
ar
X

iv
:1

90
3.

00
24

9v
1 

 [
m

at
h.

O
C

] 
 1

 M
ar

 2
01

9

Noname manuscript No.
(will be inserted by the editor)

A Semismooth Newton Method for Support Vector

Classification and Regression

Juan Yin · Qingna Li

Received: date / Accepted: date

Abstract Support vector machine is an important and fundamental tech-
nique in machine learning. In this paper, we apply a semismooth Newton
method to solve two typical SVM models: the L2-loss SVC model and the
ǫ-L2-loss SVR model. The semismooth Newton method is widely used in opti-
mization community. A common belief on the semismooth Newton method is
its fast convergence rate as well as high computational complexity. Our con-
tribution in this paper is that by exploring the sparse structure of the models,
we significantly reduce the computational complexity, meanwhile keeping the
quadratic convergence rate. Extensive numerical experiments demonstrate the
outstanding performance of the semismooth Newton method, especially for
problems with huge size of sample data (for news20.binary problem with
19996 features and 1355191 samples, it only takes three seconds). In particu-
lar, for the ǫ-L2-loss SVR model, the semismooth Newton method significantly
outperforms the leading solvers including DCD and TRON.

Keywords Support Vector Regression · Support Vector Classification ·
Semismooth Newton Method · Quadratic Convergence · Generalized Jacobian

1 Introduction

Support vector machine (SVM) is a popular and important statistical learning
technique [3, 22, 37–39, 41]. SVMs hold records in performance benchmarks
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for handwritten digit recognition, text categorization, information retrieval,
and time-series prediction. They are commonly used in the analysis of DNA
micro-array data [1, 21, 37, 39, 40]. Two main categories for support vector
machines (SVMs) are support vector classification (SVC) and support vector
regression (SVR). Support vector classification is a learning machine for two-
group classification problems [9]. The support vector regression was extended
from SVC by Boser et al. [4]. Most of the optimization methods for SVM
models solve the dual problems, partly due to some nonsmooth properties of
the primal functions. Two typical examples are the L2-loss SVC model and
the ǫ-L2-loss SVR model. Below we give a brief review on methods for the
above two models, which motivate the work in our paper. For a survey of
optimization methods for machine learning, we refer to [5, 13].

For the L2-loss SVC model, due to the nondifferentiability of the gradient
of the objective function, Mangasarian [27] introduced a finite Newton method.
It is basically a semismooth Newton method with unit step size, and the in-
verse of Hessian matrix is used to calculate the Newton direction. Keerthi
and DeCoste [20] proposed a modified Newton method. They compute the
Newton point and do an exact line search to determine step length. A trust
region Newton method (TRON) [25] was proposed for the L2-loss SVC model.
Chang et al. [6] proposed a coordinate descent method for the primal problem
and Hsieh et al. [18] proposed a dual coordinate descent method (DCD) for
the dual problem of the L2-loss SVC model. Very recently, Hsia et al. [17]1

performed a study on trust region update rules in Newton’s method. For the
ǫ-L2-loss SVR model, Ho and Lin [16] applied the TRON and DCD to solve
it and a smoothing Newton method was proposed by Gu et al. [14] . To deal
with large scale of data, stochastic gradient methods become popular in solv-
ing large scale SVM models [5]. Stochastic gradient method and its variants
have good performance in machine learning [5]. Classical stochastic gradient
descent (SGD) was proposed by Robbins and Monro in 1951 [34]. Johnson and
Zhang [19] proposed an accelerating stochastic gradient descent using predic-
tive variance reduction (SVRG). Recently, Tan et al. [36] put forward to use
the Barzilai-Borwein (BB) method to automatically compute step sizes for
SGD and SVRG, which leads to two algorithms: SGD-BB and SVRG-BB. In
their paper, numerical results suggest that SVRG-BB and SGD-BB clearly
outperform SVRG and SGD respectively. To summarize, one can see that de-
spite the competitiveness of Newton-type methods in SVM, little attention
has been paid to the semismooth Newton method in solving the two models.

On the other hand, in optimization community, the semismooth Newton
method has been well studied, and has been successfully used in many ap-
plications, especially in solving modern optimization problems, such as the
nearest correlation matrix problem [29,31], the nearest Euclidean distance ma-
trix problem [23], the tensor eigenvalue complementarity problem [7], solving
the system of absolute value equations [10], the solution of quasi-variational
inequations [11], as well as linear and convex quadratic semidefinite program-

1 We realized this work when we drafted our paper.
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ming problems [44]. The concept of semismoothness was introduced by Mif-
flin [28], and was popularized by Qi and Sun [33]. In [33], Qi and Sun pro-
posed a nonsmooth version of the classical Newton’s method. Compared with
the classical Newton method, the semismooth Newton method can solve non-
smooth equations, meanwhile can keep the local quadratic convergence rate
under certain conditions. A semismooth Newton method was extended to solve
the nonsmooth matrix equations by Qi and Sun [31]. Recently, the semismooth
Newton method has been frequently used to solve some important problems,
for example, Lasso problems [24], OSCAR and SLOPE models [26], approx-
imating weighted time series of finite rank [30], and convex clustering prob-
lems [42].

Compared with the wide usage of the semismooth Newton method in opti-
mization community, little attention has been paid to the semismooth Newton
method in machine learning, especially in SVM models. In this paper, we will
set up such a bridge by applying a globalized semismooth Newton method to
models of SVC and SVR, i.e., the L2-loss SVC model and the ǫ-L2-loss SVR
model. A common belief on the semismooth Newton method is its fast conver-
gence rate as well as high computational complexity. Our contribution in this
paper is that by exploring the sparse structure of the models, we significantly
bring down the computational complexity, meanwhile keeping the quadratic
convergence rate. Another advantage is that it is able to handle the case with
a huge number of sample data, since it solves the primal problem rather than
the dual. Extensive numerical experiments demonstrate the outstanding per-
formance of the semismooth Newton method, especially for problems with
huge size of sample data (for news20.binary problem with 19996 features
and 1355191 samples, it only takes about three seconds). In particular, for the
ǫ-L2-loss SVR model, the semismooth Newton method significantly outper-
forms the leading solvers including DCD and TRON.

The remaining parts of this paper are organized as follows. In Section 2, we
introduce the formulation of two models of SVMs, i.e., the L2-loss SVC model
and the ǫ-L2-loss SVR model. In Section 3, we introduce the semismooth
Newton method and apply it to solve the two mentioned models. In Section
4, we characterize the generalized Jacobian of the objective functions in the
two models, and highlight how to maintain the quadratic convergence rate and
reduce the computational complexity by making use of the sparse structure.
In Section 5, we collect test data from LIBLINEAR, a popular package for
SVM, and conduct extensive numerical experiments to show the efficiency of
our algorithm. We also do comparisons with other state-of-art solvers, such as
TRON, DCD and SVRG-BB. Finally, we conclude our paper in Section 6.

2 Two Models of SVMs

The L2-loss SVC Model Given training data x1, x2, . . . , xl ∈ IRn and the
corresponding label y1, y2, . . . , yl ∈ {−1, 1}, the basic idea of support vector
classification is to find a hyperplane ωTx+ b = 0 to separate the data, where
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ω ∈ IRn and b ∈ IR are unknown parameters. The traditional SVM model is

min
ω∈IRn, b∈IR

1

2
‖ω‖22

s.t. yi(ω
Txi + b) ≥ 1, i = 1, . . . , l.

(1)

Here we actually require that the data should be strictly separated, i.e., the
constraints must be satisfied strictly. This model is based on the assumption
that the data can be linearly separated. In practice, one usually using the fol-
lowing regularized model which allows that the data could be wrongly labelled,
i.e., the inequality constraints can be violated

min
ω∈IRn, b∈IR

1

2
‖ω‖2 + C

l
∑

i=1

ξ(ω;xi, yi, b) (2)

where C > 0 is a penalty parameter and ξ(·) is the loss function. If ξ(ω;xi, yi, b) =
max(1−yi(ω

Txi+b), 0), it is referred as the l1 hinge loss function; if ξ(ω;xi, yi, b) =
max(1 − yi(ω

Txi + b), 0)2, it is the squared hinge-loss function which we call

L2-loss function; if ξ(ω;xi, yi, b) = log(1+e−yi(ω
T xi+b)), it is referred as logistic

loss function. In our paper, we focus on the L2-loss SVC model, i.e.,

min
ω∈IRn,b∈IR

1

2
‖ω‖2 + C

l
∑

i=1

max(1− yi(ω
Txi + b), 0)2. (3)

Recent works on support vector classification often omit the bias term because
it hardly affects the performance on most data [16,18]. Therefore, by appending
each instance with an additional dimension:

xT
i ← [xT

i , 1], ωT ← [ωT , b], (4)

we obtain the following model, which is the first model we will consider (re-
ferred as L2-loss SVC [18]).

min
ω∈IRn

f1(ω) :=
1

2
‖ω‖2 + C

l
∑

i=1

max(1 − yi(ω
Txi), 0)

2. (5)

The ǫ-L2-loss SVR Model Given training data x1, x2, . . . , xl ∈ IRn and
the corresponding observations y1, y2, . . . , yl, SVR is to find ω ∈ IRn such that
ωTxi + b is close to the target value yi, i = 1, . . . , l. The ǫ-L2-loss SVR model
(Similarly, we omit the bias term b for SVR) is as follows

min
ω∈IRn

f2(ω) :=
1

2
‖ω‖2 + C

l
∑

i=1

ξǫ(ω;xi, yi), (6)

where

ξǫ(ω;xi, yi) = max(|ωTxi − yi| − ǫ, 0)2 (7)
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is the ǫ-insensitive loss function which we call ǫ-L2-loss function associated with
(xi, yi). The parameter ǫ > 0 is given so that the loss is zero if |ωTxi− yi| ≤ ǫ.
Ho and Lin [16], and Gu et al. [14] refer to SVR using (7) as L2-loss SVR and
ǫ-SVR respectively. We refer to it as ǫ-L2-loss SVR.

One can easily verify that the functions of (5) and (7) are continuously
differentiable but not twice differentiable. An illustration of the loss functions
is in Figure 1.

(a) L2-loss function for SVC (b) ǫ-L2-loss function for SVR

Fig. 1: Demonstration of Loss Functions

3 A Semismooth Newton Method

In this section, we will apply the semismooth Newton method to solve (5)
and (6). It is divided into two parts. In the first part, we introduce some
preliminaries. In the second part, we apply the semismooth Newton method
to solve (5) and (6).

3.1 Preliminaries

In this part, we will introduce some preliminaries about the semismooth New-
ton method. The semismoothness of a function is closely related to the gener-
alized Jacobian in the sense of Clarke [8], which is stated as follows.

Let Φ : IRm → IRl be a (locally) Lipschitz function. According to Rademacher’s
theorem [35, Sect. 14], Φ is differentiable almost everywhere. Define

DΦ := {x ∈ IRm | Φ is differentiable at x}.

Let Φ′(x) denote the Jacobian of Φ at x ∈ DΦ. The Bouligand subdifferential
of Φ at x ∈ IRm is then defined by

∂BΦ(x) := {V ∈ IRm×l | V is an accumulation point of Φ′(xk), xk → x, xk ∈ DΦ}.
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The generalized Jacobian in the sense of Clarke [8] is the convex hull of ∂BΦ(x),
i.e.,

∂Φ(x) = co ∂BΦ(x),

where co(∂BΦ(x)) is the convex hull of ∂BΦ(x). The concept of semismoothness
was introduced by Mifflin [28] for functionals. It was extended to vector-valued
functions by Qi and Sun [33].

Definition 1 We say that Φ is semismooth at x if (i) Φ is directional differ-
entiable at x and (ii) for any V ∈ ∂Φ(x+ h),

Φ(x+ h)− Φ(x)− V h = o(‖h‖).

Φ is said to be strongly semismooth at x if Φ is semismooth at x and for any
V ∈ ∂Φ(x + h),

Φ(x + h)− Φ(x) − V h = O(‖h‖2).

Some particular examples for semismooth functions are as follows.

– Piecewise linear functions are strongly semismooth.
– The composition of (strongly) semismooth functions is also (strongly) semis-

mooth.

For example, according to the definition above, max(0, t) is strongly semis-
mooth and the Clarkes’ generalized gradient of max(0, t) is

∂max(0, t) =







1, t > 0,
0, t < 0,
v, 0 ≤ v ≤ 1, t = 0.

(8)

3.2 A Semismooth Newton Method Applied to (5) and (6)

For Φ : IRm → IRm, a nonsmooth version of the classical Newton method to
solve the equations Φ(x) = 0 is as follows

xk+1 = xk − V −1
k Φ(xk), Vk ∈ ∂Φ(xk), k = 0, 1, 2, . . . , (9)

where x0 is an initial point. In general, the above iterative method does not
converge. However, Qi and Sun [33] show that if Φ is semismooth, then the
iterate sequence converges superlinearly. It is from then that the semismooth
Newton method became popular. We would also like to highlight that if Φ is
continuously differentiable, then ∂Φ(x) reduces to a singleton, which is the Ja-
cobian of Φ(x). In this situation, the algorithm is the classical Newton method.

For solving the following problem

min
ω∈IRn

f(ω) (10)
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where f := f1(ω) or f = f2(ω). It is easy to verify that f is strongly convex
and continuously differentiable with

∇f1(ω) = ω − 2C

l
∑

i=1

max(0, 1− yiω
Txi)yixi

and

∇f2(ω) = ω + 2C

l
∑

i=1

max(|ωTxi − yi| − ǫ, 0)sgn(ωTxi − yi)xi,

where sgn(t) is defined as 1 if t ≥ 0 and −1 otherwise. Therefore, solving (10)
is equivalent to solving

∇f(ω) = 0. (11)

One can see that ∇f1(ω) and∇f2(ω) are continuous, but not differentiable.
Fortunately, based on our analysis in Section 3.1, we can see that ∇f1(ω) and
∇f2(ω) are strongly semismooth. Therefore, we can apply the semismooth
Newton method to solve (5) and (6). In practice, we use the following well
studied globalized version of the semismooth Newton method [31, Algorithm
5.1].

Algorithm 1 A globalized semismooth Newton method

S0 Given k := 0. Choose ω0, σ ∈ (0, 1), ρ ∈ (0, 1), δ > 0, and η0 > 0, η1 > 0.
S1 Calculate ∇f(ωk). If ‖∇f(ωk)‖ ≤ δ, stop. Otherwise, go to S2.
S2 Select an element V k ∈ ∂2f(ωk) and apply CG [15] to find an approximate

solution dk by

V kdk +∇f(ωk) = 0 (12)

such that

‖V kdk +∇f(ωk)‖ ≤ µk‖∇f(ω
k)‖

where µk = min(η0, η1‖∇f(ω
k)‖).

S3 Do line search, and let mk > 0 be the smallest integer such that the follow-
ing holds

f(ωk + ρmdk) ≤ f(ωk) + σρm∇f(ωk)T dk.

Let αk = ρmk .
S4 Let ωk+1 = ωk + αkd

k, k := k + 1, go to S1.

Remark. Note that Mangsarian [27] proposed a finite Armijo Newton
method for solving L2-loss SVC. Different from Mangsarian’s algorithm, we
use the conjugate gradient (CG) method proposed by Hestenes and Stiefel [15]
to solve the linear system in S2 for obtaining the descent direction d. We note
that Hsia et al. [17] proposed using line search and trust region to obtain
step length but they focused on investigating the trust region update rules in
Newton’s method for L2-loss SVC.
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4 Quadratic Convergence Rate and Low Computational

Complexity

The tradition view about the Newton method is the fast convergence rate and
its expensive computational cost due to the usage of second order information.
In this section, we will show that when the semismooth Newton method is
applied to solve the two models (5) and (6), the quadratic convergence rate
can be well maintained. Furthermore, we can also reduce the computational
complexity dramatically by fully exploring the sparse structure of the models.
We divide this section into three parts. In the first part, we characterize the
generalized Jacobian of∇f(ω), which is used in Alg. 1. Then we discuss how to
maintain the quadratic convergence rate of the semismooth Newton method.
Finally, we will bring down the computational complexity by exploring the
sparse structure of the models.

4.1 Characterization of Generalized Jacobian

In Algorithm 1, we need to calculate ∂2f(ω), i.e., the generalized Jacobian of
∇f(ω). For the L2-loss SVC model (5), by the chain rule [8, Theorem 2.3.9],
there is ∂2f1(ω) ⊆ V1 where

V1 = {I+2C

l
∑

i=1

hixix
T
i , hi ∈ ∂max(0, zi(ω)), zi(ω) = 1−yiω

Txi, i = 1, . . . , l}.

For ǫ-L2-loss SVR, the generalized Jacobian of ∇f2(ω) is characterized in
the following proposition.

Proposition 1 For f2(ω) defined as in (6), there is ∂2f2(ω) ⊆ V2, where

V2 = {I+2C

l
∑

i=1

hixix
T
i , hi ∈ ∂max(0, zi(ω)), zi(ω) = |ω

Txi−yi|−ǫ, i = 1, . . . , l}.

Proof. Recall that

∇f2(ω) = ω +















2C
l
∑

i=1

max(ωTxi − yi − ǫ, 0)xi, ωTxi − yi ≥ 0

2C
l
∑

i=1

max(yi − ωTxi − ǫ, 0)(−xi), ω
Txi − yi < 0

= ω + 2C

l
∑

i=1

max(|ωTxi − yi| − ǫ, 0)sgn(ωTxi − yi)xi.

In the following, we first discuss the generalized Jacobian of max(|ωTxi−yi|−
ǫ, 0)sgn(ωTxi − yi)xi, i = 1, . . . , l. First, denote Qi : IR

n → IRn by

Qi(ω) = max(|ωTxi − yi| − ǫ, 0)sgn(ωTxi − yi)xi, i = 1, . . . , l.
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There is

Qi(ω) =































(ωTxi − yi − ǫ, 0)xi, ωTxi − yi ≥ 0, and ωTxi − yi − ǫ > 0
0, ωTxi − yi ≥ 0, and ωTxi − yi − ǫ = 0
0, ωTxi − yi ≥ 0, and ωTxi − yi − ǫ < 0
−(yi − ωTxi − ǫ, 0)xi, ωTxi − yi < 0, and yi − ωTxi − ǫ > 0
0, ωTxi − yi < 0, and yi − ωTxi − ǫ = 0
0, ωTxi − yi < 0, and yi − ωTxi − ǫ < 0

=







(ωTxi − yi − ǫ, 0)xi, ωTxi − yi > ǫ

0, −ǫ ≤ ωTxi − yi ≤ ǫ

−(yi − ωTxi − ǫ, 0)xi, ωTxi − yi < −ǫ.

We can see that Qi(ω) is differentiable when ωTxi−yi > ǫ, or −ǫ < ωTxi−yi <
ǫ, or ωTxi − yi < −ǫ. However, Qi(ω) is not differentiable if |ωTxi − yi| = ǫ.
When ω satisfies |ωTxi − yi| − ǫ > 0 or |ωTxi − yi| − ǫ < 0, the Jacobian of
Qi(ω) can be easily calculated by

Q′

i(ω) =







xix
T
i , ωTxi − yi > ǫ

0, −ǫ < ωTxi − yi < ǫ

xix
T
i , ωTxi − yi < −ǫ

=

{

xix
T
i , |ω

Txi − yi| > ǫ

0, |ωTxi − yi| < ǫ

Next, we calculate the generalized Jacobian of Qi(ω) when ωTxi − yi = −ǫ
and ωTxi− yi = ǫ. By Section 3.1, DQi

= {ω ∈ IRn | |ωTxi− yi|− ǫ 6= 0}, and

∂BQi(ω) = {V | V is an accumulation point of Q′

i(ω
j), ωj ∈ DQi

, ωj → ω}.

Consider at ω ∈ IRn where ωTxi−yi = −ǫ. We choose a sequence {ωj} ⊂ DQi
,

such that ωj → ω and (ωj)Txi − yi = −ǫ − 1
j
. Then lim

j→∞

Q′

i(ω
j) = xix

T
i .

Similarly, choose another sequence {ωj} ⊂ DQi
, such that (ωj)Txi−yi = −ǫ+

1
j
. There is lim

j→∞

Q′

i(ω
j) = 0. Then we have: at ω ∈ IRn with ωTxi − yi = −ǫ,

∂BQi(ω) = {0, xix
T
i }.

Consequently, at ω ∈ IRn with ωTxi − yi = −ǫ,

∂(Qi(ω)) = co(∂BQi(ω)) = co({0, xix
T
i }).

Similarly, at ω ∈ IRn with ωTxi − yi = ǫ, we have

∂(Qi(ω)) = co({0, xix
T
i }).

To sum up, we get

∂Qi(ω) =







xix
T
i , |ωTxi − yi| > ǫ,

0, |ωTxi − yi| < ǫ,

co({0, xix
T
i }), |ω

Txi − yi| = ǫ.
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Note that

co({0, xix
T
i }) = {(1− hi) · 0 + hixix

T
i , hi ∈ [0, 1]} = {hixix

T
i , hi ∈ [0, 1]}.

The generalized Jacobian of Qi(ω) is then given by

∂Qi(ω) =







xix
T
i , |ωTxi − yi| > ǫ,

0, |ωTxi − yi| < ǫ,

hixix
T
i , hi ∈ [0, 1], |ωTxi − yi| = ǫ

= {hixix
T
i , hi = 1 if |ωTxi − yi| > ǫ; hi = 0 if |ωTxi − yi| < ǫ;

and hi ∈ [0, 1] if |ωTxi − yi| = ǫ}.

By [8, Proposition 2.3.3], we know that ∂(
∑

Qi)(ω) ⊂
∑

∂Qi(ω) if Qi(i =
1, . . . , l) is a family of functions each of which is Lipschitz near ω. Therefore,
we have

∂2f2(ω) = ∂(∇f2(ω))

⊆ I + 2C

l
∑

i=1

∂Qi(ω)

= {I + 2C

l
∑

i=1

hixix
T
i , hi = 1 if |ωTxi − yi| > ǫ; and hi = 0 if

|ωTxi − yi| < ǫ; and hi ∈ [0, 1] if |ωTxi − yi| = ǫ, i = 1, . . . , l}.

By letting zi(ω) = |ωTxi − yi| − ǫ, and recall (8), we get ∂2f2(ω) ⊆ V2,
where

V2 = {I+2C

l
∑

i=1

hixix
T
i , hi ∈ ∂max(0, zi(ω)), zi(ω) = |ω

Txi−yi|−ǫ, i = 1, . . . , l}.

The proof is finished. �

4.2 Local Quadratic Convergence Rate

The local convergence result for the semismooth Newton method (9) is given
as follows.

Theorem 1 [33, Thm.3.2] let x∗ be a solution of Φ(x) = 0 and Let Φ be
a locally Lipschitz function which is semismooth at x∗. Assume that all V ∈
∂Φ(x∗) are nonsingular. Then every sequence generated by (9) is superlinearly
convergent to x∗, provided that the starting point x0 is sufficiently close to x∗.
Moreover, if Φ is strongly semismooth at x∗, the convergence rate is quadratic.

From Theorem 1, to guarantee the local quadratic convergence rate of Alg.
1, we need to check the positive definiteness of each element in ∂2f(ω). From
the characterization of ∂2f1(ω) and ∂2f2(ω), one can easily see that for any
V ∈ V1

⋃

V2, there is V � I. In other words, V − I is positive semidefinite for
any V ∈ V1 and V2. Consequently, we have the following proposition.
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Table 1: Computational Cost for Traditional Implementation

Step Formula Computational Cost

Form V I + 2C
∑

l

i=1
hixix

T

i
l(n2 + n) + n2 + 1

Calculate V∆ω V ∆ω n2

Proposition 2 For any V ∈ Vi, i = 1, 2, V is positive definite.

Due to the positive definiteness of V ∈ V1 and V ∈ V2, the local convergence
result in Theorem 1 holds, and the semismooth Newton method applied to
solve (5) and (6) enjoys local quadratic convergence rate.

Remark. Here we would like to highlight that not only the quadratic con-
vergence of the semismooth Newton method can be guaranteed in theoretical
point of view, it can also be verified from the numerical point of view. In fact,
in our numerical test, quadratical convergence rate can always be observed.
More details of the quadratic convergence rate are demonstrated in Section
5.1.

4.3 Exploring Sparsity to Reduce Computational Complexity

As mentioned before, the traditional view about the semismooth Newton
method is its high computational complexity since it needs to calculate the
generalized Jacobian. Also, it needs to solve the linear system in order to
get the Newton direction. In this part, we will demonstrate our view about
the semismooth Newton method. That is, by exploring the sparse structure,
the computational cost can be significantly reduced, which is even lower than
calculating the Jacobian. Specifically, the computational complexity can be
reduced from O(ln2) to O(n|Ik |), where |Ik| ≪ l.

We take the L2-loss SVC model as an example. In each iteration k, one
needs to solve the linear system (12) to get dk. In our algorithm, we solve
the linear system by CG, the computational burden then lies in calculation
V ∆ω for ∆ω ∈ IRn in each CG iteration. Below, we will compare the compu-
tational cost of calculating V ∆ω by traditional implementation and that by
our implementation.

Traditional Implementation.

The traditional implementation of calculating V ∆ω is to first generate V k

and save it, then calculate V k∆ω. The computational cost in each step is shown
in Table 1 where only multiplication and division are taken into account.

The computational complexity for traditional implementation is thenO(ln2).
Our Implementation.

In our implementation, we didn’t store V explicitly. Instead, we calculate
V ∆ω directly by the right hand side of the following formula

V ∆ω = ∆ω + 2C
l

∑

i=1

hi(x
T
i ∆ω)xi.
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Table 2: Computational Cost for Our Implementation

Formula Computational Cost

Calculate V ∆ω directly V∆ω = ∆ω + 2C
l∑

i=1

hi(x
T

i
∆ω)xi l(2n+ 1) + n+ 1

With definition of Ik V ∆ω = ∆ω + 2C
∑

i∈Ik

(xT

i
∆ω)xi 2|Ik|n+ n+ 1

As we can see, one only need to calculate the second term in the right hand
side of the above formula. Here we would like to highlight that by taking the
product of V ∆ω directly, we get avoid of forming matrix xix

T
i . Instead, we can

first take the vector product xT
i ∆ω, which will result in a scale, then conduct

scale-vector multiplication (xT
i ∆ω) · xi. This will lead to the computational

cost of (2n+ 1)l+ n+ 1.
Moreover, recall that hk

i ∈ ∂max(0, zki ) and some of the hi’s are actually
zero due to the definition in (8). Consequently, for those indices with hi = 0,
it is not necessary to calculate the item hi(x

T
i ∆ω)xi. Consequently, let Ik :

= {i : zki (ω
k) = 1 − yix

T
i ω

k > 0}. At iteration k, we choose hk ∈ IRl in the
following way:

hk
i =







1, i ∈ Ik
0, zki < 0
0, zki = 0,

As a result, V ∆ω will reduce to

V ∆ω = ∆ω + 2C
∑

i∈Ik

(xT
i ∆ω)xi.

The computational cost then becomes 2|Ik|n+n+1. This is the implementation
we use in our code. These are summarized in Table 2.

To further see the size of Ik, note that for zi > 0, it means that the i-th
sample can not be linearly separated, i.e., it violates 1 − yix

T
i ω < 0, so we

need to penalized the violation. In this case, we actually assume that only
few number of such i will happen. Therefore, it means that near the optimal
solution ω∗, |Ik| is much smaller than the sample size l, i.e., |Ik| ≪ l. We can
see that compared to calculate V ∆ω directly, the complexity in each iteration
is reduced from O(ln2) to O(|Ik|n).

In a word, due to the special sparse structure of problem (5) and (6), our
way of calculating V∆ω will lead to low computational cost, which is much
lower than the classical Newton and semismooth Newton method.

5 Numerical Results

In this section, we analyze the performance of the semismooth Newton method
for solving L2-loss SVC and ǫ-L2-loss SVR. It is divided into five parts. In
the first part, we demonstrate the low complexity of the semismooth New-
ton method as well as the quadratic convergence rate. In the second and
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third parts, we discuss the performance of the semismooth Newton method
for L2-loss SVC and ǫ-L2-loss SVR, respectively, due to different choices of
parameters. In the fourth part, we compare our algorithm with the methods
in LIBLINEAR [12], including trust region Newton method (TRON) and dual
coordinate descent method (DCD). In the last part, we compare with SVRG-
BB [36], one of the most efficient stochastic gradient methods.

All experiments are tested in Matlab R2013b in Windows 7 on a Lenovo
desktop computer with an Intel(R) Core(TM) i5-3470M CPU at 3.20 GHZ
and 4 GB of RAM. Throughout the computational experiments, we use the
following parameters in the semismooth Newton method: σ = 10−4, ρ =
0.5, ω0 = ones(n, 1), δ = 10−6, η0 = 0.05, η1 = 0.5. When solving the linear
system by CG, we set the maxium number iterations as 200.

Due to the different criteria of error evaluation for L2-loss SVC and ǫ-L2-
loss SVR, we use the standard real data sets from LIBSVM for classification
and regression (42 data sets for classification and 12 data sets for regres-
sion). For some datasets of classification whose labels don’t belong to {−1, 1},
we change their labels and set them belong to {−1, 1}. For example, for the
dataset: “breast-cancer”, samples’ labels are either 2 or 4. We turn the label 2
into -1 and the label 4 into 1. Similarly, we use the same strategy for datasets:
“liver-disorders”, “mushrooms”, “phishing”, “skin nonskin” and “svmguide1”.
Detailed information of data sets for classification and regression is given in
Table 3 and Table 4.

Table 3: Data Information for Classification (l is the number of instances, n is
the number of features, ♯ nonzeros represents the number of non-zero elements
in all training instances and density shows the ratio: ♯ nonzeros/(l·n)).

Data set l n ♯ nonzeros density

a1a 30956 123 429343 11.28%
a2a 30296 123 420188 11.28%
a3a 29376 123 407430 11.28%
a4a 27780 123 385302 11.28%
a5a 26147 123 362653 11.28%
a6a 21341 123 295984 11.28%
a7a 16461 123 228288 11.28%
a8a 22696 123 314815 11.28%
a9a 32561 123 451592 11.28%

australian 690 14 8447 87.44%
breast-cancer 638 10 6380 100%

cod-rna 59535 8 476280 100%
colon-cancer 62 2000 124000 100%
diabetes 768 8 6135 99.85%

duke breast-cancer 38 7129 270902 100%
fourclass 862 2 1717 99.59%

german.numer 1000 24 23001 95.84%
gisette 6000 5000 29729997 99.10%
heart 270 13 3510 100%
ijcnn1 49990 22 649870 59.09%
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Data set l n ♯ nonzeros density

ionosphere 351 34 10551 88.41%
leukemia 38 7129 270902 100%

liver-disorders 145 5 725 100%
mushrooms 8124 112 170604 18.75%

news20.binary 19996 1355191 9097916 0.03%
phishing 11055 68 331610 44.11%

rcv1.binary 20242 47236 1498952 0.16%
real-sim 72309 20958 3709083 0.24%

skin nonskin 245057 3 735171 100%
splice 2175 60 130500 100%
sonar 208 60 12479 99.99%

svmguide1 3089 4 12356 100%
svmguide3 1243 22 27208 99.50%

w1a 47272 300 551176 3.89%
w2a 46279 300 539213 3.89%
w3a 44837 300 522338 3.89%
w4a 42383 300 493583 3.89%
w5a 39861 300 464466 3.89%
w6a 32561 300 379116 3.89%
w7a 25057 300 291438 3.89%
w8a 49749 300 579586 3.89%

covtype.binary 581012 54 6940438 22.12%

Table 4: Data Information for Regression.

Data set l n ♯ nonzeros density range of y

abalone 4177 8 32080 96.00% [4, 29]
bodyfat 252 14 3528 100% [1.00, 1.11]
cpusmall 8192 12 98304 100% [0, 99]
tfidf.train 16087 150360 19971015 0.83% [-7.90, -0.52]
tfidf.test 3308 150360 4559533 0.92% [-7.14, -1.69]

eunite2001 336 16 2651 49.31% [612, 876]
housing 506 13 6578 100% [5, 50]

mg 1385 6 8310 100% [0.42, 1.32]
mpg 392 7 2614 95.26% [9, 46.6]
pyrim 74 27 1720 86.09% [0.1, 0.9]

space ga 3107 6 18642 100% [-3.06, 0.10]
triazines 186 60 9982 89.44% [0.1, 0.9]

To see the performance of the semismooth Newton method, we report the
following information: the number of iterations k, the total number of CG
iterations cg, the cputime t in second, as well as the final ‖∇f(ωk)‖, denoted
as res. We also use an index of accuracy to further evaluate the quality of the
solution returned by our method. For L2-loss SVC, let x̂i be a test data, the
predicted label is then calculated as follows

ŷi = sgn(ωT x̂i),
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where ω is generated by the semismooth Newton algorithm. The accuracy is
then calculated by

number of test data whose predicted labels are correct

number of test set
.

For ǫ-L2-loss SVR, we let y′i = ωT x̂i, i = 1, 2, . . . ,m, m is the total number of
testing data, x̂i is the element of testing data. We use the mean squared error
(MSE) to show our algorithm’s test accuracy, which is calculated by

MSE =
1

l

m
∑

i=1

(yi − y′i)
2, (13)

where y′i, are the observed data corresponding to x̂i, i = 1, · · · ,m.

5.1 Demonstration of Low Computational Complexity and Quadratic
Convergence Rate

Demonstration of Low Computational Complexity and Sparsity.

As analyzed above, the model of problem (5) we solved has good sparsity.
In this part, we will give an example for the description of sparsity. Here we
set C = 1

l
× 102 for convenience. For dataset: “covtype.binary”, we can see

that the semismooth Newton method takes 11 iterations until terminating
successfully and the data set contains 581012 instances. Recall Ik : = {i :
zki (ω

k) = 1− yix
T
i ω

k > 0}. For each iteration, |Ik| is recorded as follows.

|Ik| = [0, 0, 443992, 278855, 148650, 86290, 57933, 47991, 46343, 46292, 46293].

The corresponding ratio of |Ik| over sample size l is calculated by

ratiok =
|Ik|

l
= [0, 0, 0.764, 0.480, 0.256, 0.149, 0.100, 0.083, 0.080, 0.080, 0.080]

We plot |Ik| and ratiok in Figure 2. We can see that |Ik| is always under the
horizontal line and ratiok is always less than 1. In particular, |Ik| is significantly
smaller than the total number of instances except k = 2 and the value of ratiok
is even less than 0.1 at some iterations, indicating that the computational cost
is significantly saved from O(ln2) to O(|Ik |n).
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Fig. 2: Demonstration of |Ik| and ratiok for Each Iteration

Demonstration of Quadratic Convergence Rate.

For L2-loss SVC, to show the quadratic convergence rate, we choose two
data sets: “w3a” and “real-sim” to run Alg. 1 and plot the log ‖∇f(ω)‖ during
iterations when C ∈ 1

l
×{10−2, 10−1, 1, 101, 102} in Figure 3. One can see that

log ‖∇f(ω)‖ decreased fast and stopped successfully within small iterations
(the numbers of iterations in the two datasets are samller than 10). We can see
that log ‖∇f(ω)‖ decreases almost linearly along k, indicating the superlinear
convergence rate of the semismooth Newton method.

(a) w3a (d) real-sim

Fig. 3: Performance Profile when C ∈ 1
l
× {10−2, 10−1, 1, 101, 102}

For ǫ-L2 loss SVR, Figure 4 shows the trend of log ‖∇f(ω)‖ during it-
erations via the semismooth Newton method in two data sets: “abalone”
and “mpg”. We can observe that log ‖∇f(ω)‖ decreases fast during iterations
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which again verifies the quadratic convergence rate of the semismooth Newton
method.

(a) abalone (b) mpg

Fig. 4: log ‖∇f(ω)‖ along Iterations with C ∈ 1
l
×{10−2, 10−1, 1, 101, 102} and

ǫ = 10−2

5.2 Numerical Results for L2-loss SVC (5)

In this part, to see the role of parameter C in L2-loss SVC model (5), we test
our algorithm with C ∈ 1

l
× {10−2, 10−1, 1, 101, 102} and report the results in

Table 5 (We use each data set with 100% data).

Table 5: Numerical Results for L2-loss SVC with Different C’s.

data C(× 1

l
) cg k res t(s) data C(× 1

l
) cg k res t(s)

a1a

10−2 5 3 1.80e-08 0.03

a2a

10−2 5 3 1.80e-08 0.03
10−1 7 3 4.01e-07 0.03 10−1 7 3 4.02e-07 0.03
1 20 5 3.21e-08 0.07 1 20 5 3.22e-08 0.07

101 47 7 7.69e-08 0.10 101 47 7 8.53e-08 0.10
102 121 9 1.87e-08 0.18 102 123 9 2.05e-08 0.18

a3a

10−2 5 3 1.81e-08 0.03

a4a

10−2 5 3 1.80e-08 0.03
10−1 7 3 4.01e-07 0.03 10−1 7 3 4.00e-07 0.03
1 20 5 3.31e-08 0.06 1 20 5 3.32e-08 0.06

101 47 7 9.29e-08 0.09 101 47 7 6.46e-08 0.08
102 122 9 3.49e-08 0.14 102 121 9 2.98e-08 0.14

a5a

10−2 5 3 1.80e-08 0.03

a6a

10−2 5 3 1.80e-08 0.02
10−1 7 3 4.02e-07 0.03 10−1 7 3 3.97e-07 0.03
1 20 5 3.23e-08 0.05 1 20 5 3.21e-08 0.04

101 47 7 6.60e-08 0.08 101 47 7 9.41e-08 0.06
102 121 9 2.88e-08 0.12 102 123 9 1.93e-08 0.10
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data C(× 1

l
) cg k res t(s) data C(× 1

l
) cg k res t(s)

a7a

10−2 5 3 1.83e-08 0.02

a8a

10−2 5 3 1.77e-08 0.02
10−1 7 3 3.99e-07 0.02 10−1 7 3 3.97e-07 0.02
1 20 5 3.24e-08 0.04 1 20 5 3.02e-08 0.04

101 47 7 9.89e-08 0.05 101 47 7 5.95e-08 0.06
102 119 9 4.53e-08 0.07 102 120 9 1.84e-08 0.11

a9a

10−2 5 3 1.80e-08 0.03

australian

10−2 5 3 1.84e-08 0.00
10−1 7 3 4.02e-07 0.04 10−1 10 4 1.14e-08 0.00
1 20 5 3.23e-08 0.08 1 23 5 3.85e-09 0.00

101 47 7 6.23e-08 0.11 101 45 6 3.57e-08 0.00
102 121 9 2.47e-08 0.18 102 73 7 2.02e-07 0.01

breast-
cancer

10−2 5 4 1.32e-09 0.00

cod-rna

10−2 14 6 2.28e-10 0.07
10−1 6 3 7.53e-07 0.00 10−1 16 7 4.82e-08 0.08
1 13 4 7.42e-07 0.00 1 21 8 6.62e-09 0.10

101 34 8 4.10e-07 0.00 101 31 11 1.67e-08 0.13
102 63 9 1.17e-09 0.01 102 44 13 9.29e-09 0.15

colon-
cancer

10−2 28 5 1.02e-08 0.02

diabetes

10−2 4 3 2.10e-07 0.00
10−1 77 7 1.25e-08 0.04 10−1 6 3 3.09e-08 0.00
1 100 7 1.88e-07 0.03 1 11 4 2.84e-07 0.00

101 197 12 7.44e-08 0.06 101 27 6 3.43e-09 0.00
102 323 19 7.50e-08 0.09 102 30 6 3.31e-07 0.01

duke
breast-
cancer

10−2 46 7 6.46e-09 0.06

fourclass

10−2 3 3 1.66e-07 0.00
10−1 67 7 6.01e-07 0.07 10−1 5 3 9.09e-10 0.00
1 128 11 4.32e-08 0.11 1 6 3 2.73e-08 0.00

101 207 18 4.07e-08 0.18 101 12 4 7.03e-15 0.00
102 406 32 3.50e-07 0.36 102 12 5 7.38e-07 0.00

german
.numer

10−2 6 3 7.34e-10 0.00

gisette

10−2 18 5 2.54e-08 3.19
10−1 11 4 1.19e-08 0.00 10−1 42 7 3.74e-07 5.44
1 24 5 6.33e-09 0.00 1 123 9 2.27e-08 9.00

101 48 6 4.15e-07 0.01 101 292 11 9.16e-08 14.20
102 87 7 1.42e-07 0.01 102 680 14 6.55e-07 24.13

heart

10−2 5 3 1.18e-09 0.00

ijcnn1

10−2 4 4 3.14e-08 0.06
10−1 10 4 4.59e-09 0.00 10−1 6 3 1.01e-08 0.05
1 18 4 7.14e-08 0.00 1 11 4 7.53e-09 0.09

101 45 6 3.35e-08 0.01 101 20 5 3.13e-07 0.13
102 69 7 8.64e-08 0.01 102 49 7 2.86e-07 0.18

ionosphere

10−2 5 3 6.00e-08 0.00

leukemia

10−2 39 6 8.99e-07 0.05
10−1 10 4 2.18e-08 0.00 10−1 64 8 9.30e-08 0.07
1 23 5 1.33e-08 0.00 1 86 9 9.80e-07 0.08

101 46 6 4.34e-07 0.01 101 282 25 9.25e-08 0.30
102 99 8 4.61e-07 0.01 102 311 26 9.25e-08 0.28

liver-
disorders

10−2 23 5 7.05e-15 0.00

mush
rooms

10−2 5 3 1.47e-07 0.01
10−1 23 5 1.29e-07 0.00 10−1 10 4 4.84e-08 0.02
1 28 7 1.14e-11 0.00 1 24 5 6.03e-08 0.02

101 36 8 5.13e-13 0.00 101 56 7 5.52e-07 0.03
102 36 8 7.84e-12 0.00 102 145 10 7.80e-08 0.04

news20
.binary

10−2 3 3 2.71e-07 1.04

phishing

10−2 3 2 2.32e-07 0.01
10−1 5 4 4.46e-10 1.44 10−1 5 3 1.14e-08 0.02
1 7 4 6.22e-09 1.79 1 8 4 2.51e-08 0.03

101 12 5 3.68e-09 2.48 101 15 5 3.52e-07 0.04
102 19 6 2.04e-07 3.60 102 33 6 9.53e-07 0.05

rcv1
.binary

10−2 3 3 1.59e-07 0.10

real-
sim

10−2 3 3 1.16e-07 0.20
10−1 6 4 1.93e-10 0.16 10−1 6 5 2.59e-11 0.32
1 7 4 1.17e-08 0.15 1 5 3 8.42e-07 0.24

101 12 5 6.07e-08 0.21 101 12 5 2.19e-09 0.44
102 24 6 2.31e-08 0.33 102 20 6 1.38e-07 0.60
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data C(× 1

l
) cg k res t(s) data C(× 1

l
) cg k res t(s)

skin
nonskin

10−2 15 5 4.18e-07 0.18

splice

10−2 8 4 1.21e-09 0.01
10−1 18 6 1.13e-08 0.22 10−1 15 5 3.11e-09 0.01
1 18 6 8.82e-08 0.22 1 24 6 3.84e-07 0.01

101 34 11 2.84e-07 0.43 101 38 7 1.08e-07 0.02
102 37 12 5.72e-08 0.39 102 54 8 1.22e-08 0.02

sonar

10−2 6 3 4.68e-09 0.00

svmguide1

10−2 26 8 5.70e-12 0.00
10−1 11 4 1.71e-08 0.00 10−1 29 9 6.69e-09 0.00
1 23 5 5.77e-07 0.00 1 31 9 7.89e-14 0.01

101 57 7 9.42e-08 0.01 101 32 10 1.09e-10 0.01
102 117 8 6.88e-07 0.01 102 39 11 4.10e-10 0.01

svmguide3

10−2 4 3 2.66e-07 0.00

w1a

10−2 4 2 3.81e-07 0.04
10−1 6 3 4.27e-08 0.00 10−1 9 4 2.82e-09 0.07
1 11 4 7.32e-09 0.00 1 14 4 3.47e-07 0.08

101 24 5 4.66e-07 0.01 101 43 8 5.04e-09 0.14
102 59 7 7.58e-09 0.01 102 82 9 5.77e-07 0.16

w2a

10−2 4 2 3.81e-07 0.04

w3a

10−2 4 2 3.82e-07 0.04
10−1 9 4 2.88e-09 0.07 10−1 9 4 2.89e-09 0.07
1 11 4 3.31e-07 0.07 1 14 4 3.36e-07 0.07

101 43 8 4.60e-09 0.14 101 43 8 8.09e-09 0.13
102 81 9 6.58e-07 0.15 102 81 9 6.03e-07 0.15

w4a

10−2 4 2 3.76e-07 0.03

w5a

10−2 4 2 3.85e-07 0.03
10−1 9 4 2.93e-09 0.06 10−1 9 4 2.99e-09 0.06
1 14 4 3.54e-07 0.06 1 14 4 3.42e-07 0.06

101 43 8 6.45e-09 0.12 101 43 8 1.42e-08 0.11
102 81 9 5.83e-07 0.14 102 82 9 5.07e-07 0.13

w6a

10−2 4 2 3.73e-07 0.02

w7a

10−2 4 2 3.81e-07 0.02
10−1 9 4 2.83e-09 0.05 10−1 8 4 4.80e-08 0.04
1 14 4 3.49e-07 0.05 1 14 4 3.50e-07 0.04

101 37 7 9.03e-07 0.08 101 43 8 7.97e-09 0.07
102 84 9 2.93e-07 0.11 102 84 9 2.93e-07 0.08

w8a

10−2 4 2 3.82e-07 0.04

covtype
.binary

10−2 3 3 1.58e-07 0.41
10−1 9 4 2.79e-09 0.08 10−1 6 4 7.49e-08 0.63
1 14 4 3.01e-07 0.07 1 10 4 2.15e-07 0.73

101 43 8 8.27e-09 0.15 101 20 6 7.64e-07 0.86
102 82 9 6.44e-07 0.16 102 53 11 4.84e-09 1.16

From Table 5, we summarize the following observations.

1. All the 210 tested instances are successfully solved by the semismooth
Newton method. This suggests the semismooth Newton method is capable
of solving problem (5) and the computation time of our algorithm is small.

2. When our algorithm terminates, all the residuals (as shown in the column
under “res”) are at least at the level of 10−6 within 10 iterations (Recall
that the stopping criteria is 10−6), and even some residuals reached 10−9 or
10−10. It indicates our algorithm can stop successfully under the stopping
criteria and return solutions of high accuracy. That is, the semismooth
Newton method is effective to solve L2-loss SVC.

3. In terms of different choices for C ∈ 1
l
×{10−2, 10−1, 1, 101, 102}, the semis-

mooth Newton method can obtain the optimal solution even for different
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C’s. We can notice that the smaller the C, the less the number of iterations
of our algorithm and the faster our algorithm can converge.

4. Our algorithm can converge to the optimal solution for most data sets
within 10 iterations.

5.3 Numerical Results for ǫ-L2-loss SVR (6)

For ǫ in ǫ-insensitive loss function [14], Ho et al. [16] performed experiments
with and without using ǫ via the dual coordinate descent method. The results
indicate that for ǫ-L2-loss SVR (6) , MSE is similar for different ǫ’s. As a
result, we fix ǫ = 10−2 and test our algorithm with different choices of C for
(6) since ǫ is insensitive. The results are reported in Table 6.

Table 6: Numerical Results for ǫ-L2-loss SVR with Different C’s.

data C(× 1

l
) cg k res t(s) data C(× 1

l
) cg k res t(s)

abalone

10−2 5 3 7.38e-10 0.00

bodyfat

10−2 4 2 8.48e-08 0.00
10−1 6 3 5.74e-07 0.00 10−1 9 4 2.09e-10 0.00
1 11 3 6.95e-08 0.01 1 14 4 6.67e-09 0.00

101 17 4 1.35e-07 0.01 101 27 5 8.83e-09 0.00
102 28 5 8.59e-08 0.01 102 45 6 2.30e-07 0.00

cpusmall

10−2 4 2 1.79e-07 0.01

tfidf.
train

10−2 3 3 3.62e-07 1.71
10−1 7 3 5.76e-09 0.02 10−1 6 4 5.57e-09 2.87
1 12 4 2.77e-08 0.02 1 6 3 2.07e-07 2.36

101 23 5 3.16e-08 0.03 101 10 4 4.06e-09 3.58
102 43 5 2.19e-08 0.03 102 13 4 2.08e-09 3.87

tfidf.
test

10−2 3 3 1.16e-07 0.42

eunite
2001

10−2 4 4 1.29e-07 0.00
10−1 6 4 3.72e-09 0.70 10−1 7 4 9.96e-08 0.00
1 6 3 9.14e-08 0.58 1 10 4 7.28e-07 0.00

101 9 4 3.60e-08 0.92 101 21 5 8.52e-08 0.00
102 12 4 4.97e-09 0.95 102 49 6 9.08e-09 0.00

housing

10−2 6 3 1.47e-09 0.00

mg

10−2 3 2 8.90e-07 0.00
10−1 8 3 6.49e-08 0.00 10−1 6 3 1.82e-08 0.00
1 17 4 8.42e-09 0.00 1 10 3 2.83e-08 0.00

101 32 5 4.54e-08 0.01 101 15 4 1.93e-09 0.00
102 40 5 3.30e-07 0.00 102 18 4 1.49e-08 0.00

mpg

10−2 3 2 6.87e-07 0.00

pyrim

10−2 6 3 2.98e-09 0.00
10−1 6 3 3.11e-07 0.00 10−1 10 4 5.27e-08 0.00
1 16 4 7.66e-09 0.00 1 22 5 4.56e-08 0.00

101 23 4 5.68e-08 0.01 101 41 5 7.42e-07 0.00
102 30 5 3.33e-07 0.01 102 106 7 4.44e-07 0.01

space ga

10−2 3 3 6.09e-07 0.00

triazines

10−2 8 4 1.77e-08 0.00
10−1 6 3 2.13e-09 0.00 10−1 15 4 1.18e-08 0.00
1 9 3 3.97e-07 0.00 1 28 5 2.20e-08 0.00

101 17 4 2.47e-09 0.01 101 64 6 3.93e-08 0.01
102 19 4 6.68e-09 0.01 102 140 7 2.81e-07 0.01
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Table 6 shows that our algorithm can stop successfully under stopping
criteria, which indicates the semismooth Newton method is efficient for ǫ-L2-
loss SVR (6). All datasets are successfully solved by the semismooth Newton
method in seconds. This suggests the semismooth Newton method is capable
of solving problem (6) and the computation time of our algorithm is quite
small. Our algorithm can converge to the optimal solution for all data sets
within 7 iterations. Similarly, we can observe that the smaller the C, the less
the number of iterations of our algorithm and the faster our algorithm can
converge.

5.4 Numerical Comparisions with LIBLINEAR

In this part, we compare our algorithm with some solvers in LIBLINEAR 2

which is the most popular and successful public software for support vector
classification, regression and distribution estimation with linear kernel. We
choose the following popular solvers for L2-loss SVC and ǫ-L2-loss SVR.

– DCD1 and TRON1: a dual coordinate descent method [18] and a trust
region Newton method [25] for L2-loss SVC.

– TRON2 and DCD2: a trust region Newton method and a dual coordinate
descent method [16] for ǫ-L2-loss SVR.

We use a stratified selection to split each set to 60% training and 40% testing.
For L2-Loss SVC, the training time and accuracy (in percentage) on classifi-
cation datasets are reported in Table 7 with C = 1

l
× 102.

Table 7: The Comparison Results for L2-loss SVC. A1: DCD1; A2: TRON1;
A3: the Semismooth Newton Method

data t(s) (A1|A2|A3) accuracy (A1|A2|A3)

a1a 0.04|0.07|0.08 84.63|84.63|84.66
a2a 0.03|0.06|0.08 84.70|84.70|84.72
a3a 0.03|0.06|0.08 84.67|84.67|84.62
a4a 0.03|0.05|0.08 84.68|84.68|84.73
a5a 0.03|0.05|0.07 84.71|84.71|84.74
a6a 0.02|0.03|0.05 84.40|84.40|84.95
a7a 0.02|0.03|0.04 84.78|84.78|84.77
a8a 0.03|0.04|0.06 84.31|84.31|84.30
a9a 0.04|0.06|0.09 84.64|84.64|84.66

australian 0.00|0.00|0.00 84.78|84.78|85.14
breast-cancer 0.00|0.00|0.00 98.90|98.90|98.90

cod-rna 3.10|0.06|0.09 81.58|82.60|76.01
colon-cancer 0.01|1.03|0.05 72.00|72.00|72.00
diabetes 0.00|0.00|0.00 80.46|80.46|79.48

duke breast-cancer 0.02|1.75|0.17 80.00|80.00|80.00
fourclass 0.00|0.00|0.00 66.96|66.96|74.94

german. numer 0.01|0.00|0.01 76.50|76.50|76.75

2 We use the software LIBNIEAR version 2.11 downloaded from
https://www.csie.ntu.edu.tw/ cjlin/liblinear/
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data t(s) (A1|A2|A3) accuracy (A1|A2|A3)

gisette 4.93|12.12|14.18 97.00|97.00|97.00
heart 0.01|0.00|0.01 85.19|85.19|87.04
ijcnn1 0.08|0.07|0.08 91.44|91.44|92.31

ionosphere 0.01|0.00|0.01 93.57|93.57|92.86
leukemia 0.02|1.95|0.25 26.67|26.67|93.33

liver-disorders 0.00|0.00|0.00 39.66|62.07|65.52
mushrooms 0.01|0.01|0.02 96.43|96.43|96.43

news20.binary 0.61|1.52|2.45 72.14|72.14|69.84
phishing 0.02|0.03|0.03 90.59|90.59|90.59

rcv1.binary 0.12|0.16|0.22 93.74|93.74|94.07
real-sim 0.34|0.29|0.37 78.78|78.78|73.88

skin nonskin 15.78|0.08|0.17 89.16|89.16|90.61
splice 0.15|0.01|0.01 84.94|84.94|85.40
sonar 0.00|0.00|0.01 14.46|14.46|15.66

svmguide1 0.00|0.00|0.00 11.89|11.89|11.89
svmguide3 0.00|0.00|0.01 40.44|40.44|40.44

w1a 0.04|0.05|0.10 99.32|99.32|99.92
w2a 0.05|0.06|0.09 99.31|99.31|99.92
w3a 0.05|0.06|0.09 99.29|99.29|99.93
w4a 0.04|0.05|0.09 99.30|99.30|99.92
w5a 0.03|0.05|0.08 99.27|99.27|99.92
w6a 0.03|0.03|0.06 99.36|99.36|99.94
w7a 0.02|0.02|0.05 99.31|99.31|99.95
w8a 0.04|0.06|0.10 99.33|99.33|99.91

covtype.binary 31.25|1.18|0.70 59.29|59.29|61.54

From Table 7, we get the following observations.

1. All of the three methods have high accuracy. The accuracy of most datasets
was over 60%, and even higher than 90% for some datasets. For the 42
classification data sets, compared with DCD1 and TRON1, the semismooth
Newton method has same or higher classification accuracy for 34 datasets.

2. The semismooth Newton method is competitive with DCD1 and TRON1 in
terms of cputime. In particular, for “covtype.binary”, the semismooth New-
ton method is much faster than DCD1 and TRON1. For “skin nonskin”,
the semismooth Newton method takes shorter time than DCD1 and is as
fast as TRON1.

In summary, the semismooth Newton method is very competitive with
DCD1 and TRON1, in terms of accuracy and cputime.

Next, we compare our algorithm with DCD2 and TRON2 for ǫ-L2-loss
SVR. The results are listed in Table 8. As we know, the smaller the MSE, the
better the fitting of the model. For ǫ-L2-loss SVR, we tested 12 regression data
sets and we observed that when C = 1

l
× 102 and ǫ = 1e − 2, MSE via our

algorithm is significantly smaller than DCD2 and TRON2 for all regression
datasets. As for the cputime, these three methods are almost same. These
indicate our algorithm is efficient and has better performance than DCD2 and
TRON2.
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Table 8: The Comparison Results for ǫ-L2-loss SVR with C = 1
l
× 102 and

ǫ = 1e− 2. B1: DCD2; B2: TRON2; B3: the Semismooth Newton Method

data t(s) (B1|B2|B3) MSE (B1|B2|B3)

abalone 0.00|0.00|0.01 50.07|50.07|4.17
bodyfat 0.00|0.00|0.00 0.77|0.77|0.00
cpusmall 0.01|0.01|0.02 112.35|112.37|102.24
tfidf.train 1.64|1.43|1.73 0.46|0.46|0.14
tfidf.test 0.57|0.41|0.78 0.40|0.40|0.13

eunite2001 0.00|0.00|0.00 131854 |131854 |408.44
housing 0.00|0.00|0.01 194.38|194.38|71.45

mg 0.00|0.00|0.00 0.87|0.87|0.02
mpg 0.00|0.00|0.00 562.55|562.56|37.48
pyrim 0.01|0.00|0.01 0.07|0.07|0.01

space ga 0.00|0.00|0.01 0.44|0.44|0.03
triazines 0.03|0.00|0.02 0.03|0.03|0.03

5.5 Numerical Comparisons with SVRG-BB

In this part, we compare the semismooth Newton method with SVRG-BB [36]
for the following squared hinge loss SVC:

min
ω∈IRn

f3(ω) :=
λ

2
‖ω‖2 +

1

l

l
∑

i=1

max(1− yi(ω
Txi), 0)

2. (14)

We refer to [36, Algorithm 3] for the algorithm of SVRG-BB, and we use the
following parameters in SVRG-BB: m = 2l, ω0 = ones(n, 1), η0 = 0.1.

Note that (14) and (5) are equivalent by choosing proper C in (5). However,
when solving (5) by SVRG-BB, we find that SVRG-BB is sensitive to the
selection of parameter C in (5), and it cannot converge for most data sets
when C ∈ 1

l
× {10−2, 10−1, 1, 101, 102} or some other choices of C. Regarding

this situation, we use the model (14) and we take λ = 1, which is equivalent to
our model (5) using C = 1

l
. Other settings are the same as before. Among the

total 42 datasets, SVRG-BB cannot converge for some datasets (“cod-rna”,
“colon-cancer”, “duke.breast-cancer”, “gisette”, “leukemia”, “liver-disorders”,
“news20.binary”, “skin nonskin” and “splice”). We test the rest 33 instances
and we use a stratified selection to split each set to 60% training and 40%
testing.

In Figure 5, we selected 4 data sets: “a5a”, “german.numer”, “mushrooms”
and “mushrooms” to show the accuracy along interations of the semismooth
Newton Method and SVRG-BB for (14). From Figure 5, we can see that
our algorithm has much smaller iterations than SVRG-BB and the accuracy
calculated by the semismooth Newton method is same or higher than SVRG-
BB for these 4 datasets.
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(a) a5a (b) german.numer

(c) mushrooms (d) w5a

Fig. 5: Accuracy along Iterations of the Semismooth Newton Method and
SVRG-BB for (14)

Next, we give the comparison results of the semismooth Newton method
and SVRG-BB in Table 9. From Table 9, we have the following observations.

1. Our algorithm has smaller iterations than SVRG-BB. Our algorithm can
satisfy the termination condition for most data sets within 5 iterations,
however, SVRG-BB need to take about 20 iterations.

2. It can be observed that the semismooth Newton method is significantly
faster than SVRG-BB for all testing data sets. Our algorithm can converge
to the optimal solution within a few seconds but SVRG-BB need to takes
tens of seconds for most data sets. In particular, for datasets: “rcv1.binary”,
“real-sim” and “covtype.binary”, SVRG-BB takes 264, 484 and 632 seconds
respectively, and our algorithm only takes within 1 second.

3. Both two methods have the high accuracy for most data sets. The accuracy
via the semismooth Newton method is same or even higher than SVRG-
BB for all data sets except “ionosphere”. For “w1a” to “w8a”, both two
algorithms achieved 100% accuracy eventually.
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In summary, our algorithm is very effective and has better performance than
SVRG-BB with regard to number of iterations, computational time and accu-
racy.

Table 9: The Comparison Results of the Semismooth Newton Method and
SVRG-BB.

data
semismooth Newton method SVRG-BB
k t(s) accuracy k t(s) accuracy

a1a 5 0.04 79.57 18 38.53 76.96
a2a 5 0.04 79.57 18 37.55 77.03
a3a 5 0.03 79.50 19 36.54 76.85
a4a 5 0.03 79.60 18 34.52 77.00
a5a 5 0.03 79.63 18 30.88 77.09
a6a 5 0.02 79.80 18 25.25 77.16
a7a 5 0.02 79.68 18 19.62 77.19
a8a 5 0.03 79.35 18 27.08 76.45
a9a 5 0.04 79.53 18 38.63 76.89

australian 4 0.00 85.14 16 0.71 84.78
breast-cancer 5 0.00 98.17 15 1.98 98.17

diabetes 4 0.00 72.96 15 0.78 69.71
fourclass 4 0.00 74.78 13 0.77 71.01

german.numer 4 0.01 71.25 17 1.17 71.25

heart 4 0.00 84.26 15 0.28 83.33
ijcnn1 4 0.09 90.37 15 47.59 90.37

ionosphere 5 0.01 92.86 17 0.43 93.57

mushrooms 5 0.02 75.08 19 17.35 58.77
phishing 4 0.02 57.73 16 11.07 55.88

rcv1.binary 4 0.11 51.93 16 264.07 51.91
real-sim 4 0.19 2.40 16 483.65 0.06
sonar 6 0.00 7.23 20 0.27 7.23

svmguide1 14 0.00 11.89 34 4.48 11.89

svmguide3 4 0.00 40.44 16 1.30 40.44

w1a 4 0.04 100 18 63.19 100

w2a 4 0.04 100 19 62.30 100

w3a 4 0.05 100 19 59.71 100

w4a 4 0.04 100 19 57.71 100

w5a 4 0.04 100 18 56.10 100

w6a 4 0.03 100 18 41.32 100

w7a 4 0.02 100 19 33.57 100

w8a 4 0.05 100 19 66.85 100

covtype.binary 4 0.43 61.54 18 631.54 61.54

6 Conclusions

In this paper, we apply the semismooth Newton method to solve two typical
SVM models: the L2-loss SVC model and the ǫ-L2-loss SVR model. Our con-
tribution in this paper is that by exploring the sparse structure of the models,
we significantly bring down the computational complexity, meanwhile keeping
the quadratic convergence rate. Extensive numerical experiments demonstrate
the outstanding performance of the semismooth Newton method, especially
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for problems with huge size of sample data (for news20.binary problem with
19996 features and 1355191 samples, it only takes three seconds). In particu-
lar, for the ǫ-L2-loss SVR model, the semismooth Newton method significantly
outperforms the leading solvers including DCD and TRON.
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