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Abstract A constraint-reduced Mehrotra–Predictor–Corrector algorithm for
convex quadratic programming is proposed. (At each iteration, such algorithms
use only a subset of the inequality constraints in constructing the search di-
rection, resulting in CPU savings.) The proposed algorithm makes use of a
regularization scheme to cater to cases where the reduced constraint matrix is
rank deficient. Global and local convergence properties are established under
arbitrary working-set selection rules subject to satisfaction of a general condi-
tion. A modified active-set identification scheme that fulfills this condition is
introduced. Numerical tests show great promise for the proposed algorithm, in
particular for its active-set identification scheme. While the focus of the present
paper is on dense systems, application of the main ideas to large sparse systems
is briefly discussed.
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1 Introduction

Consider a strictly feasible convex quadratic program (CQP) in standard in-
equality form,1

minimize
x∈Rn

f(x) :=
1

2
xTHx+ cTx subject to Ax ≥ b , (P)

where x ∈ R
n is the vector of optimization variables, f : Rn → R is the objec-

tive function with c ∈ R
n and H ∈ R

n×n a symmetric positive semi-definite
matrix, A ∈ R

m×n and b ∈ R
m, with m > 0, define the m linear inequal-

ity constraints, and (here and elsewhere) all inequalities (≥ or ≤) are meant
component-wise. H , A, and c are not all zero. The dual problem associated to
(P) is

maximize
x∈Rn,λ∈Rm

−
1

2
xTHx+ bTλ subject toHx+ c−ATλ = 0, λ ≥ 0 , (D)

where λ ∈ R
m is the vector of multipliers. Since the objective function f is

convex and the constraints are linear, solving (P)–(D) is equivalent to solving
the Karush-Kuhn-Tucker (KKT) system

Hx−ATλ+ c = 0, Ax− b− s = 0, Sλ = 0, s,λ ≥ 0 , (1)

where s ∈ R
n is a vector of slack variables associated to the inequality con-

straints in (P), and S = diag(s).
Primal–dual interior–point methods (PDIPM) solve (P)–(D) by iteratively

applying a Newton-like iteration to the three equations in (1). Especially pop-
ular for its numerical behavior is S. Mehrotra’s predictor–corrector (MPC)
variant, which was introduced in [21] for the case of linear optimization (i.e.,
H = 0) with straightforward extension to CQP (e.g., [22, Section 16.6]). (Ex-
tension to linear complementarity problems was studied in [39].)

A number of authors have paid special attention to “imbalanced” problems,
in which the number of active constraints at the solution is small compared
to the total number of constraints (in particular, cases in which m ≫ n). In
solving such problems, while most constraints are in a sense redundant, tradi-
tional IPMs devote much effort per iteration to solving large systems of linear
equations that involve all m constraints. In the 1990s, work toward reducing
the computational burden by using only a small portion (“working set”) of the
constraints in the search direction computation focused mainly on linear opti-
mization [6,15,31,38]. This was also the case for [28], which may have been the
first to consider such “constraint-reduction” schemes in the context of PDIPMs
(vs. purely dual interior–point methods), and for its extensions [14,34,35]. Ex-
ceptions include the works of Jung et al. [17, 18] and of Park et al. [23, 24]; in
the former, an extension to CQP was considered, with an affine-scaling variant
used as the “base” algorithm; in the latter, a constraint-reduced PDIPM for

1 See end of Sections 2.3 and 2.5 below for a brief discussion of how linear equality con-
straints can be incorporated.
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semi-definite optimization (which includes CQP as a special case) was pro-
posed, for which polynomial complexity was proved. Another exception is the
“QP-free” algorithm for inequality-constrained (smooth) nonlinear program-
ming of Chen et al. [5]. There, a constraint-reduction approach is used where
working sets are selected by means of the Facchinei–Fischer–Kanzow active
set identification technique [8].

In the linear-optimization case, the size of the working set is usually kept
above (or no lower than) the number n of variables in (P). It is indeed known
that, in that case, if the set of solutions to (P) is nonempty and bounded, then
a solution exists at which at least n constraints are active. Further if fewer than
n constraints are included in the linear system that defines the search direction,
then the default (Newton-KKT) system matrix is structurally singular.

When H 6= 0 though, the number of active constraints at solutions may
be much less than n and, at strictly feasible iterates, the Newton-KKT matrix
is non-singular whenever the subspace spanned by the columns of H and the
working-set columns of AT has (full) dimension n. (In particular, of course, if
H is non-singular (i.e., is positive definite) the Newton-KKT matrix is non-
singular even when the working set is empty—in which case the unconstrained
Newton direction is obtained.) Hence, when solving a CQP, forcing the working
set to have size at least n is usually wasteful.

The present paper proposes a constraint-reduced MPC algorithm for CQP.
The work borrows from [18] (affine-scaling, convex quadratic programming)
and is significantly inspired from [34] (MPC, linear optimization), but improves
on both in a number of ways—even for the case of linear optimization (i.e.,
when H = 0). Specifically,

– in contrast with [18, 34] (and [5]), it does not involve a (CPU-expensive)
rank estimation combined with an increase of the size of the working set
when a rank condition fails; rather, it makes use of a regularization scheme
adapted from [35];

– a general condition (Condition CSR) to be satisfied by the constraint-
selection rule is proposed which, when satisfied, guarantees global and
local quadratic convergence of the overall algorithm (under appropriate
assumptions);

– a specific constraint-selection rule is introduced which, like in [5] (but un-
like in [18]), does not impose any a priori lower bound on the size of the
working set; this rule involves a modified active set identification scheme
that builds on results from [8]; numerical comparison shows that the new
rule outperforms previously used rules.

Other improvements over [18,34] include (i) a modified stopping criterion and
a proof of termination of the algorithm (in [18, 34], termination is only guar-
anteed under uniqueness of primal-dual solution and strict complementarity),
(ii) a potentially larger value of the “mixing parameter” in the definition of the
primal search direction (see footnote 2(iii)), and (iii) an improved update for-
mula (compared to that used in [35]) for the regularization parameter, which
fosters a smooth evolution of the regularized Hessian W from an initial (ma-
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trix) value H + R, where R is specified by the user, at a rate no faster than
that required for local q-quadratic convergence.

In Section 2 below, we introduce the proposed algorithm (Algorithm CR-
MPC) and a general condition (Condition CSR) to be satisfied by the constraint-
selection rule, and we state global and local quadratic convergence results for
Algorithm CR-MPC, subject to Condition CSR. We conclude the section by
proposing a specific rule (Rule R), and proving that it satisfies Condition CSR.
Numerical results are reported in Section 3. While the focus of the present pa-
per is on dense systems, application of the main ideas to large sparse systems
is briefly discussed in the Conclusion (Section 4), which also includes other
concluding remarks. Convergence proofs are given in two appendices.

The following notation is used throughout the paper. To the number m
of inequality constraints, we associate the index set m := {1, 2, . . . ,m}. The
primal feasible and primal strictly feasible sets are

FP := {x ∈ R
n : Ax ≥ b} and Fo

P := {x ∈ R
n : Ax > b},

and the primal and primal-dual solution sets are

F∗
P := {x ∈ FP : f(x) ≤ f(x̃), ∀x̃ ∈ FP } and F∗ := {(x,λ) : (1) holds} .

Of course, x∗ ∈ F∗
P if and only if, for some λ∗ ∈ R

m, (x∗,λ∗) ∈ F∗ Also, we

term stationary a point x̂ ∈ FP for which there exists λ̂ ∈ R
m such that (x̂, λ̂)

satisfies (1) except possibly for non-negativity of the components of λ̂. Next,
for x ∈ FP , the (primal) active-constraint set at x is

A(x) := {i ∈ m : aTi x = bi} ,

where ai is the transpose of the i-th row of A. Given a subset Q ⊆ m, Qc

indicates its complement in m and |Q| its cardinality; for a vector v ∈ R
m, vQ

is a sub-vector consisting of those entries with index in Q, and for an m × n
matrix L, LQ is a |Q| × n sub-matrix of L consisting of those rows with index
in Q. An exception to this rule, which should not create any confusion, is that
for anm×m diagonal matrix V = diag(v), VQ is diag(vQ), a |Q|×|Q| diagonal
sub-matrix of V . For symmetric matrices W and H , W � H (resp. W ≻ H)
means that W − H is positive semi-definite (resp. positive definite). Finally,
given a vector v, [v]+ and [v]− denote the positive and negative parts of v,
i.e., vectors with components respectively given by max{vi, 0} and min{vi, 0},
1 is a vector of all ones, and given a Euclidean space R

p, the ball centered at
v∗ ∈ R

p with radius ρ > 0 is denoted by B(v∗, ρ) := {v ∈ R
p : ‖v−v∗‖ ≤ ρ}.

2 A Regularized, Constraint-Reduced MPC Iteration

2.1 A Modified MPC Algorithm

In [34], a constraint-reduced MPC algorithm was proposed for linear optimiza-
tion problems, as a constraint-reduced extension of a globally and locally su-
perlinearly convergent variant of Mehrotra’s original algorithm [21,36]. Trans-
posed to the CQP context, that variant proceeds as follows.
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In a first step (following the basic MPC paradigm), given (x, λ, s) with λ >
0, s > 0, it computes the primal–dual affine-scaling direction (∆xa, ∆λa, ∆sa)
at (x,λ, s), viz., the Newton direction for the solution of the equations portion
of (1). Thus, it solves

J(H,A, s,λ)





∆xa

∆λa

∆sa



 =





−∇f(x) +ATλ

0

−Sλ



 , (2)

where, given a symmetric matrix W � 0, we define

J(W,A, s,λ) :=





W −AT 0

A 0 −I
0 S Λ



 ,

with Λ = diag(λ). Conditions for unique solvability of system (2) are given in
the following standard result (invoked in its full form later in this paper); see,
e.g., [16, Lemma B.1].

Lemma 1 Suppose si, λi ≥ 0 for all i and W � 0. Then J(W,A, s,λ) is
invertible if and only if the following three conditions hold:

(i) si + λi > 0 for all i;
(ii) A{i:si=0} has full row rank; and

(iii)
[

W
(

A{i:λi 6=0}

)T
]

has full row rank.

In particular, with λ > 0 and s > 0, J(H,A, s,λ) is invertible if and only if
[H AT ] has full row rank. By means of two steps of block Gaussian elimination,
system (2) reduces to the normal system

M∆xa = −∇f(x),

∆sa = A∆xa,

∆λa = −λ− S−1Λ∆sa ,

(3)

where M is given by

M := H +ATS−1ΛA = H +

m
∑

i=1

λi
si
aia

T
i . (4)

Given positive definite S and Λ, M is invertible whenever J(H,A, s,λ) is.
In a second step, MPC algorithms construct a centering/corrector direc-

tion, which in the CQP case (e.g., [22, Section 16.6]) is the solution (∆xc, ∆λc, ∆sc)
to (same coefficient matrix as in (2))

J(H,A, s,λ)





∆xc

∆λc

∆sc



 =





0

0

σµ1−∆Sa∆λa



 , (5)
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where µ := sTλ/m is the “duality measure” and σ := (1−αa)3 is the centering
parameter, with

αa := argmax{α ∈ [0, 1] | s+ α∆sa ≥ 0, λ+ α∆λa ≥ 0} .

While most MPC algorithms use as search direction the sum of the affine-
scaling and centering/corrector directions, to force global convergence, we bor-
row from [34]2 and define

(∆x, ∆λ, ∆s) = (∆xa, ∆λa, ∆sa) + γ(∆xc, ∆λc, ∆sc), (6)

where the “mixing” parameter γ ∈ [0, 1] is one when ∆xc = 0 and otherwise

γ := min

{

γ1, τ
‖∆xa‖

‖∆xc‖
, τ

‖∆xa‖

σµ

}

, (7)

where τ ∈ [0, 1) and

γ1 := argmax{γ̃ ∈ [0, 1] | f(x)− f(x+∆xa + γ̃∆xc) ≥ ω(f(x)− f(x+∆xa))} ,
(8)

with ω ∈ (0, 1). The first term in (7) guarantees that the search direction is a
direction of significant descent for the objective function (which in our context
is central to forcing global convergence) while the other two terms ensures that
the magnitude of the centering/corrector direction is not too large compared
to the magnitude of the affine-scaling direction.

As for the line search, we again borrow from [34], where specific safeguards
are imposed to guarantee global and local q-quadratic convergence. We set

ᾱp := argmax{α : s+ α∆s ≥ 0}, αp := min{1, max{κᾱp, ᾱp − ‖∆x‖}},

ᾱd := argmax{α : λ+ α∆λ ≥ 0}, αd := min{1, max{κᾱd, ᾱd − ‖∆x‖}} ,

with κ ∈ (0, 1), then

(x+, s+) := (x, s) + αp(∆x, ∆s) .

and finally

λ+i := min{λmax, max{λi + αd∆λi, min{λ, χ}}}, i = 1, . . . ,m , (9)

where λmax > 0 and λ ∈ (0, λmax) are algorithm parameters, and

χ := ‖∆xa‖ν + ‖[λ+∆λa]−‖
ν ,

with ν ≥ 2.
We verified via numerical tests that for the problems considered in Sec-

tion 3, the modified MPC algorithm outlined in this section is at least as
efficient as the MPC algorithm for CQPs given in [22, Algorithm 16.4].

2 We however do not fully follow [34]: (i) Equation (8) generalizes (22) of [34] to CQP; (ii)
In (9) we explicitly bound λ+ (x+ in [34]), by λmax; in the linear case, such boundedness is
guaranteed (Lemma 3.3 in [34]); as a side-effect, in (7), we could drop the penultimate term
in (24) of [34] (invoked in proving convergence of the x sequence in the proof of Lemma 3.4
of [34]); (iii) We do not restrict the primal step size as done in (25) of [34] (dual step size
in the context of [34]), at the expense of a slightly more involved convergence proof: see our
Proposition 3 below, to be compared to [34, Lemma 3.7].
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2.2 A Regularized Constraint-Reduced MPC Algorithm

In the modified MPC algorithm described in Section 2.1, the main computa-
tional cost is incurred in forming the normal matrix M (see (4)), which re-
quires approximately mn2/2 multiplications (at each iteration) if A is dense,
regardless of how many of the m inequality constraints in (P) are active at
the solution. This may be wasteful when few of these constraints are active at
the solution, in particular (generically) when m ≫ n (imbalanced problems).
The constraint-reduction mechanism introduced in [28] and used in [18] in the
context of an affine-scaling algorithm for the solution of CQPs modifies M by
limiting the sum in (4) to a wisely selected small subset of terms, indexed by
an index set Q ⊆ m referred to as the working set.

Given a working set Q, the constraint-reduction technique produces an ap-
proximate affine-scaling direction by solving a “reduced” version of the Newton
system (2), viz.

J(H,AQ, sQ,λQ)





∆xa

∆λa
Q

∆saQ



 =





−∇f(x) + (AQ)
TλQ

0

−SQλQ



 . (10)

Just like the full system, when sQ > 0, the reduced system (10) is equivalent
to the reduced normal system

M̃(Q)∆xa = −∇f(x) ,

∆saQ = AQ∆xa ,

∆λa
Q = −λQ − S−1

Q ΛQ∆saQ ,

(11)

where the “reduced” M̃(Q) (still of size n× n) is given by

M̃(Q) := H + (AQ)
TS−1

Q ΛQAQ = H +
∑

i∈Q

λi
si
aia

T
i .

When A is dense, the cost of forming M̃(Q) is approximately qn2/2, where
q := |Q|, leading to significant savings when q ≪ m.

One difficulty that may arise, when substituting AQ for A in the Newton-
KKT matrix, is that the resulting linear system might no longer be uniquely
solvable. Indeed, even when [H AT ] has full row rank, [H (AQ)

T ] may be rank-
deficient, so the third condition in Lemma 1 would not hold. A possible remedy
is to regularize the linear system. In the context of linear optimization, such
regularization was implemented in [9] and explored in [25] by effectively adding
a fixed scalar multiple of identity matrix into the normal matrix to improve nu-
merical stability of the Cholesky factorization. A more general regularization
was proposed in [1] where diagonal matrices that are adjusted dynamically
based on the pivot values in the Cholesky factorization were used for regu-
larization. On the other hand, quadratic regularization was applied to obtain
better preconditioners in [4], where a hybrid scheme of the Cholesky factor-
ization and a preconditioned conjugate gradient method is used to solve linear
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systems arising in primal block-angular problems. In [4], the regularization
dies out when optimality is approached.

Applying regularization to address rank-deficiency of the normal matrix
due to constraint reduction was first considered in [35], in the context of linear
optimization. There a similar regularization as in [9, 25] is applied, while the
scheme lets the regularization die out as a solution to the optimization problem
is approached, to preserve fast local convergence. Adapting such approach to
the present context, we replace J(H,AQ, sQ,λQ) by J(W,AQ, sQ,λQ) and

M̃(Q) by

M(Q) :=W + (AQ)
TS−1

Q ΛQAQ , (12)

with W := H + ̺R, where ̺ ∈ (0, 1] is a regularization parameter that is
updated at each iteration and R � 0 a constant symmetric matrix such that
H + R ≻ 0. Thus the inequality W � H is enforced, ensuring f(x +∆xa) <
f(x) (see Proposition 2 below), which in our context is critical for global
convergence. In the proposed algorithm, the modified coefficient matrix is used
in the computation of both a modified affine-scaling direction and a modified
centering/corrector direction, which thus solves

J(W,AQ, sQ,λQ)





∆xc

∆λc
Q

∆scQ



 =





0

0

σµ(Q)1−∆Sa
Q∆λ

a
Q



 . (13)

In the bottom block of the right-hand side of (13) (compared to (5)) we have
substituted ∆Sa

Q and ∆λa
Q for ∆Sa and ∆λa, and replaced µ with

µ(Q) :=

{

sTQλQ/q , if q 6= 0

0 , otherwise
, (14)

the duality measure for the “reduced” problem. The corresponding normal
equation system is given by

M(Q)∆xc = (AQ)
TS−1

Q (σµ(Q)1−∆Sa
Q∆λ

a
Q),

∆scQ = AQ∆xc,

∆λc
Q = S−1

Q (−ΛQ∆scQ + σµ(Q)1−∆Sa
Q∆λ

a
Q) .

(15)

A partial search direction for the constraint-reducedMPC algorithm at (x, λ, s)
is then given by (see (6))

(∆x, ∆λQ, ∆sQ) = (∆xa, ∆λa
Q, ∆saQ) + γ(∆xc, ∆λc

Q, ∆scQ), (16)

where γ is given by (7)–(8), with µ(Q) replacing µ.
3

Algorithm CR-MPC, including a stopping criterion, a simple update rule
for ̺, and update rules (adapted from [34]) for the components λi of the
dual variable with i ∈ Qc, but with the constraint-selection rule (in Step 2)

3 In the case that q = 0 (Q is empty), γ is chosen to be zero. Note that, in such case,
there is no corrector direction, as the right-hand side of (13) vanishes.



A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming 9

left unspecified, is formally stated below.4 Its core, Iteration CR-MPC, takes
as input the current iterates x, s > 0, λ > 0, λ̃, and produces the next

iterates x+, s+ > 0, λ+ > 0, λ̃
+
, used as input to the next iteration. Here

λ̃, with possibly λ̃ 6≥ 0, is asymptotically slightly closer to optimality than
λ, and is used in the stopping criterion. While dual feasibility of (x,λ) is not
enforced along the sequence of iterates, a primal strictly feasible starting point
x ∈ Fo

P is required, and primal feasibility of subsequent iterates is enforced,
as it allows for monotone descent of f , which in the present context is key
to global convergence. (An extension of Algorithm CR-MPC that allows for
infeasible starting points is discussed in Section 2.3 below.) Algorithm CR-
MPC makes use (in its stopping criterion and ̺ update) of an “error” function
E : Rn × R

m → R (also used in the constraint-selection Rule R in Section 2.6
below) given by

E(x,λ) := ‖(‖v(x,λ)‖, ‖w(x,λ)‖)‖ , (17)

where

v(x,λ) := Hx+ c−ATλ, wi(x,λ) := min{|si|, |λi|}, i = 1, . . . ,m, (18)

with s := Ax − b, and where the norms are arbitrary. Here E measures both
dual feasibility (via v) and complementary slackness (via w). Note that, for
x ∈ FP and λ ≥ 0, E(x,λ) = 0 if and only if (x,λ) solves (P)–(D).

Algorithm CR-MPC: A Constraint-Reduced variant of MPC Algorithm for CQP

Parameters: ε ≥ 0, τ ∈ [0, 1), ω ∈ (0, 1), κ ∈ (0, 1), ν ≥ 2, λmax > 0, λ ∈ (0, λmax),
and Ē > 0.5 A symmetric n× n matrix R � 0 such that H + R ≻ 0.
Initialization: x ∈ Fo

P
,6 λ > 0, s := Ax− b > 0, λ̃ := λ.

Iteration CR-MPC:

Step 1. Terminate if either (i) ∇f(x) = 0, in which case (x,0) is optimal for (P)–(D),
or (ii)

min
{

E(x,λ), E(x, [λ̃]+)
}

< ε, (19)

in which case (x, [λ̃]+) is declared ε-optimal for (P)–(D) if E(x,λ) ≥ E(x, [λ̃]+), and
(x,λ) is otherwise.

Step 2. Select a working set Q. Set q := |Q|. Set ̺ := min{1, E(x,λ)

Ē
}. SetW := H+̺R.

Step 3. Compute approximate normal matrix M(Q) :=W +
∑

i∈Q
λi

si
aia

T
i .

Step 4. Solve
M(Q)∆xa = −∇f(x) , (20)

and set
∆sa := A∆xa , ∆λa

Q := −λQ − S−1
Q
ΛQ∆saQ . (21)

Step 5. Compute the affine-scaling step

αa := argmax{α ∈ [0, 1] | s+ α∆sa ≥ 0, λQ + α∆λa
Q ≥ 0} . (22)

4 The “modified MPC algorithm” outlined in Section 2.1 is recovered as a special case by
setting ̺+ = 0 and Q = {1, . . . , m} in Step 2 of Algorithm CR-MPC.

5 For scaling reasons, it may be advisable to set the value of Ē to the initial value of
E(x,λ) (so that, in Step 2 of the initial iteration, ̺ is set to 1, and W to H +R). This was
done in the numerical tests reported in Section 3.

6 Here it is implicitly assumed that Fo
P

is nonempty. This assumption is subsumed by
Assumption 1 below.
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Step 6. Set µ(Q) as in (14). Compute centering parameter σ := (1− αa)3.
Step 7. Solve (13) for the corrector direction (∆xc, ∆λc

Q, ∆sc
Q
), and set ∆sc := A∆xc.

Step 8. If q = 0, set γ := 0. Otherwise, compute γ as in (7)–(8), with µ(Q) replacing µ.
Compute the search direction

(∆x, ∆λQ, ∆s) := (∆xa, ∆λa
Q, ∆sa) + γ(∆xc, ∆λc

Q, ∆sc) . (23)

Set λ̃+i = λi +∆λi, ∀i ∈ Q, and λ̃+i = 0, ∀i ∈ Qc.
Step 9. Compute the primal and dual steps αp and αd by

ᾱp := argmax{α : s+ α∆s ≥ 0}, αp := min{1, max{κᾱp, ᾱp − ‖∆x‖}},

ᾱd := argmax{α : λQ + α∆λQ ≥ 0}, αd := min{1, max{κᾱd, ᾱd − ‖∆x‖}} .
(24)

Step 10. Updates:
(x+, s+) := (x, s) + (αp∆x, αp∆s) . (25)

Set χ := ‖∆xa‖ν + ‖[λQ +∆λa
Q]−‖ν . Set

λ+i := max{min{λi + αd∆λi, λ
max}, min{χ, λ}}, ∀i ∈ Q . (26)

Set µ+
(Q)

:= (s+
Q
)T (λ+

Q
)/q if q 6= 0, otherwise set µ+

(Q)
:= 0. Set

λ+i := max{min{µ+
(Q)

/s+i , λ
max}, min{χ, λ}}, ∀i ∈ Qc . (27)

A few more comments are in order concerning Algorithm CR-MPC. First,
the stopping criterion is a variation on that of [18, 34], involving both λ and
[λ̃]+ instead of only λ; in fact the latter will fail when the parameter λmax

(see (26)–(27)) is not large enough and may fail when second order sufficient
conditions are not satisfied, while we prove below (Theorem 1(iv)) that the
new criterion is eventually satisfied indeed, in that the iterate (x,λ) converges
to a solution (even if it is not unique), be it on a mere subsequence. Second, our
update formula for the regularization parameter ̺ in Step 2 improves on that
in [35] (̺+ = min{χ, χmax} in the notation of this paper, where χmax is a user-
defined constant) as it fosters a “smooth” evolution ofW from the initial value
of H +R, with R specified by the user, at a rate no faster than that required
for local q-quadratic convergence. And third, R � 0 should be selected to
compensate for possible ill-conditioning of H—so as to mitigate possible early
ill-conditioning of M(Q). (Note that a nonzero R may be beneficial even when
H is non-singular.)

It is readily established that, starting from a strictly feasible point, regard-
less of the choice made for Q in Step 2, Algorithm CR-MPC either stops at
Step 1 after finitely many iterations, or generates infinite sequences {Ek}∞k=0,

{xk}∞k=0, {λ
k}∞k=0, {λ̃

k
}∞k=0, {s

k}∞k=0, {χk}∞k=0, {Qk}∞k=0, {̺k}
∞
k=0, and {Wk}∞k=0,

with sk = Axk − b > 0 and λk > 0 for all k. (E0, χ0, ̺0, and W0 correspond
to the values of Ek, χk, ̺k, and Wk computed in the initial iteration, while
the other initial values are provided in the “Initialization” step.) Indeed, if
the algorithm does not terminate at Step 1, then ∇f(x) 6= 0, i.e., ∆xa 6= 0

(from (20), since M(Q) is invertible); it follows that ∆x 6= 0 (if ∆xc 6= 0, since
τ ∈ [0, 1), (7) yields γ < ‖∆xa‖/‖∆xc‖) and, since ∆xa 6= 0 implies χ > 0,
(24), (23), (25), (26), and (27) imply that s+ = Ax+ − b > 0 and λ+ > 0.
From now on, we assume that infinite sequences are generated.
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2.3 Extensions: Infeasible Starting Point, Equality Constraints

Because, in our constraint-reduction context, convergence is achieved by en-
forcing descent of the objective function at every iteration, infeasible starts
cannot be accommodated as, e.g., in S. Mehrotra’s original paper [21]. The
penalty-function approach proposed and analyzed in [13, Chapter 3] in the
context of constraint-reduced affine scaling for CQP (adapted from a scheme
introduced in [27] for a nonlinear optimization context) fits right in however.
(Also see [14] for the linear optimization case.) Translated to the notation of
the present paper, it substitutes for (P)–(D) the primal-dual pair7

minimize
x∈Rn, z∈Rm

f(x) + ϕ1T z s.t. Ax + z ≥ b , z ≥ 0 , (Pϕ)

maximize
x∈Rn,λ∈Rm,u∈Rm

−
1

2
xTHx+bTλ s.t. Hx+c−ATλ = 0,λ+u = ϕ1, (λ,u) ≥ 0,

(Dϕ)
with ϕ > 0 a scalar penalty parameter, for which primal-strictly-feasible points
(x, z) are readily available. Hence, given ϕ, this problem can be handled by
Algorithm CR-MPC.8 Such ℓ1 penalty function is known to be exact, i.e.,
for some unknown, sufficiently large (but still moderate) value of ϕ, solutions
(x∗, z∗) to (Pϕ) are such that x∗ solves (P); further ( [13,14]), z∗ = 0. In [13,
14], an adaptive scheme is proposed for increasing ϕ to such value. Applying
this scheme on (Pϕ)–(Dϕ) allows Algorithm CR-MPC to handle infeasible
starting points for (P)–(D). We refer the reader to [13, Chapter 3] for details.

Linear equality constraints of course can be handled by first projecting
the problem on the associated affine space, and then run Algorithm CR-MPC
on that affine space. A weakness of this approach though is that it does not
adequately extend to the case of sparse problems (discussed in the Conclusion
section (Section 4) of this paper), as projection may destroy sparsity. An al-
ternative approach is, again, via augmentation: Given the constraints Cx = d,
with d ∈ R

p, solve the problem

minimize
x∈Rn,y∈Rp

f(x) + ϕ1Ty s.t. Cx+ y ≥ d , Cx− y ≤ d . (28)

(Note that, taken together, the two constraints imply y ≥ 0.) Again, given
ϕ > 0 and using the same adaptive scheme from [13,14], this problem can be
tackled by Algorithm CR-MPC.

2.4 A Class of Constraint-Selection Rules

Of course, the quality of the search directions is highly dependent on the choice
of the working set Q. Several constraint-selection rules have been proposed

7 An ℓ∞ penalty function can be substituted for this ℓ1 penalty function with minor
adjustments: see [13, 14] for details.

8 It is readily checked that, given the simple form in which z enters the constraints, for
dense problems, the cost of formingM (Q) still dominates and is still approximately |Q|n2/2,
with still, typically, |Q| ≪ m.
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for constraint-reduced algorithms on various classes of optimization problems,
such as linear optimization [28,34,35], convex quadratic optimization [17,18],
semi-definite optimization [23,24], and nonlinear optimization [5]. In [28,34,35],
the cardinality q of Q is constant and decided at the outset. Because in the
non-degenerate case the set of active constraints at the solution of (P) with
H = 0 is at least equal to the number n of primal variables, q ≥ n is usually
enforced in that context. In [18], which like this paper deals with quadratic
problems, q was allowed to vary from iteration from iteration, but q ≥ n was
still enforced throughout (owing to the fact that, in the regular case, there are
no more than n active constraints at the solution). Here we propose to again
allow q to vary, but in addition to not a priori impose a positive lower bound
on q.

The convergence results stated in Section 2.5 below are valid with any
constraint-selection rule that satisfies the following condition.

Condition CSR Let {(xk,λk)} be the sequence constructed by Algorithm CR-
MPC with the constraint-selection rule under consideration, and let Qk be the
working set generated by the constraint-selection rule at iteration k. Then the
following holds: (i) if {(xk,λk)} is bounded away from F∗, then, for all limit
points x′ such that {xk} → x′ on some infinite index set K, A(x′) ⊆ Qk for
all large enough k ∈ K; and (ii) if (P)–(D) has a unique solution (x∗,λ∗) and
strict complementarity holds at x∗, and if {xk} → x∗, then A(x∗) ⊆ Qk for
all k large enough.

Condition CSR(i) aims at preventing convergence to non-optimal primal point,
and hence (given a bounded sequence of iterates) forcing convergence to solu-
tion points. Condition CSR(ii) is important for fast local convergence to set
in. A specific rule that satisfies Condition CSR, Rule R, used in our numerical
experiments, is presented in Section 2.6 below.

2.5 Convergence Properties

The following standard assumptions are used in portions of the analysis.

Assumption 1 Fo
P is nonempty and F∗

P is nonempty and bounded 9 .

Assumption 2 10 At every stationary point x, AA(x) has full row rank.

Assumption 3 There exists a (unique) x∗ where the second-order sufficient
condition of optimality with strict complementarity holds, with (unique) λ∗.

Assumption 3, mostly used in the local analysis, subsumes Assumption 1.
Theorem 1, proved in Appendix A, addresses global convergence.

9 Nonemptiness and boundedness of F∗
P

are equivalent to dual strict feasibility (e.g., [7]).
10 Equivalently (under the sole assumption that F∗

P
is nonempty) AA(x) has full row rank

at all x ∈ FP . In fact, while we were not able to carry out the analysis without such (strong)
assumption (the difficulty being to rule out convergence to non-optimal stationary points),
numerical experimentation suggests that the assumption is immaterial.
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Theorem 1 Suppose that the constraint-selection rule invoked in Step 2 of
Algorithm CR-MPC satisfies Condition CSR. First suppose that ε = 0, that
the iteration never stops, and that Assumptions 1 and 2 hold. Then (i) the
infinite sequence {xk} it constructs converges to the primal solution set F∗

P ; if

in addition, Assumption 3 holds, then (ii) {(xk, λ̃
k
)} converges to the unique

primal–dual solution (x∗,λ∗) and {(xk,λk)} converges to (x∗, ξ∗), with ξ∗i :=
min{λi, λmax} for all i ∈ m, and (iii) for sufficiently large k, the working set
Qk contains A(x∗).

Finally, suppose again that Assumptions 1 and 2 hold. Then (iv) if ε > 0,
Algorithm CR-MPC stops (in Step 1) after finitely many iterations.

Fast local convergence is addressed next; Theorem 2 is proved in Appendix B.

Theorem 2 Suppose that Assumption 3 holds, that ε = 0, that the iteration
never stops, and that λ∗i < λmax for all i ∈ m. Then there exist ρ > 0 and
C > 0 such that, if ‖(x− x∗,λ− λ∗)‖ < ρ and Q ⊇ A(x∗), then

‖(x+ − x∗, λ̃
+
− λ∗)‖ ≤ C‖(x− x∗,λ− λ∗)‖2. (29)

When the constraint-selection rule satisfies Condition CSR(ii), local q-quadratic
convergence is an immediate consequence of Theorems 1 and 2.

Corollary 1 Suppose that Assumptions 1–3 hold, that ε = 0, that the itera-
tion never stops, and that λ∗i < λmax for all i ∈ m. Further suppose that the
constraint-selection rule invoked in Step 2 satisfies Condition CSR. Then Al-
gorithm CR-MPC is locally q-quadratically convergent. Specifically, there exists
C > 0 such that, given any initial point (x0,λ0), for some k′ > 0,

A(x∗) ⊆ Qk and ‖(xk+1−x∗,λk+1−λ∗)‖ ≤ C‖(xk−x∗,λk−λ∗)‖2, ∀k > k′.

The foregoing theorems and corollary (essentially) extend to the case of
infeasible starting point discussed in Section 2.3. The proof follows the lines
of that in [13, Theorem 3.2]. While Assumptions 1 and 3 remain unchanged,
Assumption 2 must be tightened to: For every x ∈ R

n, {ai : aTi x ≤ bi}
is a linearly independent set.11 (While this assumption appears to be rather
restrictive—a milder condition is used in [13, Theorem 3.2] and [14], but we
believe it is insufficient—footnote 10 applies here as well.)

Subject to such tightening of Assumption 2, Theorem 1 still holds. Further,
Theorem 2 and Corollary 1 (local quadratic convergence) also hold, but for
the augmented set of primal–dual variables, (x, z,λ,u). While proving the
results for (x,λ) might turn out to be possible, an immediate consequence of
q-quadratic convergence for (x, z,λ,u) is r-quadratic convergence for (x,λ).

Under the same assumptions, Theorems 1 and 2 and Corollary 1 still hold
in the presence of equality constraints Cx = d via transforming the problem

11 In fact, given any known upper bound z to {zk}, this assumption can be relaxed to
merely requiring linear independence of the set {ai : bi − z ≤ aT

i x ≤ bi}, which tends to
the set of active constraints when z goes to zero. This can be done, e.g., with z = c‖z0‖∞,
with any c > 1, if the constraint z ≤ cz0 is added to the augmented problem.
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to (28), provided {ai : aTi x ≤ bi}∪ {ci : i = 1, . . . , p} is a linearly independent
set for every x ∈ R

n, with ci the ith row of C. Note that it may be beneficial
to choose x0 to lie on the affine space defined by Cx = d, in which case the
components of y0 can be chosen quite small, and to include the constraint
y ≤ cy0 for some c > 1 as suggested in footnote 11.

2.6 A New Constraint-Selection Rule

The proposed Rule R, stated below, first computes a threshold value based
on the amount of decrease of the error Ek := E(xk,λk), and then selects
the working set by including all constraints with slack values less than the
computed threshold.

Rule R Proposed Constraint-Selection Rule

Parameters: δ̄ > 0, 0 < β < θ < 1.
Input: Iteration: k, Slack variable: sk, Error: Emin (when k > 0), Ek := E(xk,λk),
Threshold: δk−1.
Output: Working set: Qk, Threshold: δk, Error: Emin.

1: if k = 0 then

2: δk := δ̄
3: Emin := Ek

4: else if Ek ≤ βEmin then

5: δk := θδk−1

6: Emin := Ek

7: else

8: δk := δk−1

9: end if

10: Select Qk := {i ∈ m | ski ≤ δk}.

A property of E that plays a key role in proving that Rule R satisfies Con-
dition CSR is stated next; it does not require strict complementarity. It was
established in [8], within the proof of Theorem 3.12 (equation (3.13)); also
see [12, Theorem 1], [37, Theorem A.1], as well as [3, Lemma 2, with the “vec-
tor of perturbations” set to zero] for an equivalent, yet global inequality in the
case of linear optimization (H = 0), under an additional dual (primal in the
context of [3]) feasibility assumption ((Hx)−ATλ+ c = 0). A self-contained
proof in the case of CQP is given here for the sake of completeness and ease
of reference.

Lemma 2 Suppose (x∗,λ∗) solves (P)–(D), let I := {i ∈ m : λ∗i > 0}, and
suppose that (i) AA(x∗) and (ii) [H (AI)

T ] have full row rank. Then there
exists c > 0 and some neighborhood V of the origin such that

E(x,λ) ≥ c‖(x− x∗,λ− λ∗)‖ whenever (x− x∗,λ − λ∗) ∈ V.

Proof Let z∗ := (x∗,λ∗) ∈ R
n+m, let s := Ax − b, s∗ := Ax∗ − b, and let

Ψ : Rn+m → R be given by Ψ(ζ) := E(z∗ + ζ). We show that, restricted to an
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appropriate punctured convex neighborhood of the origin, Ψ is strictly positive
and absolutely homogeneous, so that the convex hull Ψ̂ of such restriction
generates a norm on R

n+m, proving the claim (with c = 1 for the norm
generated by Ψ̂). To proceed, let ζx ∈ R

n and ζλ ∈ R
m denote respectively

the first n and last m components of ζ, and let ζs := Aζx.
First, since v(z∗) = 0, v(z∗ + ζ) = Hζx −AT ζλ is linear in ζ, making its

norm absolutely homogeneous in ζ; and since si = s∗i + ζsi and λi = λ∗i + ζλi ,
complementarity slackness (s∗i λ

∗
i = 0) implies that ‖w(x∗ + ζx,λ∗ + ζλ)‖ is

absolutely homogeneous in ζ as well, in some neighborhood V1 of the origin.
Hence Ψ is indeed absolutely homogeneous in V1.

Next, turning to strict positiveness and proceeding by contradiction, sup-
pose that for every δ > 0 there exists ζ 6= 0, with ‖ζ‖ < δ, such that Ψ(ζ) = 0,
i.e., v(z∗ +ζ) = 0 and w(z∗ +ζ) = 0. In view of (i), which implies uniqueness
(over all of Rm) of the KKT multiplier vector associated to x∗, and given
that ζ 6= 0, we must have ζx 6= 0. In view of (ii), this implies that Hζx and
ζ
s
I = AIζ

x cannot vanish concurrently. On the other hand, for i ∈ I and for
small enough δ, wi(z

∗+ζ) = 0 implies ζsi = 0. Hence, Hζx cannot vanish, and
it must hold that (ζx)THζx > 0. Since v(z∗ +ζ) = Hζx−AT ζλ, we conclude
from v(z∗+ζ) = 0 that (ζx)TAT ζλ > 0, i.e., (ζs)T ζλ > 0. Now, the argument
that shows that ζsi = 0 when λ∗i > 0 also shows that ζλi = 0 when s∗i > 0.
Hence our inequality reduces to

∑

{i:s∗
i
=λ∗

i
=0} ζ

s
i ζ

λ
i > 0, in contradiction with

w(z∗ + ζ) = 0. Taking V to be a convex neighborhood of the origin contained
in V1 ∩ {ζ : ‖ζ‖ < δ} completes the proof. ✷

Proposition 1 Algorithm CR-MPC with Rule R satisfies Condition CSR.

Proof To prove that Condition CSR(i) holds, let {(xk,λk)} be bounded away
from F∗, let x′ be a limit point of {xk}, and let K be an infinite subsequence
such that {xk} → x′ on K. By (17)–(18), {Ek} is bounded away from zero so
that, under Rule R, there exists δ′ > 0 such that δk > δ′ for all k. Now, with
s′ := Ax′ − b and sk := Axk − b for all k, since s′A(x′) = 0, we have that, for

all i ∈ A(x′), ski < δ′ for all large enough k ∈ K. Hence, for all large enough
k ∈ K,

ski < δ′ < δk , ∀i ∈ A(x′) .

Since Rule R chooses the working set Qk := {i ∈ m | ski ≤ δk} for all k, we
conclude that A(x′) ⊆ Qk for all large enough k ∈ K, which proves Claim (i).

Turning now to Condition CSR (ii), suppose that (P)–(D) has a unique
solution (x∗,λ∗), that strict complementarity holds at x∗, and that {xk} → x∗.
If δk is reduced no more than finitely many times, then of course it is bounded
away from zero, and the proof concludes as for Condition CSR(i); thus suppose
{δk} → 0. Let K := {k ≥ 1 : δk = θδk−1} (an infinite index set) and, for given
k, let ℓ(k) be the cardinality of {k′ ≤ k : k′ ∈ K}. Then we have δk = δ̄θℓ(k)

for all k and Ek ≤ βℓ(k)E0 for all k ∈ K. Since β < θ (see Rule R), this
implies that {Ek

δk
}k∈K → 0. And from the definition of Ek and uniqueness of

the solution to (P)–(D), it follows that {λk} → λ∗ as k → ∞, k ∈ K. We use
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these two facts to prove that, for all i ∈ A(x∗) and some k0,

ski ≤ δk ∀k ≥ k0; (30)

in view of Rule R, this will complete the proof of Claim (ii). From Lemma 2,
there exist C > 0 and η > 0 such that

‖(x− x∗,ψ − λ∗)‖ ≤ CE(x,ψ)

for all (x,ψ) satisfying ‖(x − x∗,ψ − λ
∗)‖ < η. Since {Ek

δk
}k∈K → 0 and

{λk − λ∗}k∈K → 0, and since ‖sk − s∗‖ ≤ ‖A‖‖xk − x∗‖ (since sk − s∗ =
A(xk − x∗)), there exists k0 such that, for all i ∈ A(x∗),

ski ≤ ‖A‖‖(xk − x∗,λk − λ∗)‖ ≤ ‖A‖CEk ≤ δk, ∀k ∈ K, k ≥ k0, (31)

establishing (30) for k ∈ K. It remains to show that (30) does hold for all k
large enough. Let ρ and C be as in Theorem 2 and without loss of generality
suppose Cρ ≤ θ. Since {(xk − x∗,λk − λ∗)}k∈K → 0, there exists k ∈ K
(w.l.o.g. k ≥ k0), such that ‖(xk − x∗,λk − λ∗)‖ < ρ. Theorem 2 together
with (31) then imply that

‖(xk+1−x∗,λk+1−λ∗)‖ ≤ C‖(xk−x∗,λk−λ∗)‖2 < θ‖(xk−x∗,λk−λ∗)‖ ≤ θδk/‖A‖.

(When A = 0, Proposition 1 holds trivially.) Hence, ‖(xk+1−x∗,λk+1−λ∗)‖ <
ρ and since (in view of Rule R) δk+1 is equal to either δk or θδk and θ ∈ (0, 1),
we get, for all i ∈ A(x∗),

sk+1
i ≤ ‖A‖‖(xk+1 − x∗,λk+1 − λ∗)‖ ≤ δk+1,

so that A(x∗) ⊆ Qk+1. Theorem 2 can be applied recursively, yielding A(x∗) ⊆
Qk for all k large enough, concluding the proof of Claim (ii). ✷

Note that if a constraint-selection rule satisfies Condition CSR, rules de-
rived from it by replacing Qk by a superset of it also satisfy Condition CSR
so that our convergence results still hold. Such augmentation of Qk is often
helpful; e.g., see Section 5.3 in [34]. Note however that the following corollary
to Theorems 1–2 and Proposition 1, proved in Appendix A, of course does not
apply when Rule R is thus augmented.

Corollary 2 Suppose that Rule R is used in Step 2 of Algorithm CR-MPC,
ε = 0, and that Assumptions 1–3 hold. Let (x∗,λ∗) be the unique primal–dual
solution. Further suppose that λ∗i < λmax for all i ∈ m. Then, for sufficiently
large k, Rule R gives Qk = A(x∗).12

12 In particular, if x∗ is an unconstrained minimizer, the working set Q is eventually empty,
and Algorithm CR-MPC reverts to a simple regularized Newton method (and terminates in
one additional iteration if H ≻ 0 and R = 0).
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3 Numerical Experiments

We report computational results obtained with Algorithm CR-MPC on ran-
domly generated problems and on data-fitting problems of various sizes.13

Comparisons are made across different constraint-selection rules, including the
unreduced case (Q = m).14

3.1 Other Constraint-Selection Rules

As noted, the convergence properties of Algorithm CR-MPC that are given
in Section 2.5 hold with any working-set selection rule that satisfies Condi-
tion CSR. The rules used in the numerical tests are our Rule R, Rule JOT
of [18], Rule FFK–CWH of [5, 8], and Rule All (Q = m, i.e., no reduction).
The details of Rule JOT and Rule FFK–CWH are stated below.

Rule JOT
Parameters: κ > 0, qU ∈ [n,m] (integer).
Input: Iteration: k, Slack variable: sk, Duality measure: µ := (λk)T sk/m.
Output: Working set: Qk.
Set q := min{max{n, ⌈µκm⌉}, qU}, and let η be the q-th smallest slack value.
Select Qk := {i ∈ m | ski ≤ η}.

Rule FFK–CWH
Parameter: 0 < r < 1.
Input: Iteration: k, Slack variable: sk, Error: Ek := E(xk,λk) (see (17)).
Output: Working set: Qk.
Select Qk := {i ∈ m | ski ≤ (Ek)

r}.

Note that the thresholds in Rule R and Rule FFK–CWH depend on both the

duality measure µ and dual feasibility (see (17)) and these two rules impose
no restriction on |Q|. On the other hand, the threshold in Rule JOT involves
only µ, while it is required that |Q| ≥ n . In addition, it is readily verified that
Rule FFK–CWH satisfies Condition CSR, and that so does Rule JOT under
Assumption 2.

It is worth noting that Rule R, Rule FFK–CWH, and Rule JOT all se-
lect constraints by comparing the values of primal slack variables si to some
threshold values (independent of i), while the associated dual variables λi are
not taken into account individually. Of course, variations with respect to such
choice are possible. In fact, it was shown in [8] (also see an implementation

13 In addition, a preliminary version of the proposed algorithm (with a modified version
of Rule JOT, see [19] for details) was successfully tested in [20] on CQPs arising from a
positivity-preserving numerical scheme for solving linear kinetic transport equations.
14 We also ran comparison tests with the constraint-reduced algorithm of [23], for which
polynomial complexity was established (as was superlinear convergence) for general semi-
definite optimization problems. As was expected, that algorithm could not compete (orders
of magnitude slower) with algorithms specifically targeting CQP.
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in [5]) that the strongly active constraint set {i ∈ m : λ∗i > 0} can be (asymp-
totically) identified at iteration k by the set {i ∈ m : λki ≥ δk} with a properly
chosen threshold δk. Modifying the constraint selection rules considered in the
present paper to include such information might improve the efficiency of the
rules, especially when the constraints are poorly scaled. (Such modification
does not affect the convergence properties of Algorithm CR-MPC as long as
the modified rules still satisfy Condition CSR.) Numerical tests were carried
out with an “augmented” Rule R that also includes {i ∈ m : λki ≥ δk} (with
the same δk as in the original Rule R). The results suggest that, on the class
of imbalanced problems considered in this section, while introducing some
overhead, such augmentation (with the same δk) brings no benefit.

3.2 Implementation Details

All numerical tests were run with a Matlab implementation of Algorithm CR-
MPC on a machine with Intel(R) Core(TM) i5-4200 CPU(3.1GHz), 4GB
RAM, Windows 7 Enterprise, and Matlab 7.12.0(R2011a). In the implemen-
tation, E(x,λ) (see (17)–(18)) is normalized via division by the factor of
max{‖A‖∞, ‖H‖∞, ‖c‖∞}, and 2-norms are used in (17) and Steps 9 and 10.
In addition, for scaling purposes (see, for example, [18]), we used the normal-
ized constraints (DA)x ≥ Db, where D = diag (1/‖ai‖2).

To highlight the significance of constraint-selection rules, a dense direct
Cholesky solver was used to solve normal equations (20) and (15). Follow-
ing [28] and [18], we set si := max{si, 10−14} for all i when computing M(Q)

in (12). Such safeguard prevents M(Q) from being too ill-conditioned and mit-
igates numerical difficulties in solving (20) and (15). When the Cholesky fac-
torization of the modified M(Q) failed, we then doubled the regularization
parameter ̺ and recomputed M(Q) in (12), and repeated this process until
M(Q) was successfully factored.15

In the implementation, Algorithm CR-MPC is set to terminate as soon
as either the stopping criterion (19) is satisfied or the iteration count reaches
200. The algorithm parameter values used in the tests were ε = 10−8, τ = 0.5,
ω = 0.9, κ = 0.98, ν = 3, λmax = 1030, λ = 10−6, R = In×n (the n×n identity
matrix), and Ē = E(x0,λ0), as suggested in footnote 5. The parameters in
Rule R were given values β = 0.4, θ = 0.5, and δ̄ = the 2n-th smallest initial
slack value. In Rule JOT, κ = 0.25 is used as in [18], and qU = m was selected
(although qU = 3n is suggested as a “good heuristic” in [18]) to protect against
a possible very large number of active constraints at the solution; the numerical
results in [18] suggest that there is no significant downside in using qU = m.
In Rule FFK–CWH, r = 0.5 is used as in [5, 8].

15 An alternative approach to take care of ill-conditioned M(Q) is to apply a variant of the
Cholesky factorization that handles positive semi-definite matrices, such as the Cholesky-
infinity factorization (i.e., cholinc(X,'inf') in Matlab) or the diagonal pivoting strategy
discussed in [36, Chapter 11]. Either implementation does not make notable difference in
the numerical results reported in this paper, since the Cholesky factorization fails in fewer
than 1% of the tested problems.
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3.3 Randomly Generated Problems

We first applied Algorithm CR-MPC on imbalanced (m ≫ n) randomly gen-
erated problems; we used m := 10 000 and n ranging from 10 to 500. Problems
of the form (P) were generated in a similar way as those used in [18,28,34]. The
entries of A and c were taken from a standard normal distribution N (0, 1),
those of x0 and s0 from uniform distributions U(0, 1) and U(1, 2), respectively,
and we set b := Ax0 − s0, which guarantees that x0 is strictly feasible. We
considered two sub-classes of problems: (i) strongly convex, with H diagonal
and positive, with random diagonal entries from U(0, 1), and (ii) linear, with
H = 0. We solved 50 randomly generated problems for each sub-class ofH and
for each problem size, and report the results averaged over the 50 problems.
There was no instance of failure on these problems. Figure 1 shows the results.
(We also ran tests with H rank-deficient but nonzero, with similar results.)
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(a) Strongly convex QP: H ≻ 0
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(b) linear optimization: H = 0

Fig. 1: Randomly generated problems with m = 10 000 constraints– Numerical results
on two types of randomly generated problems. In each figure, the x-axis is the number of
variables (n) and the y-axis is iteration count, average size of working set, or computation
time, all averaged over the 50 problem instances and plotted in logarithmic scale. The
results of Rule All, Rule FFK–CWH, Rule JOT, and Rule R are plotted as blue triangles,
red circles, yellow squares, and purple crosses, respectively.

It is clear from the plots that, in terms of computation time, Rule R out-
performs other constraint-selection rules for the randomly generated problems
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we tested.16 When the number of variables (n) is 1% ∼ 5% of the number
of constraints (m) (i.e, n=100 to 500), Algorithm CR-MPC with Rule R is
two to five times faster than with the second best rule, or 20 to 50 times
faster than the unreduced algorithm (Rule All). When n is lowered to less
than 1% of m (i.e., n < 100), the time advantage of using Rule R further
doubles. Note that, as n decreases, Rule R is asymptotically more restrictive
than Rule FFK–CWH and Rule JOT. We believe this may be the key reason
that Rule R outperforms other rules, especially on problems with small n.

3.4 Data-Fitting Problems

We also applied Algorithm CR-MPC on CQPs arising from two instances of a
data-fitting problem: trigonometric curve fitting to noisy observed data points.
This problem was formulated in [28] as a linear optimization problem, and then
in [18] reformulated as a CQP by imposing a regularization term. The CQP
formulation of this problem, taken from [18], is as follows. Let g : [0, 1] → R

be a given function of time, and let b̄ := [b̄1, . . . , b̄m̄]T ∈ R
m̄ be a vector that

collects noisy observations of g at sample time t = t1, . . . , tm̄. The problem
aims at finding a trigonometric expansion u(t) from the noisy data b̄ that best
approximates g. Here u(t) :=

∑n̄
j=1 x̄jψj(t), with the trigonometric basis

ψj(t) :=

{

cos(2(j − 1)πt) , j = 1, . . . , ⌈ n̄
2 ⌉

sin(2(j − ⌈ n̄2 ⌉)πt) j = ⌈ n̄
2 ⌉+ 1, . . . , n̄

.

Equivalently, u(t) = Āx̄, where x̄ := [x̄1, . . . , x̄n̄]
T and Ā is a m̄×n̄matrix with

entries āij = ψj(ti). Based on a regularized minimax approach, the problem
is then formulated as

minimize
x̄∈Rn̄

‖Āx̄− b̄‖∞ +
1

2
ᾱx̄T H̄x̄ ,

where H̄ � 0 is a symmetric n̄ × n̄ matrix, ᾱ is a regularization parameter,
and x̄T H̄x̄ is a regularization term that helps resist over-fitting. This problem
can be rewritten as

minimize
x̄∈Rn̄v∈R

v +
1

2
ᾱx̄T H̄x̄

subject to Āx̄− b̄ ≥ −v1 ,

−Āx̄+ b̄ ≥ −v1 ,

which is a CQP in the form of (P) with number of variables n = n̄ + 1 and
number of constraints m = 2m̄.

Following [18], we tested Algorithm CR-MPC on this problem with two
target functions

g(t) = sin(10t) cos(25t2) and g(t) = sin(5t3) cos2(10t) .

16 Interestingly, on strongly convex problems, most rules (and especially Rule R) need a
smaller number of iterations than Rule All (except for n = 500)!
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In each case, as in [18], we sampled the data uniformly in time and set
b̄i := g( i−1

m̄
) + ǫi, where ǫi is an independent and identically distributed noise

that takes values from N (0, 0.09),17 for i = 1, . . . , m̄ and, as in [18], the regu-
larization parameters were chosen as ᾱ := 10−6 and H̄ = diag(h̄), with h̄1 := 0
and h̄j = h̄j+⌈ n̄

2
⌉−1 := 2(j − 1)π, for j = 2, . . . , ⌈ n̄2 ⌉, and h̄n̄ := 2(⌊ n̄

2 ⌋)π.
Figure 2 reports our numerical results. Since these problems involve noise,

we solved the problem 50 times for each target function and report the av-
erage results. (The average is not reported—the corresponding symbol is not
plotted—for problems on which one or more of the 50 runs failed, i.e., did not
converge when iteration count reaches 200.) The sizes of the tested problems
are m := 10 000 and n ranging from 10 to 500.
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(a) g(t) = sin(10t) cos(25t2)
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(b) g(t) = sin(5t3) cos2(10t)

Fig. 2: Data-fitting problems with m = 10 000 constraints – Numerical results on two data-
fitting problems. In each figure, the x-axis is the number of variables (n) and the y-axis
is iteration count, average size of working set, or computation time, all averaged over the
50 problem instances and plotted in logarithmic scale. The results of Rule All, Rule FFK–
CWH, Rule JOT, and Rule R are plotted as blue triangles, red circles, yellow squares, and
purple crosses, respectively.

The results show that Rule R still outperforms other constraint-selection
rules in terms of computation time, especially on problems with relatively
small n. In general, Rule R is two to ten times faster than the second best

17 We also ran the tests without noise and with noise of variance between 0 and 1, and the
results were very similar to the ones reported here.
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rule. We observe in Figure 2 that Rule JOT and Rule All failed to converge
within 200 iterations in a few instances on problems with relatively large n.
Numerical results suggest that these failures are due to ill-conditioning of
MQ apparently producing poor search directions. Thus, we conjecture that
accurate identification of active constraints not only reduces computation time,
but also alleviates the ill-conditioning issue of MQ near optimal points.

3.5 Comparison with Broadly Used, Mature Code18

With a view toward calibrating the performance of Algorithm CR-MPC re-
ported in Sections 3.3 and 3.4, we carried out a numerical comparison with
two widely used solvers, SDPT3 [30, 32] and SeDuMi [26].19 The tests were
performed on the problems considered in Sections 3.3 and 3.4 with sizes
m = 10 000 and n = 10, 20, 50, 100, 200, 500. For CR-MPC, the exact same
implementation, including starting points and stopping criterion, as outlined
in Section 3.2 was used. As for the SDPT3 and SeDuMi solvers, we set the
solver precision to 10−8 and let the solvers decide the starting points.

Table 1 reports the iteration counts and computation time of SDPT3,
SeDuMi, and Algorithm CR-MPC with Rule All and Rule R, on each type of
tested problems. The numbers in Table 1 are average values over 50 runs and
over all six tested values of n. These results show that, for such significantly
imbalanced problems, constraint reduction brings a clear edge. In particular,
for such problems, Algorithm CR-MPC with Rule R shows a significantly
better time-performance than two mature solvers.

Randomly generated problems Data fitting problems

Algorithm H ≻ 0 H = 0 sin(10t) cos(25t2) sin(5t3) cos2(10t)

iteration time iteration time iteration time iteration time
SDPT3 23.6 35.8 21.2 22.3 26.2 46.1 26.7 48.7
SeDuMi 22.0 4.0 16.3 4.4 26.9 5.1 26.1 5.5
Rule All 14.1 16.5 14.7 18.7 48.8 94.3 54.3 119.4
Rule R 13.2 0.3 14.3 0.4 38.7 1.4 43.8 1.6

Table 1: Comparison of Algorithm CR-MPC with popular codes – This table reports the
iteration count and computation time (sec) for each of the compared algorithms on each
type of tested problems, averaged over 50 runs. Every reported number is also averaged over
various problems sizes: m = 10 000 and n = 10, 20, 50, 100, 200, 500.

18 It may also be worth pointing out that a short decade ago, in [33], the performance of an
early version of a constraint-reduced MPC algorithm (with a more elementary constraint-
selection rule than Rule JOT) was compared, on imbalanced filter-design applications (linear
optimization), to the “revised primal simplex with partial pricing” algorithm discussed
in [2], with encouraging results: on the tested problems, the constraint-reduced code proved
competitive with the simplex code on some such problems and superior on others.
19 While these two solvers have a broader scope (second-order cone optimization, semidef-
inite optimization) than Algorithm CR-MPC, they allow a close comparison with our code,
as Matlab implementations are freely available within the CVX Matlab package [10, 11].
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4 Conclusion

Convergence properties of the constraint-reduced algorithm proposed in this
paper, which includes a number of novelties, were proved independently of
the choice of the working-set selection rule, provided the rule satisfies Condi-
tion CSR. Under a specific such rule, based on a modified active-set identifi-
cation scheme, the algorithm performs remarkably well in practice, both on
randomly generated problems (CQPs as well as linear optimization problems)
as well as data-fitting problems.

Of course, while the focus of the present paper was on dense problems,
the concept of constraint reduction also applies to imbalanced large, sparse
problems. Indeed, whichever technique is used for solving the Newton-KKT
system, solving instead a reduced Newton-KKT system, of like sparsity but
of drastically reduced size, is bound to bring in major computational savings
when the total number of inequality constraints is much larger than the number
of inequality constraints that are active at the solution—at least when the
number of variables is reasonably small compared to the number of inequality
constraints. In the case of sparse problems, the main computation cost in an
IPM iteration would be that of a (sparse) Cholesky factorization or, in an
iterative approach to solving the linear system, would be linked to the number
of necessary iterations for reaching needed accuracy. In both cases, a major
reduction in the dimension of the Newton-KKT system is bound to reduce the
computation time, and like savings as in the dense case should be expected.

Appendix

The following results are used in the proofs in Appendices A and B. Here we assume that
Q ⊆ m and W is symmetric, with W � H ≻ 0. First, from (10) and (13), the approximate
MPC search direction (∆x, ∆λQ, ∆sQ) defined in (16) solves

J(W,AQ, sQ,λQ)





∆x

∆λQ

∆sQ



 =





−∇f(x) + (AQ)TλQ

0

−SQλQ + γσµ(Q)1− γ∆Sa
Q
∆λa

Q



 , (32)

and equivalently, when sQ > 0, from (20), (21) and (15),

M(Q)∆x = −∇f(x) + (AQ)T S−1
Q

(γσµ(Q)1− γ∆Sa
Q∆λa

Q),

∆sQ = AQ∆x,

∆λQ = −λQ + S−1
Q

(−ΛQ∆sQ + γσµ(Q)1− γ∆Sa
Q∆λa

Q) .

(33)

Next, with λ̃
+

and λ̃
a,+

given by

λ̃+i :=

{

λi +∆λi i ∈ Q,

0 i ∈ Qc,
and λ̃a,+i :=

{

λi +∆λai i ∈ Q,

0 i ∈ Qc,
(34)

from the last equation of (33) and from (21), we have

λ̃
+
Q = S−1

Q
(−ΛQ∆sQ + γσµ(Q)1− γ∆Sa

Q∆λa
Q) , (35)
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λ̃
a,+
Q = −S−1

Q
ΛQ∆saQ = −S−1

Q
ΛQAQ∆xa

Q , (36)

and hence
(∆xa)T (AQ)T λ̃

a,+
Q = −(∆xa)T (AQ)TS−1

Q
ΛQAQ∆xa ≤ 0 , (37)

so that, when in addition λ > 0, (∆xa)T (AQ)T λ̃
a,+

= 0 if and only if AQ∆xa = 0. Also,
(20) yields

∇f(x)T∆xa = −(∆xa)TM(Q)∆xa = −(∆xa)TW∆xa − (∆xa)T (AQ)TS−1
Q
ΛQAQ∆xa .

(38)
Since W � H, it follows from (37) that,

∇f(x)T∆xa + (∆xa)TH∆xa ≤ 0 . (39)

In addition, when SQ ≻ 0, ΛQ ≻ 0 and since W � 0, the right-hand side of (38) is strictly
negative as long as W∆xa and AQ∆xa are not both zero. In particular, when [W (AQ)T ]
has full row rank,

∇f(x)T∆xa < 0 if ∆xa 6= 0 . (40)

Finally, we state and prove two technical lemmas.

Lemma 3 Given an infinite index set K, {∆xk} → 0 as k → ∞, k ∈ K if and only if
{∆xa,k} → 0 as k → ∞, k ∈ K.

Proof We show that ‖∆xk‖ is sandwiched between constant multiples of ‖∆xa,k‖. We have
from the search direction given in (16) that, for all k, ‖∆xk − ∆xa,k‖ = ‖γ∆xc,k‖ ≤
τ‖∆xa,k‖, where τ ∈ (0, 1) and the inequality follows from (7). Apply triangle inequality
leads to (1− τ)‖∆xa,k‖ ≤ ‖∆xk‖ ≤ (1 + τ)‖∆xa,k‖ for all k, proving the claim. ✷

Lemma 4 Suppose Assumption 1 holds. Let Q ⊂ m, A ⊆ Q, x ∈ Fo
P , s := Ax− b (> 0),

and λ > 0 enjoy the following property: With ∆λQ, ∆λa
Q, ∆s, and ∆sa produced by

Iteration CR-MPC, λi +∆λi > 0 for all i ∈ A and si +∆si > 0 for all i ∈ Q \ A. Then

ᾱd ≥ min

{

1, min
i∈Q\A

{

si

|si +∆sai |

}

, min
i∈Q\A

{

si − |∆sai |

|si +∆si|

}}

(41)

and

ᾱp ≥ min

{

1, min
i∈A

{

λi

|λi +∆λai |

}

, min
i∈A

{

λi − |∆λai |

|λi +∆λi|

}}

. (42)

Proof If ᾱd ≥ 1, (41) holds trivially, hence suppose ᾱd < 1. Then, from the definition of ᾱd

in (24), we know that there exists some index i0 ∈ Q such that

∆λi0 < −λi0 < 0 and ᾱd =
λi0

|∆λi0 |
. (43)

Since λi +∆λi > 0 for all i ∈ A, we have i0 ∈ Q \ A. Now we consider two cases: |∆λai0 | ≥

|∆λi0 | and |∆λai0 | < |∆λi0 |. If |∆λ
a
i0
| ≥ |∆λi0 |, then, since the second equation in (21) is

equivalently written as λisi + si∆λ
a
i + λi∆s

a
i = 0 for all i ∈ Q and since λssi > 0 for all

i ∈ m, it follows from (43) that

ᾱd =
λi0

|∆λi0 |
≥

λi0
|∆λai0 |

=
si0

|si0 +∆sai0 |
,

proving (41). To conclude, suppose now that |∆λai0 | < |∆λi0 |. Since (i) si + ∆si > 0 for

i ∈ Q \ A; (ii) γ, σ, and µ(Q) in (35) are non-negative; and (iii) ∆λi0 < 0 (from (43)),
(34)–(35) yield

λi0 (si0 +∆si0 ) ≥ si0 |∆λi0 | − γ|∆sai0 ||∆λ
a
i0
| .

Applying this inequality to (43) leads to

ᾱd =
λi0

|∆λi0 |
≥

si0
|si0 +∆si0 |

−
γ|∆λai0 ||∆s

a
i0
|

|si0 +∆si0 ||∆λi0 |
≥
si0 − |∆sai0 |

|si0 +∆si0 |
,

where the last inequality holds since γ ≤ 1 and |∆λai0 | < |∆λi0 |. Following a very similar

argument that flips the roles of s and λ, one can prove that (42) also holds. ✷
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A Proof of Theorem 1 and Corollary 2

Parts of this proof are inspired from [29], [18], [16], [34], and [35]. Throughout, we assume
that the constraint-selection rule used by the algorithm is such that Condition CSR is
satisfied and (except in the proof of Lemma 13) we let ε = 0 and assume that the iteration
never stops.

A central feature of Algorithm CR-MPC, which plays a key role in the convergence
proofs, is that it forces descent with respect of the primal objective function. The next
proposition establishes some related facts.

Proposition 2 Suppose λ > 0 and s > 0, and W satisfies W ≻ 0 and W � H. If
∆xa 6= 0, then the following inequalities hold:

f(x + α∆xa) < f(x) , ∀α ∈ (0, 2) , (44)

∂

∂α
f(x+ α∆xa) < 0 , ∀α ∈ [0, 1] , (45)

f(x) − f(x + α∆x) ≥
ω

2
(f(x) − f(x+ α∆xa)) , ∀α ∈ [0, 1] , (46)

f(x+ α∆x) < f(x) , ∀α ∈ (0, 1] . (47)

Proof When f(x+α∆xa) is linear in α, i.e., when (∆xa)TH∆xa = 0, then in view of (40),
(44)–(45) hold trivially. When, on the other hand, (∆xa)TH∆xa > 0, f(x + α∆xa) is
quadratic and strictly convex in α and is minimized at

α̂ = −
∇f(x)T∆xa

(∆xa)TH∆xa
= 1 +

(∆xa)T
(

W −H + (AQ)TS−1
Q
ΛQAQ

)

∆xa

(∆xa)TH∆xa
≥ 1,

where we have used (38), (37), and the fact that W � H, and (44)–(45) again follow. Next,
note that, since ω > 0,

ψ(θ) := ω(f(x) − f(x+∆xa)) − (f(x) − f(x+∆xa + θ∆xc))

is quadratic and convex. Now, since γ1 satisfies the constraints in its definition (8), we see
that ψ(γ1) ≤ 0, and since ω ≤ 1, it follows from (44) that ψ(0) = (ω−1)(f(x)−f(x+∆xa)) ≤
0. Since γ ∈ [0, γ1] (see (7)), it follows that ψ(γ) ≤ 0, i.e., since from (16) ∆x = ∆xa+γ∆xc,

f(x) − f(x +∆x) ≥ ω(f(x) − f(x+∆xa)) ,

i.e.,

−∇f(x)T∆x−
1

2
∆xTH∆x ≥ ω

(

−∇f(x)T∆xa −
1

2
(∆xa)TH∆xa

)

. (48)

Now, for all α ∈ [0, 1], invoking (48), (39), and the fact that H � 0, we can write

f(x) − f(x + α∆x) = −α∇f(x)T∆x−
α2

2
∆xTH∆x ≥ α

(

−∇f(x)T∆x− 1
2
∆xTH∆x

)

≥ ωα

(

−∇f(x)T∆xa −
1

2
(∆xa)TH∆xa

)

=
ωα

2

(

−∇f(x)T∆xa −
(

∇f(x)T∆xa + (∆xa)TH∆xa
))

≥ αω
2

(

−∇f(x)T∆xa
)

≥
αω

2

(

−∇f(x)T∆xa −
α

2
(∆xa)TH∆xa

)

= ω
2
(f(x) − f(x+ α∆xa)) ,

proving (46). Finally, since ω > 0, (47) is a direct consequence of (46) and (44). ✷

Given that the iterates are primal-feasible, an immediate consequence of Proposition 2 is
that the primal sequence is bounded.
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Lemma 5 Suppose Assumption 1 holds. Then {xk} is bounded.

We are now ready to prove a key result, relating two successive iterates, that plays a central
role in the remainder of the proof of Theorem 1.

Proposition 3 Suppose Assumptions 1 and 2 hold, and either {(xk ,λk)} is bounded away
from F∗, or Assumption 3 also holds and {xk} converges to the unique primal solution x∗.
Let K be an infinite index set such that

(

inf
k∈K

{χk−1} =

)

inf
{

‖∆xa,k−1‖ν + ‖[λ̃
a,k
Qk−1

]−‖ν : k ∈ K
}

> 0 . (49)

Then {∆xk} → 0 as k → ∞, k ∈ K.

Proof From Lemma 5, {xk} is bounded, and hence so is {sk}; by construction, sk and λk

have positive components for all k, and {λk} ((26)–(27)) and {Wk} are bounded. Further,
for any infinite index set K ′ such that (49) holds, (26) and (27) imply that all components
of {λk} are bounded away from zero on K ′. Since, in addition, Qk can take no more than

finitely many different (set) values, it follows that there exist x̂, λ̂ > 0, Ŵ � 0, an index

set Q̂ ⊆ m, and some infinite index set K̂ ⊆ K ′ such that

{xk} → x̂ as k → ∞ , k ∈ K̂ ,

{sk} → ŝ := {Ax̂− b} ≥ 0 as k → ∞ , k ∈ K̂ . (50)

{λk} → λ̂ > 0 as k → ∞ , k ∈ K̂ , (51)

{Wk} → Ŵ as k → ∞ , k ∈ K̂ ,

Qk = Q̂ , ∀k ∈ K̂ . (52)

Next, under the stated assumptions, J(Ŵ , A
Q̂
, ŝ

Q̂
, λ̂

Q̂
) is non-singular. Indeed, if {(xk,λk)}

is bounded away from F∗, then E(xk,λk) is bounded away from zero and since H+R ≻ 0,

Wk = H + ̺kR = H + min

{

1, E(xk,λk)
Ē

}

R is bounded away from singularity and the

claim follows from Assumption 2 and Lemma 1. On the other hand, if Assumption 3 also
holds and {xk} → x∗, then the claim follows from Condition CSR(ii) and Lemma 1. As a
consequence of this claim, and by continuity of J , it follows from Newton-KKT systems (10)
and (32) that there exist ∆x̂a, ∆x̂, λ̄

a
Q̂
, λ̄

Q̂
such that

{∆xa,k} → ∆x̂a as k → ∞ , k ∈ K̂ , (53)

{∆xk} → ∆x̂ as k → ∞ , k ∈ K̂ ,

{∆sk} → ∆ŝ := A∆x̂ as k → ∞ , k ∈ K̂ , (54)

{λ̃
a,k+1

Q̂
} → λ̄

a
Q̂

as k → ∞ , k ∈ K̂ , (55)

{λ̃
k+1

Q̂
} → λ̄

Q̂
as k → ∞ , k ∈ K̂ , (56)

The remainder of the proof proceeds by contradiction. Thus suppose that, for the infinite
index set K in the statement of this lemma, {∆xk} 6→ 0 as k → ∞, k ∈ K, i.e., for some
K ′′ ⊆ K, ‖∆xk‖ is bounded away from zero on K ′′. Use K ′′ as our K ′ above, so that (since

K̂ ⊆ K ′), ‖∆xk‖ is bounded away from zero on K̂. Then, in view of Lemma 3 (w.l.o.g.),

inf
k∈K̂

‖∆xa,k‖ > 0 . (57)

In addition, we have A(x̂) ⊆ Q̂, an implication of Condition CSR(i) when {(xk ,λk)} is
bounded away from F∗ and of Condition CSR(ii) when Assumption 3 holds and {xk}
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converges to x∗. With these facts in hand, we next show that the sequence of primal step
sizes {αk

p} is bounded away from zero for k ∈ K̂. To this end, let us define

λ̃
′,k+1

:= −(Sk)−1Λk∆sk , ∀k , (58)

so that, for all i ∈ m and all k, λ̃′,k+1
i > 0 if and only if ∆ski < 0, and the primal portion

of (24) can be written as

ᾱk
p :=







∞ if λ̃
′,k+1

≤ 0 ,

mini

{

λk
i

λ̃
′,k+1

i

: λ̃′,k+1
i > 0

}

otherwise.

αk
p := min

{

1, max{κᾱp, ᾱp − ‖∆xk‖}
}

.

Clearly, it is now sufficient to show that, for all i, {λ̃′,k+1
i } is bounded above on K̂. On the

one hand, this is clearly so for i 6∈ Q̂ (whence i 6∈ A(x̂)), in view of (58) and (54), since

{λk} is bounded and {ski } is bounded away from zero on K̂ for i 6∈ A(x̂) (from (50)). On

the other hand, in view of (52), subtracting (58) from (35) yields, for all k ∈ K̂,

λ̃
′k+1

Q̂
= λ̃

k+1

Q̂
− γkσkµ

k

(Q̂)
(Sk

Q̂
)−11+ γk(S

k

Q̂
)−1∆Sa,k

Q̂
∆λ

a,k

Q̂
.

From (56), {λ̃
k+1

Q̂
} is bounded on K̂, and clearly the second term in the right-hand side

of the above equation is non-positive component-wise. As for the third term, the second

equation in (21) gives (Sk
Qk

)−1∆Sa,k
Qk

= (Λk
Qk

)−1Λ̃a,k+1
Qk

, so that we have

γk(S
k

Q̂
)−1∆Sa,k

Q̂
∆λ

a,k

Q̂
= γk(Λ

k

Q̂
)−1Λ̃a,k+1

Q̂
∆λ

a,k

Q̂
, ∀k ∈ K̂ ,

which is bounded on K̂ since, from (51), (55), and the definition (34) of {λ̃a,+}, both

{Λ̃a,k+1

Q̂
} and {∆λ

a,k

Q̂
} are bounded, and from (51), {λk

Q̂
} is bounded away from zero on K̂.

Therefore, {λ̃′,k+1
i } is bounded above on K̂ for i ∈ Q̂ as well, proving that {αk

p} is bounded

away from zero on K̂, i.e., that there exists α > 0 such that αk
p > α, for all k ∈ K̂, as

claimed. Without loss of generality, choose α in (0, 1).

Finally, we show that {f(xk)} → −∞ as k → ∞ on K̂, which contradicts boundedness

of {xk} (Lemma 5). For all k ∈ K̂, since ∆xa,k 6= 0 (by (57)) and αk
p ∈ (α, 1], Proposition 2

implies that {f(xk)} is monotonically decreasing and that, for all k ∈ K̂,

f(xk + αk
p∆xa,k) < f(xk + α∆xa,k) .

Expanding the right-hand side yields

f(xk + α∆xa,k) = f(xk) + α∇f(xk)T∆xa,k +
α2

2
(∆xa,k)TH∆xa,k

= f(xk) + α
(

∇f(xk)T∆xa,k + (∆xa,k)TH∆xa,k
)

−

(

α−
α2

2

)

(∆xa,k)TH∆xa,k ,

where the sum of the last two terms tends to a strictly negative limit as k → ∞, k ∈ K̂.
Indeed, in view of (39), the second term is non-positive and (i) if (∆x̂a)TH∆x̂a > 0,
since α > α2/2, from (53) and (57), the third term tends to a negative limit, and (ii)
if (∆x̂a)TH∆x̂a = 0 then the sum of the last two terms tends to α∇f(x̂)T∆x̂a which

is also strictly negative in view of (40), since we either have Ŵ ≻ 0 (in the case that

{(xk ,λk)} bounded away from F∗) or at least [Ŵ (A
Q̂
)T ] full row rank (in the case that

Assumption 3 holds and using the fact that A(x̂) ⊆ Q̂). It follows that, for some δ > 0,

f(xk + αk
p∆xa,k) < f(xk) − δ for all k ∈ K̂ large enough. Proposition 2 (eq. (46)) then

gives that f(xk+1) := f(xk + αk
p∆xk) < f(xk) − ω

2
δ for all k ∈ K̂ large enough, where

ω > 0 is an algorithm parameter. Since {f(xk)} is monotonically decreasing, the proof is
now complete. ✷
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We now conclude the proof of Theorem 1 via a string of eight lemmas, each of which
builds on the previous one. First, on any subsequence, if {∆xa,k} tends to zero, then {xk}

approaches stationary points. (Here both {λ̃
a,k+1

} and {λ̃
k+1

} are as defined in (34).)

Lemma 6 Suppose that Assumption 1 holds and that {xk} converges to some limit point
x̂ on an infinite index set K. If {∆xa,k} converges to zero on K, then (i) x̂ is stationary
and

∇f(xk)−
(

AA(x̂)

)T
λ̃
a,k+1
A(x̂) → 0 , as k → ∞ , k ∈ K . (59)

If, in addition, Assumption 2 holds, then (ii) {λ̃
a,k+1

} and {λ̃
k+1

} converge on K to λ̂,
the unique multiplier associated with x̂.

Proof Suppose {xk} → x̂ on K and {∆xa,k} → 0 on K. Let sk := Axk − b(> 0) for all
k ∈ K and ŝ := Ax̂ − b(≥ 0), so that {sk} → ŝ on K. As a first step toward proving

Claim (i), we show that, for any i 6∈ A(x̂), {λ̃a,k+1
i } → 0 on K. For i 6∈ A(x̂), since ŝi > 0,

{ski } is bounded away from zero on K. Since it follows from (34) and (36) that, for all k,

λ̃a,k+1
i = 0 , ∀i 6∈ Qk and λ̃a,k+1

i = −(ski )
−1
λki∆s

a,k
i , ∀i ∈ Qk ,

and since {λki } is bounded (by construction) and ∆sa,k = A∆xa,k (by (21)), we have

{λ̃a,k+1
i } → 0 on K. To complete the proof of Claim (i), note that the first equation of (10)

(with H replaced by W ) yields

∇f(xk)− (AQk
)T λ̃

a,k+1
Qk

= −Wk∆xa,k .

Since (i) {λ̃a,k+1
i } → 0 on K for i 6∈ A(x̂), (ii) {Wk} is bounded (since H �Wk � H + R),

(iii) {∆xa,k} → 0 on K, and (iv) by definition (34), λ̃a,+i = 0 for i ∈ Qc, we conclude

that (59) holds, hence {
(

AA(x̂)

)T
λ̃
a,k+1
A(x̂) } converges (since ∇f(xk) does) as k → ∞, k ∈ K,

to a point in the range of
(

AA(x̂)

)T
, say

(

AA(x̂)

)T
λ̂A(x̂). We get∇f(x̂)−

(

AA(x̂)

)T
λ̂A(x̂) =

0, proving Claim (i). Finally, Claim (ii) follows from (59), Assumption 2, and the fact that

for i 6∈ A(x̂), {λ̃a,k+1
i } → 0 as k → ∞, k ∈ K, noting that the same argument applies

to {λ̃
k+1

}, using a modified version of (59), with λ̃ replacing λ̃
a
, obtained by starting

from the first equation of (32) instead of that of (10) and using the fact, proved next, that

{λ̃k+1
i } → 0 on K for all i 6∈ A(x̂). From its definition in (34) and the last equation in (33),

we have that, for all k,

λ̃k+1
i = 0 , ∀i 6∈ Qk ,

λ̃k+1
i = (ski )

−1
(−λki∆s

k
i + γkσkµ

(k)
(Qk)

− γk∆s
a,k
i ∆λa,ki ) , ∀i ∈ Qk .

Since {λ̃a,k+1
i } converges (to zero) on K, {∆λa,ki } is bounded on K. Furthermore, from its

definition (7)–(8) (see also (16)), {γk} is bounded and |γkσkµ
(k)
(Qk)

| ≤ τ‖∆xa,k‖ for all k.

Since ∆sa,k = A∆xa,k and ∆sk = A∆xk, in view of Lemma 3, it follows that, for i 6∈ A(x̂),

{λ̃k+1
i } → 0 on K. ✷

Lemma 6, combined with Proposition 3 via a contradiction argument, then implies that (on
a subsequence), if {xk} does not approach F∗

P , then {∆xk} approaches zero.

Lemma 7 Suppose that Assumptions 1 and 2 hold and that {xk} is bounded away from
F∗

P
on some infinite index set K. Then {∆xk} → 0 as k → ∞, k ∈ K.

Proof Proceeding by contradiction, let K be an infinite index set such that {xk} is bounded
away from F∗

P
on K and {∆xk} 6→ 0 as k → ∞, k ∈ K. Then, in view of Proposition 3
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and boundedness of {xk} (Lemma 5), there exist Q̂ ⊆ m, x̂ 6∈ F∗
P
, and an infinite index set

K̂ ⊆ K such that Qk = Q̂ for all k ∈ K̂ and

{xk} → x̂ , as k → ∞, k ∈ K̂ ,

{∆xa,k−1} → 0 , as k → ∞, k ∈ K̂ ,

{[λ̃
a,k

Q̂
]−} → 0 , as k → ∞, k ∈ K̂ .

On the other hand, from (25), (16) and (7)–(8),

‖xk − xk−1‖ = ‖αk−1
p ∆xk−1‖ ≤ ‖∆xk−1‖ ≤ (1 + τ)‖∆xa,k−1‖ ,

which implies that {xk−1} → x̂ as k → ∞, k ∈ K̂. It then follows from Lemma 6 that

x̂ is stationary and that [λ̃
a,k
A(x̂)]+ converges to the associated multiplier vector. Hence the

multipliers are non-negative, contradicting the fact that x̂ 6∈ F∗
P
. ✷

A contradiction argument based on Lemmas 6 and 7 then shows that {xk} approaches the
set of stationary points of (P).

Lemma 8 Suppose Assumptions 1 and 2 hold. Then the sequence {xk} approaches the set
of stationary points of (P), i.e., there exists a sequence {x̂k} of stationary points such that
‖xk − x̂k‖ goes to zero as k → ∞.

Proof Proceeding by contradiction, suppose the claim does not hold, i.e., (invoking Lemma 5)
suppose {xk} converges to some non-stationary point x̂ on some infinite index set K. Then
{∆xa,k} does not converge to zero on K (Lemma 6(i)) and nor does {∆xk} (Lemma 3).
Since x̂ is non-stationary, this is in contradiction with Lemma 7. ✷

The next technical result, proved in [29, Lemma 3.6], invokes analogues of Lemmas 5, 7
and 8.

Lemma 9 Suppose Assumptions 1 and 2 hold. Suppose {xk} is bounded away from F∗
P
.

Let x̂ and x̂′ be limit points of {xk} and let λ̂ and λ̂
′
be the associated KKT multipliers.

Then λ̂ = λ̂
′
.

Convergence of {xk} to F∗
P

ensues, proving Claim (i) of Theorem 1.

Lemma 10 Suppose Assumptions 1 and 2 hold. Then {xk} converges to F∗
P .

Proof We proceed by contradiction. Thus suppose {xk} does not converge to F∗
P
. Then,

since {xk} is bounded (Lemma 5), (by Proposition 2) {f(xk)} is a bounded, monotonically
decreasing sequence, and it has at least one limit point x̂ that is not in F∗

P
. Hence, f(x̂) =

infk f(x
k). Then, by Lemmas 7 and 3, {∆xk} and {∆xa,k} converge to zero as k → ∞. It

follows from Lemmas 6 and 9 that all limit points of {xk} are stationary, and that both

{λ̃
a,k

} and {λ̃
k
} converge to λ̂, the common KKT multiplier vector associated to all limit

points of {xk}. Since x̂ 6∈ F∗
P , there exists i0 such that λ̂i0 < 0, so that, for some k̂ > 0,

λ̃a,k+1
i0

< 0 and λ̃k+1
i0

< 0 , ∀k > k̂ , (60)

which, in view of Step 8 of the algorithm, implies that i0 ∈ Qk for all k > k̂. Then (36) gives

∆sa,ki0
= −(λki0 )

−1ski0 λ̃
a,k+1
i0

, ∀k > k̂ ,

where ski0 > 0, λki0 > 0 by construction. Thus, in view of (60), ∆sa,ki0
> 0 for all k > k̂. On

the other hand, the last equation of (33) gives

∆ski0 = (λki0 )
−1(−ski0 λ̃

k+1
i0

+ γkσkµ
k
(Qk) − γk∆s

a,k
i0
∆λa,ki0

), ∀k > k̂ , (61)
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where γk ≥ 0, σk ≥ 0, and µk
(Qk)

≥ 0 by construction. Further, for k > k̂, ∆λa,k
i0

< 0 since

λki0 > 0 and λ̃a,k+1
i0

(= λki0 +∆λa,ki0
) < 0. It follows that all terms in (61) are non-negative

and the first term is positive, so that ∆ski0 > 0 for all k > k′. Moreover, for all k > k̂, we

have sk+1
i0

= ski0 + αk
p∆s

k
i0
> ski0 > 0, where αk

p > 0 since sk > 0. Since {sk} is bounded

(Lemma 5), we then conclude that {ski0} → ŝi0 > 0 so that ŝi0 λ̂i0 < 0, in contradiction
with the stationarity of limit points. ✷

Under strict complementarity, the next lemma then establishes appropriate convergence of
the multipliers, setting the stage for the proof of part (ii) of Theorem 1 in the following
lemma.

Lemma 11 Suppose Assumptions 1 to 3 hold and let (x∗,λ∗) be the unique primal-dual
solution. Then, given any infinite index set K such that {∆xa,k}k∈K → 0, it holds that
{λk+1}k∈K → ξ∗, where ξ∗i := min{λ∗i , λ

max}, for all i ∈ m.

Proof Lemma 10 guarantees that {xk} → x∗. Let K be an infinite index set such that

{∆xa,k}k∈K → 0. Then, in view of Lemma 6(ii), {λ̃
a,k+1

}k∈K → λ∗ ≥ 0. Accordingly,

{χk} = {‖∆xa,k‖ν +‖[λ̃
a,k+1
Qk

]−‖ν} → 0 as k → ∞, k ∈ K. Hence, in view of (26) and (27),

the proof will be complete if we show that {λ̆
k+1

}k∈K → λ∗, where

λ̆
k+1
i := λki + αk

d∆λ
k
i , i ∈ Qk, and λ̆

k+1
i := µk+1

(Qk)
/sk+1

i , i ∈ Qc
k ,

or equivalently, {λ̃
k+1

− λ̆
k+1

}k∈K → 0, which we do now.
For every Q ⊆ m, define the index set K(Q) := {k ∈ K : Qk = Q}, and let Q :=

{Q ⊆ m : |K(Q)| = ∞}. We first show that for all Q ∈ Q, {λ̃
k+1
Q − λ̆

k+1
Q }k∈K(Q) → 0. For

Q ∈ Q, the definition (34) of λ̃
+

yields

‖λ̃
k+1
Q − λ̆

k+1
Q ‖ = (1 − αk

d)‖∆λk
Q‖, k ∈ K(Q) .

Since boundedness of {λk
Q} (by construction) and of {λ̃

k+1
Q }k∈K (={λk

Q + ∆λk
Q)}k∈K)

(by Lemma 6(ii)) implies boundedness of {∆λk
Q}k∈K , we only need {αk

d}k∈K(Q) → 1 in

order to guarantee that ‖λ̃
k+1
Q − λ̆

k+1
Q ‖ → 0 on K(Q). Now, {∆xa,k}k∈K → 0 implies that

{∆sa,k}k∈K → 0, and from Lemma 3 that {∆xk}k∈K → 0, implying that {∆sk}k∈K → 0;
and {xk} → x∗ yields {sk} → s∗ := Ax∗ − b, so ski + ∆ski > 0 for all i ∈ A(x∗)c,
k ∈ K large enough. Moreover, Assumption 3 gives λ∗i > 0 for all i ∈ A(x∗) so that, for

sufficiently large k ∈ K, λ̃k+1
i > 0 for all i ∈ A(x∗), and Condition CSR(ii) implies that

A(x∗) ⊆ Q, so Lemma 4 applies, with A := A(x∗). It follows that {ᾱk
d}k∈K → 1, since all

terms on the right-hand side of (41) converge to one on K. Thus, from the definition of αk
d

in (24) and the fact that {∆xk}k∈K → 0, we have {αk
d}k∈K → 1 indeed, establishing that

{λ̃
k+1
Q − λ̆

k+1
Q }k∈K(Q) → 0.

It remains to show that, for all Q ∈ Q, {λ̃
k+1
Qc − λ̆

k+1
Qc }k∈K(Q) → 0. To show this, we

first note that, since {χk}k∈K → 0, it follows from (26) and (27) and the fact established

above that {λ̆
k+1
Q }K(Q) → λ∗

Q that, for all Q ∈ Q,

{λk+1
Q

} → ξ∗Q, k → ∞, k ∈ K(Q). (62)

Next, from (26), (27), and the definition (34) of λ̃
+
, we have, for Q ∈ Q and sufficiently

large k ∈ K(Q),

|λ̃k+1
i − λ̆

k+1
i | = λ̆

k+1
i =

µk+1
(Q)

sk+1
i

, i ∈ Qc . (63)
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Clearly, since A(x∗) ⊆ Q, we have s∗i > 0 for i ∈ Qc. Hence, since {∆sk}k∈K → 0, {sk+1
i

}
is bounded away from zero on K for i ∈ Qc. When Q is empty, the right-hand side of (63)
is set to zero (see definition (14) of µ(Q)). When Q is not empty, since ξ∗i = 0 whenever
λ∗i = 0, (62) and complementary slackness gives

{

µk+1
(Q)

}

=

{

(sk+1
Q

)Tλk+1
Q

|Q|

}

→

{

(s∗
Q
)T ξ∗Q

|Q|

}

= 0, k ∈ K(Q) ,

and it follows from (63) that {λ̃
k+1
Qc − λ̆

k+1
Qc }k∈K(Q) → 0, completing the proof. ✷

Claim (ii) of Theorem 1 can now be proved.

Lemma 12 Suppose Assumptions 1 to 3 hold and let (x∗,λ∗) be the unique primal-dual

solution. Then {λ̃
k
} → λ∗ and {λk} → ξ∗, with ξ∗i := min{λ∗i , λ

max} for all i ∈ m.

Proof Again, Lemma 10 guarantees that {xk} → x∗ and {sk} → s∗ := Ax∗ − b. Note
that if {∆xa,k} → 0, the claims are immediate consequences of Lemmas 6 and 11. We
now prove by contradiction that {∆xa,k} → 0. Thus, suppose that for some infinite index
set K, infk∈K ‖∆xa,k‖ > 0. Then, Lemma 3 gives infk∈K ‖∆xk‖ > 0. It follows from

Proposition 3 that, on some infinite index set K ′ ⊆ K, {∆xa,k−1} → 0 and {[λ̃
a,k

]−} → 0.
Since Qk is selected from a finite set and {Wk} is bounded, we can assume without loss
of generality that Qk = Q on K ′ for some Q ⊆ m, and that {Wk} → W ∗ � H on K ′.
Further, from Lemma 11, {λk}k∈K′ → ξ∗. Therefore, {J(Wk, AQk

, sQk
,λQk

)}k∈K′ →
J(W ∗, AQ, s

∗
Q
, ξ∗Q), and in view of Assumptions 2 and 3 and Lemma 1, J(W ∗, AQ, s

∗
Q
, ξ∗Q)

is non-singular (since (x∗,λ∗) is optimal). It follows from (10), with W substituted for H,
that {∆xa,k} → 0 on K ′, a contradiction, proving that {∆xa,k} → 0. ✷

Claim (iv) of Theorem 1 follows as well.

Lemma 13 Suppose Assumptions 1 and 2 hold and ε > 0. Then Algorithm CR-MPC
terminates (in Step 1) after finitely many iterations.

Proof If {(xk ,λk)} has a limit point in F∗, then infk{Ek} = 0, proving the claim. Thus,
suppose that {(xk ,λk)} is bounded away from F∗. In view of Lemmas 5 and 10, {xk} has a
limit point x∗ ∈ F∗

P
. Assumption 2 then implies that there exists a unique KKT multiplier

vector λ∗ ≥ 0 associated to x∗. If (x∗,λ∗) ∈ F∗ is a limit point of {(xk , λ̃
k
)}, which also

implies that infk{E(xk, λ̃
k
)} = 0, then in view of the stopping criterion, the claim again

follows. Thus, further suppose that there is an infinite index set K such that {xk}k∈K → x∗,

but infk∈K ‖λ̃
k
− λ∗‖ > 0. It then follows from Lemma 6(ii) that {∆xa,k−1}k∈K 6→ 0,

and from Lemma 3 that {∆xk−1}k∈K 6→ 0. Proposition 3 and Lemma 3 then imply that
{∆xa,k−2}k∈K′ → 0 and {∆xk−2}k∈K′ → 0 for some infinite index setK ′ ⊆ K. Next, from
Lemmas 5 and 10, we have {xk−2}k∈K′′ → x∗∗ ∈ F∗

P
for some infinite index set K ′′ ⊆ K ′,

and in view of Lemma 6(ii) {λ̃
k−1

}k∈K′′ → λ∗∗, where λ∗∗ is the KKTmultiplier associated

to x∗∗. Since αk
p ∈ [0, 1] for all k, we also have {xk−1}k∈K′′ = {xk−2+αk−2

p ∆xk−2}k∈K′′ →

x∗∗, i.e., {(xk−1, λ̃
k−1

)}k∈K′′ → (x∗∗,λ∗∗) ∈ F∗, completing the proof. ✷

Proof of Theorem 1. Claim (i) was proved in Lemma 10 and Claim (ii) in Lemma 12,
Claim (iii) is a direct consequence of Condition CSR(ii), and Claim (iv) was proved in
Lemma 13.

Proof of Corollary 2. From Theorem 1, {(xk ,λk)} → (x∗,λ∗), i.e., {Ek} → 0. It follows
that (i) in view of Proposition 1 and Condition CSR(ii) Qk ⊇ A(x∗) for all k large enough,
and (ii) in view of Rule R, {δk} → 0, so that Qk eventually excludes all indexes that are
not in A(x∗). ✷
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B Proof of Theorem 2

Parts of this proof are adapted from [16,29,34]. Throughout, we assume that Assumption 3
holds (so that Assumption 1 also holds), that ε = 0 and that the iteration never stops, and
that λ∗i < λmax for all i.

Newton’s method plays the central role in the local analysis. The following lemma is
standard or readily proved; see, e.g., [29, Proposition 3.10].

Lemma 14 Let Φ : Rn → R
n be twice continuously differentiable and let t∗ ∈ R

n such that
Φ(t∗) = 0. Suppose there exists ρ > 0 such that ∂Φ

∂t
(t) is non-singular for all t ∈ B(t∗, ρ).

Define ∆Nt to be the Newton increment at t, i.e., ∆Nt = −
(

∂Φ
∂t

(t)
)−1

Φ(t). Then, given

any c > 0, there exists c∗ > 0 such that, for all t ∈ B(t∗, ρ), if t+ ∈ R
n satisfies

min{|t+
i
− t∗i |, |t

+
i

− (ti + (∆Nt)i)|} ≤ c max{‖∆Nt‖2, ‖t− t∗‖2}, i = 1, . . . , n , (64)

then
‖t+ − t∗‖ ≤ c∗‖t− t∗‖2 .

For convenience, define z := (x,λ) (as well as z∗ := (x∗,λ∗), etc.). For z ∈ Fo := {z :
x ∈ Fo

P , λ > 0}, define

̺(z) := min

{

1,
E(x,λ)

Ē

}

and W (z) := H + ̺(z)R .

The gist of the remainder of this appendix is to apply Lemma 14 to

ΦQ(z) :=

[

Hx− (AQ)TλQ + c

ΛQ(AQx− bQ)

]

, Q ⊆ m.

(Note that ΦQ(z∗) = 0.) Let zQ := (x,λQ), then the step taken on the Q components
along the search direction generated by the Algorithm CR-MPC is analogously given by

z̆
+
Q

:= (x+, λ̆
+
Q) with λ̆

+
Q := λQ + αd∆λQ. The first major step of the proof is achieved

by Proposition 4 below, where the focus is on z̆+
Q

rather than on z+. Thus we compare z̆+
Q
,

with Q ∈ Q∗ to the Q components of the (unregularized) Newton step, i.e., zQ + (∆Nz)Q.
Define

A :=

[

αpIn 0

0 αdI|Q|

]

, and α := min{αp, αd} .

The difference between the CR-MPC iteration and the Newton iteration can be written as

‖z̆+
Q

− (zQ + (∆Nz)Q)‖

≤ ‖z̆+
Q

− (zQ +∆zQ)‖ + ‖∆zQ −∆zaQ‖+ ‖∆zaQ −∆z0Q‖+ ‖∆z0Q − (∆Nz)Q‖

= ‖(I − A )∆zQ‖+ γ‖∆zcQ‖+ ‖∆zaQ −∆z0Q‖+ ‖∆z0Q − (∆Nz)Q‖

≤ (1− α)‖∆zQ‖+ ‖∆zcQ‖+ ‖∆zaQ −∆z0Q‖+ ‖∆z0Q − (∆Nz)Q‖ ,

(65)

where ∆zQ := (∆x,∆λQ), ∆za
Q

:= (∆xa, ∆λa
Q), ∆zc

Q
:= (∆xc, ∆λc

Q), and ∆z0
Q

is

the (constraint-reduced) affine-scaling direction for the original (unregularized) system (so
∆Nz = ∆z0

m
).

Let

Ja(W,A, s,λ) :=

[

W −AT

ΛA S

]

.

The following readily proved lemma will be of help. (For details, see Lemmas B.15 and B.16
in [16]; also Lemmas 13 and 1 in [28])

Lemma 15 Let s,λ ∈ R
m and Q ⊆ m be arbitrary and let W be symmetric, with W � H.

Then (i) Ja(W,AQ, sQ,λQ) is non-singular if and only if J(W,AQ, sQ,λQ) is, and (ii) if
A(x∗) ⊆ Q, then J(W,AQ, s

∗
Q
,λ∗

Q) is non-singular (and so is Ja(W,AQ, s
∗
Q
,λ∗

Q)).
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With s := Ax− b, Ja(H,AQ, sQ,λQ), the system matrix for the (constraint-reduced) orig-
inal (unregularized) “augmented” system, is the Jacobian of ΦQ(z), i.e.,

Ja(H,AQ, sQ,λQ)∆z0Q = −ΦQ(z) ,

and its regularized version Ja(W (z), AQ, sQ,λQ) satisfies (among other systems solved by
Algorithm CR-MPC)

Ja(W (z), AQ, sQ,λQ)∆zaQ = −ΦQ(z) .

Next, we verify that Ja(W (z), AQ, sQ,λQ) is non-singular near z∗ (so that ∆z0
Q

and ∆za
Q

in (65) are well defined) and establish other useful local properties. For convenience, we
define

Q∗ := {Q ⊆ m : A(x∗) ⊆ Q} .

and
s̃+ := s+∆s, s̃a,+ := s+∆sa.

Lemma 16 Let ǫ∗ := min{1,mini∈m(λ∗i + s∗i )}. There exist ρ∗ > 0 and r > 0, such that,
for all z ∈ Fo ∩B(z∗, ρ∗) and all Q ∈ Q∗, the following hold:

(i) ‖Ja(W (z), AQ,λQ, sQ)−1‖ ≤ r,
(ii) max{‖∆zaQ‖, ‖∆zQ‖, ‖∆saQ‖, ‖∆sQ‖} < ǫ∗/4,

(iii) min{λi, λ̃
a,+
i , λ̃+i } > ǫ∗/2, ∀i ∈ A(x∗),

max{λi, λ̃
a,+
i , λ̃+i } < ǫ∗/2, ∀i ∈ m \ A(x∗),

max{si, s̃
a,+
i , s̃+i } < ǫ∗/2, ∀i ∈ A(x∗),

min{si, s̃
a,+
i , s̃+i } > ǫ∗/2, ∀i ∈ m \ A(x∗).

(iv) λ̃+i < λmax, ∀i ∈ m.

Proof Claim (i) follows from Lemma 15, continuity of Ja(W (z), AQ,λQ, sQ) (and the fact
that W (z∗) = H). Claims (ii) and (iv) follow from Claim (i), Lemma 15, continuity of the

right-hand sides of (10) and (32), which are zero at the solution, definition (34) of λ̃
+
, and

our assumption that λ∗i < λmax for all i ∈ m. Claim (iii) is true due to strict complementary
slackness, the definition of ǫ∗, and Claim (ii). ✷

In preparation for Proposition 4, Lemmas 17–20 provide bounds on the four terms in
the last line of (65). The ρ∗ used in these lemmas comes from Lemma 16. The proofs of
Lemmas 17, 18, and 20 are omitted, as they are very similar to those of Lemmas A.9 and
A.10 in the supplementary materials of [34] (where an MPC algorithm for linear optimization
problems is considered) and of Lemma B.19 in [16] (also Lemma 16 in [28]).

Lemma 17 There exists a constant c1 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗), and for
all Q ∈ Q∗,

‖∆zcQ‖ ≤ c1‖∆zaQ‖2 .

Note that an upper bound on the magnitude of the MPC search direction ∆zQ can be
obtained by using Lemma 17 and Lemma 16(ii), viz.

‖∆zQ‖ ≤ ‖∆zaQ‖+ ‖∆zcQ‖ ≤ ‖∆zaQ‖+ c1‖∆zaQ‖2 ≤

(

1 + c1
ǫ∗

4

)

‖∆zaQ‖ . (66)

This bound is used in the proofs of Lemma 18 and Proposition 4.

Lemma 18 There exists a constant c2 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗), and for
all Q ∈ Q∗,

|1− α| ≤ c2‖∆zaQ‖ .

Lemma 19 There exists a constant c3 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗) and all
Q ∈ Q∗,

‖∆zaQ −∆z0Q‖ ≤ c3‖z− z∗‖2.
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Proof We have

∆zaQ −∆z0Q = −(Ja(W (z), AQ, sQ,λQ)−1 − Ja(H,AQ, sQ,λQ)−1)ΦQ(z)

so that there exist c31 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗) and all Q ∈ Q∗,

‖∆zaQ −∆z0Q‖ ≤ c31‖W (z)−H‖‖z− z∗‖ ,

where the second inequality follows from Lemma 16(i). Since W (z) −H = ̺(z)R, |̺(z)| ≤
c32|E(z)|, and |E(z)| ≤ c33‖z− z∗‖, for some c32 > 0 and c33 > 0, the proof is complete. ✷

Lemma 20 There exists a constant c4 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗), and for
all Q ∈ Q∗,

‖∆z0Q − (∆Nz)Q‖ ≤ c4‖z− z∗‖‖(∆Nz)Q‖ .

With Lemmas 17–20 in hand, we return to inequality (65).

Proposition 4 There exists a constant c5 > 0 such that, for all z ∈ Fo ∩ B(z∗, ρ∗), and
for all Q ∈ Q∗,

‖z̆+
Q

− (zQ + (∆Nz)Q)‖ ≤ c5 max{‖∆Nz‖2, ‖z− z∗‖2} . (67)

Proof Let z ∈ Fo ∩ B(z∗, ρ∗) and Q ∈ Q∗. It follows from (65), Lemmas 17–20, and (66)
that

‖z̆+
Q

− (zQ + (∆Nz)Q)‖ ≤ (1− α)‖∆zQ‖+ ‖∆zcQ‖+ ‖∆zaQ −∆z0Q‖+ ‖∆z0Q − (∆Nz)Q‖

≤ c2‖∆zaQ‖‖∆zQ‖+ c1‖∆zaQ‖2 + c3‖z− z∗‖2 + c4‖z− z∗‖‖(∆Nz)Q‖

≤

(

c2

(

1 + c1
ǫ∗

4

)

+ c1

)

‖∆zaQ‖2 + c3‖z− z∗‖2 + c4‖z− z∗‖‖(∆Nz)Q‖ .

Also, by Lemmas 19 and 20, we have

‖∆zaQ‖ ≤ ‖∆zaQ −∆z0Q‖+ ‖∆z0Q − (∆Nz)Q‖+ ‖(∆Nz)Q‖

≤ c3‖z− z∗‖2 + c4‖z− z∗‖‖(∆Nz)Q‖+ ‖(∆Nz)Q‖ .
(68)

The claim follows (in view of boundedness of Fo ∩ B(z∗, ρ∗)). ✷

With Proposition 4 established, we proceed to the second major step of the proof of
Theorem 2: to show that (67) still holds when z+ is substituted for z̆

+
Q
.

Proof of Theorem 2. Again, let ρ∗ be as given in Lemma 16. Let z ∈ Fo ∩B(z∗, ρ∗) and
Q ∈ Q∗. Let ρ := ρ∗, t := z, and t∗ := z∗. Then the desired q-quadratic convergence is
a direct consequence of Lemma 14, provided that the condition (64) is satisfied. Hence, we
now show that there exists some constant c > 0 such that, for each i ∈ m,

min{|z+i − z∗i |, |z
+
i − (zi + (∆Nz)i)|} ≤ c max{‖∆Nz‖2, ‖z− z∗‖2} . (69)

As per Proposition 4, (69) holds for i ∈ Q with z+i replaced with z̆+i . In particular, (69) holds

for the x+ components of z+. It remains to show that (69) holds for the λ+ components of

z+. Firstly, for all i ∈ A(x∗), we show that λ+i = λ̆
+
i , thus (69) holds for all λ+i such that

i ∈ A(x∗) by Proposition 4. From the fact that λ > 0 (z ∈ Fo) and Lemma 16(ii), and
since ν ≥ 2, it follows that

χ := ‖∆xa‖ν + ‖[λ̃
a,+
Q ]−‖ν ≤ ‖∆xa‖ν + ‖∆λa

Q‖ν ≤ 2

(

ǫ∗

4

)ν

≤
ǫ∗

2
, (70)
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so that min{χ, λ} ≤ ǫ∗/2. Also, from Lemma 16(iii) and the fact that λ̆
+
Q is a convex

combination of λQ and λ̃
+
Q, we have, for all i ∈ A(x∗),

ǫ∗

2
< min{λi, λ̃

+
i } ≤ λ̆

+
i . (71)

Hence, from (70), (71), Lemma 16(iv), and (26), we conclude that λ+i = λ̆
+
i for all i ∈ A(x∗).

Secondly, we prove that there exists d1 > 0 such that

‖λ+
Q\A(x∗)

‖ = ‖λ+
Q\A(x∗)

− λ∗
Q\A(x∗)‖ ≤ d1 max{‖∆Nz‖2, ‖z− z∗‖2} ∀i ∈ Q \ A(x∗) ,

(72)
thus establishing (69) for λ+i with i ∈ Q \ A(x∗). For i ∈ Q \ A(x∗), we know from (26)

that, either λ+i = min{λmax, λ̆
+
i }, or λ+i = min{λ, ‖∆xa‖ν + ‖[λ̃

a,+
Q ]−‖ν}. In the former

case, we have

|λ+i | ≤ |λ̆
+
i | = |λ̆

+
i − λ∗i | ≤ |λ̆

+
i − (λi + (∆Nλ)i)|+ |(λi + (∆Nλ)i)− λ∗i |

≤ d2 max{‖∆Nz‖2, ‖z− z∗‖2}+ d3‖z − z∗‖2 ,

for some d2 > 0, d3 > 0. Here the last inequality follows from Proposition 4 and the
quadratic rate of the Newton step given in Lemma 14. In the latter case, since λ > 0, we
obtain

|λ+i | ≤ ‖∆xa‖ν+‖[[λ̃
a,+
Q ]−‖ν ≤ ‖∆xa‖ν+‖∆λa

Q‖ν = ‖∆zaQ‖ν ≤ d4 max{‖∆Nz‖2, ‖z−z∗‖2},
(73)

for some d4 > 0. Here the equality is from the definition of ∆za and the last inequality
follows from ν ≥ 2, (68), and boundedness of Fo∩B(z∗, ρ∗). Hence, we have established (72).
Thirdly and finally, consider the case that i ∈ Qc. Since A(x∗) ⊆ Q, λ∗

Qc = 0 and it follows

from (27) that, either λ+i = min{λmax, µ+
(Q)

/s+i }, or λ+i = min{λ, ‖∆xa‖ν + ‖[λ̃
a
Q]−‖ν}. In

the latter case, the bound in (73) follows. In the former case, we have

|λ+i − λ∗i | = |λ+i | ≤ µ+
(Q)

/s+i .

By definition, s+i := si +αp∆si is a convex combination of si and s̃+i . Thus, Lemma 16(iii)

gives that s+i ≥ min{si, s̃
+
i } > ǫ∗/2. Then using the definition of µ+

(Q)
(see Step 10 of

Algorithm CR-MPC) leads to

|λ+i − λ∗i | ≤

{

2
ǫ∗|Q|

(

(s+
A(x∗)

)T (λ+
A(x∗)

) + (s+
Q\A(x∗)

)T (λ+
Q\A(x∗)

)
)

, if |Q| 6= 0

0 , otherwise
.

Since z ∈ B(z∗, ρ∗), λ+
A(x∗)

and s
+
Q\A(x∗)

are bounded by Lemma 16(ii). Also, by definition,

s∗
A(x∗)

= 0. Thus there exist d5 > 0 and d6 > 0 such that

|λ+i − λ∗i | ≤ d5‖s
+
A(x∗)

− s∗A(x∗)‖+ d6‖λ
+
Q\A(x∗)

‖ .

Having already established that the second term is bounded by the right-hand side of (72),
and we are left to prove that the first term also is. By definition,

‖s+
A(x∗)

− s∗A(x∗)‖ = ‖AA(x∗)x
+ − AA(x∗)x

∗‖ ≤ ‖Ax+ − Ax∗‖ ≤ ‖A‖‖z̆+
Q

− z∗Q‖ .

Applying Proposition 4 and Lemma 14, we get

‖s+
A(x∗)

− s∗A(x∗)‖ ≤ ‖A‖‖z̆+
Q

− (zQ + (∆Nz)Q)‖ + ‖A‖‖(zQ + (∆Nz)Q)− z∗Q‖

≤ d7 max{‖∆Nz‖2, ‖z− z∗‖2}+ d8‖z − z∗‖2 ,

for some d7 > 0, d8 > 0. Hence, we established (69) for all i ∈ m, thus proving the q-
quadratic convergence rate. ✷
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