appear at
the boundary of the circumcircle of the support. The reason is that the profile
of the given desired trajectory is the one of an uncontrolled “standing” spiral
wave. A translation of the pattern naturally leads to some deformations of
the profile and the control aims to suppress those deformations where CQ is
positive.
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Fig. 3 Example 1: (Sub)optimal control ū (top row) and associated activator state ȳ (bot-
tom row) for t = 210, 420, 630, 840.

Example 2: Translation of a propagating spot along a circle
The realization of this and the next example involves the system (1.5),

(1.7) with three components, i.e. with m = 2. We mainly adopt the system
parameters from [2] and [26], namely σy = σ2 = 1, σ1 = 48, Dy = 15 · 10−5,
D1 = 186 ·10−6, D2 = 96 ·10−4, R(x, t, y) = R(y) = y(y+

√
2)(y−

√
2) + 6.92,

α1 = 1, α2 = 8.5, β1 = β2 = γ1 = γ2 = 1, and δ1 = δ2 = 0 in (1.5), (1.7). The
spatial domain is Ω = (0, LΩ)2 with LΩ = 0.5.

Similarly to Example 1, the control task is to translate a naturally devel-
oped pattern along a circle-shaped curve in Ω in counter-clockwise direction.
For this purpose, we proceed as follows. First, we construct a natural developed
spot profile as follows: We take as auxiliary initial states

ỹ0(x) :=

{
1.2 if x ∈ [0.09, 0.13]× [0.29, 0.31],
−0.8 elsewhere,

z̃1
0(x) :=

{
−0.3 if x ∈ [0.05, 0.1]× [0.29, 0.31],
−0.8 elsewhere,

z̃2
0(x) :=

{
−0.65 if x ∈ [0.09, 0.13]× [0.29, 0.31],
−0.8 elsewhere,

and solve the system (1.5), (1.7) for u ≡ 0 with initial data (ỹ0, z̃
1
0 , z̃

2
0) subject

to periodic boundary conditions. Eventually, after a finite time, a stable spot
profile is generated. As soon as the center of mass of the pattern is in the
center of the domain Ω, we replace the boundary conditions by homogeneous
Neumann-type. The violation of those conditions is negligible and disappears
after a few further time-steps. In fact, we even let enough time pass by to
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have the center of mass of the spot profile in the activator state y situated in
(3/4LΩ , 1/2LΩ) = (0.45, 0.3). This state is taken as initial state, cf. Fig. 4.

Fig. 4 Initial states y0 (left), z10 (middle), and z20 (right).

Analogously to Example 1, we define the support function

CQ(x, t) :=

 1 if |x−X(t)| ≤ 0.05,
20 |x−X(t)| − 1 if 0.05 < |x−X(t)| < 0.1,

0 if |x−X(t)| ≥ 0.1,

where X(t) is defined as in Example 1. The desired state yQ is defined by

yQ(x, t) :=

{
y0(x+ (3/4LΩ , 1/2LΩ)−X(t)) if |x−X(t)| ≤ 0.1,

0 elsewhere,

and we fix CΩ = yΩ ≡ 0, T = 250.3, as well as ua = −1 and ub = 1.
The problem is solved numerically in the same way as for Example 1,

this time with 2504 time-steps. The computed suboptimal objective value is
f(ū, ȳ) = 2.49 · 10−6. The associated (sub-)optimal computed control ū is
shown in Fig. 5 along with the state ȳ for various times t.

An interesting property of the spot can be observed in this example. The
pattern is oriented and hence, a natural translation of the spot in positive x1-
direction would occur in the uncontrolled case. However, the desired trajectory
is determined by a spot profile in which orientation and natural movement
do not comply. They only comply in t ≈ 3/4T which causes the computed
control to have much lower amplitudes during these times. In all other times,
the control does not only force the spot to change its position but also to keep
its “non-complying” profile unchanged.

For control tasks of this type, namely translating a natural developed pat-
tern in a reaction-diffusion equation without changing the profile, we also refer
to [19,17,18,24].
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Fig. 5 Example 2: (Sub)optimal control ū (upper row) and associated activator state ȳ
(bottom row) for t = 50, 100, 150, 200.

Example 3: Keeping a spot solution away from the boundary
The spot solution to (1.5), (1.7) can get trapped by the boundary ∂Ω.

Fig. 6 illustrates the natural propagation of such a pattern for Ω = (0, 0.4)2,
T = 100, σy = σ2 = 1, σ1 = 48, Dy = 1 ·10−4, D1 = 186 ·10−6, D2 = 96 ·10−4,
R(x, t, y) = R(y) = y(y +

√
2)(y −

√
2) + 6.92, α1 = 1, α2 = 8.5, β1 = β2 =

γ1 = γ2 = 1, and δ1 = δ2 = 0.

Fig. 6 Example 3: Activator component of the initial state ỹ0 (left) and natural development
of this component in (0, 100) for u ≡ 0 (right). The white dashed line indicates the position
of the center of mass of the pattern. In t ≈ 60, the spot gets trapped by the Neumann-
boundary.
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Now, our task is to prevent the spot from touching the boundary. For
this purpose, we define c̃y(x) := 0.2 − max{|x1 − 0.2|, |x2 − 0.2|}, g2(·, t) :=
min{2, 40 c̃y} − 0.5, and consider the pointwise state-constraints

y(x, t) ≤ g2(x, t) ∀(x, t) ∈ Q.

Notice that 0 ≤ c̃y(x) ≤ 0.2, c̃y(x) = 0 holds on ∂Ω, and we have c̃y(x) =
0.2 in the midpoint of Ω. Therefore, the value g2 = −0.5 is attained, if y hits
the boundary and g2 = 1.5 is sufficiently large in the midpoint. The distance
of the curve g2 = 0 to ∂Ω is 0.0125 = 1/80. The core of the uncontrolled spot
is mainly positive and the principal form of the spots is known to be quite
stable. Therefore, it was sufficient to bound y from above by g2. This keeps
the spot away from the boundary. An additional lower bound would have made
the computations a bit more demanding.

To complete the setup of the optimal control problem, we set CΩ = yΩ =
CQ = yQ ≡ 0, ua = −1, and ub = 1.

The numerical solution of this example is based on a finite difference dis-
cretization with h = 1/200, τ = 0.1 as step sizes in space and time and is
performed as in the preceding 2 examples.

Again, we applied Model Predictive Control with 4 time-steps and a non-
linear CG optimization method for solving each subproblem. The state con-
straints have been included in an associated penalty term.

It turns out that only a small negative impulse of an amplitude of maximal
0.007 in t ∈ (49, 55) is sufficient to push the spot away from the boundary. Fig.
7 shows the described behaviour. Let us also emphasize that similar examples

Fig. 7 Computed (sub-)optimal control ū in t = 50 (left) and the activator component ȳ
of its associated state for t = 0, 20, 40, 60, 80, 100 (right).

with multiple spots in the domain instead of only one lead to analogue results.
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Remark 4.5 By techniques of sparse control, the support of the control func-
tions can be reduced significantly. For associated examples, we refer the reader
to [11] and the thesis [23], where the analysis of sparse optimal control for
reaction-diffusion equations is developed up to second-order sufficient opti-
mality conditions.

5 Appendix - Proof of Lemma 3.1

Let us consider sequences {fk}∞k=1 ⊂ L2(Q)n, {gk}∞k=1 ⊂ L2(Σ)n, and {hk}∞k=1 ⊂
H1(Ω)n satisfying

‖fk‖L1(Q)n ≤ ‖∇yg(·, ·, ȳ)µ̄Q‖M(Q)n , fk
∗
⇀ ∇yg(·, ·, ȳ)µ̄Q inM(Q)n, (5.1)

‖gk‖L1(Σ)n ≤ ‖∇yg(·, ·, ȳ)µ̄Σ‖M(Σ)n , gk
∗
⇀ ∇yg(·, ·, ȳ)µ̄Σ inM(Σ)n, (5.2){

‖hk‖L1(Ω)n ≤ ‖∇yg(·, T, ȳ(T ))µ̄Ω‖M(Ω̄×{T})n

hk
∗
⇀ ∇yg(·, T, ȳ(T ))µ̄Ω inM(Ω̄ × {T})n.

(5.3)

We also consider a sequence {wk}∞k=1 ⊂ H1(Ω)n such that{
wk → C>Ω [CΩ ȳ(·, T )− yΩ ] strongly in L2(Ω)n

and ‖wk‖L2(Ω)n ≤ ‖C>Ω [CΩ ȳ(·, T )− yΩ ]‖L2(Ω)n ∀k.
(5.4)

Now we consider the problem
−∂ϕk
∂t
−∆ϕk +

∂R

∂y
(·, ·, ȳ)ϕk +A>ϕk = C>Q [CQȳ − yQ] + fk in Q,

∂νϕk = gk on Σ,

ϕk(·, T ) = wk + hk in Ω̄.

(5.5)

This is a standard linear problem for which existence and uniqueness of a
solution ϕk ∈ W (0, T )n are well known. Moreover, since wk + hk ∈ H1(Ω)n,
we also have that ϕk ∈ H1(Q)n. From Theorem 3.3 we infer that

ϕk ⇀ ϕ̄ in Lr(0, T ;W 1,s
0 (Ω))n ∀r, s ∈ [1, 2) with

2

r
+
d

s
> 1 + d. (5.6)

Moreover, the following strong convergence holds [7]

lim
k→∞

‖ϕ̄− ϕk‖Lq(Q)n = 0 ∀1 ≤ q < d+ 2

d
. (5.7)

Now, we define ϕM,k(x, t) = Proj[−M,+M ]n(ϕ̄k(x, t)). Since ϕk ∈ H1(Q)n, then
we also have that ϕM,k ∈ H1(Q). From the inequality |ϕM (x, t)−ϕM,k(x, t)| ≤
|ϕ̄(x, t)− ϕk(x, t)| and (5.7) we infer that ϕM,k → ϕM strongly in Lq(Q)n for
every 1 ≤ q < d+2

d .
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If we prove that {ϕM,k}∞k=1 is bounded in L2(0, T ;H1(Ω))n, then the con-
vergence ϕM,k → ϕM in Lq(Q)n implies that ϕM ∈ L2(0, T ;H1(Ω))n as well.
Taking η = |CR|+ 1, multiplying (5.5) by e2ηtϕM,k and integrating in Q∫

Q

−e2ηt ∂ϕk
∂t
· ϕM,k dx dt+

∫
Q

e2ηt∇ϕk · ∇ϕM,k dx dt

+

∫
Q

e2ηt
(∂R
∂y

(x, t, ȳ)ϕk

)
· ϕM,k dx dt+

∫
Q

e2ηtϕ>k A(x, t)ϕM,k dx dt

=

∫
Q

e2ηt
(
C>Q [CQȳ − yQ] + fk

)
· ϕM,k dx dt+

∫
Σ

e2ηtgk · ϕM,k dx dt. (5.8)

Now using that ϕk · ∂tϕM,k = ϕM,k · ∂tϕM,k = 1
2∂t|ϕM,k|2, we obtain∫

Q

−e2ηt ∂ϕk
∂t
· ϕM,k dx dt = −

∫ T

0

d

dt

∫
Ω

e2ηtϕk · ϕM,k dx dt

+ 2η

∫
Q

e2ηtϕk · ϕM,k dx dt+

∫
Q

e2ηtϕk ·
∂ϕM,k

∂t
dx dt

= −
∫
Ω

e2ηTϕk(x, T ) · ϕM,k(x, T ) dx+

∫
Ω

ϕk(x, 0) · ϕM,k(x, 0) dx

+ 2η

∫
Q

e2ηtϕk · ϕM,k dx dt+
1

2

∫
Q

e2ηt∂t|ϕM,k|2 dx dt. (5.9)

For the last term we have

1

2

∫
Q

e2ηt∂t|ϕM,k|2 dx dt

=
1

2

∫ T

0

d

dt

∫
Ω

e2ηt|ϕM,k|2 dx dt− η
∫ T

0

∫
Ω

e2ηt|ϕM,k|2 dx dt

≥ 1

2

∫
Ω

e2ηT |ϕM,k(x, T )|2 dx− 1

2

∫
Ω

|ϕM,k(x, 0)|2 dx

− η
∫
Q

e2ηtϕk · ϕM,k dx dt. (5.10)

From (5.9) and (5.10) and using that ϕk · ϕM,k ≥ |ϕM,k|2 we deduce∫
Q

−e2ηt ∂ϕk
∂t
· ϕM,k dx dt ≥ −e2ηT

∫
Ω

(wk + hk) · ϕM,k(x, T ) dx

+
1

2

∫
Ω

|ϕM,k(x, 0)|2 dx+ η

∫
Q

e2ηtϕk · ϕM,k dx dt+
e2ηT

2

∫
Ω

|ϕM,k(x, T )|2 dx

≥ −e2ηT

∫
Ω

(wk + hk) · ϕM,k(x, T ) dx+ η

∫
Q

e2ηtϕk · ϕM,k dx dt

+
1

2

∫
Ω

|ϕM,k(x, T )|2 dx.
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Inserting this inequality in (5.8) and taking into account that ∂xiϕk ·∂xiϕM,k =
∂xiϕM,k · ∂xiϕM,k, we obtain with Young’s inequality, (5.1)–(5.4), and the
estimate for ‖ϕk‖L1(Q)n derived from Theorem 3.3∫
Q

|∇ϕM,k|2 dx dt+

∫
Q

|ϕM,k|2 dx dt+
1

2

∫
Ω

|ϕM,k(x, T )|2 dx

≤
∫
Q

|∇ϕM,k|2dxdt+

∫
Q

e2ηt(η − |CR|)ϕk · ϕM,k dxdt+
1

2

∫
Ω

|ϕM,k(·, T )|2dx

≤
∫ T

0

−e2ηt ∂ϕM
∂t
· ϕM,k dx dt+

∫
Q

e2ηt∇ϕM · ∇ϕM,k dx dt

+

∫
Q

e2ηt
(∂R
∂y

(x, t, ȳ)ϕk

)
· ϕM,k dx dt+ e2ηT

∫
Ω

(wk + hk) · ϕM,k(x, T ) dx

=

∫
Q

e2ηt
(
C>Q [CQȳ − yQ] + fk

)
· ϕM,k dx dt+

∫
Σ

e2ηtgk · ϕM,k dx dt

+ e2ηT

∫
Ω

(wk + hk) · ϕM,k(T ) dx−
∫
Q

e2ηtϕ>k A(x, t)ϕM,k dx dt

≤ e2ηT
[
‖C>Q [CQȳ − yQ]‖L2(Q)n‖ϕM,k‖L2(Q)n + ‖wk‖L2(Ω)n‖ϕM,k(T )‖L2(Ω)n

+M
(
‖fk‖L1(Q)n + ‖gk‖L1(Σ)n + ‖hk‖L1(Ω)n + ‖A‖L∞(Q,Rn×n)‖ϕk‖L1(Q)n)

)]
≤ C

[
‖C>Q [CQȳ − yQ]‖2L2(Q) + ‖C>Ω [CΩ ȳ(·, T )− yΩ ]‖2L2(Ω)n

+M‖∇yg(·, ·, ȳ)‖C(K)n‖µ̄Q‖M(Q̄)

]
+

1

2

∫
Q

|ϕM,k|2dxdt+
1

4
‖ϕM,k(T )‖2L2(Ω)n .

Finally, we get from the above inequality with (5.4) that each ϕM,k satisfies
(3.15). Hence, ϕM also does it. ut
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