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Abstract In this paper, a proximal augmented Lagrangian homotopy (PAL-
Hom) method for solving convex quadratic programming problems is proposed.
This method takes the proximal augmented Lagrangian method as the outer
iteration. To solve the proximal augmented Lagrangian subproblems, a homo-
topy method is presented as the inner iteration. The homotopy method tracks
the piecewise-linear solution path of a parametric quadratic programming
problem whose start problem takes an approximate solution as its solution
and the target problem is the subproblem to be solved. To improve the perfor-
mance of the homotopy method, the accelerated proximal gradient method is
used to obtain a fairly good approximate solution that implies a good predic-
tion of the optimal active set. Moreover, a sorting technique for the Cholesky
factor update as well as an ε-relaxation technique for checking primal-dual fea-
sibility and correcting the active sets are presented to improve the efficiency
and robustness of the homotopy method. Simultaneously, a proximal-point-
based AL-Hom method which is shown to converge in finite number of steps,
is applied to linear programming. Numerical experiments on randomly gener-
ated problems and the problems from the CUTEr and Netlib test collections,
support vector machines (SVMs) and contact problems of elasticity demon-
strate that PAL-Hom is faster than the active-set methods and the parametric
active set methods and is competitive to the interior-point methods and the
specialized algorithms designed for specific models (e.g., sequential minimal
optimization (SMO) method for SVMs).
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1 Introduction

In this paper, we consider the convex quadratic programming (QP) problem

min 1
2x

TQx+ rTx
s.t. Ax = b,

x ≥ 0,
(1)

where Q is an n × n symmetric semipositive definite matrix, A is an m × n
matrix, r is an n-dimensional vector and b is an m-dimensional vector.

As a type of classical optimization problem, QP problems arise in many
areas, e.g., finance [10] and optimal control [12, 13]. In particular, the QP
problem is a key issue in support vector machines (SVMs) [7]. Due to their
broad applicability, QP problems have attracted an enormous amount of re-
search on developing efficient algorithms. Among the typical methods for QP
problems, interior-point methods (IPMs) [29, 34, 45, 47] and active-set (AS)
methods [18–20, 25, 26] are two important types of methods and have been
implemented in many software packages, e.g., CPLEX, Gurobi, MATLAB,
IPOPT [43], QPOPT [22], and SNOPT [23]. AS methods are efficient for solv-
ing small- to medium-scale QPs, and generally, they can obtain high-precision
solutions. Compared with AS methods, IPMs are shown to be more efficient
for large-scale QP problems.

In addition to these two classical methods, the augmented Lagrangian
method (ALM) is another well-known method and was proposed indepen-
dently by Hestenes [28] and Powell [38] for nonlinear programming with gen-
eral constraints and simple bounds. Simultaneously, Powell provided a global
convergence analysis that requires the exact minimization of the subprob-
lems. However, Rockafellar [41], Bertsekas [2] and Conn et al. [8] showed that
the exact minimization is not necessary for convergence. Moreover, a super-
linear convergence analysis of the ALM that exactly solves the subproblems
and has a new Lagrangian multipliers updating formula was presented by
Yuan [46]. Besides the theory results, Conn presented an effective numerical
implementation of the ALM that exactly asymptotically solved the subprob-
lems in LANCELOT software [9].

Dostal et al. used the ALM [11] to solve QP problems (1), which follows
Conn et al. [8] who used the ALM to solve general nonlinear constrained
optimization problems. The k-th iteration of the ALM for (1) begins with a
given λk and obtains (xk+1, λk+1) via

xk+1 = argmin {Lβ(x, λ
k) | x ≥ 0}, (2)

λk+1 = λk − β(Axk+1 − b).
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where

Lβ(x, λ) =
1

2
xTQx+ rTx− λT (Ax − b) +

β

2
‖Ax− b‖2

is the augmented Lagrangian function of (1) (omitting the x ≥ 0 bounds).
The performance of the ALM depends on the solving of the subproblems (2).
Therefore, it is desired to design efficient algorithms for the augmented La-
grangian subproblems.

The parametric active-set (PAS) method is a type of AS method proposed
by Ritter [39, 40] and Best [3, 4] for the parametric quadratic programming
(PQP) problem

min {(r + tq)Tx+ 1
2x

TQx| g + tp ≤ Bx} (3)

where p and q are n-vectors, g is an m-vector, and B is an m × n matrix.
Ferreau et al. [16] applied the PAS method to the model predictive control
problem by solving a sequence of PQP problems with the PAS method. The
PQP problems are constructed such that the starting solution of the current
PQP problem occurs as the target solution of the previous PQP problem.
Furthermore, Ferreau et al. used the PAS method to solve the general convex
QP problem

min {rTx+ 1
2x

TQx| g ≤ Bx, } (4)

(It is clear that the QP problem (1) can be transformed into the form (4)) by
tracking the piecewise-linear solution path of the following PQP problem

min {r(t)Tx+ 1
2x

TQx| g(t) ≤ Bx} (5)

from t = 1 to t = 0, which has been implemented in the software package
qpOASES [17]. The PQP problem in (5) is constructed such that (I) when
t = 0, it becomes (4), that is, r(0) = r, g(0) = g; (II) when t = 1, its solution
x(1) as well as the corresponding multipliers λ(1) ≥ 0 with g(1) ≤ Bx(1),
λ(1)T (g(1)−Bx(1)) = 0 and r(1) = −Qx(1) +BTλ(1) are known.

At every step of PAS, it needs to solve the linear systems
[

Q BTA
BA 0

] [

x(t)
λA(t)

]

=

[

−r(t)
gA(t)

]

, (6)

which are derived from the Karush-Kuhn-Tucker (KKT) conditions, where A
denotes the active set. AS methods change the active set along the descent
directions, while PAS changes along the parameter t from t = 1 to t = 0. The
number of steps of the PAS is generally smaller than that in the AS method.
In fact, the number of steps in the PAS is close to the number of the different
members between the starting active set and the target active set. Therefore,
the efficiency of the PAS method depends on the number of active constraints
which determines the size of (6), and the difference between the starting active
set and the target active set. When the starting active set and the target active
set are close, PAS needs a small number of steps to obtain the exact solution.
Therefore, a good warm-wart technique for the PAS method is very important



4 Guoqiang Wang, Bo Yu

to the high performance of PAS. Compared with AS methods, the number of
steps in the PAS method is not affected by the distribution of the eigenvalues
of Q. Specifically, if Q has only a small number of large eigenvalues and if the
other eigenvalues are close to zero, AS methods may be inefficient.

Because the main computation of the ALM is to solve the subproblems
(2) (which are special cases of (4) with B = I), and because PAS is efficient
at obtaining an exact solution of (2) (when a good prediction of the optimal
active is given), we combine ALM and PAS to solve the QP problem (1).
Benefiting from the framework of the ALM, the size of the KKT systems in
the combined method is close to the number of free variables at the solution.
Therefore, the scale of the KKT systems in the combinational algorithm is
smaller than that in the PM, AS and original PAS methods; this is especially
significant when the solutions are sparse.

Furthermore, as mentioned in [8,11], it does not always need to obtain high-
precision solutions of the subproblems; thus, we use a first-order algorithm to
approximately solve the augmented Lagrangian subproblems at the early stage
of the augmented method. As k increases, the precision of the solutions of the
subproblems is required to be higher. The first-order algorithms are generally
efficient at obtaining approximate solutions. However, they needs substantially
much more computation to achieve high-precision solutions. Therefore, we
plan to use the PAS algorithm to obtain the exact solutions of the augmented
Lagrangian subproblems at the mid to late stages.

However, the PAS method needs to retain the invertibility of the KKT sys-
tems in the tracking steps. If the PAS method is applied to solve (1) directly
and if Q is positive definite, an addition or removal of a constraint may lead
to a loss of invertibility. In qpOASES, Ferreau et al. retain the invertibility in
Eq. (6) by exchanging an index of the active set and inactive set. Fortunately,
based on the framework of the ALM, the augmented Lagrangian subproblems
have only bound constraints; therefore, if Q is positive definite, then the Hes-
sian matrices of Lβ(x, λ

k) are positive definite, which implies that the KKT
systems in the homotopy tracking steps would always be invertible. Thus, we
do not need to exchange indices to ensure the invertibility of the KKT sys-
tems, as is the case in qpOASES. Moreover, when Q is not positive definite,
we add proximal terms to the objective function of the augmented Lagrangian
subproblems as follows

xk+1 = argmin {Lβ(x, λk) +
dk
2 ‖x− xk‖2 | x ≥ 0}. (7)

Thus the Hessian matrices of the subproblems are positive definite.
Because the PAS method is essentially a homotopy-like method for PQP,

we use homotopy to denote the simplified PAS method and use AL-Hom to
denote the ALM with every subproblem solved by the homotopy algorithm.
Accordingly, we use PAL-Hom to denote the proximal ALM with the homotopy
algorithm solving the subproblems.

Unfortunately, a simple combination of the ALM and the homotopy algo-
rithm is unsatisfactory for QP problems (1). An efficient implementation of
the homotopy algorithm needs a good warm start for the homotopy algorithm
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as well as a fast Cholesky factor update. Moreover, although the invertibility
can be ensured by the above processes, a large condition number of (6) leads
to large changes in the solution, which would lead to incorrect updates of the
active set. In addition, the lack of strict complementarity would also lead to
incorrect updates. For these reasons, we present three important techniques:
an accelerated proximal gradient method for warm starts; a sorting technique
for the Cholesky factorization update, and an ε-precision verification and cor-
rection technique to correct incorrect updates of the active set.

Because the efficiency of the homotopy algorithm depends on the differ-
ence between the starting active set and the target active set, it is important
to design a good warm-start technique to obtain a good estimate of the opti-
mal active set. In the implementation of PAS, the authors have not provided
methods to predict the optimal active set and just used the solution of a pre-
vious subproblem which may be not a good warm start. When PAS is directly
applied to solve problems (1), the performance is unsatisfactory because for
general QP problems, it is not easy to predict the active set of (1). Fortunately,
based on the framework of the ALM, it is much easier to design a warm start
for PAL-Hom which iteratively solves the proximal augmented Lagrangian
subproblems.

It is well known that Nesterov’s accelerated proximal gradient (APG) [35,
36] algorithm is able to handle very-large-scale problems and converges at
a rate O( 1

k2
) which is fast for first-order algorithms. In particular, for the

augmented Lagrangian subproblems, the APG is easily implemented and has
a low computational complexity at every iteration. Moreover, the APG allows
for a rapid change in the active set at every iteration. For these reasons,
we use APG to predict the optimal active set of the augmented Lagrangian
subproblem. Fortunately, a low-precision solution of (7) often implies a good
estimate of the optimal active set; when an approximate solution that provides
a good estimate of the optimal active set is given, the homotopy algorithm
needs a small number of steps to obtain an exact solution.

Simultaneously, to improve the efficiency and robustness of the homotopy
algorithm, we present a sorting technique for the Cholesky factorization update
(Section 2.3) that requires fewer computations than the Cholesky factorization
update in qpOASES, as well as an ε-precision verification and a correction
technique (Section 2.4) to address the incorrect updates of the active set caused
by the lack of strict complementarity and the computation errors in solving
the linear systems.

The outline of the remainder of this paper is as follows. Details of the homo-
topy algorithm are presented in Section 2. In Section 3, we apply a proximal-
point-based AL-Hom to solve linear programming (LP) problems and prove
that it converges in a finite number of iterations. Moreover, an estimate of
the maximum number of iterations and a lower bound on the descent of the
linear objective are given. Finally, the numerical results for QPs and LPs from
synthetic data and real-world data are presented in Section 4.
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2 Homotopy algorithm for the subproblems of ALM

In this section, we follow Conn et al. [11] and Dostal et al. [8] using the ALM
to solve the QP problem (1); however, we add proximal terms into the objec-
tive of the augmented Lagrangian subproblems to obtain the strict convexity
of the subproblems. Moreover, because the main computation of the proximal
augmented Lagrangian method is solving the augmented Lagrangian subprob-
lems, we present a homotopy algorithm for exactly solving the subproblems
with a uniform form

min {fT z + 1
2z
THz|z ≥ 0}, (8)

where H = Q + dkI + βATA (if Q is positive definite, dk = 0) is positive
definite and f = r−ATλk − βAT b− dkx

k. As mentioned in the introduction,
the homotopy algorithm is a simplified PAS method, and is improved with
three important techniques: warm start, Cholesky factorization update and
ε-precision verification and correction.

Before presenting the homotopy algorithm, we give the optimality condi-
tions of (8) as follows, where z∗ is the solution of (8) if and only if

Hz∗ + f ≥ 0, (9)

z∗ ≥ 0, (10)

z∗T (Hz∗ + f) = 0, (11)

2.1 Warm start

Because the homotopy algorithm needs a good estimate of the optimal active
set of (8), and because the APG algorithm efficiently obtains an approximate
solution of (8), which often implies a good estimate of the optimal active set,
we implement APG to approximately solve (8).

Let z1 = y0 which is pregiven, l = 1, and θ1 = 1; then, APG iterates as
follows.

yl = argmin
z≥0

〈Hzl + f, z〉+
L

2
‖z − zl‖2, (12)

θl+1 =
1 +

√

1 + 4θ2l
2

, (13)

zl+1 = yl + (
θl − 1

θl+1
)(yl − yl−1), (14)

where L ≥ ‖H‖. In each iteration, (12) can be solved by a truncation operator

yl = T (zl − 1
L
(Hzl + f)) = [zl − 1

L
(Hzl + f)]+.

Hence, the main computation at each iteration is a matrix-vector multiplica-
tion.
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Because a low-precision solution often implies a good estimate of the op-
timal active set and because APG is slow at the end of the iterations, we
terminate the APG algorithm when yl satisfies one of the following criteria.

µε1(y
l) = µε1(y

l−i), for i = 1, .., Smax, (15)

‖yl − yl−1‖

‖yl‖
< ε2, (16)

where µε1(y) = ‖[y−‖y‖ε1]+‖0, Smax, ε1 and ε2 are some parameters that are
given. Because the index i is likely to be active if yli < η‖yl‖, we truncate yl

with η‖yl‖ as follows

ẑ =

{

ylj , ylj ≥ η‖yl‖
0, else

(17)

where η > 0. Let

w =

{

−HT
j ẑ − fj , ẑj > 0,

ξ, ẑj = 0,

where ξ = −minj{H
T
j ẑ+ fj |ẑj = 0}+ δ1 and δ1 > 0. Therefore, we have that

ẑ is the solution of
min 1

2z
THz + (f + w)T z

s. t. z ≥ 0.
(18)

from (9)-(11).

2.2 Homotopy tracking

The linear homotopy between the objective function of (8) and (18) is

h(t, z) = 1
2z
THz + (f + tw)T z , t ∈ [0, 1].

Then we can obtain the solution of (8) by tracking the piecewise-linear
solution path of the PQP problem

min h(t, z) = 1
2z
THz + (f + tw)T z

s. t. z ≥ 0.
(19)

Let z(t), t ∈ [0, 1] be a vector function of t denoting the solution path
of (19). Suppose z(t) is linear in M intervals, and set t0 = 1, tM = 0. Let
(ti, ti−1), i = 1, ...,M denote the intervals, in which z(t) is linear. Moreover,
let J(z(t)) = {j|HT

j z(t) + fj + twj = 0} denote the working set. Because

z(t) is piecewise-linear, J(z(t)) is constant in every interval. We use J i =
{J(z(t))|t ∈ (ti, ti−1)} to denote the working set in the i-th interval, and we
let J ic = {1, ..., n}\J i.
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Proposition 1 For any i ∈ {1, ...,M}, there exists only one index set Si ⊂
{1, ..., n} such that

zSi(t) = −H−1
SiSi(fSi + twSi) ≥ 0, (20)

zSi
c
(t) = 0, (21)

HT
Si
c
z(t) + fSi

c
+ twSi

c
> 0 (22)

holds for any t ∈ (ti, ti−1), where S
i
c = {1, ..., n}\Si, HSiSi and HSi

cS
i denote

the submatrices of H with appropriate rows and columns.

Proof. Clearly, if Si satisfies (20)-(22), then z(t) is the solution of (19) at
t. Moreover, because H is positive definite, for any t, the solution of (19) is
unique. Then, we have that J i is the unique index set, which satisfies (20)-(22).

The essence of the homotopy tracking steps is to calculate the solution path
z(t) that is unique from t = 1 to t = 0. This is equivalent to updating J i and
J ic from t = 1 to t = 0. Therefore, if a good prediction of the optimal active
set is obtained, that is, J(1) is close to J(0), a small number of update steps
is needed to change J(1) to J(0). Benefiting from the approximate solution
from APG, ẑ is an approximate solution of (8), and the starting active set is
hopefully close to the target active set; this implies that the number of steps
of the subsequent iterations is hopefully small.

We start the homotopy tracking steps with z(t0) = ẑ, J1 = {j|ẑj > 0} and
J1
c = {1, ..., n}\J1. In the homotopy tracking steps, we need to calculate ti

and update the working set J i+1 for i = 1, 2, ..M − 1.
From Proposition 1, z(t) has the closed form

zJi(t) = −H−1
JiJi(fJi + twJi ), (23)

zJi
c
(t) = 0 (24)

in the i-th interval. We continue to decrease t starting at ti−1 until one of the
following events occurs.

(i) There exists j ∈ J i and t̃ < ti−1 such that zj(t) > 0, t ∈ (t̃, ti−1) and
zj(t̃) = 0.

(ii) There exists j ∈ J ic and t̃ < ti−1 such that HjJizJi(t̃) + (fj + t̃wj) = 0.

When (i) or (ii) occurs, we need to calculate the value of t̃, and J i and J ic need
to exchange indices at t̃.

According to (i) and (ii), define

ĵ = argmax
j

{
uij
vij

< ti−1|j ∈ J i and vij < 0},

j̃ = argmax
j

{
ψij
φij

< ti−1|j ∈ J ic and φ
i
j < 0},

where ui = −H−1
JiJifJi , vi = H−1

JiJiwJi , ψi = HJi
cJ

iui+fJi
c
and φi = HJi

cJ
ivi−

wJi
c
.
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If ĵ is empty, set
ui
ĵ

vi
ĵ

= −∞, which is the same as j̃. Now, we discuss the

update strategy of J i and J ic as follows.

Case 1:
ui
ĵ

vi
ĵ

>
φi
j̃

ψi
j̃

and
ui
ĵ

vi
ĵ

> 0.

Thus, (i) occurs first; then, we obtain ti = t̃ =
ui
ĵ

vi
ĵ

, J i+1 = J i\ĵ and J i+1
c =

J ic ∪ ĵ. Thus, z(t) has the following closed form

zJi+1(t) = −H−1
Ji+1Ji+1(fJi+1 + twJi+1), (25)

zJi+1
c

(t) = 0 (26)

in the interval (ti, ti+1).

Case 2:
ui
ĵ

vi
ĵ

<
φi
j̃

ψi
j̃

and
φi
j̃

ψi
j̃

> 0.

Thus, (ii) occurs first; then, ti = t̃ =
φi
j̃

ψi
j̃

, J i+1 = J i ∪ j̃ and J i+1
c = J ic\j̃.

Case 3:
ui
ĵ

vi
ĵ

≤ 0,
φi
j̃

ψi
j̃

≤ 0.

In this case, the algorithm will terminate and we obtain

zJi(0) = −H−1
JiJifJi ,

zJi
c
(0) = 0.

(27)

Note that w is constructed such that ẑ satisfies the strict complementarity
conditions at t = 1. However, in the homotopy tracking steps, there may exist
an interval (ti, ti−1) such that for some j1

HT
j1
z(t) + fj1 + twj1 = 0 and zj1(t) = 0, t ∈ (ti, ti−1). (28)

Because the above update strategy does not consider these indices, we need to
check whether (28) still holds with J i and J ic exchanging indices as above in
the (i+ 1)-th interval. Specifically, we simply need to check the value of vi+1

j1
.

If vi+1
j1

> 0, then the strictly complementarity conditions hold at the j1-th

component; if vi+1
j1

= 0, then the strictly complementarity conditions do not

hold, and if vi+1
j1

< 0, then we add j1 to J i+1
c .

By tracking the solution path of (19) as above, we obtain z̄ = z(0), which
is the solution of (8).

Clearly, the complexity of the homotopy algorithm depends on the number
of the steps and the size of J i. Specifically, at every step, we need to solve two
symmetric positive-definite linear systems of equations

HJiJiui = fJi and HJiJivi = wJi (29)

and perform one matrix-vector multiplication

[ψi, φi] = HJi
cJ

i [ui, vi] + [fJi
c
,−wJi

c
]. (30)
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We simply need to solve one equation in (29) for

ui + ti−1v
i = xJi (ti−1).

Thus, when |J i| is small, the homotopy algorithm has a low computational
complexity at each step. In addition, benefiting from the approximate solution
from APG, the number of the steps is hopefully small.

Unlike the original PAS method for QP problem (1), the PAL-Hom algo-
rithm would always ensure the strict convexity for both adding and removing
an index; therefore, we do not need to check the invertibility after exchanging
an index. Because HJiJi is positive definite, we apply the Cholesky factoriza-
tion method for (29). Moreover, because J i changes one member every time
and because the exchanged index is more likely to be the index whose corre-
sponding value is close to zero, we present a sorting technique for the Cholesky
factorization update different from that in qpOASES [15, 17].

2.3 Update the Cholesky factorization

Note that the index j1 is more likely to be active than j2 if ẑj1 < ẑj2 ; thus j1
is more likely to be removed from J i than j2 in the homotopy tracking steps.
For this reason, at the start of the homotopy tracking steps, we sort J(ẑ) by
the value of ẑj , j ∈ J(ẑ), that is,

ẑ[J(ẑ)]s ≥ ẑ[J(ẑ)]s+1
,

where [J(ẑ)]s denotes the s-th member of J(ẑ). With this sorting technique,
the indices corresponding to the smaller ẑj would be sorted at the end of
J(ẑ); thus, the indices removed from J i would be distributed at the end of J i.
Moreover, when an index is added to J i, we put it at the end of J i.

Assume that J i is known and that HJiJi has the Cholesky factorization

RTR = HJiJi .

Then we update the Cholesky factorization as follows.
⊲ Add an index j̃ to J i; then,

HJi+1Ji+1 =

[

HJiJi HJij̃

Hj̃Ji Hj̃j̃

]

.

Let HJi+1Ji+1 = R̃T R̃ be the Cholesky factorization; then,

R̃ =

[

R r̃

0
√

Hj̃j̃ − r̃T r̃

]

,

where RT r̃ = HJij̃ . This update requires only 1
2Γ

2
i flops, where Γi =

|J i|.
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⊲ Remove an index ĵ from J i, then

HJi+1Ji+1 =

[

HJi
1J

i
1
HJi

1J
i
2

HJi
2J

i
1
HJi

2J
i
2

]

,

where J i = [J i1, ĵ, J
i
2]. Assume that HJi+1Ji+1 = R̂T R̂ is the Cholesky

factorization; then, we have

R̂ =

[

RIi1Ii1 RIi1Ii2
0 R̄

]

,

where Ii1 = {1, ..., |J i1|}, I
i
2 = {|J i1| + 2, ..., |J i|} and R̄T R̄ = HJi

2J
i
2
−

RT
Ii1I

i
2
Ri
Ii1I

i
2
. This case therefore requires 2

3 |J
i
2|

3 flops.

In conclusion

{

1
2Γ

2
i , add;

2
3 |J

i
2|

3 + (Γi − |J i2|)|J
i
2|

2, remove;
(31)

flops are required to update the Cholesky factorization at each step, where
(Γi − |J i2|)|J

i
2|

2 is the matrix multiplication RT
Ii1I

i
2
RIi1Ii2 , while the Cholesky

factorization update technique [15] of the PAS method in qpOASES would
require

{

5Γ 2
i , add;

5
2Γ

2
i , remove;

(32)

flops at each step. Our update strategy requires fewer computations when
adding an index than that in qpOASES. Moreover, benefiting from the sorting
technique, |J i2| ≪ Γi; therefore, the removing update is a low-cost technique.

2.4 ε-precision verification and correction

From the homotopy tracking steps, we have

zJi(ti) = −H−1
JiJi(fJi + twJi), (33)

zJi
c
(ti) = 0. (34)

However, due to the errors from the solving of the linear systems which may
have a large condition number, the update of J i and J ic may not be correct.
Moreover, the lack of strict complementarity may also lead to an incorrect up-
date of J i and J ic; therefore, we need to verify that z(ti) satisfies the optimality
conditions.

zJi(ti) ≥ 0, (35)

HJi
cJ

izJi(ti) + fJi + twJi ≥ 0, (36)
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In practice, it is not necessary and may be difficult to ensure that (35)-(36)
strictly hold, especially when the strict complementarity conditions are weak;
therefore, we relax (35)-(36) by a small ε as follows.

zJi(ti) ≥ −ε, (37)

HJi
cJ

izJi(ti) + fJi + twJi ≥ −ε, (38)

If (37)-(38) hold, the homotopy algorithm goes to the next step; otherwise, we
correct J i and J ic as follows.

Step 1: If there exists j ∈ J i such that zj(ti) < −ε, then let

j̄ = arg min
j∈Ji

{zj(ti)}

and J i = J i ∪ j̄, J ic = J ic\j̄, refresh z(ti) as in (33)-(34) and go to Step 1;
otherwise go to Step 2.

Step 2: If there exists j ⊂ J ic such that HT
j z(ti)+ fj + tiwj ≤ −ε, then let

j̄ = argmin
j∈Ji

c

{HT
j z(ti) + fj + tiwj}

and J ic = J ic\j̄, J
i = J i ∪ j̄, refresh z(ti) as in (33)-(34) and go to Step 1;

otherwise, terminate the correction steps.
The correction steps ensure that the solution x(t) satisfies the optimal-

ity conditions with ε-precision and guarantee the stability of the homotopy
tracking algorithm.

Finally, as mentioned in the introduction, in many cases, it is not necessary
to obtain the exact solutions of the first few augmented Lagrangian subprob-
lems; therefore, for these subproblems, we directly go to the next iteration
after the approximate solution is obtained by APG. For the other subprob-
lems, we use the homotopy algorithm to obtain exact solutions. The framework
of PAL-Hom for convex QP is given as Algorithm 1.

Algorithm 1 PAL-Hom algorithm for QP
Input:

k = 0, x0, λ0, β, tol, εc > 0
Output:

xk+1;
while ‖Axk − b‖ > tol or ‖xk − xk−1‖ > tol do

Approximately solve (7) with APG algorithm as (12), (13) and (14) until (15) or (16)
is satisfied.
if ‖Axk − b‖ < εc then

Track the solution path of (19) from t = 1 to t = 0 and set xk+1 to z(0) in (27).
else

Set xk+1 to ẑ in (17).
end if

λk+1 = λk − β(Axk+1 − b);
k = k + 1;

end while
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3 An application to LP

Because LP
min cTx
s.t. Ax = b,

x ≥ 0,
(39)

is a special case of QP with Q = 0 and r = c ∈ R
n, PAL-Hom can be applied

to solve LP problems. Moreover, for LP problems, Wright [44] showed that
PAL-Hom converges in a finite number of steps if the subproblems are exactly
solved for all k sufficiently large and if the strict complementarity conditions
hold at the solution.

On the other hand, Mangasarian [32,33] transformed the LP problem into
a weakly strictly convex QP problem

min cTx+ ε
2x

Tx
s.t. Ax = b,

x ≥ 0
(40)

by adding a small regularization term to the objective. Moreover, Mangasarian
proved that (40) obtains a solution of (39) if ε is smaller than some ε̄ > 0.
However, it is difficult to derive a realistic priori estimate of ε̄, and for certain
practical problems, ε̄ would be very small. If we apply AL-Hom to solve (40),
a small ε̄ would lead to a large condition number of the KKT systems in the
homotopy tracking steps, which is adverse to the robustness of the homotopy
algorithm.

Motivated by Mangasarian [32], we used proximal point methods to solve
LP problems, that is, for a given x0 ∈ R

n, iteratively solve the strictly convex
subproblems

xσ+1 = min
x∈Ω

cTx+
1

2ασ
‖x− xσ‖2, σ = 0, 1, 2, .... (41)

Moreover, every subproblem is solved by AL-Hom. We use PP-AL-Hom to
denote the above process for LP.

Under the assumption that (39) has at least one finite solution, we prove
that, if ασ > α for some α > 0, then iterations (41) converge in a finite number
of steps. Simultaneously, we give a positive lower bound of cTxσ− cTxσ+1 and
an estimate of the maximum number of the iterations (41). Since α can be
arbitrary, the condition number of the KKT systems in the homotopy tracking
steps can be controlled.

It is clear that (40) is a special case of (41) with α0 = 1
ε
and x0 = 0.

Therefore, we have that (41) converges in one step, if α0 ≥ 1
ε̄
and x0 = 0.

Moreover, in contrast to PAL-Hom, the finite-step termination of PP-AL-Hom
does not require the strictly complementarity conditions at the solution.

Let Ω = {x|Ax = b, x ≥ 0} and X∗ denote the solution set of (39). Define

M∗ =
⋃

x∗∈X∗

(x∗ +NΩ(x
∗)),
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where NΩ(x
∗) is the normal cone of Ω at x∗. Clearly, (41) is equivalent to

xσ+1 = PΩ(x
σ − ασc), (42)

where PΩ(y) = argminx∈Ω
1
2‖x−y‖

2 is the projection operator onto Ω. There-
fore, (41) is equivalent to the projection procedures in Figure 1. It is clear that
if xσ − ασ is local in M∗, then x

σ+1 is the solution of (39).

 

-c 

Fig. 1 Projected gradient method for LP

Theorem 1 −c ∈ int M∞
∗ , where M∞

∗ is the asymptotic cone of M∗ and
int M∞

∗ denotes the interior of M∞
∗ .

Proof. We know from the optimality conditions that

−c ∈ NΩ(x
∗), ∀x∗ ∈ X∗.

Then we have x∗ + t(−c) ∈ M∗, ∀t ≥ 0, which implies

−c ∈ M∞
∗ . (43)

Define
T (x∗, d) = {t|x∗ + td ∈ X∗},

where d ∈ Rn and satisfies dT c = 0. BecauseX∗ is a closed convex set, T (x∗, d)
is a closed interval. Next, we prove that

−c ∈ ri (span{−c, d} ∩M∞
∗ ), (44)

where ri S denotes the relative interior of S.
If T (x∗, d) = (−∞,+∞), clearly, d, −d ∈ M∞

∗ . Therefore, (44) is obvious
by (43).

If T (x∗, d) = (−∞, tmax] and tmax < ∞. Similar to above, −d ∈ M∞
∗ .

Moreover, there exists u ∈ NΩ(x
∗+tmaxd)∩span{−c, d} that satisfies 〈u,−d〉 <

0; therefore, (44) holds for dT c = 0. Moreover, if there exists no such u, we can
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find t
′

max > tmax such that x∗+ t
′

maxd ∈ X∗ because Ω is a convex polyhedron,
which contradicts the definition of T (x∗, d).

If T (x∗, d) = [tmin,+∞) and tmin > −∞. let d̃ = −d; then, T (x∗, d̃) =
(−∞,−tmin]. Therefore, we have−c ∈ ri (span{−c, d̃} ∩M∞

∗ ) = ri (span{−c, d} ∩M∞
∗ )

from the situation above.
If T (x∗, d) = [tmin, tmax] and tmin > −∞, tmax < ∞, then, similar to

above, there exists u1 ∈ NΩ(x
∗ + tmind) ∩ span{−c, d} and u2 ∈ NΩ(x

∗ +
tmaxd) ∩ span{−c, d} such that

〈u1, d〉 < 0 and 〈u2, d〉 > 0.

Thus, (44) holds for dT c = 0.

Because d is arbitrary in the space {s|sT c = 0}, we have −c ∈ int(M∞
∗ )

from (44).

Theorem 2 For any x0 ∈ R
n, assume that the sequence {xσ} is obtained by

(42); then,

(i) There exists an ᾱ such that if α0 ≥ ᾱ, then x1 ∈ X∗.

(ii) There exists 0 < θmin ≤ π
2 such that

cTxσ − cTxσ+1 ≥ ασ(1 − cos θmin)‖c‖2,

if xσ+1 /∈ X∗. Moreover, θmin = arccos
(

‖Pbd(M∞
∗ )(−c)‖

‖c‖

)

, where bd(M∞
∗ )

denotes the boundary of M∞
∗ , Pbd(M∞

∗ )(·) denotes the projection onto

bd(M∞
∗ ).

(iii) For any α > 0, p ∈ {−1∪N+}, if ασ ≥ α, for σ = p, p+1, ..., then there

exists Γ =
[

cT xp+1−cT x∗

α(1−cos θmin)‖c‖2 + p+ 2
]

+
, such that xΓ ∈ X∗.

Proof. We prove each of the three claims in turn.
(i) Define B(r) = {x|‖x‖ ≤ r}. Because −c ∈ int M∞

∗ , there exists ε > 0
such that

−c+B(ε) ⊂ M∞
∗ .

Then for any x ∈ M∗ and α > 0, we arrive at

x+ αB(ε) − αc = x+ α(−c+B(ε)) ⊂ M∗.

Let ᾱ = ‖x0−x‖
ε

; hence,

x0 − ᾱc = x+ x0 − x− ᾱc

= x+
‖x0 − x‖

ε
·
ε(x0 − x)

‖x0 − x‖
− ᾱc

⊂ x+ ᾱB(ε)− ᾱc

⊂ M∗.
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Moreover, for any α ≥ ᾱ

x0 − αc = x0 − ᾱc− (ᾱ− α)c

⊂ −(ᾱ− α)c+M∗

⊂ M∗.

Thus, from the definition of M∗, we have x1 = PΩ(x
0 − α0c) ∈ X∗, α0 ≥ ᾱ .

(ii) If xσ+1 = xσ − ασc, then

cTxσ − cTxσ+1 = ασ‖c‖2.

If xσ+1 6= xσ − ασc, then

〈xσ − xσ+1, xσ − ασc− xσ+1〉 ≥
π

2

holds by (42), where 〈s1, s2〉 denotes the angle between s1 and s2. Let θ denote
the angle between xσ − ασc − xσ+1 and −c. Because xσ+1 /∈ X∗, we obtain
xσ−ασc−xσ+1 /∈ intM∞

∗ from the convexity of Ω. Thus, we have θ ≥ θmin =

arccos(
‖P[bdM∞

∗ ](−c)‖

‖c‖ ) from −c ∈ intM∞
∗ . So

cTxσ − cTxσ+1 = cTxσ − cTP[xσ,xσ−ασc](x
σ+1)

= cTxσ − cT (xσ − ασ(1− cos θ)c) (45)

≥ ασ(1− cos θmin)‖c‖
2,

where [xσ , xσ −ασc] denotes a segment whose endpoints are xσ and xσ −ασc.
Note that because −c ∈ int M∞

∗ , we have 1− cos θmin > 0.

(iii) For any κ ≥ 1, if xσ /∈ X∗, σ = 1, 2, .., κ, then we have from (45) that

cTxp − cTx∗ ≥ cTxp − cTxκ

= cTxp − cTxp+1 +
κ−1
∑

σ=p+1

(cTxσ − cTxσ+1) (46)

≥ cTxp − cTxp+1 + (κ− p− 1)α(1− cos θmin)‖c‖
2,

which implies

κ ≤
cTxp+1 − cTx∗

α(1 − cos θmin)‖c‖2
+ p+ 1.

Then we have (iii) when

Γ =

[

cTxp+1 − cTx∗

α(1 − cos θmin)‖c‖2
+ p+ 2

]

+

.
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Moreover, from (46), we have

cTxp+1 − cTx∗ ≥
κ−1
∑

σ=p+1

ασ(1− cos θmin)‖c‖
2

if xκ /∈ X∗, which implies

κ−1
∑

σ=p+1

ασ ≤
cTxp+1 − cTx∗

(1− cos θmin)‖c‖2
.

Then we obtain xκ ∈ X∗ so long as

κ−1
∑

σ=p+1

ασ ≥
cTxp+1 − cTx∗

(1− cos θmin)‖c‖2
.

By Theorem 2, we have that if LP problem (39) has one finite solution, it
can be transformed into a finite number of strictly convex QP problems with
projection form similar to (42), which is equivalent to (41). We solve every
projection problem by using AL-Hom.

4 Numerical results

In this section, we demonstrate the performance of our algorithms. The numer-
ical experiments were performed on the MATLAB 8.1 programming platform
(R2013a) running on a machine with the a Windows 7 operating system, an
Intel(R) Core(TM)i7 6700 3.40GHz processor and 32 GB of memory. The
QP-solvers and LP-solvers in the other software packages were called by the
MATLAB interface.

We tested PAL-Hom for solving randomly generated QPs and QPs from
the CUTEr test set [5]. We also used PAL-Hom to solve the discrete contact
problems of elasticity and QPs from SVMs [42] that were applied to speech
recognition and handwritten digit recognition. Finally, we used PP-AL-Hom
to solve randomly generated LPs and LPs from the Netlib test set [21].

4.1 Experiments on QPs from synthetic data and CUTEr test set

• Randomly generated QPs. In this part, we randomly generated dense
and sparse standard QPs (1) with MATLAB codes as follows.

A=sprandn(m,n, dA); B=sprandn(q, n, dB); Q=B′∗B;
r=−B′∗randn(m,1); b=10∗randn(m,1),

where dA, dB denote the density of A and B which are pregiven, dQ denotes
the density of Q, and “randn” denotes normally random distribution function.
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Table 1 Randomly generated QPs

Problem m q n dA dB dQ
QP-D1 800 200 2000 1 1 1
QP-D2 2000 4500 5000 1 1 1
QP-D3 100 5000 10000 1 1 1
QP-D4 4000 9000 10000 1 1 1
QP-S1 10 10 5000 0.01 0.003 9.48E-5
QP-S2 4000 10000 10000 0.01 0.001 1.10E-3
QP-S3 8000 10000 20000 0.001 0.0001 1.49E-4
QP-S4 12000 29999 30000 0.001 0.0001 3.33E-4
QP-S5 1000 4000 50000 0.001 0.0001 1.20E-4
QP-S6 1000 99000 100000 0.001 0.00002 4.39E-5

Table 2 Experiments on randomly generated QPs. f∗, fS denote the optimal values obtained
by PAL-Hom and the other corresponding solvers, “OT” denote the computation times (seconds)
more than 25000s. The bolded computation times of PAL-Hom denotes that they are smaller than
those of the other solvers.

Problem
Results PAL-Hom IPM(cplex) AS(matlab) PAS(qpOASES)m

n

QP-D1 Time 39.30 242.23 10314.69 2342.48
800 ‖Ax − b‖ 1.6E-11 2.9E-06 1.1E-11 1.2E-12
2,000 f∗ − fS - -2.2E-06 -1.3E-08 -2.4E-08

QP-D2 Time 35.45 633.12 OT OT
2,000 ‖Ax − b‖ 6.9E-12 2.8E-07 - -
5,000 f∗ − fS - -7.6E-04 - -

QP-D3 Time 203.44 5238.28 OT OT
100 ‖Ax − b‖ 1.7E-11 4.4E-07 - -
10,000 f∗ − fS - -1.2E-03 - -

QP-D4 Time 369.67 6462.42 OT OT
4,000 ‖Ax − b‖ 1.2E-07 7.7E-07 - -
10,000 f∗ − fS - -4.9E-03 - -

QP-S1 Time 0.92 0.14 OT 74.22
10 ‖Ax − b‖ 6.2E-09 8.2E-06 - 5.9E-13
5,000 f∗ − fS - -1.3E-09 - 1.3E-04

QP-S2 Time 47.07 126.44 OT OT
4,000 ‖Ax − b‖ 3.5E-08 1.5E-05 - -
10,000 f∗ − fS - 5.7E-07 - -

QP-S3 Time 208.33 128.72 OT OT
8,000 ‖Ax − b‖ 8.8E-08 5.8E-07 - -
20,000 f∗ − fS - -1.3E-04 - -

QP-S4 Time 253.49 5831.07 OT OT
12,000 ‖Ax − b‖ 3.4E-08 7.9E-07 - -
30,000 f∗ − fS - -2.2E-03 - -

QP-S5 Time 520.98 1784.71 OT OT
1,000 ‖Ax − b‖ 1.7E-09 5.2E-08 - -
50,000 f∗ − fS - 2.6E-07 - -

QP-S6 Time 1757.49 4416.68 OT OT
1,000 ‖Ax − b‖ 1.1E-08 4.4E-04 - -
100,000 f∗ − fS - -2.1E-07 - -

• QPs from CUTEr set. In this part, we took convex QPs from the
CUTEr test set1, where we chose a subset of medium-scale QPs having up to
90,597 variables.

We compared PAL-Hom with the IPM solver in CPLEX 12.6, the PAS
solver in qpOASES and the AS solver in MATLAB 2013a. The comparison
includes the computation time (seconds), equality constraint violations and
optimal values. The results are reported in Tables 2-4.

The numerical results show that PAL-Hom is effective at solving these
QPs. PAL-Hom outperforms the AS solver in MATLAB and the PAS solver
in qpOASES and is competitive with the IPM solver in CPLEX, especially for
the randomly generated problems.

1 https://github.com/YimingYAN/QP-Test-Problems
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Table 3 Experiments on QPs from CUTEr test set: part I. f∗, fS denote the optimal values
obtained by PAL-Hom and the other corresponding solvers, “OT” denotes the computation times
(seconds) more than 25000s. “F” denotes that the algorithm does not converges in 10n iterations.
The bolded computation times of PAL-Hom denotes that they are smaller than those of the other
solvers.

Problem m n Results AL-Hom IPM(cplex) AS(matlab) PAS(qpOASES)

aug2dcqp 10000 20200
Time 0.65 0.41 OT OT
‖Ax−b‖ 8.0E-13 3.9E-13 - -
f∗ − fS - -1.1E-03 - -

aug2dqp 10000 20200
Time 0.66 0.31 OT OT
‖Ax−b‖ 9.8E-13 4.2E-13 - -
f∗ − fS - -1.0E-04 - -

aug3dcqp 1000 3873
Time 0.14 0.04 569.22 2763.23
‖Ax−b‖ 2.4E-14 2.4E-13 2.4E-13 3.0E-15
f∗ − fS - -2.7E-06 -1.4E-09 4.3E-12

aug3dqp 1000 3873
Time 0.20 0.05 OT 3513.54
‖Ax−b‖ 1.9E-13 1.1E-14 - 7.4E-11
f∗ − fS - -7.5E-08 - 3.3E-10

cont-050 2401 2597
Time 0.92 0.27 17.92 5397.38
‖Ax−b‖ 1.5E-13 3.8E-14 1.2E-13 4.7E-14
f∗ − fS - -7.2E-10 -3.3E-13 2.1E-09

cont-100 9801 10197
Time 2.18 0.56 817.25 OT
‖Ax−b‖ 4.0E-13 7.4E-14 1.7E-12 -
f∗ − fS - 4.1E-08 -3.3E-13 -

cont-101 10098 10197
Time 4.18 0.84 848.61 OT
‖Ax−b‖ 7.3E-13 8.5E-10 3.3E-12 -
f∗ − fS - 4.2E-07 -2.4E-06 -

cont-200 39601 40397
Time 11.00 1.40 OT OT
‖Ax−b‖ 5.5E-13 1.5E-13 - -
f∗ − fS - 7.3E-07 - -

cont-201 40198 40397
Time 23.13 2.31 OT OT
‖Ax−b‖ 7.2E-10 1.8E-08 - -
f∗ − fS - 1.7E-06 - -

cont-300 90298 90597
Time 41.46 4.62 OT OT
‖Ax−b‖ 8.4E-09 2.8E-08 - -
f∗ − fS - 4.1E-05 - -

cvxqp1 l 5000 10000
Time 50.22 24.65 OT OT
‖Ax−b‖ 9.9E-08 5.4E-07 - -
f∗ − fS - -2.5E-02 - -

cvxqp1 m 500 1000
Time 0.48 0.87 7.61 92.43
‖Ax−b‖ 7.2E-13 1.9E-07 8.2E-14 2.5E-13
f∗ − fS - -1.7E-04 1.2E-05 -1.6E-04

cvxqp1 s 50 100
Time 0.01 0.02 0.02 0.15
‖Ax−b‖ 2.1E-14 9.5E-12 9.8E-15 2.9E-15
f∗ − fS - -1.5E-05 3.1E-09 -5.2E-07

cvxqp2 l 2500 10000
Time 1.78 12.63 OT OT
‖Ax−b‖ 1.8E-08 1.2E-08 - -
f∗ − fS - -1.9E-03 - -

cvxqp2 m 250 1000
Time 0.15 0.53 21.72 26.37
‖Ax−b‖ 7.5E-08 3.8E-08 3.8E-14 7.7E-15
f∗ − fS - -1.3E-03 4.3E-06 -3.1E-07

cvxqp2 s 25 100
Time 0.01 0.02 0.04 0.05
‖Ax−b‖ 6.8E-08 3.8E-10 8.5E-15 2.6E-15
f∗ − fS - -4.0E-05 -5.0E-08 1.3E-06

cvxqp3 l 7500 10000
Time 54.44 30.19 OT OT
‖Ax−b‖ 4.8E-05 1.9E-05 - -
f∗ − fS - -6.7E-04 - -

cvxqp3 m 750 1000
Time 0.66 0.95 10.11 292.15
‖Ax−b‖ 7.5E-08 3.6E-09 1.7E-13 4.4E-12
f∗ − fS - -5.6E-02 2.3E-05 1.2E-04

cvxqp3 s 75 100
Time 0.01 0.01 0.03 0.22
‖Ax−b‖ 1.8E-09 6.6E-12 1.7E-14 1.9E-14
f∗ − fS - -9.7E-06 2.7E-08 -2.1E-07

gouldqp2 349 699
Time 0.00 0.01 0.11 0.02
‖Ax−b‖ 0.0E+00 1.9E-08 0.0E+00 0.0E+00
f∗ − fS - -3.0E-11 0.0E+00 0.0E+00

gouldqp3 349 699
Time 0.04 0.02 0.15 55.74
‖Ax−b‖ 1.3E-11 3.8E-09 1.0E-13 1.5E-14
f∗ − fS - -3.1E-06 2.3E-06 -2.1E-10
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Table 4 Experiments on QPs from CUTEr test set: part II. f∗, fS denote the optimal values
obtained by PAL-Hom and the other corresponding solvers, “OT” denotes the computation times
(seconds) more than 25000s. “F” denotes that the algorithm does not converges in 10n iterations.
The bolded computation times of PAL-Hom denote that they are smaller than those of the other
solvers.

Problem m n Results PAL-Hom IPM(cplex) AS(matlab) PAS(qpOASES)

powell20 10000 10000
Time 0.14 0.17 OT OT
‖Ax−b‖ 2.5E-08 1.3E-05 - -
f∗ − fS - 3.9E-03 - -

qgrow7 140 301
Time 0.37 0.01 F 1.56
‖Ax−b‖ 2.5E-08 1.0E-10 - 1.6E-02
f∗ − fS - -2.3E-03 - 1.4E-01

qgrow15 300 645
Time 1.55 0.02 F 1936.40
‖Ax−b‖ 2.8E-08 2.5E-10 - 1.5E-14
f∗ − fS - -8.6E-03 - -4.2E-11

qgrow22 440 946
Time 0.57 0.28 F 5924.02
‖Ax−b‖ 6.1E-11 4.6E-07 - 4.9E-12
f∗ − fS - 7.2E-05 - -3.3E-09

qscsd1 77 760
Time 0.10 0.02 F 1.44
‖Ax−b‖ 4.0E-08 3.7E-11 - 9.1E-10
f∗ − fS - -1.1E-08 - 3.2E-08

qscsd6 147 1350
Time 0.17 0.02 F 11.26
‖Ax−b‖ 3.9E-08 2.1E-12 - 9.1E-10
f∗ − fS - -5.1E-08 - 3.3E-09

qscsd8 397 2750
Time 0.89 0.03 F 36.87
‖Ax−b‖ 3.0E-08 2.5E-08 - 2.5E-12
f∗ − fS - -1.0E-06 - 3.2E-09

stcqp1 2052 4097
Time 0.13 0.07 1357.24 499.14
‖Ax−b‖ 4.0E-09 4.0E-13 4.1E-12 8.1E-13
f∗ − fS - -1.3E-04 3.3E-06 -3.7E-08

stcqp2 2052 4097
Time 0.06 0.67 916.18 1420.90
‖Ax−b‖ 3.1E-08 0.0E+00 3.6E-11 3.7E-11
f∗ − fS - -1.1E-04 -3.7E-11 2.2E-08

Moreover, to show that the homotopy algorithm with warm start by APG
is meaningful for the augmented Lagrangian subproblems, we compared the
algorithm with the IPM solver in CPLEX and Hager et al.’s active-set algo-
rithm (ASA) [27], which consists of a nonmonotone gradient projection step,
an unconstrained optimization step, and a set of rules for branching between
the two steps. ASA is shown to be faster than TRON [31] for solving the
50 box-constrained problems in the CUTEr library [5] and competitive with
TRON for the 23 box-constrained problems in the MINPACK-2 library [1].
Furthermore, to show that the homotopy tracking with the sorting technique
and the ε-precision verification and correction technique is more efficient than
the PAS solver in qpOASES for solving parametric nonnegative QP problems,
we compared it with the PAS solver in qpOASES for solving the first aug-
mented Lagrangian subproblem (8) from ẑ.

The results are reported in Table 5. Clearly, the homotopy tracking is much
faster than the PAS solver in qpOASES. Moreover, from the results, we see
that APG is efficient at predicting the optimal active set; that is, from the ap-
proximate solution, a small number of tracking steps is required to obtain an
exact solution. In addition, we see that the homotopy algorithm is robust for
problems with large condition numbers. Simultaneously, the results demon-
strate that the homotopy algorithm is clearly faster than PAS(with initial
point ẑ), ASA and IPM for solving the augmented Lagrangian subproblems.
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Table 5 IPM(CPLEX), ASA, PAS solver in qpOASES and the homotopy algorithm solving
the first augmented Lagrangian problem. “Total” denotes the computation times (seconds) of
APG and the homotopy tracking steps together, “Hom-tra.” denotes the computation times of
the homotopy tracking steps starting from ẑ. The computation times of PAS method denote the
cost of solving the parametric quadratic programming from ẑ. “OT” denotes the computation
times more than 25000s. CH denotes the condition number of H. The bolded computation times
(APG+Hom-tra.) in the “Total” column denotes that they are smaller than those of the other
solvers, and the bolded computation times in the “Hom-tra.” column denotes that they are smaller
than that of the PAS solver.

Problem n CH
Homotopy PAS(qpOASES) ASA IPM(cplex)

Total Hom-tra. Iter. Time Iter. Time Time

aug2dcqp 20200 5.2E+06 0.44 0.16 9 221.33 9 1.90 4.24
aug2dqp 20200 8.0E+13 0.43 0.15 8 273.11 10 12.19 4.30
aug3dcqp 3873 8.6E+03 0.06 0.02 2 16.33 2 0.07 2.01
aug3dqp 3873 2.8E+11 0.07 0.02 2 11.44 2 0.12 1.96
cont-50 2597 3.4E+08 0.48 0.11 4 1.61 4 45.57 0.56
cont-100 10197 1.1E+08 0.84 0.21 4 332.13 4 15.50 4.41
cont-101 10197 2.6E+10 2.22 0.62 21 61.21 25 20990.52 4.55
cont-200 40397 1.2E+10 4.46 0.35 5 171.33 8 OT 27.87
cont-201 40397 4.5E+13 12.88 1.77 38 864.77 44 OT 35.45
cont-300 90597 8.0E+10 27.99 4.99 66 OT OT OT 316.99
cvxqp1 l 10000 8.8E+13 5.99 1.66 45 277.33 49 406.54 42.11
cvxqp2 l 10000 6.2E+10 0.56 0.13 10 162.11 11 7.10 40.74
cvxqp3 l 10000 6.3E+08 8.33 2.16 25 311.23 29 114.80 46.22
powell20 10000 4.0E+08 0.04 0.01 2 0.10 4 163.58 0.12
qgrow22 946 6.3E+06 0.30 0.03 3 0.16 3 0.03 0.41
qscsd6 1350 3.0E+10 0.11 0.03 33 0.33 37 14459.72 0.75
qscsd8 2740 1.9E+10 0.40 0.15 72 3.27 81 351.74 0.65
stcqp1 4097 1.3E+03 0.04 0.01 2 0.38 2 0.04 1.27
stcqp2 4097 8.2E+02 0.03 0.01 1 5.43 1 0.04 1.72

Moreover, to show the adaptability of PAL-Hom for the degenerate QP
problems, we tested the homotopy method on solving highly ill-conditioned
non-negative constrained QP problems. We conducted experiments like this for
the efficiency of PAL-Hom depends on the solving of the proximal augmented
Lagrangian subproblems which are degenerate non-negative constrained QP
problems with proximal terms. We generated the non-negative constrained QP
problems (8) with MATLAB codes as follows.

d = zeros(n, 1); d(1 : γn) = Lmax

γn
(1 : γn); H = U ′ ∗ diag(d) ∗ U + δ ∗ I;

f = randn(n, 1);

where 0 < γ < 1 denotes the ratio of nonzero eigen-values, U is the unitary
matrix.

We generated the problems with n = 2000, Lmax = 108 and γ ∈ {0.1, 0.5}.
We adjusted the condition number of H which equals to Lmax+δ

δ
by changing

the value of δ. H has γn egien-values bigger than δ and the rest eigen-values
are δ. Obviously, H is ill-conditioned when δ is small.

We solved these problems by the homotopy algorithm and the active-set
method, respectively. The maximum iterations of the active-set method is set
to 100 ∗ γ ∗ n. The results are shown in Figure 2.

The results demonstrate that the homotopy method is robust for the
ill-conditioned non-negative constrained QP problems, while the active-set
method requires much more time when the condition number is larger. More-
over, the number of steps of the homotopy tracking does not change much
when the condition number increases, while the AS method often exceed the
maximum iterations when the condition number is very large.
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Fig. 2 The homotopy and the active-set method for ill-conditioned non-negative con-
strained QP problems. The results include the computation time (seconds) and the number
of the iterations.

4.2 QPs from SVM for recognition.

In this section, we tested AL-Hom for solving QPs from SVMs that were
applied to handwritten digit recognition and speech recognition. Given the
training set {Xi, yi}ni=1 and testing set {Tj, sj}

n1

j=1, where Xi, Tj are feature
vectors and yi, sj ∈ {−1,+1} are the labels, the SVM classifies the testing set
by a classifier

f(x) = sign(

n
∑

i=1

yiα
∗
iK(Xi, x) + b∗),

where K is called the kernel function, b∗ = yj−
∑n
i=1 yiα

∗
iK(Xi, Xj), for some

α∗
j > 0, and α∗ is the solution of the following problem

min
α

1

2

n
∑

i=1

n
∑

i=1

yiyjαiαjK(Xi, Xj)−
n
∑

i=1

αi

s.t.
n
∑

i=1

yiαi = 0, (47)

0 ≤ αi ≤ C, i = 1, ..., n,

which is a dense QP problem.
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We conducted the experiments with three databases. The first database is
the isolated letter speech database from UCI [30], which contains a training
set with 6,238 samples and a testing set with 1,559 samples. This database has
26 classifications: i.e., A-Z, and every sample has 617 attributes. The second
one is the MNIST database of handwritten digits2, which contains a training
set with 60,000 samples and a testing set with 10,000 samples. Every sample
is one 28 × 28 pixel picture, that is, every sample has 784 attributes. This
database has ten classifications as shown in Figure 3. The third database is
the web page classification task, which is included in the LIBSVM database
set3. This database contains 8 training sets and 8 testing sets of different sizes.
Every set contains samples divided into 2 classes and every sample has 300
features. Because the training sets have repetitive samples, we processed them
individually by removing the repetitive samples.

0 1 2 3 4

5 6 7 8 9

Fig. 3 Ten classifications of the MNIST handwritten digit database

(47) is a model for the 2-class classification problem; however, the letter
speech and MNIST databases are multiclassification problems. Therefore. we
handled the multiclassification problems with two strategies.

The first strategy is that for any classification p, p = 1, .., P , where P
denotes the number of classifications, we obtained α∗,p, b∗,p by solving (47)
with

yp =

{

1, Xi ∈ cl.p;
−1, else,

where cl.p denotes the p-th classification. Then, we have the first classifier for
multiclassification problems as follows

f1(x) = argmax
p

(ypi α
∗,p
i K(Xi, x) + b∗,p). (48)

The second strategy is that for any p 6= q ∈ {1, ..., P}, choose the samples
from the training set whose corresponding labels are p or q, and let

yp,q =

{

1, Xi ∈ cl.p;
−1, Xi ∈ cl.q,

2 http://yann.lecun.com/exdb/mnist
3 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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then, we have the second classifier for multiclassification problems as follows.

f2(x) = argmax
p

∑

q

sign(yp,qi α∗,p,q
i K(Xi, x) + b∗,p,q). (49)

The first strategy needs to solve (47) P times, and the size of every problem
is equal to the number of samples in the training set. The second strategy needs

to solve (47) P (P−1)
2 times, however, it only needs to solve a problem of size

equal to the number of samples of the classification p and q together each time.
In LIBSVM, the multiclassification classifier adopts the second strategy.

In our experiments, we used the polynomial kernel

K(x, y) = (x · y + c)d

with c = 0 and d = 2 for the spoken letter database and the MNIST databases
and the Gaussian kernel

K(x, y) = e−σ‖x−y‖
2

with σ = 0.1 for the web pages classification task.

Because the QP problems in this section are strictly convex, we compared
AL-Hom with the IPM solver in CPLEX and the sequential minimal optimiza-
tion (SMO) method [14] in LIBSVM 3.22 [7] which is a well-known package
for SVMs. We report the results in Tables 6 and 7, where “Err.1” and “Err.2”,
respectively, denote the number of misclassifications of classifier (48) and clas-
sifier (49) for the test set. Here, we simply list the computation time of the

first strategy and not that of the second strategy because it contains P (P−1)
2

parts. We only give the total time of the second strategy in the title of the
tables. Moreover, we do not list the results of IPM for the MNIST database
because it took substantially more time than the other two algorithms. The
results show that the IPM solver in CPLEX faces difficulties in solving the QPs
from SVMs. PAL-Hom outperforms IPM. Moreover, although AL-Hom does
not exploit the structure or particularity, it is competitive with SMO which
extensively exploits the structure and particularity of the SVM problem. We
believe that AL-Hom would be more competitive for SVMs if we implement
AL-Hom using the structure and the particularity the SVM problem, such as
utilizing the framework of Osuna’s decomposition algorithm [37].

AL-Hom is much faster than IPM implemented in CPLEX for solving QPs
from SVMs for the following two reasons: first, ALM is effective for SVM
optimization because it requires only several iterations to achieve a satisfactory
solution; second, from (23)-(24), we know that the homotopy algorithm needs
to solve two linear systems of size |J i| at each step. Because the number of
support vectors is often small, that is, α∗ is sparse, the homotopy algorithm
solves smaller scale linear systems than IPM. This good property of α∗ makes
AL-Hom perform well in solving SVM optimizations.
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Table 6 Experiments on QPs from SVM for the classification of the isolated letter speech
database. The computation time (seconds) in this table is the cost of the first strategy. In the
second strategy, AL-Hom took 4.92s, IPM took 107.08s and SMO took 13.37s in all. The bolded
computation times of AL-Hom denotes that they are smaller than those of the other solvers.

Class.
AL-Hom IPM (cplex) SMO (LIBSVM)

Time/s Err.1 Err.2 Time/s Err.1 Err.2 Time/s Err.1 Err.2

cl.A 3.43 0 0 240.80 0 0 6.65 0 0
cl.B 4.33 5 4 242.58 5 4 7.23 5 4
cl.C 1.77 0 0 259.33 0 0 5.22 0 0
cl.D 5.01 4 3 233.34 4 3 6.86 4 3
cl.E 3.10 0 2 255.32 0 2 6.77 0 2
cl.F 3.16 0 2 232.10 0 2 6.84 0 2
cl.G 3.95 0 0 260.34 0 0 6.98 0 0
cl.H 1.88 0 0 220.50 0 0 4.82 0 0
cl.I 1.84 1 1 223.03 1 1 5.37 1 1
cl.J 1.80 1 1 273.58 1 1 6.45 1 1
cl.K 3.87 2 2 218.09 2 2 6.94 1 2
cl.L 1.74 0 0 200.01 0 0 5.33 0 0
cl.M 3.66 9 7 252.48 9 6 5.34 9 6
cl.N 4.32 8 9 230.56 8 9 6.73 8 9
cl.O 3.20 0 0 208.38 0 0 7.28 0 0
cl.P 6.73 0 6 235.25 0 5 5.41 0 5
cl.Q 1.71 4 0 226.73 4 0 7.78 4 0
cl.R 1.44 0 0 258.80 0 0 5.22 0 0
cl.S 1.54 3 3 229.37 3 3 4.94 3 3
cl.T 4.63 3 5 231.48 3 6 7.30 3 6
cl.U 1.90 2 2 225.77 2 2 5.88 2 2
cl.V 5.33 5 6 231.16 5 5 7.02 5 5
cl.W 2.38 0 0 256.07 0 1 6.57 0 1
cl.X 1.63 0 0 228.58 0 0 5.02 0 0
cl.Y 1.44 0 0 220.33 0 0 4.49 0 0
cl.Z 2.13 4 3 247.07 4 3 5.91 4 3
Total 77.93 51 56 6138.86 51 55 161.59 51 55

Table 7 Experiments on QPs from SVM for the classification of the mnist database. The compu-
tation time (seconds) in this table is the cost of the first strategy. In the second strategy, AL-Hom
took 394.33s and SMO took 282.43s in all. The bolded computation times of AL-Hom denotes
that they are smaller than those of the other solvers.

Class.
AL-Hom SMO (LIBSVM)

Time/s Err.1 Err.2 Time/s Err.1 Err.2

cl.0 901.33 10 7 939.29 10 8
cl.1 644.27 10 7 540.36 10 8
cl.2 2001.13 22 24 2336.39 22 24
cl.3 2225.65 23 23 3501.45 23 25
cl.4 2001.42 17 16 1492.39 17 16
cl.5 1978.43 19 20 2397.18 19 19
cl.6 1117.33 17 18 1057.11 17 18
cl.7 1863.33 22 25 1926.60 22 26
cl.8 2854.22 24 22 4028.26 24 23
cl.9 2131.33 29 30 4111.90 29 28
Total. 17718.44 193 192 22230.8 193 195

Table 8 Experiments on QPs from SVM for the classification of the web classification task.
“OT” denotes the computation times more than 25000s.

Problem Training.set Testing.set
AL-Hom IPM (cplex) SMO (LIBSVM)

Time/s Err. Time/s Err. Time/s Err.

w1a 2123 47272 0.93 1030 6.40 1030 0.40 1030
w2a 2950 46279 1.37 895 18.01 895 0.64 895
w3a 4108 44837 2.65 823 54.81 823 1.02 823
w4a 6049 42383 5.34 728 205.78 728 1.88 728
w5a 7970 39861 11.22 648 620.39 648 3.02 648
w6a 13268 32561 34.78 419 2950.54 419 7.14 419
w7a 18530 25057 103.13 321 8766.35 321 25.64 321
w8a 34704 14951 553.74 113 OT - 165.54 113
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4.3 Contact problems of elasticity

In this section, we solve the contact problems of elasticity used as a benchmark
in [11–13]

Minimize q(u1, u2) =
∑2

i=1

(

∫

Ωi
|∇ui|

2dΩ −
∫

Ωi
PuidΩ

)

,

subject to u1(0, y) = 0 and u1(1, y) ≤ u2(1, y) for y ∈ [0, 1],
(50)

where Ω1 = (0, 1) × (0, 1), Ω2 = (1, 2) × (0, 1), P (x, y) = −5 for (x, y) ∈
(0, 1) × [0.75, 1), P (x, y) = 0 for (x, y) ∈ (0, 1) × (0, 0.75), P (x, y) = −1 for
(x, y) ∈ (1, 2)× (0, 0.25) and P (x, y) = 0 for (x, y) ∈ (1, 2)× (0.25, 1).

We followed Dostál et al. using finite difference to discretize (50) by regular
grids that are defined by the step size h ∈ { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512 ,

1
1024} in each

direction in each subdomain Ωi.
The discrete problem is a QP problem

min 1
2x

TQx+ rTx
s.t. Ax ≤ 0,

(51)

which is transformed to form (1) by introducing a slack variable s

min 1
2x

TQx+ rTx
s.t. Ax+ s = 0

s ≥ 0.
(52)

Thus, when h = 1
1024 , (52) has 2,101,250 variables and 1,025 equality con-

straints. We used PAL-Hom to solve (52) and compare it with the IPM solver in
CPLEX. Moreover, to show that the strategy which uses the homotopy method
to obtain the exact solutions of the augmented Lagrangian subproblems is
valid, we also exactly asymptotically solved the augmented Lagrangian sub-
problems by the APG method. For convenience, we use PAL-APG to denote
the augmented Lagrangian iterations with the subproblems exactly asymptot-
ically solved by APG.

Table 9 Experiments on the discrete contact problems of elasticity, “Iter” denotes the number of
the augmented Lagrangian subproblems solved. “Total” denotes the computation time (seconds)
of APG and the homotopy tracking steps together (for all augmented Lagrangian subproblems),
“Hom-tra.” denotes the computation time of the homotopy tracking steps. “OM” denotes out of
memory. The bolded computation times of PAL-Hom denotes that they are smaller than those of
the other solvers.

h m n
PAL-Hom PAL-APG

IPM(cplex)
Iter Total Hom-tra. Iter Time

1/32 33 2,178 5 0.09 0.02 11 1.33 0.32
1/64 65 8,450 5 0.32 0.06 11 3.34 1.34
1/128 129 33,282 5 1.09 0.18 12 17.45 13.33
1/256 257 132,098 6 12.28 0.85 11 324.49 127.42
1/512 513 526,338 6 129.14 10.09 11 1651.90 1408.52
1/1024 1,025 2,101,250 6 873.17 67.33 12 12937.68 OM

From the results, we see that PAL-Hom requires fewer iterations than PAL-
APG. Moreover the computation time of PAL-Hom is substantially smaller
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than that of PAL-APG. Furthermore, when the APG iteration obtains a low-
precision solution, a good prediction of the optimal active set is obtained;
therefore, the homotopy algorithm requires a small number of steps and little
time to obtain the exact solution from the approximate solution. However,
APG must continue iterating for the required precision, which requires much
more time. The results demonstrate that exactly solving the subproblems at
the mid to end stage by the homotopy algorithm is actually valid and that
PAL-Hom is substantially more efficient than IPM for solving this problem.

4.4 Randomly generated LPs and LPs from Netlib test set

In this section, we solve LPs by PP-AL-Hom. We first randomly generated
LPs with MATLAB codes as follows.

A=sprandn(m,n, dA); b=10∗randn(m,1); c=rand(n,1).

Table 10 Randomly generated LP

Problem m n dA
LP-D1 400 1000 1
LP-D2 800 2000 1
LP-D3 1000 5000 1
LP-D4 300 8000 1
LP-D5 4000 10000 1
LP-S1 100 2000 0.01
LP-S2 1000 5000 0.01
LP-S3 800 8000 0.01
LP-S4 4000 10000 0.01
LP-S5 800 15000 0.01
LP-S6 8000 20000 0.001
LP-S7 15000 32000 0.001

Additionally, we chose LPs from the Netlib test set. The chosen LPs have
finite solutions and were up to a size 16558× 49932. For randomly generated
LPs, PAL-Hom started from the original point, and for LPs from the Netlib
test set, we used a projected Newton barrier method [24] to obtain an ap-
proximate solution as an initial point, which would reduce the number of the
iterations (42).

We report the results in Tables 11-13 and the time of PAL-Hom in Ta-
bles 12-13 has included the computation time of the projected Newton barrier
method. The results show that PAL-Hom is able to solve the randomly gen-
erated LPs and LPs from the Netlib test set. For randomly generated LPs,
PAL-Hom is competitive with the other solvers. For LPs from the Netlib test
set, PAL-Hom is not as good as the IPM solvers in CPLEX and MATLAB,
and the simplex solver in Gurobi, but for some problems, PAL-Hom is more
effective than the simplex solver in MATLAB.

5 Conclusion

In this paper, we present a PAL-Hom (AL-Hom) algorithm for convex QP
problems, which takes the proximal ALM as the outer iteration and the ho-
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Table 11 Experiments on randomly generated LP. f∗, fS denote the optimal values obtained
by PAL-Hom and the other corresponding solvers, “OT” denote the computation time (seconds)
more than 25000s. The bolded computation times of PAL-Hom denotes that they are smaller than
those of the other solvers.

Problem Results PP-AL-Hom IPM(cplex) Simplex(gurobi) IPM(matlab) Simplex(matlab)

LP-D1
Time 0.69 0.80 0.58 3.33 17.90
‖Ax − b‖ 7.8E-11 4.0E-12 4.8E-12 1.3E-09 6.3E-10
f∗ − fS - -2.1E-11 -2.0E-11 -1.3E-10 -1.2E-11

LP-D2
Time 9.13 8.47 5.59 30.25 232.99
‖Ax − b‖ 2.4E-11 1.2E-11 1.3E-11 8.8E-13 3.8E-09
f∗ − fS - -5.3E-12 -6.1E-12 -8.2E-12 1.0E-10

LP-D3
Time 21.90 33.11 16.58 110.67 918.04
‖Ax − b‖ 8.9E-10 1.2E-11 1.5E-11 9.9E-13 2.5E-09
f∗ − fS - 1.0E-12 1.1E-12 9.9E-13 -1.0E-11

LP-D4
Time 11.36 3.82 2.27 19.47 55.78
‖Ax − b‖ 5.7E-10 1.8E-12 1.6E-12 7.5E-11 3.8E-09
f∗ − fS - -6.2E-13 -6.2E-12 -5.0E-12 6.1E-12

LP-D5
Time 343.23 1277.07 460.83 3472.62 OT
‖Ax − b‖ 2.2E-10 2.3E-10 2.6E-10 4.0E-12 -
f∗ − fS - -5.0E-12 -1.2E-11 -7.7E-12 -

LP-S1
Time 0.09 0.00 0.00 0.02 0.07
‖Ax − b‖ 2.1E-11 1.3E-13 9.7E-14 7.8E-13 4.9E-13
f∗ − fS - -2.1E-14 -2.1E-14 -2.1E-14 -2.3E-14

LP-S2
Time 2.43 1.62 0.93 6.40 350.84
‖Ax − b‖ 1.0E-08 1.5E-10 4.5E-11 1.6E-08 2.7E-11
f∗ − fS - -8.1E-10 -8.1E-10 -1.4E-09 -5.3E-09

LP-S3
Time 5.16 1.09 0.39 3.37 171.34
‖Ax − b‖ 8.0E-10 2.6E-10 6.8E-12 1.4E-10 2.7E-12
f∗ − fS - -5.3E-09 -5.3E09 -5.4E-10 -5.3E-10

LP-S4
Time 49.37 96.59 59.78 458.33 OT
‖Ax − b‖ 4.2E-10 3.8E-09 2.9E-10 6.2E-09 -
f∗ − fS - -5.2E-10 -4.9E-10 1.5E-10 -

LP-S5
Time 5.13 0.48 0.40 4.33 225.65
‖Ax − b‖ 6.9E-11 6.2E-11 7.4E-12 4.2E-11 1.9E-10
f∗ − fS - 4.2E-12 1.7E-13 3.7E-13 -4.3E-13

LP-S6
Time 311.45 148.93 97.58 3007.46 OT
‖Ax − b‖ 6.2E-09 2.7E-08 5.5E-09 1.4E-11 -
f∗ − fS - -2.8E-08 -7.7E-09 -1.8E-09 -

LP-S7
Time 903.11 2024.15 1289.04 24726.41 OT
‖Ax − b‖ 2.6E-09 2.1E-07 1.6E-08 1.6E-11 -
f∗ − fS - -1.1E-06 -1.2E-06 -1.3E-06 -

motopy algorithm as the inner iteration. Compared with IPM, AS and PAS,
the size of the KKT systems solved in PAL-Hom is much smaller, especially
when the solution is sparse such as in the problems from SVM. Moreover, com-
pared with PAS, the KKT systems in the tracking steps of PAL-Hom would
always be invertible so that we do not need to exchange indices to keep the
invertibility as in qpOASES. Furthermore, it is substantially easier to design
an efficient warm start for PAL-Hom than for the QP problem (1) (PAS). Al-
though we do not pay significant attention to optimizing the codes, PAL-Hom
is shown to be faster than the IPM solver in CPLEX for certain problems, such
as randomly generated QPs, LPs and some QPs in the CUTEr test. In partic-
ular, SVM problems and the discrete contact problems of elasticity, PAL-Hom
is more than 10 times faster than IPM. Given this practical performance, we
believe that our algorithms are promising.

The presented homotopy algorithm is shown to be efficient for nonnegative
QP problems (augmented Lagrangian subproblems) for the following reasons.
First, APG is effective at predicting the optimal active set, which provides a
good warm start for the homotopy algorithm. With the warm start, the homo-
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Table 12 Experiments on LPs from Netlib test set: part I (seconds). f∗, fS denote the optimal
values obtained by PAL-Hom and the other corresponding solvers.

Problem m n Results PP-AL-Hom
cplex gurobi matlab
IPM Simplex IPM Simplex

adlittle 57 138
Time 0.39 0.01 0.00 0.01 0.04
‖Ax − b‖ 8.8E-11 2.4E-13 8.1E-14 3.1E-11 3.7E-13
f∗ − fS - -1.4E-08 -1.2E-08 -1.2E-08 -1.2E-08

afiro 27 51
Time 0.04 0.00 0.00 0.01 0.01
‖Ax − b‖ 1.4E-13 1.4E-14 1.4E-14 1.5E-12 1.1E-13
f∗ − fS - 1.1E-13 01.1E-13 0.0E+00 1.1E-13

agg2 516 758
Time 0.51 0.01 0.01 0.08 1.27
‖Ax − b‖ 1.8E-08 1.3E-13 3.4E-10 5.4E-10 1.3E-10
f∗ − fS - -6.9E-04 -6.9E-04 -6.9E-04 -6.9E-04

beaconfd 173 295
Time 0.27 0.00 0.00 0.02 0.02
‖Ax − b‖ 4.3E-09 4.1E-11 1.2E-11 5.1E-11 3.2E-11
f∗ − fS - 2.3E-04 2.3E-04 2.3E-04 2.3E-04

blend 74 114
Time 0.09 0.00 0.00 0.01 0.03
‖Ax − b‖ 2.2E-09 63.9E-14 3.7E-13 6.0E-12 3.9E-14
f∗ − fS - -3.2E-07 -3.2E-07 -3.2E-07 -3.2E-07

d6cube 415 6184
Time 49.13 0.08 0.07 0.40 16.93
‖Ax − b‖ 8.6E-09 4.3E-11 7.8E-12 1.9E-09 5.1E-11
f∗ − fS - 4.22E-07 4.22E-07 4.22E-07 4.22E-07

degen2 444 754
Time 0.68 0.02 0.02 0.04 2.04
‖Ax − b‖ 1.6E-09 3.6E-15 3.6E-15 1.2E-12 2.6E-14
f∗ − fS -3.7E-06 -3.7E-06 -3.7E-06 -3.7E-06 -3.7E-06

degen3 1503 2604
Time 17.19 0.31 0.10 0.79 59.33
‖Ax − b‖ 6.8E-09 1.1E-14 1.5E-14 7.2E-09 1.1E-13
f∗ − fS - -1.88E-05 -1.88E-05 -1.88E-05 -1.88E-05

maros-r7 3136 9408
Time 2.85 0.46 0.25 3.99 51.18
‖Ax − b‖ 8.7E-09 4.6E-09 4.7E-09 1.8E-10 7.7E-08
f∗ − fS - -8.1E-08 -8.2E-08 -8.3E-08 -8.4E-08

psd 02 2953 7716
Time 5.91 0.03 0.02 0.18 2.15
‖Ax − b‖ 7.4E-10 0.0E+00 0.0E+00 0.0E+00 0.0E+00
f∗ − fS - 0.0E+00 0.0E+00 0.0E+00 0.0E+00

psd 06 9881 29351
Time 26.44 0.16 0.12 6.41 17.81
‖Ax − b‖ 6.7E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00
f∗ − fS - -9.0E-04 -9.0E-04 -9.0E-04 -9.0E-04

psd 10 16558 49932
Time 213.32 0.39 0.21 31.66 50.83
‖Ax − b‖ 2.0E-10 0.0E+00 0.0E+00 0.0E+00 0.0E+00
f∗ − fS - -2.8E-03 -2.8E-03 -2.8E-03 -2.8E-03

qap8 912 1632
Time 1.16 0.22 0.46 0.73 15.11
‖Ax − b‖ 1.3E-09 5.0E-13 1.7E-12 1.1E-14 2.3E-14
f∗ − fS - 3.3E-09 3.3E-09 3.7E-09 9.3E-09

qap12 3192 8856
Time 77.71 1.64 1.10 1506.63 1342.79
‖Ax − b‖ 8.6E-10 2.6E-12 1.9E-12 7.9E-09 1.9E-12
f∗ − fS - 4.1E-06 4.1E-06 3.9E-06 4.1E-06

scorpion 388 466
Time 0.54 0.01 0.01 0.02 0.22
‖Ax − b‖ 3.1E-13 1.2E-15 8.1E-16 2.6E-15 1.2E-15
f∗ − fS - -5.8E-05 -5.8E-05 -5.8E-05 -5.8E-05

scsd1 77 760
Time 0.32 0.01 0.01 0.01 0.09
‖Ax − b‖ 9.1E-13 1.5E-16 1.1e-16 2.2e-13 2.1e-16
f∗ − fS - 1.6E-11 1.6E-11 -2.5E-10 1.6E-11

scsd6 147 1350
Time 0.29 0.01 0.02 0.02 0.28
‖Ax − b‖ 1.9E-12 5.9E-16 3.7E-16 1.9E-13 6.0E-16
f∗ − fS - -1.1E-09 -1.1E-09 -9.0E-09 2.4E-09

scsd8 397 2750
Time 0.19 0.02 0.04 0.02 0.78
‖Ax − b‖ 5.9E-11 3.2E-14 3.1E-13 3.1E-13 4.2E-14
f∗ − fS - -1.2E-08 1.5E-08 1.5E-08 1.5E-08

sctap1 300 660
Time 2.31 0.01 0.01 0.03 0.34
‖Ax − b‖ 4.7E-10 5.5E-15 2.5E-15 6.0E-11 1.2E-11
f∗ − fS - 1.9E-07 1.9E-07 1.9E-07 1.9E-07

sctap2 1090 2500
Time 2.13 0.01 0.02 0.06 5.10
‖Ax − b‖ 7.3E-10 1.6E-14 8.9E-16 1.6E-12 3.3E-13
f∗ − fS - -2.5E-07 -2.5E-07 -2.5E-07 -2.5E-07

sctap3 1480 3340
Time 2.32 0.03 0.02 0.06 6.86
‖Ax − b‖ 1.2E-09 8.9E-15 6.2E-15 3.2E-12 3.2E-13
f∗ − fS - -6.5E-07 -6.5E-07 -6.5E-07 -6.5E-07
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Table 13 Experiments on LPs from Netlib test set: part II (seconds). f∗, fS denote the optimal
values obtained by PAL-Hom and the other corresponding solvers.

Problem m n Results PP-AL-Hom
cplex gurobi matlab
IPM Simplex IPM Simplex

ship04l 402 2166
Time 0.41 0.01 0.01 0.02 0.25
‖Ax − b‖ 3.5E-10 4.4E-14 4.9E-13 4.4E-11 2.3E-14
f∗ − fS - -7.5E-05 -3.1E-05 -3.1E-05 -3.1E-05

ship04s 402 1506
Time 0.30 0.01 0.01 0.02 0.09
‖Ax − b‖ 1.7E-09 7.7E-14 2.9E-14 6.8E-09 6.6E-14
f∗ − fS - -4.2E-04 -4.2E-04 -4.2E-04 -4.2E-04

ship08l 778 4363
Time 3.38 0.01 0.01 0.05 0.45
‖Ax − b‖ 2.3E-12 4.7E-14 3.2E-14 2.2E-10 1.7E-13
f∗ − fS - -6.5E-07 -1.4E-07 -1.4E-07 -1.4E-07

ship08s 778 2476
Time 2.13 0.02 0.01 0.03 0.18
‖Ax − b‖ 1.9E-12 2.8E-14 1.8E-14 2.8E-11 1.0E-11
f∗ − fS -3.6E-08 1.1E-07 1.1E-07 1.1E-07 1.1E-07

ship12l 1151 5533
Time 6.33 0.02 0.02 0.06 0.67
‖Ax − b‖ 4.4E-12 3.6E-14 3.8E-14 3.3E-11 3.6E-13
f∗ − fS - -2.2E-07 -1.8E-07 -1.8E-07 -1.8E-07

mship12s 1151 2869
Time 2.64 0.01 0.02 0.02 0.28
‖Ax − b‖ 1.8E-11 4.9E-13 6.3E-14 3.2E-11 1.1E-13
f∗ − fS - -1.3E-05 -9.5E-07 -9.5E-07 -9.5E-07

truss 1000 8806
Time 2.67 0.07 1.91 0.18 21.66
‖Ax − b‖ 1.7E-09 2.1E-13 1.9E-13 1.8E-11 1.0E-11
f∗ − fS - 7.2E-06 7.2E-06 7.2E-06 7.2E-06

topy algorithm often needs fewer iterations to obtain an exact solution. The
Cholesky factor update technique improves the performance of the homotopy
algorithm by reducing the computation of solving the KKT systems. More-
over, benefiting from the ε-precision verification and correction technique that
address the incorrect update of the active set caused by large condition num-
bers and a lack of strict complementarity, the homotopy algorithm is shown
to be robust for the augmented Lagrangian problems with large condition
numbers. The numerical results demonstrate that the homotopy algorithm is
substantially more efficient than PAS, ASA and IPM in solving the augmented
Lagrangian subproblems.

Simultaneously, based on the AL-Hom method, we use PP-AL-Hom to
solve the LP which is proved to converge in a finite number of steps. More-
over, the estimate of the number of maximum iterations and the descent of
the objective are presented. The numerical results show that PP-AL-Hom is
competitive to IPM in solving randomly generated problems.
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