Skip to main content
Log in

On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The proximal point algorithm (PPA) is a fundamental method for convex programming. When applying the PPA to solve linearly constrained convex problems, we may prefer to choose an appropriate metric matrix to define the proximal regularization, so that the computational burden of the resulted PPA can be reduced, and sometimes even admit closed form or efficient solutions. This idea results in the so-called customized PPA (also known as preconditioned PPA), and it covers the linearized ALM, the primal-dual hybrid gradient algorithm, ADMM as special cases. Since each customized PPA owes special structures and has popular applications, it is interesting to ask wether we can design a simple relaxation strategy for these algorithms. In this paper we treat these customized PPA algorithms uniformly by a mixed variational inequality approach, and propose a new relaxation strategy for these customized PPA algorithms. Our idea is based on correcting the dual variables individually and does not rely on relaxing the primal variables. This is very different from previous works. From variational inequality perspective, we prove the global convergence and establish a worst-case convergence rate for these relaxed PPA algorithms. Finally, we demonstrate the performance improvements by some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  MATH  Google Scholar 

  3. Cai, J.F., Candès, E.J., Shen, Z.W.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, X.J., Gu, G.Y., He, B.S., Yuan, X.M.: A proximal point algorithm revisit on the alternating direction method of multipliers. Sci. China Math. 56, 2179–2186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769 (2011)

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159, 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Nonlinear Elliptic Equations, Technical Report STAN-CS-78-674. Stanford University, Computer Science Department (1978)

  10. Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deng, W., Yin, W.T.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66, 889–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, W., Lai, M.J., Peng, Z.M., Yin, W.T.: Parallel multi-block ADMM with o(1/k) convergence. J. Sci. Comput. 71, 712–736 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esser, E.: Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Registration and Nonlocal Inpainting. University of California, Los Angeles (2010)

    Google Scholar 

  15. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    MATH  Google Scholar 

  16. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue Fr. Autom. Inform. Rech. Opér. Anal. Numér. 2, 41–76 (1975)

    MATH  Google Scholar 

  17. Glowinski, R., Osher, S.J., Yin, W. (eds.): Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, New York (2016)

    MATH  Google Scholar 

  18. Goldstein, T., Li, M., Yuan, X.M.: Adaptive primal-dual splitting methods for statistical learning and image processing. In: Advances in Neural Information Processing Systems, pp. 2089–2097 (2015)

  19. Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrangians in convex programming and their generalizations. Math. Program. Stud. 10, 86–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gu, G.Y., He, B.S., Yuan, X.M.: Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach. Comput. Optim. Appl. 59, 135–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas–Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127, 167–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, B.S., Yuan, X.M.: A class of ADMM-based algorithms for three-block separable convex programming. Comput. Optim. Appl. 70, 791–826 (2018)

  23. He, B.S.: PPA-Like contraction methods for convex optimization: a framework using variational inequality approach. J. Oper. Res. Soc. China 3, 391–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, B.S., Yuan, X.M.: Block-wise alternating direction method of multipliers for multiple-block convex programming and beyond. SMAI J Comput. Math. 1, 145–174 (2015)

    Article  MathSciNet  Google Scholar 

  26. He, B.S., Ma, F., Yuan, X.M.: An algorithmic gramework of heneralized primal-dual hybrid gradient methods for saddle point problems. J. Math. Imaging Vis. 58, 279–293 (2017)

    Article  MATH  Google Scholar 

  27. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Larsen, R.M.: PROPACK Software for large and sparse SVD calculations. Stanford University. http://sun.stanford.edu/~rmunk/PROPACK/ (1969)

  29. Martinet, B.: Regularisation, d’inéquations variationelles par approximations succesives. Rev. Fr. d’Inform. Rech. Oper. 4, 154–159 (1970)

    MATH  Google Scholar 

  30. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  31. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, Y., Wang, H.Y.: New augmented Lagrangian-based proximal point algorithm for convex optimization with equality constraints. J. Optim. Theory Appl. 171, 251–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge (2012)

    Google Scholar 

  34. Wang, X.F., Hong, M.Y., Ma, S.Q., Luo, Z.Q.: Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. Pac. J. Optim. 11, 645–667 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Yang, J.F., Yuan, X.M.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comput. 82, 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, X.M., Yang, J.F.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. 9, 167–180 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, X.Q., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X.Q., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration, CAM Report 08-34. UCLA, USA (2008)

Download references

Acknowledgements

The author is grateful to the associate editor and two anonymous reviewers for their valuable comments and suggestions that have helped improve the presentation of this paper greatly. This work was supported by the NSFC Grants 11701564 and 11871029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F. On relaxation of some customized proximal point algorithms for convex minimization: from variational inequality perspective. Comput Optim Appl 73, 871–901 (2019). https://doi.org/10.1007/s10589-019-00091-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00091-z

Keywords

Navigation