
A DENSE INITIALIZATION FOR LIMITED-MEMORY
QUASI-NEWTON METHODS

JOHANNES BRUST, OLEG BURDAKOV, JENNIFER B. ERWAY,
AND ROUMMEL F. MARCIA

Abstract. We consider a family of dense initializations for limited-memory
quasi-Newton methods. The proposed initialization exploits an eigendecompo-
sition-based separation of the full space into two complementary subspaces, as-
signing a different initialization parameter to each subspace. This family of
dense initializations is proposed in the context of a limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method that makes use of a
shape-changing norm to define each subproblem. As with L-BFGS methods that
traditionally use diagonal initialization, the dense initialization and the sequence
of generated quasi-Newton matrices are never explicitly formed. Numerical ex-
periments on the CUTEst test set suggest that this initialization together with the
shape-changing trust-region method outperforms other L-BFGS methods for solv-
ing general nonconvex unconstrained optimization problems. While this dense
initialization is proposed in the context of a special trust-region method, it has
broad applications for more general quasi-Newton trust-region and line search
methods. In fact, this initialization is suitable for use with any quasi-Newton
update that admits a compact representation and, in particular, any member of
the Broyden class of updates.

1. Introduction

In this paper we propose a new dense initialization for quasi-Newton methods to
solve problems of the form

minimize
x∈<n

f(x),

where f : <n → < is at least a continuously differentiable function, which is not
necessarily convex. The dense initialization matrix is designed to be updated each
time a new quasi-Newton pair is computed (i.e., as often as once an iteration); how-
ever, in order to retain the efficiency of limited-memory quasi-Newton methods, the
dense initialization matrix and the generated sequence of quasi-Newton matrices
are not explicitly formed. This proposed initialization makes use of a partial eigen-
decomposition of these matrices for separating <n into two orthogonal subspaces –
one for which there is approximate curvature information and the other for which
there is no reliable curvature information. This initialization has broad applications
for general quasi-Newton trust-region and line search methods. In fact, this work
can be applied to any quasi-Newton method that uses an update with a compact
representation, which includes any member of the Broyden class of updates. For

Date: May 23, 2019.
Key words and phrases. Large-scale nonlinear optimization, limited-memory quasi-Newton

methods, trust-region methods, quasi-Newton matrices, shape-changing norm.
J. B. Erway is supported in part by National Science Foundation grants CMMI-1334042 and

IIS-1741264.
R. F. Marcia is supported in part by National Science Foundation grants CMMI-1333326 and

IIS-1741490.
1

ar
X

iv
:1

71
0.

02
39

6v
5

 [
m

at
h.

O
C

]
 2

2
M

ay
 2

01
9

2 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

this paper, we explore its use in one specific algorithm; in particular we consider a
limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) trust-region method
where each subproblem is defined using a shape-changing norm [3]. The reason for
this choice is that the dense initialization is naturally well-suited for solving L-BFGS

trust-region subproblems defined by this norm. Numerical results on the CUTEst
test set suggest that the dense initialization outperforms other L-BFGS methods.

The BFGS update is the most widely-used quasi-Newton update for large-scale
optimization; it is defined by the recursion formula

Bk+1 = Bk −
1

sTkBksk
Bksks

T
kBk +

1

sTk yk
yky

T
k , (1)

where
sk

4
= xk+1 − xk and yk

4
= ∇f(xk+1)−∇f(xk), (2)

and B0 ∈ <n×n is a suitably-chosen initial matrix. This rank-two update to Bk

preserves positive definiteness when sTk yk > 0.
L-BFGS is a limited-memory variant of BFGS that only stores a predetermined

number, m, of the most recently-computed pairs {si, yi} where m� n. (Typically,
m ∈ [3, 7] (see, e.g., [5]).) Together with an intial matrix B0 that depends on
k, these pairs are used to compute Bk. For notational simplicity, we drop the
dependence of the initial matrix on k and simply denote it as B0. This limitation
on the number of stored pairs allows for a practical implementation of the BFGS

method for large-scale optimization.
There are several desirable properties for picking the initial matrix B0. First, in

order for the sequence {Bk} generated by (1) to be symmetric and positive definite,
it is necessary that B0 is symmetric and positive definite. Second, it is desirable
for B0 to be easily invertible so that solving linear systems with any matrix in
the sequence is computable using the so-called “two-loop recursion” [5] or other
recursive formulas for B−1

k (for an overview of other available methods see [9]). For
these reasons, B0 is often chosen to be a scalar multiple of the identity matrix, i.e.,

B0 = γkI, with γk > 0. (3)

For BFGS matrices, the conventional choice for the initialization parameter γk is

γk =
yTk yk
sTk yk

, (4)

which can be viewed as a spectral estimate for ∇2f(xk) [13]. (This choice was
originally proposed in [14] using a derivation based on optimal conditioning.) It
is worth noting that this choice of γk can also be derived as the minimizer of the
scalar minimization problem

γk = argmin
γ

∥∥B−1
0 yk − sk

∥∥2

2
, (5)

where B−1
0 = γ−1I. For numerical studies on this choice of initialization, see, e.g.,

the references listed within [4].

In this paper, we consider a specific dense initialization in lieu of the usual di-
agonal initialization. The aforementioned separation of <n into two orthogonal
subspaces allows for different initialization parameters to be used to estimate the
curvature of the underlying function in these subspaces. In one space (the space
spanned by the most recent updates {si, yi} with k −m ≤ i ≤ k − 1), estimates of

Dense initializations for limited-memory quasi-Newton methods 3

the curvature of the underlying function are available, and thus, one initialization
parameter can be set using this information. However, in its orthogonal comple-
ment, curvature information is not available. Therefore, if the component of the
trial step in the orthogonal subspace is (relatively) too large, the predictive quality
of the whole trial step is expected to deteriorate. As a result, the trust-region radius
might be reduced, despite the fact that the predictive quality of the component in
the aforementioned small subspace may be sufficiently good. Separating the whole
space into these two subspaces allows users to treat each subspace differently. An
alternative view of this initialization is that it makes use of two spectral estimates
of ∇2f(xk). Finally, the proposed initialization also allows for efficiently solving
and computing products with the resulting quasi-Newton matrices.

The paper is organized in five sections. In Section 2, we review properties of
L-BFGS matrices arising from their special recursive structure as well as overview
the shape-changing trust-region method to be used in this paper. In Section 3, we
present the proposed trust-region method that uses a shape-changing norm together
with a dense initialization matrix. While this dense initialization is presented in
one specific context, it can be used in combination with any quasi-Newton update
that admits a so-called compact representation. Numerical experiments comparing
this method with other combinations of initializations and L-BFGS methods are
reported in Section 4, and concluding remarks are found in Section 5.

2. Background

In this section, we overview the compact formulation for L-BFGS matrices and
how to efficiently compute a partial eigendecomposition. Finally, we review the
shape-changing trust-region method considered in this paper.

2.1. The compact representation. The special structure of the recursion for-
mula for L-BFGS matrices admits a so-called compact representation [5], which is
overviewed in this section.

Using the m most recently computed pairs {sj} and {yj} given in (2), we define
the following matrices

Sk
4
= [sk−m · · · sk−1] and Yk

4
= [yk−m · · · yk−1] .

With Lk taken to be the strictly lower triangular part of the matrix of STk Yk, and Dk

defined as the diagonal of STk Yk, the compact representation of an L-BFGS matrix
is

Bk = B0 + ΨkMkΨ
T
k , (6)

where

Ψk
4
= [B0Sk Yk] and Mk

4
= −

[
STk B0Sk Lk
LTk −Dk

]−1

(7)

(see [5] for details). Note that Ψk ∈ <n×2m, and Mk ∈ <2m×2m is invertible provided
sTi yi > 0 for all i [5, Theorem 2.3]. An advantage of the compact representation is
that if B0 is chosen to be a multiple of the identity, then computing products with
Bk or solving linear systems with Bk can be done efficiently [9, 12].

It should be noted that L-BFGS matrices are just one member of the Broyden
class of matrices (see, e.g., [13]), and in fact every member of the Broyden class of
matrices admits a compact representation [6, 8, 12].

4 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

2.2. Partial eigendecomposition of Bk. If B0 is taken to be a multiple of the
identity matrix, then the partial eigendecomposition of Bk can be computed effi-
ciently from the compact representation (6) using either a partial QR decompo-
sition [3] or a partial singular value decomposition (SVD) [11]. Below, we review
the approach that uses the QR decomposition, and we assume that Ψk has rank
r = 2m. (For the rank-deficient case, see the techniques found in [3].)

Let
Ψk = QR,

be the so-called “thin” QR factorization of Ψk, where Q ∈ <n×r and R ∈ <r×r.
Since the matrix RMkR

T is a small (r× r) matrix with r � n (recall that r = 2m,
where m is typically between 3 and 7), it is computationally feasible to calculate its

eigendecomposition; thus, suppose W Λ̂W T is the eigendecomposition of RMkR
T .

Then,

ΨkMkΨ
T
k = QRMkR

TQT = QW Λ̂W TQT = ΨkR
−1W Λ̂W TR−TΨT

k .

Defining
P‖ = ΨkR

−1W, (8)

gives that

ΨkMkΨ
T
k = P‖Λ̂P

T
‖ . (9)

Thus, for B0 = γkI, the eigendecomposition of Bk can be written as

Bk = γkI + ΨkMkΨ
T
k = PΛP T , (10)

where

P 4
=
[
P‖ P⊥

]
, Λ 4

=

[
Λ̂ + γkIr

γkIn−r

]
, (11)

and P⊥ ∈ Rn×(n−r) is defined as the orthogonal complement of P‖, i.e., P T
⊥P⊥ = In−r

and P T
‖ P⊥ = 0r×(n−r) . Hence, Bk has r eigenvalues given by the diagonal elements

of Λ̂ + γkIr and the remaining eigenvalues are γk with multiplicity n− r.

2.2.1. Practical computations. Using the above method yields the eigenvalues of Bk

as well as the ability to compute products with P‖. Formula (8) indicates that Q is
not required to be explicitly formed in order to compute products with P‖. For this
reason, it is desirable to avoid forming Q by computing only R via the Cholesky
factorization of ΨT

kΨk, i.e., ΨT
kΨk = RTR (see [3]).

At an additional expense, the eigenvectors stored in the columns of P‖ may be
formed and stored. For the shape-changing trust-region method used in this paper,
it is not required to store P‖. In contrast, the matrix P⊥ is prohibitively expensive
to form. It turns out that for this work it is only necessary to be able to compute
projections into the subspace P⊥P

T
⊥ , which can be done using the identity

P⊥P
T
⊥ = I − P‖P T

‖ . (12)

2.3. A shape-changing L-BFGS trust-region method. Generally speaking,
at the kth step of a trust-region method, a search direction is computed by approx-
imately solving the trust-region subproblem

p∗ = argmin
‖p‖≤∆k

Q(p) 4= gTk p+
1

2
pTBkp, (13)

where gk
4
= ∇f(xk), Bk ≈ ∇2f(xk), and ∆k > 0 is the trust-region radius. When

second derivatives are unavailable or computationally too expensive to compute,

Dense initializations for limited-memory quasi-Newton methods 5

approximations using gradient information may be preferred. Not only do quasi-
Newton matrices use only gradient and function information, but in the large-scale
case, these Hessian approximations are never stored; instead, a recursive formula
or methods that avoid explicitly forming Bk may be used to compute matrix-vector
products with the approximate Hessians or their inverses [5, 8, 9, 12].

Consider the trust-region subproblem defined by the shape-changing infinity
norm:

minimize
‖p‖P,∞≤∆k

Q(p) = gTk p+
1

2
pTBkp, (14)

where

‖p‖P,∞
4
= max

(
‖P T
‖ p‖∞, ‖P T

⊥p‖2

)
(15)

and P‖ and P⊥ are given in (11). Note that the ratio ‖p‖2/‖p‖P,∞ does not de-
pend on n and only moderately depends on r. (In particular, 1 ≤ ‖p‖2/‖p‖P,∞ ≤√
r + 1.) Because this norm depends on the eigenvectors of Bk, the shape of the

trust region changes each time the quasi-Newton matrix is updated, which is pos-
sibly every iteration of a trust-region method. (See [3] for more details and other
properties of this norm.) The motivation for this choice of norm is that the the trust-
region subproblem (14) decouples into two separate problems for which closed-form
solutions exist.

We now review the closed-form solution to (14), as detailed in [3]. Let

v = P Tp =

[
P T
‖ p

P T
⊥p

]
4
=

[
v‖
v⊥

]
and P Tgk =

[
P T
‖ gk
P T
⊥gk

]
4
=

[
g‖
g⊥

]
. (16)

With this change of variables, the objective function of (14) becomes

Q (Pv) = gTk Pv +
1

2
vT
(

Λ̂ + γkIn

)
v

= gT‖ v‖ + gT⊥v⊥ +
1

2

(
vT‖

(
Λ̂ + γkIr

)
v‖ + γk ‖v⊥‖2

2

)
= gT‖ v‖ +

1

2
vT‖

(
Λ̂ + γkIr

)
v‖ + gT⊥v⊥ +

1

2
γk ‖v⊥‖2

2 .

The trust-region constraint ‖p‖P,∞ ≤ ∆k implies
∥∥v‖∥∥∞ ≤ ∆k and ‖v⊥‖2 ≤ ∆k,

which decouples (14) into the following two trust-region subproblems:

minimize
‖v‖‖∞≤∆k

q‖
(
v‖
)

4
= gT‖ v‖ +

1

2
vT‖

(
Λ̂ + γkIr

)
v‖ (17)

minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) 4
= gT⊥v⊥ +

1

2
γk ‖v⊥‖2

2 . (18)

Observe that the resulting minimization problems are considerably simpler than
the original problem since in both cases the Hessian of the new objective functions
are diagonal matrices. The solutions to these decoupled problems have closed-form
analytical solutions [3, 2]. Specifically, letting λi

4
= λ̂i + γk, the solution to (17) is

6 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

given coordinate-wise by

[v∗||]i =



− [g||]i
λi

if

∣∣∣∣ [g||]iλi

∣∣∣∣ ≤ ∆k and λi > 0,

c if
[
g‖
]
i

= 0 and λi = 0,

−sgn(
[
g‖
]
i
)∆k if

[
g‖
]
i
6= 0 and λi = 0,

±∆k if
[
g‖
]
i

= 0 and λi < 0,

− ∆k

|[g||]i|
[
g||
]
i

otherwise,

, (19)

where c is any real number in [−∆k,∆k] and ‘sgn’ denotes the signum function.
Meanwhile, the minimizer of (18) is given by

v∗⊥ = βg⊥, (20)

where

β =

{
− 1
γk

if γk > 0 and ‖g⊥‖2 ≤ ∆k|γk|,
− ∆k

‖g⊥‖2
otherwise.

(21)

Note that the solution to (14) is then

p∗ = Pv∗ = P‖v
∗
‖ + P⊥v

∗
⊥ = P‖v

∗
‖ + βP⊥g⊥ = P‖v

∗
‖ + βP⊥P

T
⊥gk, (22)

where the latter term is computed using (12). Additional simplifications yield the
following expression for p∗:

p∗ = βg + P‖(v
∗
‖ − βg‖). (23)

The overall cost of computing the solution to (14) is comparable to that of using
the Euclidean norm (see [3]). The main advantage of using the shape-changing
norm (15) is that the solution p∗ in (23) has a closed-form expression.

3. The Proposed Method

In this section, we present a new dense initialization and demonstrate how it
is naturally well-suited for trust-region methods defined by the shape-changing
infinity norm. Finally, we present a full trust-region algorithm that uses the dense
initialization, consider its computational cost, and prove global convergence.

3.1. Dense initial matrix B̂0. In this section, we propose a new dense initial-
ization for quasi-Newton methods. Importantly, in order to retain the efficiency of
quasi-Newton methods the dense initialization matrix and subsequently updated
quasi-Newton matrices are never explicitly formed. This initialization can be used
with any quasi-Newton update for which there is a compact representation; how-
ever, for simplicity, we continue to refer to the BFGS update throughout this section.
For notational purposes, we use the initial matrix B0 to represent the usual initial-

ization and B̂0 to denote the proposed dense initialization. Similarly, {Bk} and

{B̂k} will be used to denote the sequences of matrices obtained using the initial-

izations B0 and B̂0, respectively.
Our goal in choosing an alternative initialization is four-fold: (i) to be able to

treat subspaces differently depending on whether curvature information is available
or not, (ii) to preserve properties of symmetry and positive-definiteness, (iii) to
be able to efficiently compute products with the resulting quasi-Newton matrices,
and (iv) to be able to efficiently solve linear systems involving the resulting quasi-
Newton matrices. The initialization proposed in this paper leans upon two different

Dense initializations for limited-memory quasi-Newton methods 7

parameter choices that can be viewed as an estimate of the curvature of ∇2f(xk)
in two subspaces: one spanned by the columns of P‖ and another spanned by the
columns of P⊥.

The usual initialization for a BFGS matrix Bk is B0 = γkI, where γk > 0. Note
that this initialization is equivalent to

B0 = γkPP
T = γkP‖P

T
‖ + γkP⊥P

T
⊥ .

In contrast, for a given γk, γ
⊥
k ∈ <, consider the following symmetric, and in general,

dense initialization matrix:

B̂0 = γkP‖P
T
‖ + γ⊥k P⊥P

T
⊥ , (24)

where P‖ and P⊥ are the matrices of eigenvectors defined in Section 2.2. We now

derive the eigendecomposition of B̂k.

Theorem 1. Let B̂0 be defined as in (24). Then B̂k generated using (1) has the
eigendecomposition

B̂k =
[
P‖ P⊥

] [Λ̂ + γkIr
γ⊥k In−r

] [
P‖ P⊥

]T
, (25)

where P‖, P⊥, and Λ̂ are given in (8), (11), and (9), respectively.

Proof. First note that the columns of Sk are in Range(Ψk), where Ψk is defined in
(7). From (8), Range(Ψk) = Range(P‖); thus, P‖P

T
‖ Sk = Sk and P T

⊥Sk = 0. This
gives that

B̂0Sk = γkP‖P
T
‖ Sk + γ⊥k P⊥P

T
⊥Sk = γkSk = B0Sk. (26)

Combining the compact representation of B̂k ((6) and (7)) together with (26) yields

B̂k = B̂0 −
[
B̂0Sk Yk

] [
STk B̂0Sk Lk
LTk −Dk

]−1 [
STk B̂0

Y T
k

]
= B̂0 − [B0Sk Yk]

[
STk B0Sk Lk
LTk −Dk

]−1 [
STk B0

Y T
k

]
= γkP‖P

T
‖ + γ⊥k P⊥P

T
⊥ + P‖Λ̂P

T
‖

= P‖

(
Λ̂ + γkIr

)
P T
‖ + γ⊥k P⊥P

T
⊥ ,

which is equivalent to (25). � �

It can be easily verified that (25) holds also for P‖ defined in [3] for possibly rank-
deficient Ψk. (Note that (8) applies only to the special case when Ψk is full-rank.)

Theorem 1 shows that the matrix B̂k that results from using the initialization
(24) shares the same eigenvectors as Bk, generated using B0 = γkI. Moreover, the
eigenvalues corresponding to the eigenvectors stored in the columns of P‖ are the

same for B̂k and Bk. The only difference in the eigendecompositions of B̂k and Bk

is in the eigenvalues corresponding to the eigenvectors stored in the columns of P⊥.
This is summarized in the following corollary.

Corollary 1. Suppose Bk is a BFGS matrix initialized with B0 = γkI and B̂k is

a BFGS matrix initialized with (24). Then Bk and B̂k have the same eigenvectors;

moreover, these matrices have r eigenvalues in common given by λi
4
= λ̂i+γk where

Λ̂ = diag(λ̂1, . . . , λ̂r).

8 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

Proof. The corollary follows immediately by comparing (10) with (25). � �

The results of Theorem 1 and Corollary 1 may seem surprising at first since every
term in the compact representation ((6) and (7)) depends on the initialization;

moreover, B̂0 is, generally speaking, a dense matrix while B0 is a diagonal matrix.
However, viewed from the perspective of (24), the parameter γ⊥k only plays a role
in scaling the subspace spanned by the columns of P⊥.

The initialization B̂0 allows for two separate curvature approximations for the
BFGS matrix: one in the space spanned by columns of P‖ and another in the
space spanned by the columns of P⊥. In the next subsection, we show that this
initialization is naturally well-suited for solving trust-region subproblems defined
by the shape-changing infinity norm.

3.2. The trust-region subproblem. Here we will show that the use of B̂0 pro-
vides the same subproblem separability as B0 does in the case of the shape-changing
infinity norm.

For B̂0 given by (24), consider the objective function of the trust-region subprob-
lem (14) resulting from the change of variables (16):

Q(Pv) = gTk Pv +
1

2
vTP T B̂kPv

= gT‖ v‖ +
1

2
vT‖

(
Λ̂ + γkIr

)
v‖ + gT⊥v⊥ +

1

2
γ⊥k ‖v⊥‖

2
2 .

Thus, (14) decouples into two subproblems: The corresponding subproblem for
q‖(v‖) remains (17) and the subproblem for q⊥(v⊥) becomes

minimize
‖v⊥‖2≤∆k

q⊥ (v⊥) 4= gT⊥v⊥ +
1

2
γ⊥k ‖v⊥‖

2
2 . (27)

The solution to (27) is now given by

v∗⊥ = β̂g⊥, (28)

where

β̂ =

{
− 1
γ⊥k

if γ⊥k > 0 and ‖g⊥‖2 ≤ ∆k|γ⊥k |,
− ∆k

‖g⊥‖2
otherwise.

(29)

Thus, the solution p∗ can be expressed as

p∗ = β̂g + P‖(v
∗
‖ − β̂g‖), (30)

which can computed as efficiently as the solution in (23) for conventional initial

matrices since they differ only by the scalar (β̂ in (30) versus β in (23)).

3.3. Determining the parameter γ⊥k . The values γk and γ⊥k can be updated at
each iteration. Since we have little information about the underlying function f in
the subspace spanned by the columns of P⊥, it is reasonable to make conservative
(i.e., large) choices for γ⊥k . Note that in the case that γ⊥k > 0 and ‖g⊥‖2 ≤ ∆k|γ⊥k |,
the parameter γ⊥k scales the solution v∗⊥ (see 29); thus, large values of γ⊥k will
reduce these step lengths in the space spanned by P⊥. Since the space P⊥ does not
explicitly use information produced by past iterations, it seems desirable to choose
γ⊥k to be large. However, the larger that γ⊥k is chosen, the closer v∗⊥ will be to the
zero vector. Also note that if γ⊥k < 0 then the solution to the subproblem (27) will

Dense initializations for limited-memory quasi-Newton methods 9

always lie on the boundary, and thus, the actual value of γ⊥k becomes irrelevant.

Moreover, for values γ⊥k < 0, B̂k is not guaranteed to be positive definite. For
these reasons, we suggest sufficiently large and positive values for γ⊥k related to the
curvature information gathered in γ1, . . . , γk. Specific choices for γ⊥k are presented
in the numerical results section.

3.4. Implementation details. In this section, we describe how we incorporate
the dense initialization within the existing LMTR algorithm [3]. At the begin-
ning of each iteration, the LMTR algorithm with dense initialization checks if the
unconstrained minimizer (also known as the full quasi-Newton trial step),

p∗u = −B̂−1
k gk (31)

lies inside the trust region defined by the two-norm. Because our proposed method
uses a dense initialization, the so-called “two-loop recursion” [6] is not applicable
for computing the unconstrained minimizer p∗u in (31). However, products with

B̂−1
k can be performed using the compact representation without involving a par-

tial eigendecomposition. Specifically, if Vk = [Sk Yk] with Cholesky factorization
V T
k Vk = RT

kRk, then

B̂−1
k =

1

γ⊥k
I + VkM̂kV

T
k , (32)

where

M̂k =

[
T−Tk (Dk + γ−1

k Y T
k Yk)T

−1
k −γ−1

k T−Tk
−γ−1

k T−1
k 0m

]
+ αkR

−1
k R−Tk ,

αk =

(
1

γk
− 1

γ⊥k

)
, Tk is the upper triangular part of the matrix STk Yk, and Dk is

its diagonal. Thus, the inequality

‖p∗u‖2 ≤ ∆k (33)

is easily verified without explicitly forming p∗u using the identity

‖p∗u‖2
2 = gTk B̂

−2
k gk = γ−2

k ‖gk‖
2 + 2γ−1

k uTk M̂kuk + uTk M̂k(R
T
kRk)M̂kuk. (34)

Here, as in the LMTR algorithm, the vector uk = V T
k gk and ‖gk‖2 can be com-

puted efficiently at each iteration (see [3] for details). Thus, the computational
cost of ‖p∗u‖2 is low because (34) involves linear algebra operations in a small 2m-
dimensional space, the most expensive of which are related to solving triangular
systems with Tk and Rk. These operations grow in proportion to m2 while the
number of operations in (31)-(32) grows in proportion to mn. Thus, the computa-
tional complexity ratio between using (34) and (31)-(32) is m2/(nm) = m/n � 1
since we assume that m� n. The norm equivalence for the shape-changing infinity
norm studied in [3] guarantees that (33) implies that the inequality ‖p∗u‖P,∞ ≤ ∆k

is satisfied; in this case, p∗u is the exact solution of the trust-region subproblem
defined by the shape-changing infinity norm.

If (33) holds, the algorithm computes p∗u for generating the trial point xk + p∗u.
It can be easily seen that the cost of computing p∗u is 4mn operations, i.e. it is the
same as for computing search direction in the line search L-BFGS algorithm [6].

On the other hand, if (33) does not hold, then for producing a trial point, the par-
tial eigendecomposition is computed, and the trust-region subproblem is decoupled
and solved exactly as described in Section 3.2.

10 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

3.5. The algorithm and its properties. In Algorithm 1, we present a basic
trust-region method that uses the proposed dense initialization. In this setting,
we consider the computational cost of the proposed method, and we prove global
convergence of the overall trust-region method. Since P may change every iteration,
the corresponding norm ‖·‖P,∞ may change each iteration. Note that initially there
are no stored quasi-Newton pairs {sj, yj}. In this case, we assume P⊥ = In and P‖
does not exist, i.e., B̂0 = γ⊥0 I.

Require: x0 ∈ Rn, ∆0 > 0, ε > 0, γ⊥0 > 0 , 0 ≤ τ1 < τ2 < 0.5 < τ3 < 1,
0 < η1 < η2 ≤ 0.5 < η3 < 1 < η4, 0 < c3 < 1

1: Compute g0

2: for k = 0, 1, 2, . . . do
3: if ‖gk‖ ≤ ε then
4: return
5: end if
6: Compute ‖p∗u‖2 using (34)
7: if ‖p∗u‖2 > ∆k then

8: Compute p∗ for B̂k using (30), where β̂ is computed using (29) and v∗‖ as

in (19)
9: else

10: Compute p∗u using (31)-(32) and set p∗ ← p∗u
11: end if
12: Compute the ratio ρk = f(xk+p∗)−f(xk)

Q(p∗)

13: if ρk≥ τ1 then
14: xk+1 = xk + p∗

15: Compute gk+1, sk, yk, γk+1 and γ⊥k+1

16: Choose at most m pairs {sj, yj} such that sTj yj > c3‖sj‖‖yj‖
17: Compute Ψk+1, R

−1,Mk+1,W, Λ̂ and Λ as described in Section 2
18: else
19: xk+1 = xk
20: end if
21: if ρk < τ2 then
22: ∆k+1 = min (η1∆k, η2‖sk‖P,∞)
23: else
24: if ρk ≥ τ3 and ‖sk‖P,∞ ≥ η3∆k then
25: ∆k+1 = η4∆k

26: else
27: ∆k+1 = ∆k

28: end if
29: end if
30: end for
ALGORITHM 1: An L-BFGS trust-region method with dense initialization

The only difference between Algorithm 1 and the LMTR algorithm in [3] is the
initialization matrix. Computationally speaking, the use of a dense initialization
in lieu of a diagonal initialization plays out only in the computation of p∗ by (22).
However, there is no computational cost difference: The cost of computing the
value for β using (29) in Algorithm 1 instead of (21) in the LMTR algorithm is
the same. Thus, the dominant cost per iteration for both Algorithm 1 and the

Dense initializations for limited-memory quasi-Newton methods 11

LMTR algorithm is 4mn operations (see [3] for details). Note that this is the same
cost-per-iteration as the line search L-BFGS algorithm [5].

In the next result, we provide a global convergence result for Algorithm 1. This
result is based on the convergence analysis presented in [3].

Theorem 2. Let f : Rn → R be twice-continuously differentiable and bounded
below on Rn. Suppose that there exists a scalar c1 > 0 such that

‖∇2f(x)‖ ≤ c1, ∀x ∈ Rn. (35)

Furthermore, suppose for B̂0 defined by (24), that there exists a positive scalar c2

such that

γk, γ
⊥
k ∈ (0, c2], ∀k ≥ 0, (36)

and there exists a scalar c3 ∈ (0, 1) such that the inequality

sTj yj > c3‖sj‖‖yj‖ (37)

holds for each quasi-Newton pair {sj, yj}. Then, if the stopping criteria is sup-
pressed, the infinite sequence {xk} generated by Algorithm 1 satisfies

lim
k→∞
‖∇f(xk)‖ = 0. (38)

Proof. From (36), we have ‖B̂0‖ ≤ c2, which holds for each k ≥ 0. Then, by [3,
Lemma 3], there exists c4 > 0 such that

‖B̂k‖ ≤ c4.

Then, (38) follows from [3, Theorem 1]. � �

In the following section, we consider γ⊥k parameterized by two scalars, c and λ:

γ⊥k (c, λ) = λcγmax
k + (1− λ)γk, (39)

where c ≥ 1, λ ∈ [0, 1], and

γmax
k

4
= max γi

1≤i≤k
,

where γk is taken to be the conventional initialization given by (4). (This choice for
γ⊥k will be further discussed in Section 4.) We now show that Algorithm 1 converges
for these choices of γ⊥k . Assuming that (35) and (37) hold, it remains to show that
(36) holds for these choices of γ⊥k . To see that (36) holds, notice that in this case,

γk =
yTk yk
sTk yk

≤ yTk yk
c3‖sk‖‖yk‖

≤ ‖yk‖
c3‖sk‖

.

Substituting in for the definitions of yk and sk yields that

γk ≤
‖∇f(xk+1)−∇f(xk)‖

c3‖xk+1 − xk‖
,

implying that (36) holds. Thus, Algorithm 1 converges for these choices for γ⊥k .

12 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

4. Numerical Experiments

We performed numerical experiments using a Dell Precision T1700 machine with
an Intel i5-4590 CPU at 3.30GHz X4 and 8GB RAM using MATLAB 2014a. The test
set consisted of 65 large-scale (1000 ≤ n ≤ 10000) CUTEst [10] test problems, made
up of all the test problems in [3] plus an additional three (FMINSURF, PENALTY2,
and TESTQUAD [10]) since at least one of the methods in the experiments detailed
below converged on one of these three problems. The same trust-region method
and default parameters as in [3, Algorithm 1] were used for the outer iteration.
At most five quasi-Newton pairs {sk, yk} were stored, i.e., m = 5. The relative
stopping criterion was

‖gk‖2 ≤ εmax (1, ‖xk‖2) ,

with ε = 10−10. The initial step, p0, was determined by a backtracking line-search
along the normalized steepest descent direction. To compute the partial eigende-
composition of Bk, we used the QR factorization instead of the SVD because the
QR version outperformed the SVD version in numerical experiments not presented
here. The rank of Ψk was estimated by the number of positive diagonal elements in
the diagonal matrix of the LDLT decomposition (or eigendecomposition of ΨT

kΨk)
that are larger than the threshold εr = (10−7)2. (Note that the columns of Ψk are
normalized.). We used the value c3 = 10−8 in (37) for testing whether to accept a
new quasi-Newton pair.

We provide performance profiles (see [7]) for the number of iterations (iter)
where the trust-region step is accepted and the average time (time) for each solver
on the test set of problems. The performance metric, ρ, for the 65 problems is
defined by

ρs(τ) =
card {p : πp,s ≤ τ}

65
and πp,s =

tp,s
min tp,i
1≤i≤S

,

where tp,s is the “output” (i.e., time or iterations) of “solver” s on problem p. Here
S denotes the total number of solvers for a given comparison. This metric measures
the proportion of how close a given solver is to the best result. We observe as in [3]
that the first runs significantly differ in time from the remaining runs, and thus, we
ran each algorithm ten times on each problem, reporting the average of the final
eight runs.

In this section, we present the following six types of experiments involving LMTR:

(1) A comparison of results for different values of γ⊥k (c, λ).
(2) Two versions of computing the full quasi-Newton trial step are compared.

One version uses the dense initialization to compute p∗u as described in
Section 3.4 (see (31)); the other uses the conventional initialization, i.e., p∗u
is computed as p∗u = B−1

k gk. When the full quasi-Newton trial step is not
accepted in any of the versions, the dense initialization is used for computing
trial step by explicitly solving the trust-region subproblem (Section 3.2).

(3) A comparison of LMTR together with a dense initialization and the line
search L-BFGS method with the conventional initialization.

(4) A comparison of LMTR with a dense initialization and L-BFGS-TR [3], which
computes a scaled quasi-Newton direction that lies inside a trust region.

Dense initializations for limited-memory quasi-Newton methods 13

Table 1. Values for γ⊥k used in Experiment 1.

Parameters

c λ γ⊥k
1 1 γmax

k

2 1 2γmax
k

1 1
2

1
2
γmax
k + 1

2
γk

1 1
4

1
4
γmax
k + 3

4
γk

This method can be viewed as a hybrid line search and trust-region algo-
rithm.

(5) A comparison of the dense and conventional initializations.

In the experiments below, the dense initial matrix B̂0 corresponding to γ⊥k (c, λ)
given in (39) will be denoted by

B̂0(c, λ) 4= γkP‖P
T
‖ + γ⊥k (c, λ)P⊥P

T
⊥ .

Using this notation, the conventional initializationB0(γk) can be written as B̂0(1, 0).

Experiment 1. In this experiment, we consider various scalings of a proposed γ⊥k
using LMTR. As argued in Section 3.3, it is reasonable to choose γ⊥k to be large
and positive; in particular, γ⊥k ≥ γk. Thus, we consider the parametrized family
of choices γ⊥k

4
= γ⊥k (c, λ) given in (39). These choices correspond to conservative

strategies for computing steps in the space spanned by P⊥ (see the discussion in
Section 3.3). Moreover, these can also be viewed as conservative strategies since the
trial step computed using B0 will always be larger in Euclidean norm than the trial

step computed using B̂0 using (39). To see this, note that in the parallel subspace
the solutions will be identical using both initializations since the solution v∗‖ does

not depend on γ⊥k (see (19)); in contrast, in the orthogonal subspace, ‖v∗⊥‖ inversely
depends on γ⊥k (see (28) and (29)).

We report results using different values of c and λ for γ⊥k (c, λ) on two sets of
tests. On the first set of tests, the dense initialization was used for the entire LMTR

algoirthm. However, for the second set of tests, the dense initialization was not used
for the computation of the unconstrained minimizer p∗u; that is, LMTR was run using
Bk (initialized with B0 = γkI where γk is given in (4)) for the computation of the
unconstrained minimizer p∗u = −B−1

k gk. However, if the unconstrained minimizer

was not taken to be the approximate solution of the subproblem, B̂k with the dense
initialization was used for computing the constrained minimizer with respect to the
shape-changing norm (see line 8 in Algorithm 1) with γ⊥k defined as in (39). The
values of c and λ chosen for Experiment 1 are found in Table 4. (See Section 3.4
for details on the LMTR algorithm.)

Figure 1 displays the performance profiles using the chosen values of c and λ to
define γ⊥k in the case when the dense initialization was used for both the computa-
tion of the unconstrained minimizer p∗u (line 10 of Algorithm 1) as well as for the
constrained minimizer with respect to the shape-changing norm (line 8 of Algorithm
1), which is denoted in the legend of plots in Figure 1 by the use of an asterisk (∗).
The results of Figure 1 suggest the choice of c = 1 and λ = 1

2
outperform the other

chosen combinations for c and λ. In experiments not reported here, larger values

14 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

of c did not appear to improve performance; for c < 1, performance deteriorated.
Moreover, other choices for λ, such as λ = 3

4
, did not improve results beyond the

choice of λ = 1
2
.

1 1.1 1.2 1.3 1.4 1.5

τ

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1, 1)∗

B̂0(2, 1)∗

B̂0(1,
1
2)

∗

B̂0(1,
1
4)

∗

1 1.1 1.2 1.3 1.4 1.5

τ

0.2

0.4

0.6

0.8

1

ρ
s(τ
)

B̂0(1, 1)∗

B̂0(2, 1)∗

B̂0(1,
1
2)

∗

B̂0(1,
1
4)

∗

Figure 1. Performance profiles comparing iter (left) and time

(right) for the different values of γ⊥k given in Table 4. In the legend,

B̂0(c, λ) denotes the results from using the dense initialization with
the given values for c and λ to define γ⊥k . In this experiment, the
dense initialization was used for all aspects of the algorithm.

Figure 2 reports the performance profiles for using the chosen values of c and
λ to define γ⊥k in the case when the dense initialization was only used for the
computation of the constrained minimizer (line 8 of Algorithm 1) –denoted in the
legend of plots in Figure 2 by the absence of an asterisk (∗). In this test, the
combination of c = 1 and λ = 1 as well as c = 1 and λ = 1

2
appear to slightly

outperform the other two choices for γ⊥k in terms of both then number of iterations
and the total computational time. Based on the results in Figure 2, we do not see
a reason to prefer either combination c = 1 and λ = 1 or c = 1 and λ = 1

2
over the

other.
Note that for the CUTEst problems, the full quasi-Newton trial step is accepted as

the solution to the subproblem on the overwhelming majority of problems. Thus, if
the scaling γ⊥k is used only when the full trial step is rejected, it has less of an affect
on the overall performance of the algorithm; i.e., the algorithm is less sensitive to
the choice of γ⊥k . For this reason, it is not surprising that the performance profiles
in Figure 2 for the different values of γ⊥k are more indistinguishable than those in
Figure 1.

Finally, similar to the results in the case when the dense initialization was used
for the entire algorithm (Figure 1), other values of c and λ did not significantly
improve the performance provided by c = 1 and λ = 1

2
.

Experiment 2. This experiment was designed to test whether it is advantageous
to use the dense initialization for all aspects of the LMTR algorithm or just for
the computation of the constrained minimizer (line 8 of Algorithm 1). For any
given trust-region subproblem, using the dense initialization for computing the
unconstrained minimizer is computationally more expensive than using a diagonal
initialization; however, it is possible that extra computational time associated with
using the dense initialization for all aspects of the LMTR algorithm may yield a more
overall efficient solver. For these tests, we compare the top performer in the case

Dense initializations for limited-memory quasi-Newton methods 15

1 1.2 1.4 1.6 1.8

τ

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1, 1)

B̂0(2, 1)

B̂0(1,
1
2)

B̂0(1,
1
4)

1 1.2 1.4 1.6 1.8

τ

0.2

0.4

0.6

0.8

1

ρ
s(τ
)

B̂0(1, 1)

B̂0(2, 1)

B̂0(1,
1
2)

B̂0(1,
1
4)

Figure 2. Performance profiles comparing iter (left) and time

(right) for the different values of γ⊥k given in Table 4. In the legend,

B̂0(c, λ) denotes the results from using the dense initialization with
the given values for c and λ to define γ⊥k . In this experiment, the dense
initialization was only used for the computation of the constrained
minimizer (line 8 of Algorithm 1).

when the dense initialization is used for all aspects of LMTR, i.e., (γ⊥k (1, 1
2
)), to one

of the top performers in the case when the dense initialization is used only for the
computation of the constrained minimizer (line 8 of Algorithm 1), i.e., (γ⊥k (1, 1)).

1 1.1 1.2 1.3 1.4
τ

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

B̂0(1, 1)

1 1.1 1.2 1.3 1.4

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

B̂0(1, 1)

Figure 3. Performance profiles of iter (left) and time (right) for

Experiment 2. In the legend, the asterisk after B̂0(1, 1
2
)∗ signifies that

the dense initialization was used for all aspects of the LMTR algo-

rithm; without the asterisk, B̂0(1, 1) signifies the test where the dense
initialization is used only for the computation of the constrained min-
imizer (line 8 of Algorithm 1).

The performance profiles comparing the results of this experiment are presented
in Figure 3. These results suggest that using the dense initialization with γ⊥k (1, 1

2
)

for all aspects of the LMTR algorithm is more efficient than using dense initializa-
tions only for the computation of the constrained minimizer (line 8 of Algorithm 1).
In other words, even though using dense initial matrices for the computation of the
unconstrained minimizer imposes an additional computational burden, it generates
steps that expedite the convergence of the overall trust-region method.

16 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

Experiment 3. In this experiment, we compare the performance of the dense
initialization γ⊥k (1, 0.5) to that of the line-search L-BFGS algorithm. For this com-
parison, we used the publicly-available MATLAB wrapper [1] for the FORTRAN

L-BFGS-B code developed by Nocedal et al. [15]. The initialization for L-BFGS-B

is B0 = γkI where γk is given by (4). To make the stopping criterion equivalent to
that of L-BFGS-B, we modified the stopping criterion of our solver to [15]:

‖gk‖∞ ≤ ε.

The dense initialization was used for all aspects of LMTR.
The performance profiles for this experiment is given in Figure 4. On this test

set, the dense initialization outperforms L-BFGS-B in terms of both the number of
iterations and the total computational time.

1 2 3 4 5

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-B

1 1.5 2 2.5 3 3.5

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-B

Figure 4. Performance profiles of iter (left) and time (right) for
Experiment 3 comparing LMTR with the dense initialization with
γ⊥k (1, 1

2
) to L-BFGS-B.

Experiment 4. In this experiment, we compare LMTR with a dense initialization
to L-BFGS-TR [3], which computes an L-BFGS trial step whose length is bounded
by a trust-region radius. This method can be viewed as a hybrid L-BFGS line search
and trust-region algorithm because it uses a standard trust-region framework (as
LMTR) but computes a trial point by minimizing the quadratic model in the trust
region along the L-BFGS direction. In [3], it was determined that this algorithm
outperforms two other versions of L-BFGS that use a Wolfe line search. (For further
details, see [3].)

Figure 5 displays the performance profiles associated with this experiment on
the entire set of test problems. For this experiment, the dense initialization with
γ⊥k (1, 1

2
) was used in all aspects of the LMTR algorithm. In terms of total number of

iterations, LMTR with the dense initialization outperformed L-BFGS-TR; however,
L-BFGS-TR appears to have outperformed LMTR with the dense initialization in
computational time.

Figure 5 (left) indicates that the quality of the trial points produced by solving
the trust-region subproblem exactly using LMTR with the dense initialization is
generally better than in the case of the line search applied to the L-BFGS direction.
However, Figure 5 (right) shows that LMTR with the dense initialization requires
more computational effort than L-BFGS-TR. For the CUTEst set of test problems,
L-BFGS-TR does not need to perform a line search for the majority of iterations;

Dense initializations for limited-memory quasi-Newton methods 17

1 2 3 4 5 6

τ

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-TR

1 1.5 2 2.5 3

τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-TR

Figure 5. Performance profiles of iter (left) and time (right) for
Experiment 4 comparing LMTR with the dense initialization with
γ⊥k (1, 1

2
) to L-BFGS-TR.

that is, the full quasi-Newton trial step is accepted in a majority of the iterations.
Therefore, we also compared the two algorithms on a subset of the most difficult test
problems–namely, those for which an active line search is needed to be performed
by L-BFGS-TR. To this end, we select, as in [3], those of the CUTEst problems
in which the full L-BFGS (i.e., the step size of one) was rejected in at least 30%
of the iterations. The number of problems in this subset is 14. The performance
profiles associated with this reduced test set are in Figure 6. On this smaller test
set, LMTR outperforms L-BFGS-TR both in terms of total number of iterations and
computational time.

Finally, Figures 5 and 6 suggest that when function and gradient evaluations
are expensive (e.g., simulation-based applications), LMTR together with the dense
initialization is expected to be more efficient than L-BFGS-TR since both on both
test sets LMTR with the dense initialization requires fewer overall iterations. More-
over, Figure 6 suggests that on problems where the L-BFGS search direction often
does not provide sufficient decrease of the objective function, LMTR with the dense
initialization is expected to perform better.

1 2 3 4 5 6

τ

0.2

0.4

0.6

0.8

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-TR

1 1.5 2 2.5 3

τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

L-BFGS-TR

Figure 6. Performance profiles of iter (left) and time (right) for
Experiment 4 comparing LMTR with the dense initialization with
γ⊥k (1, 1

2
) to L-BFGS-TR on the subset of 14 problems for which L-

BFGS-TR implements a line search more than 30% of the iterations.

18 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

Experiment 5. In this experiment, we compare the results of LMTR using the
dense initialization to that of LMTR using the conventional diagonal initialization
B0 = γkI where γk is given by (3). The dense initialization selected was chosen to
be the top performer from Experiment 2 (i.e., γ⊥k (1, 1

2
)).

1 1.2 1.4 1.6
τ

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

B0(γk)

1 1.2 1.4 1.6

τ

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s(τ
)

B̂0(1,
1
2)

∗

B0(γk)

Figure 7. Performance profiles of iter (left) and time (right) for
Experiment 5 comparing LMTR with the dense initialization with
γ⊥k (1, 1

2
) to LMTR with the conventional initialization.

1 1.2 1.4 1.6
τ

0.5

0.6

0.7

0.8

0.9

1

ρ
s(
τ)

B̂0(1,
1
2)

∗

B0(γk)

1 1.2 1.4 1.6
τ

0.5

0.6

0.7

0.8

0.9

1

ρ
s(
τ)

B̂0(1,
1
2)

∗

B0(γk)

Figure 8. Performance profiles of iter (left) and time (right) for
Experiment 5 comparing LMTR with the dense initialization with
γ⊥k (1, 1

2
) to LMTR with the conventional initialization on the subset

of 14 problems in which the unconstrained minimizer is rejected at
30% of the iterations.

From Figure 7, the dense initialization with γ⊥k (1, 1
2
) outperforms the conventional

initialization for LMTR in terms of iteration count; however, it is unclear whether
the algorithm benefits from the dense initialization in terms of computational time.
The reason for this is that the dense initialization is being used for all aspects
of the LMTR algorithm; in particular, it is being used to compute the full quasi-
Newton step p∗u (see the discussion in Experiment 1), which is typically accepted
most iterations on the CUTEst test set. Therefore, as in Experiment 5, we compared
LMTR with the dense initialization and the conventional initialization on the subset
of 14 problems in which the unconstrained minimizer is rejected at least 30% of the
iterations. The performance profiles associated with this reduced set of problems

Dense initializations for limited-memory quasi-Newton methods 19

are found in Figure 8. The results from this experiment clearly indicate that on
these more difficult problems the dense initialization outperforms the conventional
initialization in both iteration count and computational time.

5. Conclusion

In this paper, we presented a dense initialization for quasi-Newton methods to
solve unconstrained optimization problems. This initialization makes use of two
curvature estimates for the underlying function in two complementary subspaces.
Importantly, this initialization neither introduces additional computational cost
nor increases storage requirements; moreover, it maintains theoretical convergence
properties of quasi-Newton methods. It should also be noted that this initialization
still makes it possible to efficiently compute products and perform solves with the
sequence of quasi-Newton matrices.

The dense initialization is especially well-suited for use in the shape-changing
infinity-norm L-BFGS trust-region method. Numerical results on the outperforms
both the standard L-BFGS line search method as well as the same shape-changing
trust-region method with the conventional initialization. Use of this initialization
is possible with any quasi-Newton method for which the update has a compact
representation. While this initialization has broad applications for quasi-Newton
line search and trust-region methods, its use makes most sense from a computa-
tional point of view when the quasi-Newton method already computes the compact
formulation and partial eigendecomposition; if this is not the case, using the dense
initialization will result in additional computational expense that must be weighed
against its benefits.

References

[1] S. Becker. LBFGSB (L-BFGS-B) mex wrapper. https://www.mathworks.com/matlab
central/fileexchange/35104-lbfgsb–l-bfgs-b–mex-wrapper, 2012–2015.

[2] J. Brust, O. Burdakov, J. B. Erway, R. F. Marcia, and Y.-X. Yuan. Shape-changing L-SR1
trust-region methods. Technical Report 2016-2, Wake Forest University, 2016.

[3] O. Burdakov, L. Gong, Y.-X. Yuan, and S. Zikrin. On efficiently combining limited memory
and trust-region techniques. Mathematical Programming Computation, 9:101–134, 2016.

[4] J. V. Burke, A. Wiegmann, and L. Xu. Limited memory BFGS updating in a trust-region
framework. Technical Report, University of Washington, 1996.

[5] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and
their use in limited-memory methods. Math. Program., 63:129–156, 1994.

[6] O. DeGuchy, J. B. Erway, and R. F. Marcia. Compact representation of the full Broyden class
of quasi-Newton updates. Numerical Linear Algebra with Applications, 25(5):e2186, 2018.

[7] E. Dolan and J. Moré. Benchmarking optimization software with performance profiles. Math-
ematical Programming, 91:201–213, 2002.

[8] J. B. Erway and R. F. Marcia. On efficiently computing the eigenvalues of limited-memory
quasi-Newton matrices. SIAM Journal on Matrix Analysis and Applications, 36(3):1338–
1359, 2015.

[9] J. B. Erway and R. F. Marcia. On solving large-scale limited-memory quasi-Newton equa-
tions. Linear Algebra and its Applications, 515:196–225, 2017.

[10] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr and SifDec: A constrained and uncon-
strained testing environment, revisited. ACM Trans. Math. Software, 29(4):373–394, 2003.

[11] X. Lu. A study of the limited memory SR1 method in practice. PhD thesis, University of
Colorado, 1992.

[12] L. Lukšan and J. Vlček. Recursive form of general limited memory variable metric methods.
Kybernetika, 49:224–235, 2013.

[13] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

20 J. BRUST, O. BURDAKOV, J. B. ERWAY AND R. F. MARCIA

[14] D. F. Shanno and K. H. Phua. Matrix conditioning and nonlinear optimization. Mathematical
Programming, 14(1):149–160, 1978.

[15] C. Zhu, R. Byrd, and J. Nocedal. Algorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization. ACM Transactions on Mathematical Software, 23:550–
560, 1997.

E-mail address: jbrust@ucmerced.edu

Applied Mathematics, University of California, Merced, Merced, CA 95343

E-mail address: oleg.burdakov@liu.se

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden

E-mail address: erwayjb@wfu.edu

Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109

E-mail address: rmarcia@ucmerced.edu

Applied Mathematics, University of California, Merced, Merced, CA 95343

	1. Introduction
	2. Background
	2.1. The compact representation
	2.2. Partial eigendecomposition of Bk
	2.3. A shape-changing L-BFGS trust-region method

	3. The Proposed Method
	3.1. Dense initial matrix B"0362B0
	3.2. The trust-region subproblem
	3.3. Determining the parameter k
	3.4. Implementation details
	3.5. The algorithm and its properties

	4. Numerical Experiments
	5. Conclusion
	References

