Skip to main content
Log in

A novel convex dual approach to three-dimensional assignment problem: theoretical analysis

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel convex dual approach to the three dimensional assignment problem, which is an NP-hard binary programming problem. It is shown that the proposed dual approach is equivalent to the Lagrangian relaxation method in terms of the best value attainable by the two approaches. However, the pure dual representation is not only more elegant, but also makes the theoretical analysis of the algorithm more tractable. In fact, we obtain a sufficient and necessary condition for the duality gap to be zero, or equivalently, for the Lagrangian relaxation approach to find the optimal solution to the assignment problem with a guarantee. Also, we establish a mild and easy-to-check condition, under which the dual problem is equivalent to the original one. In general cases, the optimal value of the dual problem can provide a satisfactory lower bound on the optimal value of the original assignment problem. Furthermore, the newly proposed approach can be extended to higher dimensional cases and general assignment problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mizuike, T., Ito, Y.: Optimization of frequency assignment. IEEE Trans. Commun. 37, 1031–1041 (1989)

    Article  Google Scholar 

  2. Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing, Storrs (1995)

    Google Scholar 

  3. Wang, H., Kirubarajan, T., Bar-Shalom, Y.: Large scale air traffic surveillance using IMM estimators with assignment. IEEE Trans. Aerosp. Electron. Syst. 35, 255–266 (1999)

    Article  Google Scholar 

  4. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerosp. Electron. Syst. Mag. 19, 5–18 (2004)

    Article  Google Scholar 

  5. Kirubarajan, T., Bar-Shalom, Y., Pattipati, K.R.: Multiassignment for tracking a large number of overlapping objects. IEEE Trans. Aerosp. Electron. Syst. 37, 2–21 (2001)

    Article  Google Scholar 

  6. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper. Res. 176, 774–793 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bertsekas, D.P., Castanon, D.A.: A forward/reverse auction algorithm for asymmetric assignment problems. Comput. Optim. Appl. 1, 277–279 (1992)

    Article  MathSciNet  Google Scholar 

  8. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  9. Balinski, M.L.: Signature methods for the assignment problem. Oper. Res. 33, 527–536 (1985)

    Article  MathSciNet  Google Scholar 

  10. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)

    Article  MathSciNet  Google Scholar 

  11. Dell’Amicoa, M., Tothb, P.: Algorithms and codes for dense assignment problems: the state of the art. Discrete Appl. Math. 100, 17–48 (2000)

    Article  MathSciNet  Google Scholar 

  12. Burkard, R.E.: Selected topics on assignment problems. Discrete Appl. Math. 123, 257–302 (2002)

    Article  MathSciNet  Google Scholar 

  13. Poore, A.B., Gadaleta, S.: Some assignment problems arising from multiple target tracking. Math. Comput. Model. 43, 1074–1091 (2006)

    Article  MathSciNet  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Bandelt, H.J., Crama, Y., Spieksma, F.C.: Approximation algorithms for multi-dimensional assignment problems with decomposable costs. Discrete Appl. Math. 49, 25–50 (1994)

    Article  MathSciNet  Google Scholar 

  16. Vogiatzis, C., Pasiliao, E.L., Pardalos, P.M.: Graph partitions for the multidimensional assignment problem. Comput. Optim. Appl. 58, 205–224 (2014)

    Article  MathSciNet  Google Scholar 

  17. Walteros, J.L., Vogiatzis, C., Pasiliao, E.L., Pardalos, P.M.: Integer programming models for the multidimensional assignment problem with star costs. Eur. J. Oper. Res. 235, 553–568 (2014)

    Article  MathSciNet  Google Scholar 

  18. Karapetyan, D., Gutin, G.: Local search heuristics for the multidimensional assignment problem. J. Heuristics 17, 201–249 (2011)

    Article  Google Scholar 

  19. Robertson, A.J.: A set of greedy randomized adaptive local search procedure (GRASP) implementations for the multidimensional assignment problem. Comput. Optim. Appl. 19, 145–164 (2001)

    Article  MathSciNet  Google Scholar 

  20. Plitsos, S., Magos, D., Mourtos, I.: An integrated solver for multi-index assignment. In: International Symposium on Artificial Intelligence and Mathematics (2016)

  21. Emami, P., Pardalos, P.M., Elefteriadou, L., Ranka, S.: Machine learning methods for solving assignment problems in multi-target tracking (2018). arXiv preprint arXiv:1802.06897

  22. Frieze, A.M., Yadegar, J.: An algorithm for solving 3-dimensional assignment problems with application to scheduling a teaching practice. J. Oper. Res. Soc. 32, 989–995 (1981)

    Article  Google Scholar 

  23. Pattipati, K.R., Deb, S., Bar-Shalom, Y., Washburn, R.B.: A new relaxation algorithm and passive sensor data association. IEEE Trans. Autom. Control 37, 198–212 (1992)

    Article  Google Scholar 

  24. Poore, A.B., Rijavec, N.: A Lagrangian relaxation algorithm for multidimensional assignment problems arsing from multitarget tracking. SIAM J. Optim. 3, 544–563 (1993)

    Article  MathSciNet  Google Scholar 

  25. Deb, S., Yeddanapudi, M., Pattipati, K.R., Bar-Shalom, Y.: A generalized S-D assignment algorithm for multisensor-multitarget state estimation. IEEE Trans. Aerosp. Electron. Syst. 33, 523–538 (1997)

    Article  Google Scholar 

  26. Poore, A.B., Robertson III, A.J.: A new Lagrangian relaxation based algorithm for a class of multidimensional assignment problems. Comput. Optim. Appl. 8, 129–150 (1997)

    Article  MathSciNet  Google Scholar 

  27. Li, D.: pth power Lagrangian method for integer programming. Ann. Oper. Res. 98, 151–170 (2000)

    Article  MathSciNet  Google Scholar 

  28. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic programming problems. J. Glob. Optim. 7, 1–3l (1995)

    Article  MathSciNet  Google Scholar 

  29. Jeyakumar, V., Lee, G.M., Srisatkunarajah, S.: New Kuhn–Tucker sufficiency for global optimality via convexification. Nonlinear Anal. 71, 373–381 (2009)

    Article  MathSciNet  Google Scholar 

  30. Grundel, D.A., Pardalos, P.M.: Test problem generator for the multidimensional assignment problem. Comput. Optim. Appl. 30, 133–146 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kirubarajan, T., Bar-Shalom, Y., Pattipati, K.R., Kadar, I.: Ground target tracking with variable structure IMM estimator. IEEE Trans. Aerosp. Electron. Syst. 36, 26–46 (2000)

    Article  Google Scholar 

  32. Shor, N.Z.: Minimization Methods for Non-differentiable Functions. Springer, Berlin (1985)

    Book  Google Scholar 

  33. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152 (1992)

    Article  MathSciNet  Google Scholar 

  34. Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)

    MATH  Google Scholar 

  35. Bertsekas, D.P.: Convex Analysis and Optimization, 460–503. Athena Scientific, Belmont (2003)

    Google Scholar 

  36. Khachiyan, L.: A polynomial algorithm in linear programming. Sov. Math. Dokl. 20, 191–194 (1979)

    MATH  Google Scholar 

  37. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingqun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tharmarasa, R., Brown, D. et al. A novel convex dual approach to three-dimensional assignment problem: theoretical analysis. Comput Optim Appl 74, 481–516 (2019). https://doi.org/10.1007/s10589-019-00113-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00113-w

Keywords

Mathematics Subject Classification

Navigation