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Abstract

We propose a local regularization of elliptic optimal control problems which involves the non-
convex Lq quasi–norm penalization in the cost function. The proposed Huber type regularization
allows us to formulate the PDE constrained optimization instace as a DC programming problem
(difference of convex functions) that is useful to obtain necessary optimality conditions and tackle
its numerical solution by applying the well known DC algorithm used in nonconvex optimization
problems. By this procedure we approximate the original problem in terms of a consistent family
of parameterized nonsmooth problems for which there are efficient numerical methods available.
Finally, we present numerical experiments to illustrate our theory with different configurations
associated to the parameters of the problem.

1 Introduction

Several sparse optimal control problems governed by PDEs have been considered in recent years.
One of the pioneer works on this subject [26] introduced optimal control problems with L1–norm
penalization in order to promote sparse optimal solutions. These solutions are characterized by having
small supports, which are interpreted as a “localized” action of the optimal control. This particular
feature of sparse optimal controls is relevant in applications since it is rather difficult in practice to
implement optimal controls distributed on the whole domain, which is the usual case of optimal control
problems involving the Tikhonov regularization in the L2–norm in its cost functional.

Another interesting class of optimal control problems involving sparsity were considered in [5] and
[4] where the set of feasible controls is chosen in the space of regular Borel measures. Therefore,
optimal controls can be supported in a set of zero Lebesgue measure. A complete review on this
subject, including parabolic problems, can be found in [6].

A less explored approach that offers sparse solutions induced by a penalization term was considered
in [22] which refers to penalizations consisting in nonconvex Lq quasinorms with q ∈ [0, 1). This kind of
penalizations has many important applications, for instance: in inverse problems on the reconstruction
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of the sparsest solution in undetermined systems [24], image restoration [16], compressive sensing [15]
and optimal control problems [22].

In particular, the limit case corresponding to L0 penalization is a difficult problem which corre-
sponds to the selection of the most representative variables of the optimization process, extending the
notion of cardinality of the control variable in finite dimensions, represented by the `0 norm, which
is well known to be an NP–hard problem. Lq quasinorms with q ∈ (0, 1) on the other hand, are a
natural approximation to L0 penalizations. However, they are neither convex nor differentiable.

In [22] a similar problem is considered involving a penalization term for the control variable in-
volving the H1

0 –norm. This allows to get an explicit optimality system that can be solved directly by
semi–smooth Newton methods. In our case, we consider a Tikhonov term in the L2–norm. Although
existence of optimal controls can be argued in this case under certain conditions, uniqueness of the
solution is not expected as shown in a simple example below.

Due to the lack of convexity and differentiability these costs are difficult to tackle numerically. In
this paper, we address the numerical solution of this type of problems by regularizing the fractional
Lq quasinorms; for this purpose, we introduce a Huber–like smoothing function which regularizes the
nonconvex Lq term. In this way, we obtain a family of regularized nonsmooth problems whose objective
functional can be expressed as a DC-function ( “DC” stands for difference of convex functions), which
reveals the underlying convexity of this class of problems. Although the regularized problem remains
nonconvex and nondifferentiable, we can take advantage of the DC structure of the functional by
applying known tools from convex analysis and DC programming theories in order to derive optimality
conditions and prove that the regularization is consistent. Moreover, we propose a numerical method
based on the DC-Algorithm (DCA). It follows that the proposed DC splitting leads to a primal–dual
updating that only requires the numerical resolution of a convex L1–norm penalized optimal control
problem in each iteration, for which there are efficient numerical methods at hand.

It is worth to mention that although our methodology is proposed for elliptic problems, it can be
extended for different boundary conditions, parabolic problems or optimal control problems involving
other type of equations.

This paper is organized as follows. In Section 1 we introduce the non convex optimal control
problems endowed with Lq–functionals with q = 1

p , and p > 1. In Section 2 we propose a Huber–like
smoothing function in order to regularize the nonconvex optimal control problems. We show that
the regularized problems can be expressed as a difference of convex functions and derive optimality
conditions in Section 3. The box–constrained case is discussed at the end of this section. In addition,
we provide a proof that the solution of the regularized version of the optimal control problem ap-
proximates the solution of the original one when the regularizing parameter tends to infinity. Section
4 is devoted to the numerical solution by proposing a DC–Algorithm based method. We finish this
article by showing numerical examples and numerical evidence of the efficiency of the proposed method.

1.1 Setting of the problem

For p > 1, let us define the mapping Υp : L2(Ω)→ R by

u 7→ Υp(u) :=

∫
Ω
|u|

1
p . (1)

Let Ω a bounded Lipschitz domain in Rn (n = 2 or n = 3) with boundary Γ. We are interested in
the following optimal control problem involving a penalization term of the form (1). For α > 0 and
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β > 0 we consider the optimal control problem:
min

(y,u)∈H1
0 (Ω)×L2(Ω)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

subject to:

Ay = u+ f, in Ω,

y = 0, on Γ,

(P )

where f is a given function in L2(Ω) and A is a uniformly elliptic second order differential operator
of the form:

(Ay)(x) = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂y(x)

∂xj

)
+ c0y(x). (2)

Here, the coefficients aij ∈ C0,1(Ω̄), and c0 ∈ L∞(Ω). Moreover, the matrix (aij) is symmetric and
fulfill the uniform ellipticity condition:

∃σ > 0 :
n∑

i,j=1

aij(x)ξiξj ≥ σ|ξ|2, ∀ξ ∈ Rn, for almost all x ∈ Ω.

We will denote the adjoint of A by A∗. Moreover, associated to the elliptic operator A, we define the
bilinear form

a(y, v) :=

∫
Ω

n∑
i,j=1

aij(x)
∂y(x)

∂xj

∂v(x)

∂xj
+ c0y(x)v(x) dx,

which we use to define the associated variational problem problem:

a(y, v) = (w, v)L2(Ω), ∀v ∈ H1
0 (Ω). (3)

It is well known that (3) has a unique solution belonging to the space H1
0 (Ω). Let S : L2(Ω)→ H1

0 (Ω)
be the linear and continuous operator which assigns to every w ∈ L2(Ω) the corresponding solution
y = y(w) ∈ H1

0 (Ω) satisfying (3). Thus, the state equation: Ay = u in Ω, with homogeneous Dirichlet
boundary conditions, considered in (P ), is understood in the weak sense c.f. (3). In this way, the
state y associated to the control u has the representation y = S(u + f), which in turn allows us to
formulate the usual reduced optimization problem:

min
u∈L2(Ω)

J(u) :=
1

2
‖Su+ Sf − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u). (P ′)

Theorem 1. There exists a solution ū ∈ L2(Ω) for the reduced problem (P ′).

We postpone the proof of this result to Section 4, where we proove that a sequence of solutions of
approximating problems of the form minu Jγ(u), converges to the solution of (P ′).

Remark 1. The question of uniqueness is more delicate. The following example of the minimization
of a real function has two solutions. Let f : R → R given by f(x) = 1

2(x − a)2 + β|x| 12 . By choosing
a = 1 + 1

2 and β = 1, it is easy to verify that f has two minimum points at x1 = 0 and x2 = 1 with the
minimum value f(0) = f(1) = 9

8 . Therefore, we cannot expect uniqueness of the solution for problem
(P ′) in view of the nonconvexity of cost function.
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Following the work of Stadler [26], where L1–norm penalization optimal control problems are
considered, we expect that some analogous properties also hold for problem (P ). For example, it is
expected that a local solution for (P ) vanishes if the parameter β is large enough. We address this
question in the following lemma.

Lemma 1. Let S∗ be the adjoint operator of S, and let M > 0. If β ≥ β0 with β0 = M
p−1
p ‖S∗(Sf − yd)‖L∞(Ω)

, then problem (P ) has a local minimum at ū = 0 in B∞(0,M) (the unit open ball in L∞(Ω)) with
associated state y0 := Sf .

Proof. Taking into account the reduced form (P ′), we argue analogously to [26, Lemma 3.1]. Let
us take u ∈ B∞(0,M), then |u(x)| < M for almost all x in Ω. Computing the difference of the cost
values we have:

J(u)− J(0) =
1

2
‖Su+ Sf − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

− 1

2
‖Sf − yd‖2L2(Ω)

=
1

2
‖Su‖2L2(Ω) + (Su, Sf − yd)L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

≥1

2
‖Su‖2L2(Ω) − ‖u‖L1(Ω)‖S∗(Sf − yd)‖L∞(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u),

≥
∫

Ω
β|u|

1
p − |u|‖S∗(Sf − yd)‖L∞(Ω) dx

≥
∫

Ω
β0|u|

1
p − |u|‖S∗(Sf − yd)‖L∞(Ω) dx.

By the definition of β0 it follows that

J(u)− J(0) ≥
∫

Ω

(
M

p−1
p − |u|

p−1
p

)
|u|

1
p ‖S∗(Sf − yd)‖L∞(Ω) dx > 0,

where the nonnegativity is obtained by our assumption u ∈ B∞(0,M).

2 The Regularized Optimal Control Problem

2.1 Huber–type regularization

In order to analyze problem (P ) we formulate a family of regularized problems, by means of the follow-
ing Huber–type regularization of the absolute value. Extending the classical Huber C1 regularization
of the absolute value, we propose a Huber regularization Υp,γ which takes into account the fractional
powers defining Υp. The resulting function to the power 1/p is a locally convex regularization for the
nonconvex and non differentiable term, see Figure 1 below. For γ � 1, we define

hp,γ(v) =


γp−1

p |v|p, if v ∈ [− 1
γ ,

1
γ ],

|v|+ 1
γ

1−p
p , otherwise.

(4)

Remark 2. The function hp,γ is a local regularization of the absolute value for different smoothing
polynomial powers. In addition, notice that by construction, we have the relation

hp,γ(v) ≤ |v|, ∀v ∈ R. (5)
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Figure 1: Exact (black) and regularized penalizations for the absolute value (first row) and the function
|x|1/p in the second row, for parameters γ = 10 (red) and γ = 100 (blue), for p = 2 (left) and p = 4
(right).

It is worth to notice that (4) is different from the local regularization proposed in [22][pg. 1971 eq.(5.1)]
which majorizes Υp(u). Both regularization terms can be used to compute upper and lower bounds for
the cost functions of (P ), respectively. Although they may appear similar, observe that (4) approxi-
mates g nonsmoothly in a neighborhood of 0. This fact is crucial to express our objective functional
as a difference of convex functions. In fact, the representation as a DC–function is not possible using
the regularization proposed by [22]. Therefore, by using the Huber–type regularization we are able to
appproximate (P ) by sequence of L1–sparse problems. The resulting DC–algorithm will be introduced
in Section 4.

Now, we have the basic tool in order to formulate a regularized version of (P ). We introduce the
function Υp,γ defined by

u 7→ Υp,γ(u) :=

∫
Ω
hp,γ(u(x))

1
pdx. (6)

The regularized problem is obtained by replacing Υp by Υp,γ . Therefore, the surrogate problem
parameterized by γ reads:

min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γ(u)

subject to:

Ay = u+ f in Ω,

y = 0 on Γ.

(Pγ)
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We proceed to formulate the reduced optimal control problem from (Pγ) by replacing the control–
to–state operator S. Let F be the regular part of the functional, which is F (u) = 1

2‖Su− yd‖2L2(Ω) +
α
2 ‖u‖2L2(Ω). Thus, we have the reduced problem,

min
u
Jγ(u) := F (u) + βΥp,γ . (7)

From [22, Lemma 5.1] it is known that if a sequence (un)n∈N is such that un → u in L1(Ω) then
Υp(un)→ Υp(u) as n→∞. In the case of Υγ,p we have the following continuity property.

Lemma 2. Let (un) be a sequence such that un → u in L1(Ω). Then

Υp,γ(un)→ Υp,γ(u), when n→∞,

for all p > 1 and all γ > 0.

Proof. Analogously to [22, Lemma 5] we define the following sets:

Ωn,1 = {x : |u(x)| ≤ 1
γ and |un(x)| ≤ 1

γ },
Ωn,2 = {x : |u(x)| > 1

γ and |un(x)| > 1
γ },

Ωn,3 = {x : |u(x)| ≤ 1
γ and |un(x)| > 1

γ } ∪ {x : |u(x)| > 1
γ and |un(x)| ≤ 1

γ },

which we use to estimate
∣∣∣∫Ω hp,γ(u(x))

1
p − hp,γ(un(x))

1
p dx

∣∣∣ according to (4). Therefore, in Ωn,1 we

have that ∣∣∣∣∣
∫

Ωn,1

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣∣ ≤
(
γp−1

p

) 1
p
∫

Ωn,1

| |u(x)| − |un(x)| | dx,

≤
(
γp−1

p

) 1
p
∫

Ω
|u(x)− un(x)| dx→ 0. (8)

Now, in Ωn,2 we can estimate∣∣∣∣∣
∫

Ωn,2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣∣ ≤
∫

Ωn,2

∣∣∣∣∣
(
|u(x)|+ 1

γ

1− p
p

) 1
p

−
(
|un(x)|+ 1

γ

1− p
p

) 1
p

∣∣∣∣∣ dx
≤
∫

Ωn,2

| |u(x)| − |un(x)| |
1
p dx,

≤
∫

Ωn,2

|u(x)− un(x) |
1
p dx.

By applying Hölder inequality in the last integral, and by our convergence assumption we have∣∣∣∣∣
∫

Ωn,2

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣∣ ≤ |Ω| p
p−1

(∫
Ω
|u(x)− un(x)| dx

) 1
p

→ 0. (9)

Finally, we estimate in Ωn,3. Without loss of generality we assume that {x : |u(x)| ≤ 1
γ and |un(x)| >

1
γ }. The neglected part can be argued in the same way by interchanging the role of |u(x)| and |un(x)|.
Taking into account that the relation: |u(x)| ≤ 1/γ < |un(x)| is fulfilled in Ωn,3, it follows that
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(
γp−1

p

)
|u(x)|p < |un(x)|+ 1

γ

1− p
p

,

which implies∣∣∣∣∣
∫

Ωn,3

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣∣ ≤
∫

Ωn,3

|hp,γ(u(x))− hp,γ(un(x))|
1
p dx

=

∫
Ωn,3

∣∣∣∣(γp−1

p

)
|u(x)|p − |un(x)| − 1

γ

1− p
p

∣∣∣∣
1
p

dx

=

∫
Ωn,3

(
|un(x)|+ 1

γ

1− p
p
−
(
γp−1

p

)
|u(x)|p

) 1
p

dx. (10)

Furthermore, in Ωn,3 we have that 1
γp < |un(x)|+ 1

γ
1−p
p < |un(x)|, from which we obtain that

|un(x)|+ 1

γ

1− p
p

< |un(x)|p
(
γp−1

p

)
. (11)

By replacing (11) in (10) we get the following relation

∣∣∣∣∣
∫

Ωn,3

hp,γ(u(x))
1
p − hp,γ(un(x))

1
p dx

∣∣∣∣∣ ≤
(
γp−1

p

) 1
p
∫

Ωn,3

(|un(x)|p − |u(x)|p )
1
p dx,

=

(
γp−1

p

) 1
p
∫

Ωn,3

| |un(x)|p − |u(x)|p |
1
p dx,

≤
(
γp−1

p

) 1
p
∫

Ω
| |un(x)|p − |u(x)|p |

1
p dx. (12)

By applying the mean value theorem, there is a ξ(x) such that |u(x)| < ξ(x) < |un(x)| for almost all
x in Ωn,3 that satisfies |un(x)|p− |u(x)|p = p|ξ(x)|p−1(|un(x)| − |u(x)|). Hence, using this relation and
applying Hölder inequality we have∫

Ωn,3

| |un(x)|p − |u(x)|p |
1
p dx ≤

∫
Ωn,3

p
1
p |ξ(x)|

p−1
p ||un(x)| − |u(x)||

1
p dx.

≤ p
1
p

∫
Ωn,3

|ξ(x)| dx
∫

Ωn,3

| |un(x)| − |u(x)| | dx.

Thereby, the right–hand side of (12) tends to 0 as n→ 0. Finally, collecting estimates (8), (9) and
(12) the result of the lemma is proved.

Lemma 3. Jγ(u) converges to J(u) uniformly as γ →∞, for any u ∈ L2(Ω).

Proof. We argue the uniform convergence of Jγ to J by using the definition of the Huber regular-
ization (4). Since Jγ and J differ on the nonconvex term, we analyze the difference |Υp,γ(u)−Υp(u)|
in the sets Ωγ = {x ∈ Ω : |u(x)| ≤ 1

γ } and Ωc
γ = {x ∈ Ω : |u(x)| > 1

γ } as follows:∣∣∣∣∫
Ω
hp,γ(u)

1
p − |u|

1
p dx

∣∣∣∣ ≤ ∫
Ωγ

∣∣∣hp,γ(u)
1
p − |u|

1
p

∣∣∣ dx+

∫
Ωcγ

∣∣∣hp,γ(u)
1
p − |u|

1
p

∣∣∣ dx
≤
∫

Ωγ

∣∣∣∣∣γ
p−1
p

p
1
p

|u| − |u|
1
p

∣∣∣∣∣ dx+

∫
Ωcγ

∣∣∣∣∣
(
|u|+ 1

γ

1− p
p

) 1
p

− |u|
1
p

∣∣∣∣∣ dx
7



Using the fact that |u(x)| ≤ 1
γ in Ωγ we have

∣∣∣∣∫
Ω
hp,γ(u)

1
p − |u|

1
p dx

∣∣∣∣ ≤ ∫
Ωγ

1

γ
1
p p

1
p

+
1

γ
1
p

dx+
1

γ
1
p

∫
Ωcγ

∣∣∣∣1− pp
∣∣∣∣ 1p dx,

≤
∫

Ω

1

γ
1
p p

1
p

+
1

γ
1
p

dx+
1

γ
1
p

∫
Ω

∣∣∣∣1− pp
∣∣∣∣ 1p dx,

where the last terms clearly tends to 0 as γ →∞.

3 Existence and Optimality Conditions for the regularized problem

Our aim in this section is deriving an optimality system for problem (Pγ) via a DC–programming
approach. As mentioned earlier, the key idea is introducing an L1–norm penalization which allows us
to formulate our problem as a minimization of a difference of convex functions, with functions G and
H such that:

Jγ(u) = G(u)−H(u). (13)

A function that can be expressed in this form is known as a DC–function and several problems involving
this type of functions have been analyzed, see the monograph of Hiriart Urruty [18] or in [13].

Let us focus on how to express the cost function of problem (Pγ) as a convenient difference of
convex functions and then rely on the theory of DC programming. We start by introducing the
following quantity, which will be frequently used throughout this paper:

δγ =
γ
p−1
p

p
1
p

. (14)

The next step is to define G and H in (13) as follows:

G : L2(Ω) → R
u 7→ G(u) := 1

2‖Su+ Sf − yd‖2L2(Ω) + α‖u‖2L2(Ω) + βδγ‖u‖L1(Ω)

= F (u) + βδγ‖u‖L1(Ω),

H : L2(Ω) → R
u 7→ H(u) := β

(
δγ‖u‖L1(Ω) −Υp,γ(u)

)
.

(15)

Lemma 4. The real function j : R→ R+ ∪ {0}, defined by

j(z) =

 δγ |z| −
(
|z|+ 1

γ
1−p
p

) 1
p
, if |z| > 1

γ

0, if |z| ≤ 1
γ ,

(16)

is nonnegative, convex and continuously differentiable and its derivative in z ∈ R, is given by

j′(z) =

 δγ sign(z)− 1
p

(
|z|+ 1

γ
1−p
p

) 1−p
p

sign(z), if |z| > 1
γ

0, if |z| ≤ 1
γ .

(17)

8



Proof. Let us first check differentiability. It is clear that j is differentiable if |z| < 1
γ or |z| > 1

γ ,

where j′(z) = 0 and j′(z) = δγsign(z) − 1
p(|z| + 1

γ
1−p
p )

1−p
p sign(z), respectively. Therefore, we check

differentiability at z = ± 1
γ . Consider z = − 1

γ , since j(± 1
γ ) = 0 and

| − 1
γ + h| < 1

γ for sufficiently small h, we have that lim
h→0+

j(z + h)− j(z)
h

= lim
h→0+

j(− 1
γ + h)

h
= 0. On

the other hand, since − 1
γ + h < 0 for sufficiently small h

lim
h→0−

j(z + h)− j(z)
h

= lim
h→0−

j(− 1
γ + h)

h

= lim
h→0−

δγ

(
1
γ − h

)
−
(

1
γ − h+ 1

γ
1−p
p

) 1
p

h
= lim

h→0−

(
1
γp

) 1
p − δγh−

(
1
γp − h

) 1
p

h
,

where we apply the binomial theorem to get

lim
h→0−

(
1
γp

) 1
p − δγh−

(
1
γp − h

) 1
p

h
= lim

h→0−

(
1
γp

) 1
p − δγh−

(
1
γp

) 1
p − 1

p

(
1
γp

) 1−p
p
h+ o(h)

h

= lim
h→0−

o(h)

h
= 0.

Therefore j′(− 1
γ ) = 0. Analogously, it also follows that j′( 1

γ ) = 0, which implies formula (17).

Moreover, a straightforward observation reveals that j′ is continuous, therefore j is continuously

differentiable. Convexity follows by noticing that the function R+ 3 z 7→ (z +
1

γ

1− p
p

)1/p is concave,

because it is the composition of an affine function and a concave function. Thus, for z > 1
γ , we find

that the function

R+ 3 z 7→ δγz −
(
z +

1

γ

1− p
p

)1/p

is convex and monotonically increasing, which, by composition with the absolute value, implies the
convexity of j. Finally, we make the simple but important observation that j vanishes in the interval
[− 1

γ ,
1
γ ]. This, together with the convexity of j, implies that j is nonnegative.

Now, by employing the function j we can write H as follows:

H : L2(Ω) → R

u 7→ H(u) =

∫
Ω
j(u)dx.

(18)

Lemma 5. The functions G and H defined in (15) are convex.

Proof. Since α ≥ 0 and β ≥ 0, it is clear that function G is strictly convex if α + β > 0. In the
case of H, convexity directly follows from Lemma 4.

Having defined the functions H and G, it is clear that the representation (13) of Jγ has been set
up. Therefore, Jγ is a DC-function and we can express optimality conditions in terms of G and H by
considering the following formulation for problem (7):

min
u
Jγ(u) = G(u)−H(u), (DC)

9



Lemma 6. The function H defined in (15) is Gâteaux differentiable, and its derivative H ′G(u; ·) is
represented by (βw, ·), where w ∈ L2(Ω) depends on u, p and γ, and it is given by

w(x) :=


[
δγ −

1

p

(
|u(x)|+ 1

γ

1− p
p

) 1−p
p

]
sign(u(x)), if |u(x)| > 1

γ ,

0, otherwise.

(19)

Proof. First, notice that j′(z), given by (17), satisfies that

0 < |j′(z)| =
∣∣∣∣∣δγ − 1

p

(
|z|+ 1

γ

1− p
p

) 1−p
p

∣∣∣∣∣ < δγ , for |z| > 1

γ
. (20)

Therefore, by using (20) and the properties of j established in Lemma 4, we apply [1, Theorem 2.7,
pg. 19] in order to deduce that the superposition operator u 7→ j(u) is Gâteaux differentiable from
L2(Ω) into L2(Ω). In addition, its Gâteaux derivative in the direction v is given by j′(u)v ∈ L2(Ω).
Hence, Theorem 7.4-1 in [8] allows us to compute the Gâteaux derivative of H at ū in any direction
v ∈ L2(Ω) by

H ′G(u, v) =

∫
Ω
j′(u(x))vdx = (βw, v), (21)

with w given by (19).

Theorem 2. Let Uad be the feasible control set, and assume that Uad := {u ∈ L2(Ω) : ∆u ∈
H−1(Ω),∃v ∈ B̄(0,M) ⊂ L2(Ω) such that −∆u+ 1

εu = 1
εv}, for a fixed ε > 0 for a positive constant

M . There exists a solution ū ∈ L2(Ω) for the regularized problem (Pγ).

Proof. Existence of a solution can be argued by standard techniques. Let us fix γ > 0 and consider
a minimizing sequence (uk)k∈N for Jγ , defined in Uad. By the definition of Uad, there exists a bounded
sequence (vk) ⊂ B̄(0,M) that satisfy −∆uk + 1

εuk = 1
εvk and yk ∈ H1

0 (Ω) associated to uk. Therefore,
we extract (without renaming) a weakly convergent subsequence (uk)k∈N in H1

0 (Ω) having weak limit
ū ∈ Uad. Let us denote ȳ = Sū. Moreover, because the compact embedding H1

0 (Ω) ↪→ L2(Ω) we have
that uk → ū and yk → ȳ strongly in L2(Ω).

Using Lemma (2) and the continuity of the remaining terms of Jγ we can pass to the limit:

Jγ(ū) = lim
k→∞

1

2
‖yk − yd‖L2(Ω) +

α

2
‖uk‖L2(Ω) + Υp,γuk = inf

u∈Uad
Jγ(u). (22)

3.1 First–order necessary conditions

The following part of this paper moves on describing the derivation of first order necessary optimality
conditions for problem (Pγ). The conditions for local and global optimality can be found in [18,
Proposition 3.1 and 3.2] or in [14]. We will use the following well known result from DC–programming
theory, which permits the characterization of local minima.

Proposition 1. Let G and H, the convex functions defined in (15). If ū is a local minimum of the
DC–function Jγ = G−H, then ū satisfies the following critical point condition:

∂H(ū) ⊂ ∂G(ū). (23)
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The next result establishes an optimality system with the help of the last proposition.

Theorem 3. Let ū be a solution of (Pγ), then there exist: ȳ = Sū in H1
0 (Ω), an adjoint state

φ ∈ H1
0 (Ω), a multiplier ζ ∈ L2(Ω) and w̄ given by (19) such that the following optimality system is

satisfied:

Aȳ = ū+ f, in Ω,
ȳ = 0, on Γ,

(24a)

A∗φ̄ = ȳ − yd, in Ω,
φ̄ = 0, on Γ,

(24b)

φ̄+ αū+ β (δγ ζ − w̄) = 0, (24c)

ζ(x) = 1, if ū(x) > 0,
ζ(x) = −1, if ū(x) < 0,
|ζ(x)| ≤ 1, if ū(x) = 0,

for almost all x ∈ Ω. (24d)

Proof. Clearly, equation (24a) is equivalent to Sū = ȳ. By standard properties of subdiffer-
ential calculus, see for example [19], the subdifferential of G at ū is given by ∂G(ū) = ∇f(ū) +
βδγ∂ ‖ · ‖L1(Ω)(ū). By Lemmas 2 and 6, it follows that ∂H(ū) consists in the singleton {w̄}. Thus,
condition (23) becomes

w̄ ∈ ∇f(ū) + βδγ∂ ‖ · ‖L1(Ω)(ū). (25)

Since S is a linear and continuous operator from L2(Ω) to L2(Ω), the computation of ∇f(ū) is
straightforward, see for instance [10]. Therefore, for u ∈ L2(Ω) we have that

∇f(ū)u = (Su, Sū+ Sf − yd)L2(Ω) + α(u, ū)L2(Ω)

= (u, αū+ S∗(ȳ − yd))L2(Ω). (26)

Moreover, by introducing the adjoint state φ̄ ∈ H1
0 (Ω) as the solution of the adjoint equation:

A∗φ̄ = ȳ − yd, in Ω,
φ̄ = 0, on Γ,

we are able to write φ̄ = S∗(ȳ − yd) (S∗ denoting the adjoint control-to–state operator).
On the other hand, it is well known [20, Chapter 0.3.2], that any ζ ∈ ∂ ‖ · ‖L1(Ω)(ū) is characterized

by

ζ(x)


= 1, if ū(x) > 0,
= −1, if ū(x) < 0,
∈ [−1, 1], if ū(x) = 0.

(27)

In this way, from (26) we obtain that ∇f(ū) = φ̄ + αū which together with (27) imply the existence
of ζ ∈ ∂ ‖ · ‖L1(Ω)(ū) ⊂ L∞(Ω) which allows us to write (25) in the form:

φ̄+ αū+ β(δγζ − w̄) = 0. (28)
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Corollary 1. If ū is a solution of (Pγ) with the associated quantities ȳ, φ̄, ζ and w̄ satisfying (24)
then, the following relations are fulfilled

ū(x) = 0⇔ |φ̄| ≤ βδγ , and (29a)

ζ = P[−1,1]

[
− 1

βδγ
φ̄

]
. (29b)

Proof. Let x ∈ Ω be such that ū(x) = 0. Taking into account (24d) and (19), it follows that
ζ(x) ∈ [−1, 1] and that w̄(x) = 0. Then, the gradient equation (24c) implies |φ̄(x)| ≤ βδγ . Reciprocally,
let us suppose that x ∈ Ω is such that |φ̄(x)| ≤ βδγ holds. Let us assume first that ū(x) > 0, then by
Lemma 6 it follows that w̄ ≤ 0 and (24c) implies that

φ̄(x) = −αū(x)− δγβ + βw̄(x) < −βδγ ,

which is a contradiction. On the other hand, by assuming ū(x) < 0, an analogous chain of arguments
also lead us to a similar contradiction. Hence, we conclude that ū(x) = 0, which proves (29a).

The second relation follows from (24d), (29a) and (24c). Indeed, observe that:

βδγζ(x)− βw(x)

 =
1

p

(
|u(x)|+ 1

γ

1− p
p

) 1−p
p

sign(u(x)), if |u(x)| > 1
γ ,

∈ [−βδγ , βδγ ], otherwise.

Therefore, we have that |βδγζ(x) − βw̄(x)| ≤ βδγ . If we assume φ̄(x) > βδγ then αū(x) < −βδγ −
βδγζ(x) + βw̄(x) ≤ 0 which, in view of (24d), implies that ζ(x) = −1. Similarly, if φ(x) < −βδγ we
have that ζ(x) = 1. This, together with (24d), implies (29b).

Remark 3. The relations given by (29) have two important consequences:

(i) (29a) proves that sparsity of the solution (Pγ) is characterized by the adjoint state, solution of
(24b). Moreover, since

1

2
‖ȳ − yd‖2L2(Ω) ≤ Jγ(ū) ≤ Jγ(0) =

1

2
‖y0 − yd‖2L2(Ω),

then, there exist positive constants c and C, such that

‖φ̄‖L∞(Ω) ≤ c‖ȳ − yd‖L2(Ω) ≤ C‖y0 − yd‖L2(Ω) := m. (30)

Therefore, since γ is fixed, a value of β can be chosen such that βδγ ≥ m. Then the adjoint state
fulfills ‖φ̄‖L∞(Ω) ≤ βδγ and by (29a) the optimal control ū must be zero. This complements the
result from Lemma 1 regarding the existence of a parameter β which enforces a null solution.

(ii) We also observe that equation (30) implies that φ̄ is uniformly bounded for any γ > 0. In view
of (30), we claim that the set Ωγ = {x : 0 < |u(x)| ≤ 1/γ} has zero Lebesgue measure for γ large
enough. This fact follows from the gradient equation (24c) and the definition of w̄. Indeed, if we
suppose that |Ωγ | > 0 this would imply that

|φ̄(x)| > βδγ −
1

γ
, a.e. in Ωγ ,

with the right–hand side of the last relation growing to infinity as γ →∞ because δγ →∞. This
is in contradiction with (30). Thus, |Ωγ | = 0.
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Furthermore, it turns out that a ρ > 0 exists such that the set Ωρ := {x : 1
γ < |u(x)| ≤ 1

γ + ρ}
has zero Lebesgue measure for γ large enough. Indeed, assume that |Ωρ| > 0 for all ρ > 0. Let
us take some γ0 such that 1

γ < ρ for all γ > γ0. By using the gradient equation (24c) and the
definition of w̄, we have that

1

γ
+
β

p

(
ρ+

1

p

1

γ

)(1−p)/p
≤
∣∣∣∣∣αū(x) +

β

p

(
|ū(x)|+ 1

γ

1− p
p

) 1−p
p

sign(ū(x))

∣∣∣∣∣ = |φ̄(x)|,

almost everywhere in Ωγ. Again, a contradiction is obtained by noticing that the lower bound
of the last relation is unbounded if such ρ does not exist. Therefore, in view of (30), a ρ > 0
must exist such that |Ωρ| = 0. In other words, if ū(x) 6= 0, then |ū(x)| > ρ > 0 holds almost
everywhere for some ρ > 0 and for γ sufficiently large.

An important question regarding the regularized problem (Pγ) is about the convergence of the
solutions of (Pγ) to a solution of the original problem (P ) when γ →∞. We address this question in
the following results.

Theorem 4. There exists a sequence (ūγ)γ>0 of solutions for problem (Pγ) weakly converging to u∗

in L2(Ω). Moreover, there exist φ∗ ∈ H1
0 (Ω), y∗ ∈ H1

0 and ξ∗ ∈ L2(Ω) satsifying the system:

Ay∗ = u∗ + f, in Ω,
y∗ = 0, on Γ,

(31a)

Aφ∗ = y∗ − yd, in Ω,
φ̄ = 0, on Γ,

(31b)

αu∗(x) + φ∗(x) + ξ∗(x) = 0, (31c)

for almost all x ∈ Ω.

In addition, there exists a ρ > 0 such that

|u∗(x)| ≥ ρ, for almost all x ∈ Ω\{x ∈ Ω : u∗(x) = 0}. (32)

Proof. Here, we make explicit the fact that the quantities associated to the solution of (Pγ) given
in the system (24) depend on the regularization parameter γ. Therefore, the optimal control will be
denoted by ūγ , and the its associated quantities satisfying the optimality system (24) will be denoted
by φ̄γ , ȳγ , ζγ and w̄γ respectively.

We begin by noticing that the sequence (ūγ)γ>0 is bounded in L2(Ω). Indeed, since y0 = Sf , the
optimality of ūγ for (Pγ) results in

α

2
‖ūγ‖2L2(Ω) ≤ Jγ(ūγ) ≤ Jγ(0) =

1

2
‖y0 − yd‖2L2(Ω),

which implies the boundedness of (ūγ)γ>0 in L2(Ω) for α > 0.
As usual, reflexivity of L2(Ω) allows us to extract a weakly convergent subsequence, denoted again

by (ūγ)γ>0 with limit u∗ ∈ L2(Ω). Furthermore, the sequence (ξγ)γ>0, defined by ξγ := βδγζγ − βw̄γ ,
is also bounded in L2(Ω) in view of equation (24c). Let ξ∗ ∈ L2(Ω) be the weak limit of (ξγ)γ>0

(after extracting a convergent subsequence). We denote by y∗ and by φ∗ the corresponding solutions
of equations Ay = f + u∗ in H1

0 (Ω) and Aφ = y∗ − yd in H1
0 (Ω), respectively. Thus, we will refer

to y∗ and by φ∗ as the state and the adjoint state in H1
0 (Ω) associated to u∗. Notice that by the
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compact embedding H1
0 (Ω) ↪→↪→ L2(Ω) we have strong convergence of ȳγ → y∗ and φ̄γ → φ∗ in

L2(Ω). Therefore, taking γ →∞ in equation (24c), we have

lim
γ→∞

(φ̄γ + αūγ + β (δγ ζγ − w̄γ), v) = (αu∗ + φ∗ + ξ∗, v) = 0, ∀v ∈ L2(Ω),

which proves (31).
Let us verify property (32). First, notice that if Ωρ denotes the subset of Ω where |ūγ(x)| ≤ ρ

then, in view of Remark 3, it follows that ūγ(x) = 0 a.e. in Ωρ for γ sufficiently large. Then, by
a weak lower semicontinuity argument we have that

∫
Ωρ

(u∗(x))2dx ≤ lim infγ→0

∫
Ωρ

(ūγ(x))2dx = 0

which implies that u∗(x) = 0 a.e. in Ωρ.
On the other hand, based again on Remark 3 (ii) we may chose γ sufficiently large and a Lebesgue

point x ∈ Ω of ūγ , such that ρ < ūγ(x). Therefore,

ρ < ūγ(x) = lim
r→0

1

|B(x, r)|

∫
B(x,r)

ūγ(y)dy. (33)

Moreover, since ūγ ⇀ u∗ in L2(Ω) we also have that
∫
B(x,r) ūγ(y)dy →

∫
B(x,r) u

∗(y)dy as γ → ∞, for

all r → 0. Thus, by using (33), for ε > 0 there exists γ0 such that for γ > γ0 the following estimate
holds:

ρ < ūγ(x) ≤ lim
r→0

1

|B(x, r)|

∣∣∣∣∣
∫
B(x,0)

ūγ(y)− u∗(y) dy

∣∣∣∣∣+ lim
r→0

1

|B(x, r)|

∫
B(x,r)

u∗(y)dy

< ε+ lim
r→0

1

|B(x, r)|

∫
B(x,0)

u∗(x)dy = ε+ u∗(x). (34)

Finally, taking ε→ 0 then ρ ≤ ū∗(x). Analogously, we conclude that if x ∈ Ω is such that ūγ(x) < −ρ
then u∗(x) ≤ −ρ. Hence, property (32) follows.

Theorem 5. Let (ūγ)γ>0 a sequence of solutions of problem (Pγ). Suppose that assumptions of
Theorem 2 hold. There exists a subsequence (γn)n∈N with γn → ∞ as n → ∞ and a subsequence
(ūn)n∈N ⊂ (ūγ)γ>0 converging strongly in L2(Ω) with ūn = ūγn with limit u∗ in Uad. Then, u∗ is a
solution for problem (P ) and the following convergence property is fulfilled:

lim
n→∞

Jγn(ūn) = J(u∗) = inf(P ).

Proof. By Theorem 4 we consider u∗ ∈ L2(Ω), the weak limit of (ūn)n∈N (after extraction of a
subsequence) which satisfies (31) and (32). Arguing as in Theorem 2, we have that un converges
strongly in L2(Ω). Thus, the optimality of ūn implies that Jγ(ūn) ≤ Jγ(u) for any u ∈ L2(Ω) and
taking into account (5), it follows that

Jγn(ūn) ≤ Jγn(u)

=
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γn(u)

≤ 1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥ(u) = J(u). (35)

In particular, Lemma 2 this implies that

lim inf
n→0

Jγn(ūn) = lim
n→0

Jγn(ūn) ≤ J(u∗). (36)
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Now, we argue the reverse inequality. We know that the sequence (vk)k∈N strongly converges to u∗ in
L2(Ω). Let us denote by ȳn and φ̄n the state and adjoint state associated to ūn, respectively, and by
yuk the state associated to uk. By continuity of the quadratic terms and Lemma 2, we have that

Jγn(u∗) =
1

2
‖y∗ − yd‖2L2(Ω) +

α

2
‖u∗‖2L2(Ω) + Υp,γn(u∗)

= lim
k→∞

N(n)∑
n=k

1

2
‖yn − yd‖2L2(Ω) +

α

2
‖ūn‖2L2(Ω) + Υp,γn(un)

= lim inf
n→∞

Jγ(ūn). (37)

Then, by Lemma 3 and (37) we see that

J(u∗) ≤ Jγ(u∗) ≤ lim inf
γ→∞

Jγn(ūn).

This, together with (36) proves that J(u∗) = limn→0 Jγn(ūn), and from (35) we conclude that u∗ is a
minimum for problem (P ).

3.2 First–order necessary conditions with box–constraints

Since box–constraints are important in applications, we give a further discussion when they are in-
cluded in the optimal control problem (P ). Let us consider the set of feasible controls given by:

Uad = {u ∈ L2(Ω) : ua(x) ≤ u(x) ≤ ub(x), a.a. x ∈ Ω}, (38)

where ua and ub are given functions in L∞(Ω) satisfying ua(x) < 0 < ub(x) a.a. x ∈ Ω. A similar
analysis of existence of solutions and approximation of the regularized problems can be done with a
few modifications of the associated results for the unconstrained case.

The control constrained optimal control problem reads:
min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp(u)

subject to:

u ∈ Uad and
Ay = u+ f, in Ω,

y = 0, on Γ.

(PC)

Remark 4. It follows by definition (38) that Uad ⊂ B∞(0,M) with M = max{‖ua‖L∞(Ω), ‖ub‖L∞(Ω)}.
Therefore, according to Lemma 1 if β > β0 = M

p−1
p ‖S∗(Sf − yd)‖L∞(Ω) then ū = 0 is solution of

(PC).

Analogous to the unconstrained optimal control problem (P ′), after introducing the control–to–
state operator S and replacing Υp by Υp,γ , we introduce the regularized control constrained problem:

min
(y,u)∈H1

0 (Ω)×L2(Ω)

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + βΥp,γ(u)

subject to:

u ∈ Uad and
Ay = u+ f, in Ω,

y = 0, on Γ.

(PCγ)
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In the same fashion as the unconstrained problem, we define a DC representation of the cost
functional for the constrained problem (PC) by including the indicator function IUad for the admissible
control set:

G : L2(Ω) → R
u 7→ G(u) := 1

2‖Su+ Sf − yd‖2L2(Ω) + α‖u‖2L2(Ω) + βδγ‖u‖L1(Ω) + IUad ,

H : L2(Ω) → R
u 7→ H(u) := β

(
δγ‖u‖L1(Ω) −Υp,γ(u)

)
.

(39)

Thus, by similar arguments as in the unconstrained case and taking into account that ∂IUad(u) corre-
sponds to the normal cone of Uad at ū, we can derive an analogous optimality system.

Theorem 6. Let ū be a solution of (PCγ). Then there exist ȳ = Sū in H1
0 (Ω), an adjoint state

φ̄ ∈ H1
0 (Ω) and a multiplier ζ ∈ L2(Ω) and w̄ given by (19) such that the following optimality system

is satisfied :

Aȳ = ū+ f in Ω,
ȳ = 0 on Γ,

(40a)

A∗φ̄ = ȳ − yd in Ω,
φ̄ = 0 on Γ,

(40b)

〈φ̄+ αū+ β (δγ ζ − w̄), u− ū〉 ≥ 0, ∀u ∈ Uad (40c)

ζ(x) = 1, si ū(x) > 0,
ζ(x) = −1, si ū(x) < 0,
|ζ(x)| ≤ 1, si ū(x) = 0,

(40d)

for almost all x ∈ Ω.

Moreover, there exist λa and λb in L2(Ω) such that the last optimality system can be written as a KKT
optimality system:

Aȳ = ū+ f in Ω,
ȳ = 0 on Γ,

(41a)

A∗φ̄ = ȳ − yd in Ω,
φ̄ = 0 on Γ,

(41b)

φ̄+ αū+ β (δγ ζ − w̄) + λb − λa = 0 (41c)

λa ≥ 0, λb ≥ 0,
λa(ū− ua) = 0, λb(ub − ū) = 0,

(41d)

ζ(x) = 1 si ū(x) > 0,
ζ(x) = −1 si ū(x) < 0,
|ζ(x)| ≤ 1 si ū(x) = 0,

(41e)

Proof. This theorem is proved by following the arguments of the proof of Theorem 3, where
variational inequality (40c) follows by taking into consideration classical results on convex analysis
and the fact that w̄ ∈ ∇f(ū) + βδγ ∂‖ · ‖L1(Ω)(ū) + ∂IUad(ū).

In addition, by the usual projection operator PUad (see [17, Lemma 1.11]) on the admissible control
set, the variational inequality (40c) can be equivalently rewritten in equation form:

ū = PUad
[
− 1

α

(
φ̄+ β(δγζ − w̄)

)]
. (42)
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4 Numerical solution via the DC Algorithm (DCA)

In the former section we have derived necessary optimality conditions for problem (Pγ) and problem
(PCγ), essential to investigate the behavior of an optimal control. Moreover, these conditions are
suitable for deriving numerical methods such as Semi-Smooth Newton method (SSN).

By the nature of our problem we turn our attention to its numerical solution by adapting the DC
algorithm. The application of the DC algorithm to our problem leads to a numerical scheme which
relies on numerical methods for solving sparse L1 optimal control problems, including SSN methods.
Our method is completely determined by the formulation (DC) which is a suitable difference–of–
convex functions representation of the original optimal control problem. We present the algorithm in
a function space setting in the spirit of [2].

The DC–Algorithm is based on the fact that: if ū is the solution of the primal problem (P ′)
then ∂H(ū) ⊂ ∂G(ū) and conversely, if u∗ is the solution of the dual problem denoted by (P ′∗) we
have the inclusion ∂G∗(u∗) ⊂ ∂H∗(u∗), where H∗ and G∗ correspond to the dual functions of H and
G respectively. In [2], an abstract framework for the DC algorithm in Banach spaces is presented.
Although the functions G and H do not satisfy all assumptions in [2], some of the results in [2] can
be extended to our case with slight modifications. In particular, if we define the function

L(u,w) = (w, u)L2(Ω) −G∗(w)−H(u), (43)

then, according to [3], this is a Lagrangean of type I, which we use to interpret optimality conditions
for (P ′) in terms of L. Indeed, if w̄ ∈ ∂H(ū) ⊂ ∂G(ū), then we have that ū ∈ ∂G∗(w̄). This is
equivalent to the following condition:

L(ū, w) ≥ L(ū, w̄), (44a)

L(u, w̄) ≥ L(ū, w̄), (44b)

for all u and all w in L2(Ω). The pair (ū, w̄) is referred as ∂–critical point of L, see [2].
This symmetry means that DC–Algorithm alternates in computing approximations of the solutions

for the primal and the dual problems as follows:

First chose: wk ∈ ∂H(uk), (45a)

then chose: uk ∈ ∂G∗(wk). (45b)

A more detailed discussion on the DC method can be found in [13] and [2]. In particular, in [2] the
authors study the convergence properties for the DC algorithm in abstract spaces that covers our case
with small changes.

Let us give a precise meaning to the numerical problems generated by (45). In view of the identity
∂H(uk) = {wk}, formula (19) implies that wk is given by

wk =


0, if |uk(x)| ≤ 1

γ ,[
δγ − 1

p

(
|uk(x)|+ 1

γ
1−p
p

) 1−p
p

]
sign(uk(x)), otherwise.

(46)

On the other hand, for a convex and lower semi–continuous function g, it follows that

g(x) = sup{〈x, y〉 − g∗(y)}.

Moreover, according to Rockafellar [25] the subgradients can be computed as:
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∂G(y) = argmaxw{〈y, w〉 −G∗(w)}, (47)

∂G∗(w) = argmaxz{〈w, z〉 −G(z)}, (48)

therefore, uk can be obtained by solving the following optimal control problem

min
uk+1

1

2
‖Suk+1 + Sf − yd‖2L2(Ω) +

α

2
‖uk+1‖2L2(Ω) + δγβ‖uk+1‖L1(Ω) −

∫
Ω
wkuk+1 dx. (49)

In case of the presence of box–constraints on the control, our formulation yields a box–constrained
L1 optimal control subproblem

min
uk+1∈Uad

1

2
‖Suk+1 − yd‖2L2(Ω) +

α

2
‖uk+1‖2L2(Ω) + δγβ‖uk+1‖L1(Ω) −

∫
Ω
wkuk+1 dx. (50)

Remark 5. By the form of the DC splitting we replace problem (47) by the direct computation of
wk from formula (46). In addition, observe that problem (49) is a convex L1–sparse optimal control
problem with penalization parameter δγβ, for which it is known to have a unique solution for α > 0
c.f. [26]. The case of α = 0 with box–constraints is also possible. Moreover, this problem can
be solved numerically in an efficient way. For example, it can be solved by semi–smooth Newton
methods proposed in [26] or, it can be solved in the framework of sparse programming problems in
finite dimensions after its discretization.

In order to complete the presentation of our algorithm, we now turn our attention to the following
as stopping criterion. Looking at the gradient equation (24c) we could consider checking approximately
that

ζk =
1

βδγ
(wk − φk − αuk) ∈ ∂ ‖ · ‖L1(Ω)(uk), (51)

where uk, φk, wk represent the corresponding approximations of the optimal control, the adjoint state
and the multipliers in the k–th iteration. This guarantees that the associated quantities satisfy the
optimality system. Other stopping criteria can be also used. For example, condition (44) can also be
checked for stopping the algorithm.

Algorithm 1 DCA for problem (Pγ)

1: Initialize u0.
2: while stoping criteria is false do
3: Compute wk given by (46)
4: Compute uk+1 by solving problem (49) or (50) in case of control constraints.
5: k ← k + 1.
6: end while

4.1 Advantages and disadvantages of DC–Algorithm

Algorithm 1 is a first–order method, which provides a primal–dual updating procedure without a
line–search step. Although in the proposed DC method there is no need of a line–search procedure,
the methods to solve the inner subproblem related with the computation of ∂G∗ are not PDE–free.
In fact, the computational cost is concentrated in solving the subproblem, and the algorithm used to
solve it might still require a line–search procedure. However, this is not an explicit feature of DCA.
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In order to solve the L1–norm subproblem (49) one may apply different methods available in
literature. See for example [27] for a survey of methods for these type of problems. In particular, we
might apply the numerical scheme developed in [26].

As an alternative to the DC–algorithms discussed here, the optimality system (36) obtained from
the DC representation of the problem can be used as a basis for the derivation of semi–smooth Newton
schemes. Thus, we can take advantage of this optimality system in order to obtain superlinear methods
based on the DC–approach, see [21] for a complete review of such methods. It is also worth taking into
account that SSN schemes will require solving a coupled system involving the state y, the adjoint state
φ, and the multipliers ζ, λa and λb, resulting in a large system of equations which is usual in Newton
methods. Solving this system might be computationally demanding because of its size, which depends
on the discretization and the dimension of the domain for all the coupled variables. In the DC method
we still have to solve PDEs but, in contrast to SSN, the systems involved are not coupled. Despite
of this, the first order nature of DCA will demand more iterations for converging to an approximated
solution. We summarize the numerical properties of the algorithm in the following table.

Issues PDA DCA

Iterative subproblem Linear system ‖ · ‖L1 optimal control problem
Linear systems Large, sparse Dense, small (using OESOM solver)

(y, u, φ) (u only)
Sparsity ≈ 0 = 0
Tuning parameters 1 4

Table 1: Numerical properties of PDA (proposed in [22]) and DCA

Whereas in the primal dual algorithm proposed in [22] a large sparse linear system for (y, u, φ)
needs to be solved in each iteration, the DC–Algorithm requires the solution of a sparse optimal
control problem iteratively. In our setting we chose to use descent methods, intended specifically for
L1–sparse problems ([11]). Note also that, in each iteration, OESOM solves a dense linear system
depending only on the inactive components of the control variable, which can be decoupled from the
active ones. By construction, the approximated Hessian is dense and its construction is based on the
BFGS matrix.

Using tailored methods for solving L1–sparse problems has the advantage of recovering the sparse
components of the solution, as discretization points with vanishing control. In contrast, PDA computes
sparsity only approximately close to 0. See Figure 7.

We also observe that the DC–algorithm requires the tuning of more parameters, also depending
on the method used to solve the inner subproblem. This is a drawback when compared with PDA,
which requires choosing only one regularization parameter ε.

Finally, we mention that both algorithms can be combined. For example, after obtaining a solution
using PDA we can recover the sparse components by refining the solution as the input for DCA.

5 Implementation aspects

5.1 Approximation

For simplicity, the approximation of problems (P ) and (PC) is done by the finite–difference scheme,
although other discretization methods might be applied as well. Uniform meshes are considered in the
domain Ω with N internal nodes. The associated mesh parameter is given by h = 1

N+1 . Then, the
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state equation (3) is solved numerically with the finite difference method while the approximation of
the integrals is computed using the following mid–point rule:

∫ b

a

∫ d

c
u(x, y)dydx ≈ 1

4
h2
{
u(a, c) + u(b, c) + u(a, d) + u(b, d) (52)

+ 2

n−2∑
i=1

u(xi, c) + 2

n−2∑
i=1

u(xi, d) + 2

n−2∑
i=1

u(a, yi)

+ 2
n−2∑
i=1

u(b, yi) + 4
n−2∑
i=1

n−2∑
j=1

u(xi, yi)
}
.

Using this approximation, and reshaping the matrix (u(xi, yj))i,j=1,...,N as a vector u ∈ RN2
the

L1–norm is approximated by

‖u‖1 ≈
N2∑
i=1

ci|ui|, (53)

where the ci’s are the corresponding coefficients given by (52).

5.2 Auxiliar L1–sparse optimal control problems

DC–algorithm 1 has a simple structure. However, the method requires to solve auxiliar L1–norm
optimal control subproblems (49) (or (50) in the constrained case). Clearly, the efficiency of the
proposed algorithms strongly depends on the numerical methods applied for solving (49) and (50). As
mentioned earlier, the numerical solution of the L1–norm optimal control problems can be done by
semi–smooth Newton methods as in [26]. However, semi–smooth Newton methods do not guarantee
a reduction in the cost function in each iteration.

In the current numerical scheme, the application of numerical methods for solving L1–sparse
problems is straightforward. Indeed, we only need to provide the cost function and the corresponding
gradient which involves the computing of the adjoint state. The last one can be evaluated by means
of the adjoint state (24b). Several methods involve second order information of the smooth part of
the cost, which can be considered using Hessians or its approximation by means of BFGS or LBFGS
methods. In addition, approximated second order information of non differentiable term is calculated
by the built–in enriched second order information constructed by the OESOM algorithm using weak
derivatives of the L1–norm, see [11] for details.

6 Numerical Experiments

In order to investigate the numerical performance of the proposed DC–algorithm in Section 4 we have
implemented Algorithm 1 using MATLAB. The associated sparse L1 subproblem was solved using the
OESOM algorithm [11] by extending it to the box–constrained case with an additional projection step
on the admissible control set.

As illustrative examples, we consider the following tests defined on the unit square domain Ω =
(0, 1)× (0, 1).

Example 1. We consider problem (P ) for A = −∆ and yd = e− cos(2πxy)2/0.1.
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Performance of a single run

We first solve this example fixing the values of α = 1/4 and β = 7/10. Algorithm 1 gives an ap-
proximated solution after 18 iterations stopping when the quantity: − 1

βδγ
(αūk + φ̄k − βw̄k) belongs to

∂‖ · ‖L1(Ω)(uk). The table and graphics below show the performance and behavior of DCA. We observe
in Figure 2, with logarithmic scale in the x axis, the decreasing behavior of the objective function
is more intensive in the first iterations. We also show the decreasing of the distance of consecutive
approximated multipliers in the logarithmic scale in the y axis.
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Figure 2: Cost function and size of consecutive values of ζ at β = 0.004

Figure 2 (right) depicts the evolution of stopping criteria, which is more erratic with a decreasing
tendency. In each iteration new sparse components appear then, when comparing consecutive multipli-
ers, they may differ from 0 to 1 in those components, causing oscillations on their difference. We also
realize in Table 2 that the number of sparse components of the approximated solution is increasing at
every iterate.

k Cost Residual ‖ζk+1 − ζk‖ Null OESOM Execution
entries iterations time (s)

1 229.2515 63.2346 0.044062 42 4 1.4507

2 229.2233 0.28763 11.5196 893 11 6.1601

3 229.2188 0.074112 21.7329 1170 11 6.303

4 229.2172 0.037194 11.0554 1303 8 4.7229

5 229.2164 0.026078 6.8869 1365 11 5.7958

6 229.2157 0.019197 5.2423 1423 23 9.8522

7 229.2154 0.014521 4.4751 1455 6 3.697

8 229.2152 0.010528 3.1231 1471 6 3.3486

9 229.2151 0.0074617 2.6985 1487 5 3.0378

10 229.215 0.0046823 1.8893 1493 7 3.5644

11 229.215 0.0057956 1.2435 1495 7 3.1689

12 229.2149 0.0071222 0.80207 1501 6 3.573

13 229.2148 0.0056617 1.6193 1507 6 2.9722

14 229.2148 0.0054029 1.1993 1511 7 3.7972

15 229.2147 0.0060645 1.1654 1519 6 3.1879

16 229.2147 0.0041252 1.7088 1521 6 2.7979

17 229.2147 0.0011533 1.0534 1525 6 2.7833

18 229.2147 0.000409 0.45796 1525 5 2.0453

Table 2: Performance data for DCA for Example 1
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Varying the regularization parameter γ

According to our theory, it is expected that if γ →∞ the solution ūγ → ū. Here, we solve Example 1
for increasing values of γ. The numerical evidence of this convergence behavior is reflected in Table 3
where we observe optimal cost converges to a fixed value, whereas sparsity also stabilizes at 1525 null
components of the solution.

γ Optimal Sparse DCA
Cost components Iterations

100 229.219724 1080 17

200 229.214857 1499 24

500 229.214082 1582 18

1000 229.214356 1553 22

1500 229.214650 1525 15

2000 229.214651 1525 17

2500 229.214650 1525 20

3000 229.214650 1525 20

4000 229.214650 1525 22

5000 229.214650 1525 24

Table 3: Numerical convergence for increasing values of γ.

Varying the regularization parameter β

Now we experiment with different values of β, which determines the sparsity–inducting term Υ. Table
4 shows that larger values of β result in sparser solutions until the solution vanishes, which illustrates
Lemma 1. As expected, it can also be observed that the optimal cost increases according to the sparsity
of the solution, reflected in smaller supports of the controls.

β Optimal Sparse DCA
Cost components Iterations

0.0002 229.1145 1034 25

0.0005 229.259 1729 30

0.0010 229.4327 2528 37

0.0015 229.5503 3004 30

0.0020 229.6252 3359 31

0.0025 229.6676 3631 40

0.0030 229.6849 3843 37

Table 4: Solutions become sparser as β increases.

Varying the exponent p

We finish this example with the variation of the fractional exponent 1/p which also plays a role in
the sparsity of the solution. In fact, p determines how expensive is a sparse control. It is known that
for larger values of p the sparsity term tends to produce a volume constraint induced by the Donoho’s
counting norm cf.[22]. However, the increment of p does not necessarily increase sparsity in the
solution as we can see in Table 5.
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Figure 3: Optimal control and its support for β = 0.0002.
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Figure 4: Optimal control and its support for β = 0.001.
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Figure 5: Optimal control and its support for β = 0.002.
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Figure 6: Optimal control and its support for β = 0.003.

p Optimal Sparse DCA
Cost components Iterations

1 229.2028 789 4

1.2 229.3232 1860 18

1.5 229.4736 2778 32

2 229.6256 3355 27

4 229.8814 3667 26

8 230.3485 3441 23

10 230.5699 3323 28

20 231.4921 2846 23

Table 5: Influence of the power parameter p in the sparsity of the solution.
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Example 2. In this example, we compare DC–Algorithm with the primal–dual method proposed in
[22][See eq. (5.7), pg. 1273 for problem (Ps,ε)] developed to solve optimal control problems involving
Lq–penalizations with q ∈ (0, 1). Here, we consider an additional L2 penalization on the gradient of
the control. Therefore, the control space is restricted to a subset of H1

0 (Ω). Although, this penalization
is beyond our theory, it can be considered with straightforward modifications. The problem reads

min
(y,u)

1

2
‖y − yd‖2L2(Ω) +

1

2
‖∇u‖2L2(Ω) + βΥ2(u)

subject to

−∆y = u, in Ω,

y = 0, on Γ,

(E2)

In the framework of [22], we choose the quantities B = I, E = −∆, K = E−1, g = 0, f = yd and
Y = L2(Ω). Therefore, the numerical scheme (5.7) in [22] consist in the sequence of equations of the
form:

−∆uk+1 +K∗Kuk+1 +
β/p

max (ε
2− 1

p , |uk|2−
1
p )
uk+1 = K∗yd, k = 0, 1, 2, . . . (54)

The operator K and K∗ involve the inverse of the differential operator (corresponding to the laplacian,
in this example). However, it is an uncommon situation having an explicit representation of K and
K∗, rather we have to solve the associated PDE. Therefore, we introduce the state yk+1 and the adjoint
state φk+1. Then, equation (54) is reformulated as the following iterative system: αE + β/p

max (ε2−1/p,|uk|2−1/p)
I 0

0 E −I
−I 0 E


 uk+1

φk+1

yk+1

 =

 0
yd
0

 . (55)

In order to compare DC-Algorithm (DCA) with the Primal Dual based Algorithm (55) (which we
will refer as PD-Algorithm, PDA for short) we observe their performance at different values of the
regularization parameters with both methods starting from the same initial point u0. There is not a
direct relation between the regularization parameters ε of PD-Algorithm and γ used in DC-Algorithm.
Therefore, we chose regularization parameters for each regularizer such that the function |t|1/p with
approximately the same error, i.e. the regularization error satisfies: Re = ‖|t|1/p − tr‖∞ ≈ tol, where
tol is a tolerance and tr denotes the regularization.

Moreover, since both algorithms have different stopping rules we observe the cost value after 100
iterations, to guarantee that booth algorithms are close enough to the solution. The results are sum-
marized in Table 6. In our experiments we found a similar performance of both algorithms. After 100
iterations we observe that PDA or DCA can reach the minimum cost, depending on the regularization
parameters.

Reg. Re Cost (β = 0.005) Cost(β = 0.01) Cost (β = 0.2)

PD-Algorithm
ε = 0.0001 0.00750 6.10089 7.2873 8.30983
ε = 0.001 0.01290 6.10048 7.2626 8.31011

DC-Algorithm
γ = 500 0.00746 6.10053 7.1810 8.19439
γ = 300 0.01298 6.10050 7.1315 8.19786

Table 6: Comparison with primal–dual algorithm after 100 iterations

Figure 7 shows sparse components of the solution computed by PDA and DCA methods respectively.
It can be observed that PD–Algorithm computes sparse components approximately 0 (≈ 10−4) while
DC–Algorithm is able to recover zero sparse components as expected from the theory.
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Figure 7: Sparse part of the control computed by PD–algorithm (left) and DC–Algorithm (right)

Example 3. This example consists in imposing box–constraints on Example 1. We keep the same
parameters as in Example 1. Therefore, we require in addition that

u ∈ Uad = {u ∈ L2(Ω) : 0 ≤ u ≤ 0.035}.

Similar results are observed in this case as depicted in Figure 8. The structure of the sparsity and
the support of the optimal control is similar but in this case the optimal control is also active on the
prescribed bounds as observed in Figure 9.
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Figure 9: Box–constrained optimal control and its support.
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Our final experiment is out of scope of this paper since our theory does not consider the case α = 0.
However, the method is still useful to this case and further analysis is required. Our problem consists
in a box–constrained optimal control problem with Lq–term only (α = 0). Here the desired state is
yd(x1, x2) = sin(2πx1) sin(2πx2) and the set of admissible controls is given by

u ∈ Uad = {u ∈ L2(Ω) : −0.035 ≤ u ≤ 0.035}.

In this case we observe a typical shape of a bang–bang optimal control (see Figure 10).
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Figure 10: Box–constrained optimal control and its support for α = 0.

7 Conclusions

We were able to apply the DC methodology to optimal control problems involving the Lq (0 < q < 1)
nonconvex terms by introducing a Huber like smoothing for Lq quasinorms. The proposed smoothing
captures the nonconvex nature and nondifferentiability of the Lq terms which are reflected in the
computed approximated solutions.

Using the proposed Huber regularization we have identified a suitable representation of the cost
as a difference–of–convex functions. This is crucial for an efficient application of the DC algorithm to
our problem since one of the convex parts (H) is Gâteaux differentiable and therefore its subgradient
is computed directly. For the other convex function (G), the computation of its subgradient needs to
iteratively solve a sparse optimal control problem with L1 penalization, for which there are efficient
methods at hand.

Furthermore, the DC approach is helpful for deriving first–order necessary optimality conditions.
The obtained optimality system is an important result since it provides deeper insight in understanding
the nature of the solutions for this class of optimal control problems.

The proposed DC algorithm solves the nonconvex optimal control problem efficiently as shown in
the numerical examples section. Although it is known that the DC algorithm is of first order, the
question of the rate of convergence in this setting remains to be answered.

Our algorithm can compute approximate solutions which reveal the sparse structure of the optimal
controls. In addition, the optimality system derived by the DC approach is suitable for semismooth
Newton methods (SSN). However, the application of second order methods, such as SSN, requires
further research.
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[11] Juan Carlos De Los Reyes, Estefańıa Loayza, and Pedro Merino. Second-order orthant–based
methods with enriched hessian information for sparse `1-optimization. Computational Optimiza-
tion and Applications, 67(2):225–258, 2017.

[12] Dellacherie, Claude, and P-A. Meyer. Probabilities and potential. North Holland & Hermann,
Mathematical Studies 29, 1975

[13] Tao Pham Dinh and Hoai An Le Thi. Recent advances in dc programming and DCA. In
Transactions on Computational Intelligence XIII, pages 1–37. Springer, 2014.

[14] Fabián Flores-Bazán and W Oettli. Simplified optimality conditions for minimizing the difference
of vector-valued functions. Journal of Optimization Theory and Applications, 108(3):571–586,
2001.

[15] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, volume 1.
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Science & Business Media, 2012.
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