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Abstract

We propose new restarting strategies for the accelerated coordinate descent method. Our main

contribution is to show that for a well chosen sequence of restarting times, the restarted method has a

nearly geometric rate of convergence. A major feature of the method is that it can take profit of the local

quadratic error bound of the objective function without knowing the actual value of the error bound.

We also show that under the more restrictive assumption that the objective function is strongly convex,

any fixed restart period leads to a geometric rate of convergence. Finally, we illustrate the properties of

the algorithm on a regularized logistic regression problem and on a Lasso problem.

1 Introduction

1.1 Motivation

We consider in this paper the minimization of composite convex functions of the form

F (x) = f(x) + ψ(x), x ∈ R
n

where f is differentiable with Lipschitz gradient and ψ may be nonsmooth but is separable, and has an easily
computable proximal operator. Coordinate descent methods are often considered in this context thanks to
the separability of the proximal operator of ψ. These are optimization algorithms that update only one
coordinate of the vector of variables at each iteration, hence using partial derivatives rather than the whole
gradient.

Similarly to what he had done for the gradient method, Nesterov introduced, for smooth functions, the
randomized accelerated coordinate descent method with an improved guarantee on the iteration complex-
ity [Nes12]. Indeed, for a mild additional computational cost, accelerated methods transform the proximal
coordinate descent method, for which the optimality gap F (xk)−F ∗ decreases as O(1/k), into an algorithm
with “optimal” O(1/k2) complexity [Nes83]. [LS13] introduced an efficient implementation of the method
and [FR15] developed the accelerated parallel and proximal coordinate descent method (APPROX) for the
minimization of composite functions.

When solving a strongly convex problem, the classical (non-accelerated) gradient and coordinate descent
methods automatically have a linear rate of convergence, i.e. F (xk) − F ∗ ∈ O((1 − µ)k) for a problem

∗The first author’s work was supported by the EPSRC Grant EP/K02325X/1 Accelerated Coordinate Descent Methods for

Big Data Optimization, the Centre for Numerical Algorithms and Intelligent Software (funded by EPSRC grant EP/G036136/1
and the Scottish Funding Council), the Orange/Telecom ParisTech think tank Phi-TAB, the ANR grant ANR-11-LABX-0056-
LMH, LabEx LMH as part of the Investissement d’avenir project. The second author’s work was supported by Hong Kong
Research Grant Council 27302016. This research was partially conducted using the HKU Information Technology Services
research computing facilities that are supported in part by the Hong Kong UGC Special Equipment Grant (SEG HKU09).
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dependent 0 < µ < 1, whereas one needs to know explicitly the strong convexity parameter in order to
set accelerated gradient and accelerated coordinate descent methods to have a linear rate of convergence,
see for instance [LS13, LMH15, LLX14, Nes12, Nes13]. Setting the algorithm with an incorrect parameter
may result in a slower algorithm, sometimes even slower than if we had not tried to set an acceleration
scheme [OC12]. This is a major drawback of the method because in general, the strong convexity parameter
is difficult to estimate.

In the context of accelerated gradient method with unknown strong convexity parameter, Nesterov [Nes13]
proposed a restarting scheme which adaptively approximate the strong convexity parameter. The same idea
was exploited in [LX15] for sparse optimization. [Nes13] also showed that, instead of deriving a new method
designed to work better for strongly convex functions, one can restart the accelerated gradient method and
get a linear convergence rate. It was later shown in [LY17, FQ17] that a local quadratic error bound is
sufficient to get a global linear rate of convergence.

The adaptive restart of randomized accelerated coordinate descent methods is more complex than in the
deterministic case. As the complexity bound holds in expectation only, one cannot rely on this bound to
estimate whether the rate of convergence is in line with our estimate of the local error bound, as was done
in the deterministic case. Instead, [FQ16] proposed a fixed restarting scheme. They needed to restart at a
point which is a convex combination of all previous iterates and required stronger assumptions than in the
present work.

1.2 Contributions

In this paper, we show how restarting the accelerated coordinate descent method can help us take profit of
the local quadratic error bound of the objective, when this property holds.

We consider three setups:

1. If the local quadratic error bound coefficient µ of the objective function is known, then we show
that setting a restarting period as O(1/

√
µ) yields an algorithm with optimal rate of convergence.

More precisely restarted APPROX admits the same theoretical complexity bound as the accelerated
coordinate descent methods for strongly convex functions developed in [LLX14], is applicable with
milder assumptions and exhibits better performance in numerical experiments.

2. If the objective function is strongly convex, we show that we can restart the accelerated coordinate
descent method at any frequency and get a linearly convergent algorithm. The rate depends on an
estimate of the local quadratic error bound and we show that for a wide range of this parameter, one
obtains a faster rate than without acceleration. In particular, we do not require the estimate of the
error bound coefficient to be smaller than the actual value. The difference with respect to [FQ16] is
that in this section, we show that there is no need to restart at a complex combination of previous
iterates.

3. If the local error bound coefficient is not known, we introduce a variable restarting periods and show
that up to a log(log 1/ǫ) term, the algorithm is as efficient as if we had known the local error bound
coefficient.

In Section 2 we recall the main convergence results for the accelerated proximal coordinate descent
method (APPROX) and present restarted APPROX. In Section 3, we study restart for APPROX with a
fixed restart period and in Section 4 we give the algorithm with variable restarting periods. Finally, we
present numerical experiments on the lasso and logistic regression problem in Section 6.

2 Problems, assumptions and algorithms

In this section, we present in detail the problem we are studying. We also recall basic facts about the
accelerated coordinate descent method that will be useful in the analysis.
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2.1 Problem and assumptions

For simplicity we present the algorithm in coordinatewise form. The extension to blockwise setting follows
naturally (see for instance [FR15]). We consider the following optimization problem:

minimize F (x) := f(x) + ψ(x)
subject to x = (x1, . . . , xn) ∈ R

n,
(1)

where f : R
n → R is a differentiable convex function and ψ : R

n → R ∪ {+∞} is a closed convex and
separable function:

ψ(x) =

n
∑

i=1

ψi(xi).

Note that this implies that each function ψi : R → R is closed and convex. We denote by F ∗ the optimal
value of (1) and assume that the optimal solution set X ∗ is nonempty. For any positive vector v ∈ R

n
+, we

denote by ‖ · ‖v the weighted Euclidean norm:

‖x‖2v
def
=

n
∑

i=1

vi(x
i)2,

and distv(x,X ∗) the distance of x to the set X ∗ with respect to the norm ‖ · ‖v.
Throughout the paper, we will assume that the objective function satisfies the following local error bound

condition.

Assumption 1. For any x0 ∈ dom(F ), there is µ > 0 such that

F (x) ≥ F ∗ +
µ

2
distv(x,X ∗)2, ∀x ∈ [F ≤ F (x0)], (2)

where [F ≤ F (x0)] denotes the set of all x such that F (x) ≤ F (x0).

We denote by µ(v, x0) the largest µ > 0 satisfying (2) and by µ(x0) the value of µ(~e, x0) where ~e is the
unit vector. Note that

min
i
µ(x0)/vi ≤ µ(v, x0) ≤ max

i
µ(x0)/vi. (3)

The fact that we assume that (2) holds for any x0 ∈ dom(F ) is not restrictive. The proposition below
shows that, if it holds for a given x0, it will hold on any bounded set.

Proposition 1. If F is convex and satisfies the local error bound Assumption 1 then for all M ≥ 1, if
F (x′)− F ∗ = M(F (x0)− F ∗), then µ(v, x′) ≥ µ(v, x0)/M .

Proof. Suppose there exists µ, v and r = F (x0)− F ∗ such that ∀x ∈ [F − F ∗ ≤ r],

F (x) ≥ F ∗ +
µ

2
distv(x,X ∗)2 .

Let y ∈ dom(F ) such that r ≤ F (y) − F ∗ ≤ rM , p be the orthogonal projection of y onto X ∗ and
x = p+ r

F (y)−F∗
(y− p). As F is convex, F (x) ≤ r

F (y)−F∗
F (y) +

(

1− r
F (y)−F∗

)

F (p). Note in particular that

F (x)− F ∗ ≤ r. Rearranging, we get

F (y) ≥ F (y)− F ∗

r
F (x)−

(F (y)− F ∗

r
− 1
)

F ∗

≥ F ∗ +
F (y)− F ∗

r

µ

2
distv(x,X ∗)2

= F ∗ +
r

F (y)− F ∗
µ

2
distv(y,X ∗)2 ≥ F ∗ +

1

M

µ

2
distv(y,X ∗)2

3



Condition (2) is sometimes referred to as quadratic (functional) growth condition, as it controls the
growth of the objective function value by the squared distance between any point in the sublevel set and
the optimal set. This geometric property is equivalent to the  Lojasiewicz gradient inequality with exponent
1/2 [BNPS17], as well as to the so-called first-order error bound condition which bounds the distance by
the norm of the proximal residual [DL18]. A wide range of stuctured optimization models that arise in
application [NNG18] satisfy Assumption 1. The constant µ(x0) embodies in some sense the geometrical
complexity of the problem. We recall a prototype for which lower bounds for µ(x0) can be deduced. It is a
composition of strongly convex function with linear term under polyhedral constraint:

min
x
F1(x) ≡ g(Ax) + c⊤x+ 1Cx≤d (4)

where A, C, c and d are matrices with appropriate dimensions and g is a smooth and strongly convex
function. In this case the optimal set is polyhedral and can be written as:

X ∗ = {x : Ax = t∗, c⊤x = s∗, Cx ≤ d}, (5)

for uniquely determined t∗ and s∗. It was shown in [NNG18] that

µF1
(x0) ≥ σg

θ2(1 + (F1(x0)− F ∗
1 )σg + 2‖∇g(t∗)‖2)

(6)

where σg is the strong convexity parameter of g and θ is the Hoffman constant for the polyhedral optimal
set X ∗. The dependence on F ∗

1 and X ∗ in the bound (6) can be further replaced by known constants if the
constraint set {Cx ≤ d} is compact, see for example [BS17]. Hence the estimation of µF1

(x0) mainly relies
on the computation of the Hoffman constant θ for the linear inequality system (5). Assuming that A has
full row rank and {x : Ax = 0, c⊤x = 0, Cx < 0} 6= ∅, then, we have [KT95]:

θ = min{‖A⊤u+ c⊤w + C⊤v‖ : ‖u‖2 + ‖v‖2 + ‖w‖2 = 1, v ≥ 0}. (7)

Many problems fall into the category of (4), including the L1 regularized least square problem (26)
and the logistic regression problem (24) that we shall consider later for numerical illustration. Indeed the
L1 regularization term can be written equivalently as a system of linear inequalities {Cx ≤ d}, as shown
in [BNPS17]. However, the size of the matrix C shall be of the same order as the number of variables n1.
Therefore, the computation of θ and estimation of µ(x0) is far from trivial when the problem dimension is
high and can sometimes be as hard as solving the original optimization problem. Note that under Assump-
tion 1, a broad class of first order methods, including the proximal gradient method and its coordinatewise
extensions [LT93, WL14], converge linearly without requiring a priori knowledge on the error bound constant
µ(x0).

2.2 APPROX and its properties

In the following, ∇f(yk) denotes the gradient of f at point yk and ∇if(yk) denotes the partial derivative
of f at point yk with respect to the ith coordinate. Ŝ is a random subset of [n] := {1, 2, . . . , n} with the
property that P(i ∈ Ŝ) = P(j ∈ Ŝ) for all i, j ∈ [n] and τ = E[|Ŝ|].

We recall the definition of APPROX(Accelerated Parallel PROXimal coordinate descent method) in
Algorithm 1. The algorithm reduces to the accelerated proximal gradient (APG) method [Tse08] when
Ŝ = [n] with probability one. It employs a positive parameter vector v ∈ R

n. To guarantee the convergence
of the algorithm, the positive vector v should satisfy the so-called expected separable overapproximation
(ESO) assumption, developed in [FR13, RT16] for the study of parallel coordinate descent methods.

Assumption 2 (ESO). We write (f, Ŝ) ∼ ESO(v) if

E
[

f(x+ h[Ŝ])
]

≤ f(x) +
τ

n

(

〈∇f(x), h〉+
1

2
‖h‖2v

)

, x, h ∈ R
n. (8)

1In [BNPS17], the L
1 norm is rewritten by a matrix of 2n rows.

4



where for h = (h1, . . . , hn) ∈ R
n and S ⊂ [n], h[S] is defined as:

h[S]
def
=
∑

i∈S

hiei,

with ei being the ith standard basis vectors in R
n.

We require that the positive vector v used in APPROX satisfy (8) with respect to the sampling Ŝ used.
When in each step we update only one coordinate, we have τ = 1 and (8) reduces to:

1

n

n
∑

i=1

f(x+ hiei) ≤ f(x) +
1

n

(

〈∇f(x), h〉+
1

2
‖h‖2v

)

, x, h ∈ R
n. (9)

It is easy to see that in this case the vector v corresponds to the coordinate-wise Lipschitz constants of ∇f ,
see e.g. [Nes12]. Explicit formulas for computing admissible v with respect to more general sampling Ŝ can
be found in [RT16, FR13, QR16].

Algorithm 1 APPROX(f, ψ, x0,K) [FR15]

Set θ0 = τ
n and z0 = x0.

for k ∈ {0, . . . ,K − 1} do
yk = (1 − θk)xk + θkzk
Randomly generate Sk ∼ Ŝ
for i ∈ Sk do

zik+1 = arg minz∈R

{

〈∇if(yk), z − yik〉+ θknvi
2τ |z − zik|2 + ψi(z)

}

end for

xk+1 = yk + n
τ θk(zk+1 − zk)

θk+1 =

√
θ4
k
+4θ2

k
−θ2

k

2
end for

return xK

The rest of this section recalls some basic results about APPROX that we shall need.

Lemma 1. The sequence (θk) defined by θ0 ≤ 1 and θk+1 =

√
θ4
k
+4θ2

k
−θ2

k

2 satisfies

(2 − θ0)

k + (2− θ0)/θ0
≤ θk ≤

2

k + 2/θ0
(10)

1− θk+1

θ2k+1

=
1

θ2k
, ∀k = 0, 1, . . . (11)

Part of the results are proved in [FR15]. We give the complete proof in the appendix.

Proposition 2 ([FR15]). The iterates of APPROX (Algorithm 1) satisfy for all k ≥ 1 and any x∗ ∈ X ∗,

1

θ2k−1

E[F (xk)− F ∗] +
1

2θ20
E[‖zk − x∗‖2v] ≤ 1− θ0

θ20
(F (x0)− F ∗) +

1

2θ20
‖x0 − x∗‖2v

2.3 Restarted APPROX

Under Assumption 1, restarted APG [Tse08] or FISTA [BT09] enjoys linear convergence [FQ17] and can
have improved complexity bound than proximal gradient method with appropriate restart periods [OC12].
Our goal is to design restarted APPROX with similar properties based on the results in the previous section.
Having defined a set of integers {K0,K1, . . . }, at which frequencies one wishes to restart the method, we
can write the restarted APPROX as in Algorithm 2.

5



Algorithm 2 APPROX with restart

Choose x0 ∈ domψ and set x̄0 = x0.
Choose restart periods {K0, . . . ,Kr, . . . } ⊆ N.
for r ≥ 0 do

x̄r+1 = APPROX(f, ψ, x̄r,Kr)
end for

In order to take profit of the local error bound, the proofs for restarted FISTA and APG used the non-
blowout property guaranteeing that the function value and distance to the optimal points never go above
their initial value [FQ17]. For APPROX the complexity result holds in expectation only. This has two
consequences:

• Even if the initial point is in a set where the local error bound holds, we are not guaranteed that
the next iterates will remain to the set. To overcome this issue, at the time of restart, we will check
whether the function value has increased and if this is unfortunately the case, we will instead restart
at the initial point.

• Designing an adaptive restart scheme is much more complex than in the deterministic case studied
in [FQ17, Nes13]. In the deterministic case, one can compare the actual progress of the method with a
theoretical bound and, if the actual progress violates the theoretical bound, one has a certificate that
the estimate of the local error bound was not correct. In the random case, this does not hold any more:
one can only know that either the local error bound was not correct or we have fallen into a small
probability event. Instead of looking for certificates, we introduce in Section 4 a sequence of variable
restart periods that allows us to try several restart periods at an expense that we control.

To partially overcome the above mentioned difficulties, it will be convenient to force a decrease in function
value when a restart takes place. This leads to Algorithm 3. Note that we only check function values at the
time of each restart: thus this means negligible overhead.

Algorithm 3 APPROX with restart and guaranteed function value decrease

Choose x0 ∈ domψ and set x̃0 = x0.
Choose restart periods {K0, . . . ,Kr, . . . } ⊆ N.
for r ≥ 0 do

x̄r+1 = APPROX(f, ψ, x̃r,Kr)
x̃r+1 ← x̄r+11F (x̄r+1)≤F (x̃r) + x̃r1F (x̄r+1)>F (x̃r)

end for

3 Linear convergence with constant restart periods

In this section we consider constant restart periods, i.e. Ki = K for all i ∈ N. We present two types of
convergence result for restated APPROX. The first one asserts that linear convergence (in expectation) can
be obtained for restarted APPROX with long enough restart period K, similar to the classical results about
restarted APG or FISTA [Nes13, OC12]. The second one claims that linear convergence (in expectation) is
guaranteed for arbitrary restart period, if strong convexity condition holds. The basic tool upon which we
build our analysis is a contraction property.

3.1 Contraction for long enough periods

The first result is an extension of the “optimal fixed restart” of [Nes13, OC12] to APPROX.

6



Proposition 3 (Conditional restarting at xk). Let (xk, zk) be the iterates of APPROX applied to (1).
Denote:

x̃ = xk1F (xk)≤F (x0) + x01F (xk)>F (x0).

We have

E[F (x̃)− F ∗] ≤ θ2k−1

(

1− θ0
θ20

+
1

θ20µ(v, x0)

)

(F (x0)− F ∗). (12)

Moreover, given α < 1, if

k ≥ 2

θ0

(
√

1 + µ(v, x0)

αµ(v, x0)
− 1

)

+ 1, (13)

then E[F (x̃)− F ∗] ≤ α(F (x0)− F ∗).

Proof. By Proposition 2, the following holds for the iterates of APPROX:

E[F (xk)− F ∗]≤θ2k−1

(

1− θ0
θ20

(F (x0)− F ∗) +
1

2θ20
distv(x0,X ∗)2

)

(2)

≤ θ2k−1

(

1− θ0
θ20

+
1

µ(v, x0)θ20

)

(F (x0)− F ∗).

As with probability one,
F (x̃)− F ∗ ≤ F (xk)− F ∗,

we obtain (12). Condition (13) is equivalent to:

4

(k − 1 + 2/θ0)2

(

1

θ20
+

1

µ(v, x0)θ20

)

≤ α,

and we have the contraction using (10).

Remark 1. Notice that the condition (13) requires to know a lower bound on the error bound constant
µ(v, x0).

Corollary 1. Denote K(α) =
⌈

2
θ0

(√

1+µ(v,x0)
αµ(v,x0)

− 1
)

+ 1
⌉

. If the restart periods {K0, · · · ,Kr, . . . } are all

equal to K(α), then the iterates of Algorithm 3 satisfy

E[F (x̃r)− F ∗] ≤ αr(F (x0)− F ∗).

Proof. By the definition of x̃r, we know that for all r, F (x̃r) ≤ F (x0). Hence, for all r, µ(v, x̃r) ≥ µ(v, x0).
We can thus apply Proposition 3 recursively and obtain the linear convergence.

The iterate x̃r is obtained after running r times APPROX (Algorithm 1) of K(α) iterations. Said
otherwise we have a linear rate equal to

α1/K(α) ≈ α
√
α

θ0
2

√
µ(v,x0)/(1+µ(v,x0)), (14)

which suggests choosing α = exp(−2), or equivalently a fixed restart period

K∗ =

⌈

2e

θ0

(
√

1 + µ(v, x0)

µ(v, x0)
− 1

)

+ 1

⌉

. (15)

Then, to obtain E[F (x̃r)− F ∗] ≤ ǫ, the total number of iterations is bounded by

N∗ := ln

(

F (x0)− F ∗

ǫ

)

K∗. (16)

7



Remark 2. We compare the two extreme cases of the complexity bound (16) when τ = 1 and τ = n. In
view of (3) and (9), we have,

O

(√

L

µ(x0)
ln(1/ǫ)

)

for τ = n V.S. O

(

n

√

maxi Li

µ(x0)
ln(1/ǫ)

)

for τ = 1,

where L is the Lipschitz constant of ∇f and Li is the Lipschitz constant of ∇if with respect to the ith
coordinate. Note that τ is the number of coordinates to update at each iteration. Hence for serial computation,
choosing τ = 1 can be more advantegeous than restarted APG or FISTA since we always have maxi Li ≤ L.
Remark 3. It is unknown whether Algorithm 2 admits the same convergence bound as Algorithm 3. Indeed,
without forcing decrease of the objective value, we can not guarantee E[F (x̄r+1) − F ∗] ≤ αE[F (x̄r) − F ∗]
as x̄r is not necessarily in the sublevel set [F ≤ F (x0)]. Clearly, when either a global error bound condition
holds or Ŝ = [n] with probability one, there is no need to ensure the decrease of F . The latter two cases were
respectively considered in our two previous papers [FQ16] and [FQ17].

3.2 Contraction for any period under strong convexity condition

In this subsection, we assume that the function F is µ-strongly convex such that X ∗ contains a unique
element x∗ and

F (x) ≥ F ∗ +
µ

2
‖x− x∗‖2v, ∀x ∈ [F < +∞]. (17)

In [FQ16], we showed that under the condition (17), linear convergence is guaranteed for any restart period
by restarting at a particular convex combination of all past iterates. Here we show that the same conclusion
holds by simply restarting at the last iterate.

Theorem 1. Assume that F is µ-strongly convex. Denote

∆(x) =
1− θ0
θ20

(F (x)− F ∗) +
1

2θ20
distv(x,X ∗)2.

Then the iterates of APPROX satisfy

E[∆(xk)] ≤ 1 + (1− θ0)µ

1 +
θ2
0

2θ2
k−1

µ
∆(x0), ∀k ≥ 1. (18)

Proof. The proof is organised in 4 steps. Firstly, we derive a one-iteration inequality, secondly, we identify
conditions under which this inequality is a supermartingale inequality, thirdly, we give a solution to the set
of inequalities and finally, we bound the rate we obtain by a simpler formula.

Because of its length, we postpone the proof to the appendix.

Remark 4. The deterministic special case of (18) when Ŝ = [n] with probability one, was proved in [FQ17],
under the local error bound condition. The more general case with random Ŝ turns out to be more complexe
as the one iteration inequality involves both ‖xk − x∗‖v and ‖zk − x∗‖v and uniqueness of X ∗ is required.

When strong convexity condition holds, we do not force decrease of the function value after a restart.
Moreover, unlike Corollary 1, we could show a linear rate of convergence for any restart period K ≥ n/τ .

Corollary 2. Under condition (17), if the restart periods {K0, · · · ,Kr, . . . } are all equal to K ≥ n/τ , then
the iterates of Algorithm 2 satisfy

E(∆(x̄r)) ≤





1 + (1− θ0)µ

1 +
θ2
0

2θ2
K−1

µ





r

∆(x0).
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Figure 1: Comparison of the worst case rate of convergence ρ of restarted APPROX and coordinate descent
for a µ-strongly convex objective with µ = 10−3, n = 10, τ = 1 and various choices of the restart period K.
The larger 1 − ρ is, the faster we expect the algorithm to be. We can see that if K ∈ [5n, 9.103n], then
restarted APPROX has a better convergence rate than coordinate descent.

Proof. This is a direct application of Theorem 1. The bound (18) is a strict contraction when 2θ2k−1 <
θ20/(1− θ0), which holds when k ≥ 1/θ0 = n/τ by (10).

We here obtain a linear rate:





1 + (1− θ0)µ

1 +
θ2
0

2θ2
K−1

µ





1
K

, (19)

which is slightly worse than that suggested by (14) for large K but implies the same order of complexity
bound as (16) if K = Θ(K∗).

In Figure 1, we show in a numerical application that the convergence rate (19) of restarted APPROX is
smaller than the convergence rate of coordinate descent for a wide range of restart periods K.

4 Variable restart

In this section, we are going to show that by choosing properly the sequence of restart times, we can ensure
a nearly linear rate, even if we know in advance nothing about the local quadratic error bound. For this, we
consider a sequence of restart periods {K0,K1, · · · } satisfying the following assumption:

Assumption 3.

1. K0 ∈ N\{0};

2. K2j−1 = 2jK0 for all j ∈ N;

3.
∣

∣{0 ≤ r < 2J − 1 | Kr = 2jK0}
∣

∣ = 2J−1−j for all j ∈ {0, 1, . . . , J − 1} and J ∈ N.

9



For instance, we may take:

K0 = K0 K1 = 21K0 K2 = K0 K3 = 22K0

K4 = K0 K5 = 21K0 K6 = K0 K7 = 23K0

K8 = K0 K9 = 21K0 K10 = K0 K11 = 22K0

K12 = K0 K13 = 21K0 K14 = K0 K15 = 24K0

Theorem 2. Consider Algorithm 3 with restart periods satisfying Assumption 3. Then

E[F (x̃2J−1)− F ∗] ≤ ǫ, (20)

where J = ⌈max (log2 (K∗/K0) , 0)⌉ + ⌈log2 (ln (δ0/ǫ) /2)⌉, δ0 = F (x0) − F ∗ and K∗ is defined as in (15).
To obtain (20), the total number of APPROX iterations K0 + · · ·+K2J−1 is bounded by

(

⌈max (log2 (K∗/K0) , 0)⌉+ ⌈log2 (ln (δ0/ǫ))⌉+ 1
)

ln (δ0/ǫ) max(K∗,K0). (21)

Proof. Define
i = ⌈max (log2 (K∗/K0) , 0)⌉.

Denote δr = E[F (x̃r)− F ∗] and

ci(J) :=
∣

∣

{

l < 2J − 1|Kl ≥ 2iK0

}∣

∣+ 1 = 1 +

J−1
∑

k=i

2J−1−k = 2J−i.

ci(J) is the number of restarts such that Kl ≥ K∗, i.e. the number of restarts for which Proposition 3 applies
(the “+1” comes from the restart number 2J − 1). Then it follows from Proposition 3 that

δ2J−1 ≤ e−2ci(J)δ0 = e−(2J+1−i)δ0.

Since
J = ⌈max (log2 (K∗/K0) , 0)⌉+ ⌈log2 (ln (δ0/ǫ))⌉ − 1 ≥ i− 1 + log2 (ln (δ0/ǫ)),

we deduce that δ2J−1 ≤ ǫ. This proves the first assertion.
By Assumption 3,

K0 + · · ·+K2J−1 =

J−1
∑

j=0

∣

∣{0 ≤ r < 2J − 1 | Kr = 2jK0}
∣

∣ 2jK0 +K2J−1

=

J−1
∑

i=0

2J−1−j2jK0 + 2JK0 = (J + 2)2J−1K0.

Since
2J−1 ≤ 2max(log2(K

∗/K0),0)+log2(ln(δ0/ǫ)) = max(K∗/K0, 1) ln(δ0/ǫ),

we obtain the bound defined as in (21).

Remark 5. If we have an estimate of log(δ0/ǫ), then we may modify the sequence of restarts in order to stop
considering restarts with K0 iterations after log(δ0/ǫ) restarts. Indeed, if K0 were greater than K∗ then the
algorithm should already have terminated. Similarly, one can stop considering restarts with 2K0 iterations
after 2 log(δ0/ǫ) restarts, 2jK0 after (j + 1) log2(δ0/ǫ) restarts.
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A priori knowledge Theorem Assumption Complexity bound
µ(v, x0) Corollary 1 Assumption 1 N∗

µ(v, x0) ≥ µ Proposition 3 Assumption 1 O
(

N∗
√

µ(v,x0)
µ

)

µ0 > 0 Theorem 1 (17) O
(

N∗
(
√

µ
µ0

+
√

µ0

µ

))

µ(v, x0) ≤ µ̄ Theorem 2 Assumption 1+ 3 O
(

N∗ log2

(

ln
(

F (x0)−F∗

ǫ

)√

µ̄
µ(v,x0)

))

Table 1: Complexity bound under different assumptions and a priori knowledge of the error bound constant.

Here N∗ = O

(

ln(1/ǫ)

θ0
√

µ(v,x0)

)

is defined in (16).

We summarize our theoretical findings in Table 1 in four different regimes: when we know a lower bound
µ, an upper bound µ̄, exactly the value of or nothing about µ(v, x0). We recall from (6) and (7) that a
non-trivial lower bound µ can be much harder to be obtained than an upper bound µ̄. In addition, the
complexity bound based on an upper bound µ̄ differs from the optimal scheme by a logarithm term. For
comparison purpose, we recall the log-scale grid search schedule proposed in [RD17] for restart of APG or
FISTA. Fixing an integer N > 0, the restart periods proposed in [RD17] can be described as follows:

K0 = · · · = K⌈N/2⌉ = 2

K⌈N/2⌉+1 = · · · = K⌈N/2⌉+⌈N/22⌉ = 22

...

K⌈N/2⌉+...⌈N/2i−1⌉+1 = · · · = K⌈N/2⌉+···+⌈N/2i⌉ = 2i

To ensure a nearly linear time convergence with logarithm difference, the inner number of iterations N is
required to be larger than 2e

√

L/µ(x0). Therefore a lower bound µ ≤ µ(x0) is needed.

5 Extension to other randomized accelerated methods

Proposition 3 and Theorem 2 only rely on the fact that APPROX guarantees

E[F (xk)− F ∗] ≤ 1

(k + a)2

(

CF (F (x0)− F ∗) +
Cd

2
dist(x0,X ∗)2

)

(22)

A couple of other algorithms have such convergence guarantees. Instead of assuming that ψ is separable,
they assume that f is a sum of functions f(x) = 1

2nf

∑nf

j=1 fj(x):

• Katyushans [AZ17] (an accelerated stochastic variance reduced gradient method) satisfies for its output
vector x̃S

E[F (x̃S)− F ∗] ≤ 8

(S + 3)2

(

2(F (x0)− F ∗) +
3L

2m
dist(x0,X ∗)2

)

where m = 2nf is the number of SVRG steps between each momentum step, nf is the number of
summands in the definition of f and the other symbols follow the notation of this paper.

• DASVRDAns [MS17] (another accelerated stochastic variance reduced gradient method) has a similar

11



guarantee

E[F (x̃S)− F ∗] ≤ 4

(S + 2)2

(

(F (x0)− F ∗)

+
2(1 + γ(m+ 1))L

(1− γ−1)m(m+ 1)
dist(x0,X ∗)2

)

where γ ≥ 3 is a parameter of the method.

From (22) we obtain directly:

E[F (xk)− F ∗] ≤ 1

(k + a)2

(

CF +
Cd

µ(x0)

)(

F (x0)− F ∗
)

.

which is a strict contraction if

k ≥ K∗ :=

⌈

1

e

√

CF +
Cd

µ(x0)
− a
⌉

. (23)

Then the same conlusion as Corollary 1 and Theorem 2 can be obtained.

Theorem 3. Let A be an algorithm satisfying (22). Consider restarted A in the fashion of Algorithm 3.
Then, to obtain

E[F (x̃r)− F ∗] ≤ ǫ,
the number of inner iterations is bounded by

ln

(

F (x0)− F ∗

ǫ

)

K∗,

if the restart periods are all equal to K∗ defined in (23), and by

(

⌈max (log2 (K∗/K0) , 0)⌉+ ⌈log2 (ln (δ0/ǫ))⌉+ 1
)

ln (δ0/ǫ) max(K∗,K0)

if the restart periods satisfy Assumption 3.

Proof. The proof arguments are the same as in the coordinate descent case.

Remark 6. The proof of Theorem 1 requires to go deeper into the specificities of accelerated coordinate
descent. Hence, extending restart at any fixed frequency to any randomized accelerated method is not trivial,
and beyond the scope of this paper.

6 Numerical experiments

6.1 Logistic regression

We solve the following logistic regression problem:

min
x∈RN

λ1
‖A⊤b‖∞

m
∑

j=1

log(1 + exp(bja
⊤
j x)) + ‖x‖1 (24)

We consider

f(x) =
λ1

‖A⊤b‖∞

m
∑

j=1

log(1 + exp(bja
⊤
j x)),

and
ψ(x) = ‖x‖1 .

12



In particular, for serial sampling (τ = 1), (8) is satisfied for

vi =
λ1

4‖A⊤b‖∞

m
∑

i=1

(bjAij)
2, i = 1, . . . , n. (25)

Even if the logistic loss is not strongly convex, we expect that the local curvature around the optimum
is nonzero and so, restarting APPROX may be useful.

We run our numerical comparison on the dataset RCV1 [CL11] with regularization parameter λ1 = 104.
We compare the following algorithms.

• Randomized coordinate descent [RT14].

• APPROX [FR15].

• APCG [LLX14]: we run APCG using three different settings for the parameter µ in the algorithm:
10−3, 10−5 and 10−7. We stop the program when the duality gap is lower than 10−8 or the running
time is larger than 6,000s. The results are reported in Figure 2.

• Prox-Newton: we modified the implementation of [JG15] in order to deactivate feature selection, which
is not the topic of the present paper, and we increased the maximum number of inner iterations to
be able to obtain high accuracy solutions. Each prox-Newton step is solved approximately using
coordinate descent.

• APPROX-restart (Algorithm 3) with fixed frequency set as if we knew the error bound constant. As
for APCG, we tried values equal to 10−3, 10−5 and 10−7.

• APPROX-restart (Algorithm 3) with the restart sequence given in Section 4 and K0 = ⌈20e/θ0⌉.
Most problems encountered in practice have a conditioning larger than 100, hence this choice leads to
K0 ≤ K∗ in most cases.

Note that the convergence of APCG is only proved for µ smaller than the strong convexity coefficient
in [LLX14]. In our experiments, we observed numerical issues when running APCG for several cases when
taking larger µ (we were not able to compute the ith partial derivative at yk = ρkwk + zk because ρk had
reached the double precision float limit). Such a case can be identified in the plot when the line corresponding
to APCG stops abruptly before the time limit (6000s) with a precision worse than 10−8.

Fixed restart can give the best performance among all tested algorithms but the setting of the restart
period has a large influence on the performance. Note that the objective function is not strongly convex, so
the linear convergence is guaranteed only if the restart period is large enough.

On the other hand, variable restart APPROX is nearly as fast as the best among the fixed restart,
although K0 was set with a clearly under optimal value. Moreover, it has a clear theoretical guarantee for
any initial restarting period K0.

6.2 Lasso path

We then present experiments on the L1-regularised least squares problem (Lasso)

min
x∈RN

1

2
‖Ax− b‖22 + λ ‖x‖1 . (26)

We consider solving a set of such problems for λ ∈ {λ0, λ1, . . . , λT }, where T = 10, λ0 =
∥

∥A⊤b
∥

∥

∞, λt = λ0α
t

and αT = 10−3. This procedure is called pathwise optimization [FHH+07] and is often considered for
statistical problems with hyper-parameters.

We selected 6 data sets from the LibSVM dataset repository [CL11]. We centered and normalized the
columns.
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Figure 2: Comparison of (accelerated) coordinate descent algorithms for the logistic regression problem on
the dataset RCV1: coordinate descent, APPROX, APCG with µ ∈ {10−3, 10−5, 10−7}, Prox-Newton, fixed
frequency restarted APPROX with µ ∈ {10−3, 10−5, 10−7} and APPROX with variable restart initiated with
K0 = ⌈20e/θ0⌉. APCG failed for µ = 10−3.
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Figure 3: Comparison of vanilia, accelerated and restarted versions of SVRG. An epoch corresponds to m
SVRG steps.

We did not run APCG on this problem because, as shown on the logistic regression experiment, the
strong convexity estimate has a dramatic consequence on the behaviour of the algorithm and setting it to a
too high value may lead to major numerical issues.

We chose to restart APPROX with variable restart set as follows. In the beginning, we start with 10n
iterations of non-accelerated coordinate descent. After that, we run variable restart APPROX with K0 = 10n
and we double K0 after each log2(1/ǫ) iterations. When the duality gap at λt reaches ǫ, we switch to λt+1.
We perform a warm start on the optimization variable but we also set K0 to the last value it had when
solving the problem at λt.

We then compare coordinate descent [RT14], APPROX [FR15] and restarted APPROX (Algorithm 3)
on the 6 pathwise optimization lasso problems.

APPROX is sometimes getting into trouble when high accuracy is requested. This does not happen
with variable restart APPROX. In all the experiments, variable restart APPROX is at most twice as slow
as coordinate descent. On the other hand, variable restart APPROX is much faster on problems requiring
more computational resources.

6.3 Lasso with SVRG

Our last experiment illustrate the restart of accelerated stochastic variance reduced gradient on a Lasso prob-
lem (26). We took the abalone dataset and λ = ‖A⊤b‖∞/1000 and solved the problem using SVRG [AZY16],
Katyushans [AZ17] and restarted variants of Katyushans described in Section 5. As shown on Figure 3,
restarted accelerated SVRG is able to solve the problem faster than previously proposed methods.

A Proof of Lemma 1 and Theorem 1

Proof of Lemma 1. The equation (11) holds because θk+1 is the unique positive square root to the polyno-
mial P (X) = X2 + θ2kX − θ2k. (??) is a direct consequence of (11).

Let us prove (10) by induction. It is clear that θ0 ≤ 2
0+2/θ0

. Assume that θk ≤ 2
k+2/θ0

. We know that
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Data set Accuracy Coordinate APPROX Variable restart

descent APPROX

abalone 10−2 0.066 0.045 0.047

n = 8 10−6 0.211 0.126 0.133

m = 4,177 10−10 0.404 0.271 0.257

triazines 10−2 0.194 0.038 0.060

n = 60 10−6
>2.442 0.989 0.379

m = 186 10−10
>3.788 >9.850 1.038

leukemia 10−2
0.113 0.174 0.189

n = 7129 10−6 10.367 11.735 5.132

m = 72 10−10 97.532 >435.002 23.223

blogfeedback 10−2 6.732 2.561 3.868

n = 280 10−6 452.177 63.832 54.962

m = 52,397 10−10
>1617.721 >1845.049 208.319

rcv1 10−2
2.898 4.381 4.323

n = 47236 10−6 227.590 108.778 69.616

m = 20242 10−10 2986.070 943.178 180.206

news20 10−2
33 64 67

n = 1,355,191 10−6 8161 2594 1869

m = 19,996 10−10
>36000 >82000 7173

Table 2: Time is seconds to compute the Lasso path over a grid. The > sign means that the algorithm had
not reach the target accuracy on the duality gap after 40,000 n coordinate updates, for at least one λt in
the grid. We put the number in boldface when an algorithm is at most 50% faster than another.

P (θk+1) = 0 and that P is an increasing function on [0,+∞]. So we just need to show that P
(

2
k+1+2/θ0

)

≥ 0.

P
( 2

k + 1 + 2/θ0

)

=
4

(k + 1 + 2/θ0)2
+

2

k + 1 + 2/θ0
θ2k − θ2k

As θk ≤ 2
k+2/θ0

and 2
k+1+2/θ0

− 1 ≤ 0,

P
( 2

k + 1 + 2/θ0

)

≥ 4

(k + 1 + 2/θ0)2
+
( 2

k + 1 + 2/θ0
− 1
) 4

(k + 2/θ0)2

=
4

(k + 1 + 2/θ0)2(k + 2/θ0)2
≥ 0.

For the other inequality, (2−θ0)
0+(2−θ0)/θ0

≤ θ0. We now assume that θk ≥ (2−θ0)
k+(2−θ0)/θ0

but that θk+1 <
(2−θ0)

k+1+(2−θ0)/θ0
. Remark that (x 7→ (1− x)/x2) is strictly decreasing for x ∈ (0, 2). Then, using (11), we have

(k + 1 + (2 − θ0)/θ0)2

(2− θ0)2
− k + 1 + (2− θ0)/θ0

2− θ0
<

1− θk+1

θ2k+1

(11)
=

1

θ2k
≤ (k + (2− θ0)/θ0)2

(2 − θ0)2
.

This is equivalent to
(2− (2− θ0))(k + (2− θ0)/θ0) + 1 < (2 − θ0)

which obviously does not hold for any k ≥ 0. So θk+1 ≥ (2−θ0)
k+1+(2−θ0)/θ0

.

Proof of Theorem 1. The proof is organised in 4 steps. Firstly, we derive a one-iteration inequality, secondly,
we identify conditions under which this inequality is a supermartingale inequality, thirdly, we give a solution
to the set of inequalities and finally, we bound the rate we obtain by a simpler formula.

Step 1: Derive a one-iteration inequality.
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Let us denote F̂k = f(xk) +
∑k

l=0 γ
l
kψ(zl) ≥ F (xk) where γlk are the same constants as defined in [FR15].

By [FR15], for any x∗ ∈ X ∗,

Ek[F̂k+1 − F ∗] ≤ (1− θk)(F̂k − F ∗) +
θ2k
2θ20

(

‖zk − x∗‖2v −Ek[‖zk+1 − x∗‖2v]
)

(27)

Using

xk+1 = (1− θk)xk +
θk
θ0
zk+1 −

θk
θ0

(1− θ0)zk

and the equality
‖(1− λ)a+ λb‖2 = (1− λ) ‖a‖2 + λ ‖b‖2 − λ(1 − λ) ‖a− b‖2

which is valid for any vectors a and b and any λ ∈ R, we get, denoting x∗ the unique element of X ∗,

‖xk+1 − x∗‖2v = (1− θk) ‖xk − x∗‖2v +
θk
θ0
‖zk+1 − x∗‖2v −

θk
θ0

(1− θ0) ‖zk − x∗‖2v

+
(1− θk)θk/θ0(1− θ0)

1− θk/θ0
‖xk − zk‖2v −

θk/θ0
1− θk/θ0

‖xk+1 − zk+1‖2v (28)

Let us consider nonnegative sequences (ak), (bk), (ck), (dk) and σK
k and study the quantity

Ck+1 = ak+1(F̂k+1 − F ∗) +
bk+1

2
‖xk+1 − x∗‖2v +

ck+1

2
‖zk+1 − x∗‖2v

+
dk+1

2
‖xk+1 − zk+1‖2v

By the strong convexity condition of F , we have:

1

2
‖xk+1 − x∗‖2v ≤

1

µ
(F (xk+1)− F ∗).

Hence, we get for any σK
k+1 ∈ [0, 1], (the usefulness of superscript K will become clear later)

Ek[Ck+1]
(28)

≤ Ek

[

(ak+1 +
bk+1σ

K
k+1

µ
)(F̂k+1 − F ∗)

+
bk+1

2
(1− σK

k+1)(1− θk) ‖xk − x∗‖2v

+
(

ck+1 + bk+1(1− σK
k+1)

θk
θ0

)1

2
‖zk+1 − x∗‖2v

− bk+1

2
(1− σK

k+1)
θk
θ0

(1− θ0) ‖zk − x∗‖2v

+
bk+1

2
(1− σK

k+1)
(1− θk)θk/θ0(1− θ0)

1− θk/θ0
‖xk − zk‖2v

+
(

dk+1 − bk+1(1− σK
k+1)

θk/θ0
1− θk/θ0

)1

2
‖xk+1 − zk+1‖2v

]
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Applying (27) we get:

Ek[Ck+1] ≤ (1 − θk)(ak+1 +
bk+1σ

K
k+1

µ
)(F̂k − F ∗)

+
bk+1

2
(1 − σK

k+1)(1 − θk) ‖xk − x∗‖2v

+
(

ck+1 + bk+1(1 − σK
k+1)

θk
θ0
−
(

ak+1 +
bk+1σ

K
k+1

µ

)θ2k
θ20

)1

2
Ek[‖zk+1 − x∗‖2v]

(

(

ak+1 +
bk+1σ

K
k+1

µ

)θ2k
θ20
− bk+1(1− σK

k+1)
θk
θ0

(1− θ0)
)1

2
‖zk − x∗‖2v

+
bk+1

2
(1 − σK

k+1)
(1− θk)θk/θ0(1− θ0)

1− θk/θ0
‖xk − zk‖2v

+
(

dk+1 − bk+1(1− σK
k+1)

θk/θ0
1− θk/θ0

)1

2
Ek[‖xk+1 − zk+1‖2v]

Step 2: Conditions to get a supermartingale.
In order to have a bound, we need the following constraints on the parameters for k ∈ {0, . . . ,K − 1}:

ak ≥ (1− θk)(ak+1 +
bk+1σ

K
k+1

µ
) (29)

bk ≥ bk+1(1− σK
k+1)(1 − θk) (30)

ck+1 ≤
(

ak+1 +
bk+1σ

K
k+1

µ

)θ2k
θ20
− bk+1(1− σK

k+1)
θk
θ0

(31)

ck ≥
(

ak+1 +
bk+1σ

K
k+1

µ

)θ2k
θ20
− bk+1(1− σK

k+1)
θk
θ0

(1− θ0) (32)

dk+1 ≤ bk+1(1− σK
k+1)

θk/θ0
1− θk/θ0

(33)

dk ≥ bk+1(1− σK
k+1)

(1 − θk)θk/θ0(1− θ0)

1− θk/θ0
(34)

We also add the constraint

a0 = (1− θ0)(b0 + c0) =
1− θ0
θ20

(35)

in order to get a bound involving ∆(x0).
If we can find a set of sequences satisfying (29)-(35), then we have

aK(F (xK)− F ∗) +
bK
2
‖xk+1 − x∗‖2v ≤ ∆(x0).

Step 3: Explicit solution of the inequalities.
By analogy to the gradient case, we are looking for such sequences saturating (29)-(32). For k ∈

{1, . . . ,K − 1}, equality in (31) and (32) can be fulfilled only if

σK
k =

1− θk
θk−1

1−θ0
1−θk

1 +
θk−1

θ0µ

, k ∈ {1, . . . ,K − 1}

For k = K, we would like to ensure cK = 0 and aK = (1− θ0)bK . This can be done by taking

σK
K =

1− θK−1

θ0
(1− θ0)

1 + θK−1

θ0µ
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Having found (σK
k ), we can get (bk) as a function of b0 through the equality in (30)

bk =
k−1
∏

l=0

1

(1 − θl)(1 − σK
l+1)

b0 =
θ2−1

θ2k−1

k
∏

l=1

1

1− σK
l

b0,

(ak) as a function of b0 through the equality in (29)

ak =
θ2−1

θ2k−1

a0 −
k
∑

l=1

σK
l

µ

θ2−1

θ2l−1

bl.

Using equality in (31) and (32), we get the relation

ck+1 = ck −
θk

1− θk
bk

and so

ck = c0 −
k−1
∑

l=0

θl
1− θl

bl

This gives us the opportunity to calculate b0 because

cK = 0 = c0 −
K−1
∑

l=0

θl
1− θl

bl

Hence, we get two equalities:

c0 + b0 =
1

θ20

c0 =

K−1
∑

l=0

θl
1− θl

θ2−1

θ2l−1

l
∏

j=1

1

1− σK
j

b0

and so since θ2l−1 = θ2l /(1− θl)
b0 =

1

θ20

1

1 +
∑K−1

l=0

θ2
−1

θl

∏l
j=1

1
1−σK

j

Finally, we need to check that there is a feasible sequence (dk). Indeed such a sequence exists because
the upper and lower bound satisfy

bk(1 − σK
k )

θk−1/θ0
1− θk−1/θ0

≥ dk ≥ bk+1(1− σK
k+1)

(1 − θk)θk/θ0(1 − θ0)

1− θk/θ0
eq.in(30)⇔ σK

k ≤ 1− (1− θ0)
1/θk−1 − 1/θ0
1/θk − 1/θ0

which is always true because σK
k ≤ θ0 for all k.

Now that we have the sequence, we can compute the rate as

ρK =
b0 + c0
bK

=
1

θ20

θ2K−1

θ2−1

K
∏

l=1

(1 − σK
l )θ20

(

1 +

K−1
∑

l=0

θ2−1

θl

l
∏

j=1

1

1− σK
j

)

=
θ2K−1

θ2−1

(

K
∏

l=1

(1 − σK
l ) +

K−1
∑

l=0

θ2−1

θl

K
∏

j=l+1

(1− σK
j )
)
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Hence, we obtain that

E[∆(xK)] ≤ θ2K−1

θ2−1

(

K
∏

l=1

(1 − σK
l ) +

K−1
∑

l=0

θ2−1

θl

K
∏

j=l+1

(1− σK
j )
)

∆(x0) = ρK∆(x0)

where θ2−1 =
θ2
0

1−θ0
and

σK
k =

1− θk
θk−1

1−θ0
1−θk

1 +
θk−1

θ0µ

, k ∈ {1,K − 1}

σK
K =

1− θK−1

θ0
(1− θ0)

1 + θK−1

θ0µ

.

Step 4: bound ρK by induction.

ρ1 =
θ20
θ2−1

(

(1− σ1
1) +

θ2−1

θ0
(1− σ1

1)
)

= (1 − θ0)

θ0
θ0µ

+ θ0
θ0

(1− θ0)

1 + θ0
θ0µ

(1 +
θ0

1− θ0
)

=
1 + (1− θ0)µ

1 + µ
≤ 1 + (1− θ0)µ

1 +
θ2
0

2θ2
0

µ

Let us now assume that ρK ≤ 1+(1−θ0)µ

1+
θ2
0
µ

2θ2
K−1

.

ρK+1 =
θ2K
θ2−1

(

K+1
∏

l=1

(1 − σK+1
l ) +

K
∑

l=0

θ2−1

θl

K+1
∏

j=l+1

(1− σK+1
j )

)

=
θ2K
θ2K−1

θ2K−1

θ2−1

(1− σK+1
K+1)

1 − σK+1
K

1− σK
K

(

K
∏

l=1

(1− σK
l ) +

K−1
∑

l=0

θ2−1

θl

K
∏

j=l+1

(1− σK
j )

+
θ2−1

θK

1− σK
K

1− σK+1
K

)

= (1− θK)(1 − σK+1
K+1)

1− σK+1
K

1− σK
K

(

ρK +
θ2K−1

θK

1− σK
K

1− σK+1
K

)

= (1− θK)
1 + θ0µ

θK
(1− θ0)

1 + θ0µ
θK

ρK +
1 + (1− θ0)µ

1 + θ0µ
θK

θK

We now use the induction hypothesis.

ρK+1 ≤ (1− θK)
1 + θ0µ

θK
(1− θ0)

1 + θ0µ
θK

1 + (1− θ0)µ

1 +
θ2
0

2θ2
K−1

µ
+

1 + (1− θ0)µ

1 + θ0µ
θK

θK

≤ 1 + (1− θ0)µ

1 +
θ2
0
µ

2θ2
K
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The last inequality comes from the fact that

1 + θ0µ
θK

(1− θ0)

1 + θ0µ
θK

1− θK
1 +

θ2
0
µ

2θ2
K−1

+
θK

1 + θ0µ
θK

≤ 1

1 +
θ2
0
µ

2θ2
K

⇔ (1− θK)(1 +
θ0µ

θK
(1− θ0))(1 +

θ20µ

2θ2K
) + θK(1 +

θ20µ

2θ2K
)(1 +

θ20µ

2θ2K−1

)

≤ (1 +
θ20µ

2θ2K−1

)(1 +
θ0µ

θK
)

⇔ 0 + µ
[

(1− θK)
θ0(1− θ0)

θK
+

(1− θK)θ20
2θ2K

+
θKθ

2
0

2θ2K−1

+
θKθ

2
0

2θ2K
− θ20

2θ2K−1

− θ0
θK

]

+ µ2
[ (1− θK)θ30(1− θ0)

2θ2KθK
+

θKθ
4
0

4θ2K−1θ
2
K

− θ30
2θ2K−1θK

]

≤ 0

and both terms in the brackets are nonpositive for all K.
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[FHH+07] Jerome Friedman, Trevor Hastie, Holger Höfling, Robert Tibshirani, et al. Pathwise coordinate
optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

[FQ16] Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong
convexity estimate. arXiv preprint arXiv:1609.07358, 2016.

[FQ17] Olivier Fercoq and Zheng Qu. Adaptive restart of accelerated gradient methods under local
quadratic growth condition. arXiv preprint arXiv:1709.02300, 2017.
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