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Abstract The elementary Euclidean concept of circumcenter has recently been employed to improve two
aspects of the classical Douglas–Rachford method for projecting onto the intersection of affine subspaces.
The so-called circumcentered–reflection method is able to both accelerate the average reflection scheme
by the Douglas–Rachford method and cope with the intersection of more than two affine subspaces. We
now introduce the technique of circumcentering in blocks, which, more than just an option over the basic
algorithm of circumcenters, turns out to be an elegant manner of generalizing the method of alternating
projections. Linear convergence for this novel block-wise circumcenter framework is derived and illustrated
numerically. Furthermore, we prove that the original circumcentered–reflection method essentially finds the
best approximation solution in one single step if the given affine subspaces are hyperplanes.
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1 Introduction

We consider the important feasibility problem of projecting onto the intersection of affine subspaces, fre-
quently also referred to as best approximation problem. Let {Ui}i∈I be a family of finitely many affine
subspaces in Rn with I := {1, 2, . . . ,m} and m fixed (we require no relation between n and m). The in-
tersection of the family is denoted by S :=

⋂
i∈I Ui (which we assume nonempty) and the problem we are

interested in consists of projecting a given point z ∈ Rn onto S. Equivalently,

min
s∈S
‖z − s‖. (1)
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2 Roger Behling et al.

Here and throughout the paper, 〈·, ·〉 stands for the Euclidean inner product and ‖·‖ is the induced norm. The
best approximation problem (1) has the unique solution PS(z), where PS denotes the Euclidean projection
onto S. Problem (1) can, of course, be rewritten as a convex quadratic program with objective function
1
2‖z − s‖

2 and equality constraints, as each Ui is an affine subspace. Note that S itself is an affine subspace.
Note also that the classical problem of finding the least-norm solution of a system of linear equations is a
particular case of (1).

Reflection and projection type methods are celebrated tools for solving a variety of feasibility problems,
including (1), and they remain trendy due to their balance between good performance and simplicity (see,
e.g., [6]). Probably the two most famous and standard among these methods are the Douglas–Rachford
method (DRM), or averaged alternating reflection method (see, e.g., [3]); and the method of alternating
projections (MAP) which is also known as von Neumann’s or Kaczmarz’ algorithm (see, e.g., [5, 29]). Upon
our ideas presented in [13, 14], we devote this work to study a circumcenter type method related to both
DRM and MAP.

Suitable DRM and MAP schemes determine the solution of the best approximation problem (1). DRM and
MAP only use knowledge provided by projections onto individual sets, which often leads to a desirable low
computational cost per iteration. Nonetheless, slow convergence due to zig-zag or spiral behavior are usually
inherent to these classical methods (see, e.g., [3, 4, 7]). In order to minimize spiralness of Douglas–Rachford
sequences to a certain extent, we have introduced the circumcentered–reflection method (CRM). This was
firstly done in [13] for problem (1) with two sets, that is, m = 2. In this case, if we have a current iterate say
z ∈ Rn, DRM moves us to zDRM := 1

2 (Id +RU2
RU1

)(z), whereas MAP provides zMAP := PU2PU1(z). The
symbol Id denotes the identity operator and RUi

:= 2PUi− Id is the reflection operator onto Ui. We proposed
the iteration zCRM := circumcenter{z,RU1

(z), RU2
RU1

(z)}, where zCRM fulfills two properties: (i) it lies
on the affine subspace defined by z, RU1

(z) and RU2
RU1

(z), which we denote by aff{z,RU1
(z), RU2

RU1
(z)}

and, (ii) zCRM is equidistant to z, RU1
(z) and RU2

RU1
(z), therefore the use of the term circumcenter.

The resulting algorithm significantly outperforms DRM and MAP numerically as presented in [13]. This
numerical performance of CRM, together with the deficiency of DRM in dealing with more than two sets
(see [1, Example 2.1] and some modifications [17,18] for DRM), motivated our theoretical study in [14]. The
circumcenter schemes we came up with are already in the attention of specialists of the field (see Aragón
Artacho et al [2], Bauschke et al [10–12], Lindstrom and Sims [26] and Ouyang [27]) and questions on
the possibility of successful behavior in more general and more important settings are arising. It is worth
emphasizing that DRM handles satisfactorily some highly relevant kinds of problems related to nonconvex
and inconsistent feasibility problems involving (affine) subspaces (see, for instance, [8, 9, 19, 24, 25]). This
suggests a promising behavior of circumcenter-type methods for these kinds of problems since CRM may be
seen as a geometrical improvement of DRM.

The linear convergence of the circumcentered–reflection method (CRM) was established in [14] for solving
problem (1) with m ≥ 2 affine subspaces. Since the computation of a circumcenter requires the resolution
of a suitable m×m linear system, this might not be of negligible computational cost for large m. To avoid
this drawback for problems where the computation of zCRM is simply too demanding, we propose in the
present work the Block-wise Circumcentered–Reflection Method (Bw-CRM) by using an arbitrary ordered
partition of the indices {1, 2, . . . ,m}, which contains the original CRM described above as a particular
realization. Moreover, two elegant connections of this scheme with MAP follow. These nice interpretations
further indicate a possible potential of the proposed method for solving problems more general than (1)
(even nonconvex), where some affine structure remains, though.

The presentation of this paper is as follows. Definitions, basic facts and important auxiliary results are
presented in Section 2. Still in Section 2, we introduce the notion of best approximation mapping along with
properties of these mappings, which are key to our work. In Section 3, we formally introduce Bw-CRM.
The global Q-Linear convergence of Bw-CRM for problem (1) is proven in Section 3.1. Connections between
Bw-CRM and MAP are briefly discussed in Section 3.2. In Section 4 we prove the curious CRM feature of
solving problem (1) in only one step when the correspondent affine subspaces are hyperplanes. Numerical
illustrations are presented in Section 5. In Section 6 we provide a summary of our work and new ideas for
future investigation.
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2 Preliminary and auxiliary results

Let us review the definition of Friedrichs angle and provide key results needed in sequel.

Definition 1 (Friedrichs angle) The cosine of the Friedrichs angle between affine subspaces V and W
with nonempty intersection is given by

cF := sup
{
〈v, w〉

∣∣ v ∈ V̂ ∩ (V̂ ∩ Ŵ )⊥, w ∈ Ŵ ∩ (V̂ ∩ Ŵ )⊥, ‖v‖ ≤ 1, ‖w‖ ≤ 1
}
.

Here, V̂ and Ŵ are subspaces given by V − ẑ and W − ẑ, respectively, where ẑ ∈ V ∩W is arbitrary but
fixed, and the ⊥ operation provides the correspondent orthogonal subspace.

In the above definition, it is easy to check that cF does not depend on the choice of ẑ. Moreover, it is
well known that 0 ≤ cF < 1, for any two intersecting affine subspaces. See fundamental properties of the
Friedrichs angle in [20, Theorem 13] and [21, Lemma 9.5], for instance.

For clearer presentation of our results, we introduce the concept of best approximation mapping (BAM).

Definition 2 (best approximation mapping) Let V 6= ∅ be a given affine subspace in Rn. We say that
GV : Rn → Rn is a best approximation mapping with respect to V (for short V -BAM) if

(i) PV (GV (z)) = PV (z), for all z ∈ Rn; and

(ii) there exists a constant rV ∈ [0, 1) such that ‖GV (z)− PV (z)‖ ≤ rV ‖z − PV (z)‖, for all z ∈ Rn.

Note that the projection operator PV is a V -BAM. Indeed, ifGV = PV , for any z ∈ Rn and all rV ≥ 0, we have
PV (GV (z)) = PV (PV (z)) = PV (z) and ‖GV (z)−PV (z)‖ = ‖PV (z)−PV (z)‖ = 0 ≤ rV ‖z−PV (z)‖. In general,
it is easy to see that GV = (1−α) Id +αPV with 0 < α < 2 is a V -BAM with rV = |1−α| ∈ [0, 1). Nonetheless,
Definition 2 allows for non-affine mappings. Later we will see and use the fact that the circumcenter operator
defined in [14] is a best approximation mapping, even though it is usually non-affine.

Simple manipulations provide an immediate consequence of Definition 2.

Proposition 1 Let GV be a V -BAM with constant rV ∈ [0, 1). For any z ∈ Rn and ` ∈ N, PV (G`V (z)) =
PV (z) and (GkV (z))k∈N converges to PV (z) with linear rate rV .

Proof Let z ∈ Rn and ` ∈ N. Then, Definition 2(i) implies

PV (G`V (z)) = PV (GV (G`−1
V (z))) = PV (G`−1

V (z)) = · · · = PV (GV (z)) = PV (z).

Moreover,

‖GkV (z)− PV (z)‖ = ‖GV (Gk−1
V (z))− PV (Gk−1

V (z))‖
≤ rV ‖Gk−1

V (z)− PV (Gk−1
V (z))‖ ≤ · · · ≤ rk−1

V ‖GV (z)− PV (GV (z))‖
= rk−1

V ‖GV (z)− PV (z)‖
≤ rkV ‖z − PV (z)‖,

proving the proposition. ut

The main purpose of this section is to study the composition of best approximation mappings. In order to
do this, we state and prove an auxiliary result on adjacent angles.

Proposition 2 Let u, v ∈ Rn be nonzero vectors forming an angle γ ∈ [0, π2 ]. If a nonzero vector w ∈ Rn

forms an angle β ∈ [0, π] with v and the angle φ between w and u is such that φ ∈ [0, β2 ], then γ ≥ β
2 .
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Proof Assume, without loss of generality, that ‖u‖ = ‖v‖ = ‖w‖ = 1. Then,

cos γ = 〈u, v〉 , cosβ = 〈v, w〉 and cosφ = 〈u,w〉 .

Also, we have cos γ ≥ 0 and cosφ ≥ 0.

If β = 0, γ ≥ β
2 , trivially. Moreover, β = π if, and only if, w = −v. In this case,

0 ≤ cosφ = 〈u,w〉 = 〈u,−v〉 = −〈u, v〉 = − cos γ ≤ 0.

Thus, cos γ = 0 and γ = π
2 = β

2 .

For the rest of the proof, let β ∈ (0, π) and consider the following convex optimization problem

min
x

− 〈v, x〉

s.t.
1

2
‖x‖2 − 1

2
≤ 0

cos β2 − 〈w, x〉 ≤ 0.

(2)

By Weierstrass, this problem has a solution as the objective function is continuous and the feasible set

is compact. Note that 1
2

(
1 + cos β2

)
w is a Slater point, that is, it fulfills both constraints strictly because

cos β2 < 1 as β ∈ (0, π). Therefore, x is a solution of (2) if, and only if, it satisfies the KKT conditions

−v + µ1x− µ2w = 0 (3a)

‖x‖ − 1 ≤ 0 (3b)

cos β2 − 〈w, x〉 ≤ 0 (3c)

µ1 ≥ 0, µ2 ≥ 0 (3d)

µ1 (‖x‖ − 1) = 0 (3e)

µ2

(
cos β2 − 〈w, x〉

)
= 0, (3f)

where µ1 and µ2 are Lagrange multipliers.

We claim that x∗ := v+w
‖v+w‖ , which is well defined since β 6= π, is a KKT point for (2). Condition (3a)

is satisfied with µ∗1 = ‖v + w‖ and µ∗2 = 1. These multipliers yield (3d) strictly. Trivially, since ‖x∗‖ = 1,
condition (3b) holds sharply and (3e) follows as well. Obviously, from 〈v, v〉 = 〈w,w〉 = 1, we have

〈w, x∗〉 =

〈
w,

v + w

‖v + w‖

〉
=
〈w, v〉+ 〈w,w〉
‖v + w‖

=
〈v, v〉+ 〈v, w〉
‖v + w‖

=

〈
v,

v + w

‖v + w‖

〉
= 〈v, x∗〉 . (4)

Then,

2 〈w, x∗〉 = 〈v, x∗〉+ 〈w, x∗〉 =

〈
v,

v + w

‖v + w‖

〉
+

〈
w,

v + w

‖v + w‖

〉
=
〈v + w, v + w〉
‖v + w‖

=
‖v + w‖2

‖v + w‖
= ‖v + w‖

=
√
‖v‖2 + ‖w‖2 + 2 〈v, w〉

=
√

2 + 2 cosβ = 2

√
1 + cosβ

2

= 2 cos
β

2
, (5)

that is, condition (3c) holds sharply and yields (3f).
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Note that u is a feasible point for (2). In fact, by assumption ‖u‖ = 1 and 0 ≤ φ ≤ β
2 , which means that

〈w, u〉 = cosφ ≥ cos β2 .

Finally, using the definition of γ, the optimality of x∗, (4) and (5) we derive

cos γ = 〈v, u〉 ≤ 〈v, x∗〉 = 〈w, x∗〉 = cos β2 .

Hence, γ ≥ β
2 , proving the lemma. ut

We now start to address the composition of best approximation mappings. The next result is the keystone
of our analysis.

Lemma 1 (composition of two best approximation mappings) Let us consider two affine subspaces
V and W of Rn with nonempty intersection V ∩W . Then, the composition of a V -BAM and a W -BAM is
a (V ∩W )-BAM.

Proof Let GV : Rn → Rn and GW : Rn → Rn be two best approximation mappings with respect to V and
W , respectively, and corresponding constants 0 ≤ rV < 1 and 0 ≤ rW < 1.

In order to prove item (i) of Definition 2 for the composition G := GW ◦ GV w.r.t. V ∩ W we are
going to combine Pythagoras equations with properties of projections. Note that we have to prove that
PV ∩W (G(z)) = PV ∩W (z) for all z ∈ Rn.

Let us take an arbitrary, but fixed, z ∈ Rn and set ẑ := PV ∩W (z). The definition of ẑ implies that
ẑ ∈ V ∩W . In particular, ẑ ∈ V and we have

‖z − ẑ‖2 = ‖z − PV (z)‖2 + ‖PV (z)− ẑ‖2. (6)

Since PV ∩W (PV (z)) ∈ V , we can write

‖z − PV ∩W (PV (z))‖2 = ‖z − PV (z)‖2 + ‖PV (z)− PV ∩W (PV (z))‖2. (7)

Of course, ‖z− ẑ‖ ≤ ‖z−PV ∩W (PV (z))‖. Using this fact and subtracting (7) from (6) yields ‖PV (z)− ẑ‖ ≤
‖PV (z)− PV ∩W (PV (z))‖. By uniqueness of projections onto closed convex sets, we conclude that

ẑ = PV ∩W (PV (z)). (8)

The fact that both ẑ and PV ∩W (GV (z)) lie in V allows us to derive further Pythagoras relations

‖GV (z)− ẑ‖2 = ‖GV (z)− PV (GV (z))‖2 + ‖PV (GV (z))− ẑ‖2

and
‖GV (z)− PV ∩W (GV (z))‖2 = ‖GV (z)− PV (GV (z))‖2 + ‖PV (GV (z))− PV ∩W (GV (z))‖2.

Since GV is a V -BAM, it holds that PV (GV (z)) = PV (z) and the previous equations reduce to

‖GV (z)− ẑ‖2 = ‖GV (z)− PV (z)‖2 + ‖PV (z)− ẑ‖2 (9)

and
‖GV (z)− PV ∩W (GV (z))‖2 = ‖GV (z)− PV (z)‖2 + ‖PV (z)− PV ∩W (GV (z))‖2. (10)

As proved above in (8), ẑ = PV ∩W (PV (z)), which implies that ‖PV (z) − ẑ‖ ≤ ‖PV (z) − PV ∩W (GV (z))‖.
This inequality, together with (9) and (10), gives us ‖GV (z) − ẑ‖ ≤ ‖GV (z) − PV ∩W (GV (z))‖. Then, as
PV ∩W (GV (z)) is uniquely defined and ẑ ∈ V ∩W , we must have

PV ∩W (GV (z)) = ẑ. (11)

Our proof towards item (i) of Definition 2 continues with similar arguments, now regardingW . By Pythago-
ras we get

‖GV (z)− PV ∩W (GV (z))‖2 = ‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− PV ∩W (GV (z))‖2
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and

‖GV (z)− PV ∩W (GW (GV (z)))‖2 = ‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− PV ∩W (GW (GV (z)))‖2.

Since we proved that PV ∩W (GV (z)) = ẑ, taking into account that GW is a W -BAM, which provides
PW (GW (GV (z))) = PW (GV (z)), and bearing in mind that G(z) = GW (GV (z)), we can rewrite the equations
above as

‖GV (z)− ẑ‖2 = ‖GV (z)− PW (G(z))‖2 + ‖PW (G(z))− ẑ‖2 (12)

and
‖GV (z)− PV ∩W (G(z))‖2 = ‖GV (z)− PW (G(z))‖2 + ‖PW (G(z))− PV ∩W (G(z))‖2. (13)

From the definition of Euclidean projection it follows that ‖GV (z)− ẑ‖ ≤ ‖GV (z)−PV ∩W (GV (z))‖, because
ẑ realizes the distance of GV (z) to V ∩W . This, combined with (12) and (13), leads to ‖PW (G(z))− ẑ‖ ≤
‖PW (G(z))− PV ∩W (G(z))‖.

We can derive two additional Pythagoras relations

‖G(z)− ẑ‖2 = ‖G(z)− PW (G(z))‖2 + ‖PW (G(z))− ẑ‖2 (14)

and
‖G(z)− PV ∩W (G(z))‖2 = ‖G(z)− PW (G(z))‖2 + ‖PW (G(z))− PV ∩W (G(z))‖2. (15)

We have just seen that ‖PW (G(z)) − ẑ‖ ≤ ‖PW (G(z)) − PV ∩W (G(z))‖, which together with (14) and (15)
yields ‖G(z)− ẑ‖ ≤ ‖G(z)−PV ∩W (G(z))‖. Hence, PV ∩W (G(z)) = ẑ = PV ∩W (z), which fulfills condition (i)
of Definition 2 for G w.r.t. V ∩W .

Let us now address item (ii) of Definition 2 for G w.r.t. V ∩W . We have to prove that there exists a
nonnegative constant 0 ≤ rV ∩W < 1 so that, for all z ∈ Rn,

‖G(z)− PV ∩W (z)‖ ≤ rV ∩W ‖z − PV ∩W (z)‖. (16)

Again, let z ∈ Rn be arbitrary, fixed and ẑ = PV ∩W (z). If z = ẑ, (16) is fulfilled for any nonnegative constant
as G(z) will be equal to PV ∩W (z). In fact, GV being a V -BAM, together with z = ẑ, gives us

‖GV (z)− ẑ‖ = ‖GV (z)− PV (z)‖ ≤ rV ‖z − PV (z)‖ = rV ‖z − ẑ‖ = 0.

Thus, GV (z) = ẑ. On the other hand, GW is a W -BAM, so

‖G(z)− z‖ = ‖G(z)− ẑ‖ = ‖GW (GV (z))− ẑ‖ = ‖GW (ẑ)− ẑ‖ = ‖GW (ẑ)− PW (ẑ)‖ ≤ rW ‖ẑ − PW (ẑ)‖ = 0.

This means that, if z = ẑ, G(z) = z and the left-hand side of (16) is equal to zero and this inequality holds
for any nonnegative constant rV ∩W .

Therefore, from now on, assume z 6= ẑ. We will construct rV ∩W upon the constants rV ∈ [0, 1), rW ∈ [0, 1)
, and cF ∈ [0, 1), the latter the cosine of the Friedrichs angle θF ∈ (0, π2 ] between V and W .

It will be key to look at the angle α between vectors z − ẑ and PV (z)− ẑ. Note first that α ∈ [0, π2 ], since
from (6) the triangle with vertices z, ẑ and PV (z) has a right angle at PV (z). Also, of course,

cosα =
‖PV (z)− ẑ‖
‖z − ẑ‖

. (17)

Moreover, by using equation (9), the V -BAM hypothesis ‖GV (z) − PV (z)‖ ≤ rV ‖z − PV (z)‖, equation (6)
and that cosα ≤ 1, we conclude that

‖GV (z)− ẑ‖2 = ‖GV (z)− PV (z)‖2 + ‖PV (z)− ẑ‖2

≤ r2
V ‖z − PV (z)‖2 + ‖PV (z)− ẑ‖2

= r2
V

(
‖z − ẑ‖2 − ‖PV (z)− ẑ‖2

)
+ ‖PV (z)− ẑ‖2

= r2
V ‖z − ẑ‖2 + (1− r2

V )‖PV (z)− ẑ‖2

= r2
V ‖z − ẑ‖2 + (1− r2

V ) cos2 α‖z − ẑ‖2 (18)
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≤ ‖z − ẑ‖2. (19)

Now, we split our analysis in two cases: α ∈ [ θF2 ,
π
2 ]; α ∈ [0, θF2 ).

Case 1: α ∈ [ θF2 ,
π
2 ].

In this case, cosα ≤ cos θF2 . This, combined with (18) and the fact that cos θF2 =
√

1+cF
2 provides

‖GV (z)− ẑ‖2 ≤ r2
V ‖z − ẑ‖2 + (1− r2

V ) cos2 α‖z − ẑ‖2

≤ r2
V ‖z − ẑ‖2 + (1− r2

V ) cos2 θF
2
‖z − ẑ‖2

=

(
r2
V + (1− r2

V )
1 + cF

2

)
‖z − ẑ‖2. (20)

Since r2
V < 1 and 1+cF

2 < 1, we have (1− r2
V ) 1+cF

2 < (1− r2
V ). Then,

r2
V + (1− r2

V )
1 + cF

2
< r2

V + (1− r2
V ) = 1.

Since GW is a W -BAM, we have PW (GW (GV (z))) = PW (GV (z)) and ‖GW (GV (z)) − PW (GV (z))‖ ≤
rW ‖GV (z)− PW (GV (z))‖, with rW ∈ [0, 1). So, we can write ‖G(z)− PW (G(z))‖ ≤ ‖GV (z)− PW (G(z))‖,
which combined with (12) and (14), gives us

‖G(z)− ẑ‖ ≤ ‖GV (z)− ẑ‖.

Hence, this inequality and (20) imply that

‖G(z)− ẑ‖ ≤ r1‖z − ẑ‖,

with r1 ∈ [0, 1), given by

r1 :=

√
r2
V + (1− r2

V )
1 + cF

2
. (21)

Case 2: α ∈ [0, θF2 ).

In this case we initially consider the triangle of vertexes GV (z), ẑ and PW (GV (z)). Since GV is a V -BAM,
PV (GV (z)) = PV (z). We will be particularly interested in the angle φ between GV (z) − ẑ and PV (z) − ẑ,
when these vectors are nonzero. The vector PV (z)− ẑ is automatically nonzero, because of α < π

2 and (17).
If the vector GV (z)− ẑ is zero, we get the desired result as shown below.

Suppose GV (z) = ẑ, then G(z) = GW (GV (z)) = GW (ẑ) and it is easy to verify that GW (ẑ) = ẑ. Indeed,

‖GW (ẑ)− ẑ‖ = ‖GW (ẑ)− PW (ẑ)‖ ≤ rW ‖ẑ − PW (ẑ)‖ = ‖ẑ − ẑ‖ = 0.

So, G(z) = ẑ and the left-hand side of (16) is equal to zero and this inequality is fulfilled for any nonnegative
constant rV ∩W .

Assume for the rest of the proof that GV (z) 6= ẑ. Thus,

cosφ =
‖PV (z)− ẑ‖
‖GV (z)− ẑ‖

≥ ‖PV (z)− ẑ‖
‖z − ẑ‖

= cosα,

where the inequality is due to (19). Therefore, 0 ≤ φ ≤ α and, consequently, φ ∈ [0, θF2 ).

We consider now another triangle, the one of vertexes PV (z), ẑ and PW (GV (z)). If the vertexes ẑ and
PW (GV (z)) coincide, we get the following bound:

‖G(z)− ẑ‖ = ‖GW (GV (z))− ẑ‖
= ‖GW (GV (z))− PW (GV (z))‖
≤ rW ‖GV (z)− PW (GV (z))‖
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≤ rW ‖GV (z)− ẑ‖
≤ rW ‖z − ẑ‖, (22)

where we used, respectively, the definition of G, the current assumption PW (GV (z)) = ẑ, the hypothesis
that GW is a W -BAM, the fact that ẑ lies in W and (19).

For the rest of the proof, assume also that PW (GV (z)) 6= ẑ and define β, the angle between the nonzero
vectors PV (z)− ẑ and PW (GV (z))− ẑ. It is easy to see that the former belongs to V̂ and the latter belongs
to Ŵ , where V̂ and Ŵ are the subspaces given by V − ẑ and W − ẑ, respectively. Also, recall from (8) that
PV ∩W (PV (z)) = ẑ and therefore PV (z)− ẑ ∈ (V̂ ∩ Ŵ )⊥.

We rewrite (12) using the W -BAM property PW (G(z)) = PW (GW (GV (z))) = PW (GV (z)) as

‖GV (z)− ẑ‖2 = ‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− ẑ‖2

and Pythagoras can be employed as

‖GV (z)− PV ∩W (PW (GV (z)))‖2 = ‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− PV ∩W (PW (GV (z)))‖2.

On the one hand, ‖PW (GV (z))− PV ∩W (PW (GV (z)))‖ ≤ ‖PW (GV (z))− ẑ‖. On the other hand, ‖GV (z)−
ẑ‖ ≤ ‖GV (z) − PV ∩W (PW (GV (z)))‖ because we have already seen in (11) that PV ∩W (GV (z)) = ẑ. Hence,
PV ∩W (PW (GV (z))) = ẑ and PW (GV (z))− ẑ ∈ (V̂ ∩ Ŵ )⊥.

We can then use the definition of the cosine of the Friedrichs angle θF between V and W and get

cosβ =

〈
PW (GV (z))− ẑ
‖PW (GV (z))− ẑ‖

,
PV (z)− ẑ
‖PV (z)− ẑ‖

〉
≤ cF = cos θF ,

which provides β ∈ [θF , π].

By now we have the nonzero vectors GV (z) − ẑ, PV (z) − ẑ and PW (GV (z)) − ẑ. The vectors GV (z) − ẑ
and PV (z) − ẑ form angle φ ∈ [0, θF2 ), vectors PV (z) − ẑ and PW (GV (z)) − ẑ form angle β ∈ [θF , π]. Let γ
be the angle between vectors GV (z)− ẑ and PW (GV (z))− ẑ. Obviously, by Pythagoras, γ ∈ [0, π2 ] and

cos γ =
‖PW (GV (z))− ẑ‖
‖GV (z)− ẑ‖

. (23)

More than that, from Proposition 2, we conclude that γ ∈ [β2 ,
π
2 ]. In particular, we get γ ≥ β

2 ≥
θF
2 and

hence

cos γ ≤ cos
θF
2

=

√
1 + cF

2
. (24)

Then, enforcing similar arguments as in Case 1, we obtain

‖G(z)− ẑ‖2 = ‖GW (GV (z))− ẑ‖2

= ‖GW (GV (z))− PW (GV (z))‖2 + ‖PW (GV (z))− ẑ‖2

≤ r2
W ‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− ẑ‖2

= r2
W (‖GV (z)− PW (GV (z))‖2 + ‖PW (GV (z))− ẑ‖2) + (1− r2

W )‖PW (GV (z))− ẑ‖2

= r2
W ‖GV (z)− ẑ‖2 + (1− r2

W )‖PW (GV (z))− ẑ‖2

= r2
W ‖GV (z)− ẑ‖2 + (1− r2

W ) cos2 γ‖GV (z)− ẑ‖2

≤
(
r2
W + (1− r2

W )
1 + cF

2

)
‖GV (z)− ẑ‖2

≤
(
r2
W + (1− r2

W )
1 + cF

2

)
‖z − ẑ‖2. (25)

The first line corresponds to the definition of G, the second is by Pythagoras and the third holds because
GW is a W -BAM. The fourth line is a rearrangement of terms, followed by Pythagoras in the fifth. Then,
(23) and (24) are employed respectively. At last, we used (19).
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Analogously to the proof that r1 =
√
r2
V + (1− r2

V ) 1+cF
2 is strictly smaller than 1, we can see that

r2 :=

√
r2
W + (1− r2

W )
1 + cF

2
< 1.

Finally, we can gather Cases 1 and 2. From (21), (22) and (25), we have ‖G(z)− ẑ‖ ≤ rV ∩W ‖z − ẑ‖ for all
z ∈ Rn, with rV ∩W ∈ [0, 1) given by rV ∩W := max {r1, rW , r2} = max {r1, r2} . ut

We are going to see next that Lemma 1 can be extended to the case of ` affine subspaces, with ` being
any positive integer.

Theorem 1 (finite composition of best approximation mappings) Let us consider an indexed family
of ` affine subspaces W = {W1,W2, . . . ,W`} of Rn with nonempty intersection S`. Assume that each GWj :
Rn → Rn (j = 1, . . . , `) is Wj-BAM. Then, G := GW`

◦ · · · ◦GW2
◦GW1

is a S`-BAM.

Proof The proof follows by an induction argument on `, the number of affine subspaces.

If ` = 1, we have G = GW1
and then G is a S`-BAM.

Assume the result for a fixed `. Let Ŵ := W∪{W`+1}, where W`+1 is an affine subspace such that it has
nonempty intersection S`+1 with S`, and let GW`+1

be a W`+1-BAM. Employing Lemma 1 with S` and W`+1

playing the role of V and W , respectively, and Ĝ and GW`+1
playing the role of GV and GW , respectively,

we get that Ĝ := G ◦GW`+1
is a S`+1-BAM. ut

In the next section, we define the block-wise circumcenter operator and will prove that it is a best approx-
imation mapping.

3 The block-wise circumcentered–reflection method

The main purpose of this paper is applying the recently developed circumcentered–reflection method (CRM)
[14] to solve problem (1) by taking advantage of a block-wise structure. This idea may be beneficial in certain
problems coming from the discretization of partial differential equations as we describe and illustrate in our
numerical section. We remind that CRM iterates by taking an ordered round of successive reflections onto
affine subspaces and then it chooses the new iterate by means of equidistance to the reflected points, which
explains the usage of the geometric term circumcenter.

Let us give the definition of the circumcenter of a block of finitely many affine subspaces.

Definition 3 (circumcentered-reflection for a block) Let B := (U1, U2, . . . , Uq) be a block of ordered
affine subspaces, where q ≥ 1 is a fixed integer. Suppose also that the intersection SB :=

⋂q
i=1 Ui is nonempty.

The circumcenter of the block B at the point z ∈ Rn is denoted by CB(z) and defined by the following
properties:

(i) CB(z) ∈Wz := aff{z,RU1(z), RU2RU1(z), . . . , RUq · · ·RU2RU1(z)};
(ii) ‖z − CB(z)‖ = ‖RU1

(z)− CB(z)‖ = · · · = ‖RUq
· · ·RU2

RU1
(z)− CB(z)‖.

It is worth noting that the order in which reflections are composed affects the outcome circumcenter. If
not said otherwise, we use increasing order of indices for the computation of a circumcenter.

Before presenting the definition of the block-wise circumcentered–reflection method (Bw-CRM), we list
two consequences of results from Lemma 3.1 of [14] that will be at the core of our convergence analysis for
Bw-CRM.

Lemma 2 (good definition of CRM) Consider a block of affine subspaces B = (U1, U2, . . . , Uq) with
SB = ∩qi=1Ui nonempty. For any z ∈ Rn, CB(z) is well and uniquely defined.
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Proof See [14, Lemma 3.1]. ut

The circumcenter, as above, is the intersection of suitable bisectors. Its computation requires the resolution
of a q × q linear system of equations. Details can be found in [14, p. 161] and [10, Theorem 4.1].

The previous lemma established that the circumcenter is well defined. We now recall that the circumcenter
operator is a BAM.

Theorem 2 (circumcenter operator is a BAM) Consider a block of affine subspaces B =
(U1, U2, . . . , Uq) with SB = ∩qi=1Ui nonempty. Then, there exists a constant rB ∈ [0, 1) so that

‖CB(z)− PSB(z)‖ ≤ rB‖z − PSB(z)‖,

for all z ∈ Rn. Moreover, PSB(CB(z)) = PSB(z).

Proof See [14, Lemma 3.2]. ut

The previous theorem says that CB is a SB-BAM. In order to define our new circumcenter scheme, consider
the following terminology.

Definition 4 (block partition) We say that B = (B1,B2, . . . ,Bp) is an ordered collection of blocks (with
cardinality p) for the ordered affine subspaces U1, U2, . . . , Um if we can write B1 = (Uq0+1, Uq0+2, . . . , Uq1),
B2 = (Uq1+1, Uq1+2, . . . , Uq2), . . ., Bp = (Uqp−1+1, Uqp−1+2, . . . , Uqp), with q0 = 0 and qp = m. We assume
that every block Bi has size qi − qi−1 ≥ 1, i = 1, . . . , p.

Note that in the previous definition we are simply selecting subsets of subspaces based on a partition of the
set of indices, illustrated below

I = {1, 2, . . . ,m} = {q0 + 1, . . . , q1︸ ︷︷ ︸
1st block indices

, q1 + 1, . . . , q2︸ ︷︷ ︸
2nd block indices

, q2 + 1, . . . , q3︸ ︷︷ ︸
3rd block indices

, . . . , qp−1 + 1, . . . , qp︸ ︷︷ ︸
p-th block indices

}.

We now define the block-wise circumcentered-reflection operator.

Definition 5 (block-wise circumcentered-reflection) Let B = (B1,B2, . . . ,Bp) be an ordered collection
of blocks for the affine subspaces U1, U2, . . . , Um and assume that increasing index order is taken for both
blocks and subspaces. Then, for a point z ∈ Rn we define the block-wise circumcentered-reflection step CB(z)
by

CB(z) := CBp
◦ CBp−1

◦ · · · ◦ CB2
◦ CB1

(z).

A key result is presented in Section 3.1. It establishes linear convergence of the sequence
(
CkB(z)

)
k∈N

to PS(z). Our proof that Bw-CRM provides a sequence converging linearly to the solution of the best
approximation problem (1) depends on some further auxiliary results, derived in the next section.

In the following section, the circumcenter operators for each block CBj
will play the role of the best

approximation mappings GWj
’s. Furthermore, CB will play the role of G in Theorem 1.

3.1 Linear convergence of the block-wise circumcentered–reflection method

Now, we summarize our result on Bw-CRM. Remind that B = (B1,B2, . . . ,Bp) is a fixed ordered collection
of ordered p blocks for the affine subspaces U1, U2, . . . , Um. Recall the notation S := ∩mi=1Ui and CB for
the block-wise circumcentered-reflection operator regarding B. Due to the last auxiliary result, we easily
derive linear convergence of Bw-CRM for solving problem (1). Next, we formally state that CB is a best
approximation mapping with respect to S.
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Theorem 3 (block-wise operator is a BAM) Let CB be the block-wise circumcentered-reflection oper-
ator regarding B. Then, there exists a constant rB ∈ [0, 1) so that

‖CB(z)− PS(z)‖ ≤ rB‖z − PS(z)‖,

for all z ∈ Rn. Moreover, PS(CB(z)) = PS(z) and the convergence of (CkB(z))k∈N is linear to the unique
solution PS(z), i.e.,

lim
k→∞

CkB(z) = PS(z).

Furthermore, the global Q-linear rate is rB ∈ [0, 1), i.e., for all k ∈ N,

‖CkB(z)− PS(z)‖ ≤ rkB‖z − PS(z)‖.

Proof Due to Definition 5, CB is a composition of circumcenter operators, which of each is a BAM (Theo-
rem 1) and thus, by Theorem 2, it is itself a BAM. The claims on the sequence (CkB(z))k∈N follow then from
Proposition 1. ut

3.2 Connections between Bw-CRM and MAP

Based on our papers [13, 14] and on the previous results, we briefly discuss now some curious connections
between Bw-CRM and the method of alternating projections (MAP).

Our concept of best approximation mapping is, by definition, a relaxation of a projection operator. With
that said, the first relation between Bw-CRM and MAP we want to point out is that Bw-CRM happens to be
a best approximation mapping, as proven in the last section. Furthermore, the well known linear convergence
of MAP for a finite number of intersecting affine subspaces [21, Theorems 9.31 and 9.33] follows as an
immediate consequence of the result on best approximation mappings stated in Theorem 1.

Another connection between Bw-CRM and MAP follows from the fact that the projection of a point onto
a closed convex set can be seen as the circumcenter regarding the given point and its reflection onto the
corresponding set. In other words, if you have a point z ∈ Rn and a closed convex set U , then PU (z) =
circumcenter{z,RU (z)} because PU (z) ∈ aff{z,RU (z)} and ‖z − PU (z)‖ = ‖RU (z) − PU (z)‖. Therefore,
considering the notation from the previous section, we can observe that when all blocks Bi’s have cardinality
1, i.e., p = m and Bi = (Ui) for all i = 1, . . . ,m, we have that CBi is precisely the orthogonal projector onto
Ui. Hence, the block-wise circumcentered-reflection operator CB := CBp

◦ · · · ◦ CB2
◦ CB1

coincides with the
MAP operator PUm

◦ · · · ◦ PU2
◦ PU1

.

In addition to having the aforementioned connections to MAP, we will see next that the full-block Bw-
CRM, i.e., CRM itself, serves as a projector when the multi-set intersection regards only hyperplanes. CRM
indeed finds the projection of any given point onto the intersection of hyperplanes in one single step. Perhaps,
such a feature might be useful in the implementation of projection methods.

4 One step convergence of CRM for hyperplane intersection

The initial motivation in the development of our first circumcenter scheme in [13] was defining a method
that could handle the trivial problem of finding the intersection of two crossing lines in R2 in one step. In
the present section, this is done in dimension n for hyperplanes.

The key ingredient that enables the full block Bw-CRM (original CRM) to converge in only one step
for hyperplane intersection is that the orthogonal subspace to a given nonempty hyperplane always has
dimension one. Interestingly, the first clues on this one-step convergence were indicated by our numerical
experiments. Thanks to them we came up with the following results.
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Lemma 3 (one step convergence for full block Bw-CRM) Consider H = (H1, H2, . . . ,Hp) where
Hi’s are hyperplanes with nonempty intersection SH and let CH be the CRM operator regarding H. If z ∈ Rn
is so that for all i = 1, 2, . . . , p we have RHi

· · ·RH1
(z) /∈ Hi, then the circumcenter CH(z) is already the

projection of z onto SH.

Proof Without loss of generality, we assume that Hi’s are subspaces, as their intersection SH is nonempty.

It was proven in [14, Lemma 3.1] that CH(z) is precisely the projection of PSH(z) onto

Wz = aff{z,RH1
(z), RH2

RH1
(z), . . . , RHp

· · ·RH2
RH1

(z)}.

Therefore, by considering the subspace Ŵz := Wz − CH(z), we have

PSH(z)− CH(z) ⊥ Ŵz. (26)

Let v1 := RH1(z) − z, v2 := RH2RH1(z) − RH1(z), . . ., vp := RHp · · ·RH2RH1(z) − RHp−1 · · ·RH2RH1(z).

Clearly, vi ∈ Ŵz, for i = 1, . . . , p and Ŵz = span{v1, v2, . . . , vp}. Also, from the definition of reflection, we
have vi ⊥ Hi, for all i = 1, . . . , p.

By taking into account the hypothesis RHi · · ·RH1(z) /∈ Hi, it is straightforward to conclude that all vi’s
are not zero. Then, since each Hi is a hyperplane, we have

span{vi} = H⊥i , i = 1, . . . , p.

Now, linear algebra gives us

Ŵz = span{v1, v2, . . . , vp}
= span{v1}+ span{v2}+ · · ·+ span{vp}
= H⊥1 +H⊥2 + · · ·+H⊥p

= span{H⊥1 ∪H⊥2 ∪ · · · ∪H⊥p }

= (H1 ∩H2 ∩ · · · ∩Hp)
⊥

= S⊥H

and from (26) we have
PSH(z)− CH(z) ⊥ S⊥H. (27)

We have shown in [13, 14] that PSH(CH(z)) = PSH(z) and because PSH(CH(z)) − CH(z) is orthogonal to
SH, it follows that

PSH(z)− CH(z) ⊥ SH. (28)

The combination of (27) and (28) implies that PSH(z)− CH(z) = 0, that is,

CH(z) = PSH(z),

which completes the proof. ut

We observe that one can easily construct an example with two lines playing the role of hyperplanes in
R2 violating the hypothesis in Lemma 3 for certain initial points, where indeed the one step convergence
of CRM is lost. We might then ask if at least finite convergence of CRM can always be expected in the
case of hyperplane intersection. Although we lean towards a positive answer to this interesting theoretical
question, we note that it is essentially irrelevant. There are at least two reasons for that. The first is that
violating RHi · · ·RH1(z) /∈ Hi is completely “bad luck”. More formally, one can actually show that the
set {z ∈ Rn | RHi · · ·RH1(z) /∈ Hi,∀i = 1, 2, . . . , p} is dense in Rn (see further comments at the end of
the section). The second reason why having z in the complement of the previous set, namely bad luck, is
not really an issue, is that we can derive a simple and cheap procedure to rewrite our best approximation
problem in an equivalent way such that CRM solves the reformulation in one single step. Next we describe
this procedure upon a lemma.
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Lemma 4 (procedure for dealing with bad luck) Consider H = (H1, H2, . . . ,Hp) where the Hi’s are
hyperplanes with nonempty intersection SH. Let z ∈ Rn and assume the existence of a smallest index ı̌ in
{1, 2, . . . , p} for which ž := RHı̌

· · ·RH2
RH1

(z) ∈ Hı̌. Denote by ǎ any given non-null orthogonal vector to
the hyperplane Hı̌ and let us write zrep := z + tRH1

RH2
· · ·RHı̌−2

RHı̌−1
RHı̌

(ǎ), where “ rep” stands for the
idea of replacement of z. Then, for all real number t we have PSH(zrep) = PSH(z) and for all non-null t
sufficiently close to zero it holds that RHi · · ·RH2RH1(zrep) /∈ Hi for i = 1, . . . , ı̌.

Proof Without loss of generality, assume that the hyperplanes H1, H2, . . . ,Hp are subspaces, as their intersec-
tion SH is nonempty. The fact that reflections onto subspaces preserve the correspondent best approximation
solution is a trivial consequence of Pythagoras and the definition and affinity of the reflections. So, the pro-
jections onto SH of all the points RHi

· · ·RH2
RH1

(z) with i = 1, 2, . . . , p is given by PSH(z). This holds in
particular for ž. By construction, tǎ is orthogonal to Hı̌, hence we conclude using Pythagoras again that for
all real number t the projection of ž + tǎ onto SH is also given by PSH(z). Now, it is easy to see that zrep
is defined by reflections of ž + tǎ onto Hi’s starting backwards from the index ı̌ until 1. Indeed, remind that
zrep := z + tRH1

RH2
· · ·RHı̌−2

RHı̌−1
RHı̌

(ǎ), thus

RH1
(zrep) = RH1

(z + tRH1
RH2

· · ·RHı̌−2
RHı̌−1

RHı̌
(ǎ))

Using the linearity of the reflection RH1 and the fact that RH1RH1 = Id, we get

RH1
(zrep) = RH1

(z) + tRH2
· · ·RHı̌−2

RHı̌−1
RHı̌

(ǎ).

Employing this argument successively for RH2
until RHı̌

implies that

RHı̌
· · ·RH2

RH1
(zrep) = RHı̌

· · ·RH2
RH1

(z) + tǎ,

that is,
RHı̌
· · ·RH2

RH1
(zrep) = ž + tǎ.

It follows that the projections of zrep and ž + tǎ onto SH must coincide. Hence, PSH(zrep) = PSH(z).

For all non-null t we have RHı̌
· · ·RH2

RH1
(zrep) = ž+ tǎ /∈ Hı̌ as ǎ is non-null and orthogonal to Hı̌. This

gives the lemma if ı̌ = 1. So, assume from now on that ı̌ > 1. It remains to show that RHi
· · ·RH2

RH1
(zrep) /∈

Hi for i = 1, . . . , ı̌−1 if we take a non-null t with sufficiently small modulus. That follows easily by hypothesis
together with continuity of reflections and Euclidean distance to hyperplanes. By the definition of ı̌ we have
that dist(RH1

(z), H1) 6= 0. Therefore, by continuity in t of the function

f1(t) := dist(RH1
(zrep), H1) = dist(RH1

(z + tRH1
RH2

· · ·RHı̌−2
RHı̌−1

RHı̌
(ǎ)), H1)

we must have a whole interval [−t1, t1], with t1 > 0 for which f1(t) 6= 0. Intervals [−ti, ti] with ti > 0 like
the previous one can be derived in the same way for the remaining indices i = 2, . . . , ı̌− 1 by considering the
functions

fi(t) := dist(RHi
· · ·RH2

RH1
(zrep), Hi) = dist(RHi

· · ·RH2
RH1

(z + tRH1
RH2

· · ·RHı̌−2
RHı̌−1

RHı̌
(ǎ)), Hi).

Let [−ť, ť] represent the smallest of these intervals. We then have that RHi · · ·RH2RH1(zrep) /∈ Hi for
i = 1, . . . , ı̌ if zrep is defined by means of a parameter t belonging to [−ť, ť]. ut

Note that the previous lemma does not necessarily lead us to a point zrep under the conditions of Lemma 3,
we only have an improvement with respect to the index ı̌. Nevertheless, if the rep operation defined in
Lemma 4 is applied successively at most p− ı̌ times, we get a new initial point say zREP so that PSH(z) =
PSH(zREP ) and we have RHi

· · ·RH2
RH1

(zREP ) /∈ Hi for all i = 1, 2, . . . , p. That is, zREP satisfies the
conditions of Lemma 3 while keeping PSH(z) as the best approximation solution. This means that the full
block Bw-CRM, which is the original CRM, is categorically always able to find the solution of the best
approximation problem (1) in one single step for hyperplane intersection. Let us state this as a theorem.

Theorem 4 (one step convergence of CRM) Let H = (H1, H2, . . . ,Hp) where Hi’s are hyperplanes
with nonempty intersection SH, CH be the CRM operator regarding H and z ∈ Rn be given. Then, CRM
finds the projection of z onto SH in one single step (with eventual use of zREP as described above).
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We remind that the probability of having to employ the rep procedure is zero. This is due to the fact
that the set of points z ∈ Rn so that RHi · · ·RH1(z) /∈ Hi for all i = 1, 2, . . . , p is dense in Rn. The density
holds because any z ∈ Rn violating the aforementioned conditions can be approximated by a sequence of
correspondent zrep’s coming from sufficiently shrinking the size of t 6= 0 from Lemma 4. In any case, note
that the rep procedure is implementable. One only needs to consider a backtracking search on the parameter
t, reflect onto hyperplanes (which can be done by closed formula) and check pertinence to these hyperplanes.

To finalize the discussion in this section, we would like to present some further remarks.

We want to note that one can consider trivial examples showing that the conditions for one-step conver-
gence in Lemma 3, although sufficient, are not necessary. CRM will converge in one single step whenever the
successive reflections generate an affine space of dimension n−r, where r is the dimension of the intersection
of the given subspaces. One could have the dimension n− r even if the given subspaces are not hyperplanes
and also under the bad luck of getting reflected points precisely on them.

Our last remark is on possible finite convergence of CRM for hyperplane intersection without employing
the rep procedure at all. Although omitting the proof, we notice that CRM converges in at most 3 steps
with no rep procedure for the intersection of 2 hyperplanes in Rn. The challenging question for more than
2 hyperplanes is left open. Also, we intend to investigate under which conditions one has finite convergence
for CRM, when the subspaces are not all hyperplanes.

5 Numerical illustrations

The geometric nature of Bw-CRM can be used as a tool for solving some classical problems, e.g., the least
squares problem, the minimum-norm least-squares (rank deficient) problems, the least-norm solutions of
undetermined system and under-determined large-scale linear systems, which are particular instances of
problem (1). In this section, we illustrate the performance of Bw-CRM to solve two related problems: an
application in computed tomography and the minimum-norm least square problem. We run all the numerical
experiments in Julia language [15].

5.1 Application in Computed Tomography

Reconstruction of images in Computed Tomography (CT) can be addressed by approximately solving linear
systems of equations coming from the discretization of suitable inverse problems. Algebraic reconstruction
techniques (ART), which are basically MAP type methods, are usually employed to solve those linear systems
as not much accuracy is needed for a solution representing a reasonable image for medical purposes [23,
Chapter 11].

In this subsection, we solve a problem As = b, whose solution provides the well known Shepp-Logan
phantom head [28]. This is a standard synthetic image that serves as the model of a human head and is
used for testing image reconstruction algorithms. The data for the matrix A and the vector b were generated
using AIR Tools II, a package by Hansen and Jørgensen [22], and imported to be used in the Julia

implementation. In this case, A has 5732 rows and 2500 columns. The package also provides the exact
50× 50 pixel Shepp-Logan image, which is represented as ẑ ∈ R2500.

In our experiments, we use Bw-CRM and look at the quality of image reconstructions after a fixed budget
of 10 iterations. The affine subspaces under consideration are the hyperplanes given by each row of As = b.
These affine subspaces are distributed in blocks, where each block contains q hyperplanes, except maybe for
the last one which contains (5732 mod q) hyperplanes. We exhibit in Table 1 the residue and distance to the
actual solution of each version of Bw-CRM, where Bw-CRM-q indicates that the block size used is q — or
(5732 mod q) and the time in seconds of which method. Remind that Bw-CRM-1 is MAP. It is worth noting
that Bw-CRM-16, Bw-CRM-64 and Bw-CRM-256 all beat Bw-CRM-1 (MAP) both in iterations to achieve
the same residue.
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Table 1: Bw-CRM applied to CT – Matrix size: 5732× 2500 – Budget of 10 iterations.

Method-Block size ‖Az10 − b‖ ‖z10 − ẑ‖ CPU (s)

Bw-CRM-1 (MAP) 3.0321× 101 1.3816 5.3876
Bw-CRM-16 2.8590× 101 1.3382 8.5242
Bw-CRM-64 4.2602 1.0332 6.1665
Bw-CRM-256 7.1039× 10−1 2.7423× 10−1 8.7073

In Figure 1 we display the original solution and each reconstruction by Bw-CRM for q = 1, 16, 64, 256.
The best solution is achieved by Bw-CRM-256 at the price of solving 22 symmetric positive definite linear
systems of size 256 and 1 of size 100, as 5732 = 22 · 256 + 100.

(a) Exact Shepp-Logan (b) Bw-CRM-1 (MAP) (c) Bw-CRM-16

(d) Bw-CRM-64 (e) Bw-CRM-256

Fig. 1: CT image reconstructions of Shepp-Logan phantom of size 50× 50.

5.2 Solving a least norm problem

A direct application of Bw-CRM is to solve the following optimization problem: Find ẑ ∈ Rn, the solution
of

min ‖z − s‖, subject to As = b, (29)

where A ∈ Rp×n(p ≤ n), b ∈ Rp and z a given vector. The solution ẑ is the closest point to z that lies in the
intersection SH of the hyperplanes in H := (H1, H2, . . . ,Hp), where Hi is given by the solutions of the i-th
equation of As = b, that is, ẑ is the projection of z onto SH.
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As shown in Section 4, Bw-CRM, when applied to solving this problem by taking the p individual hy-
perplanes forming the equations (as the main block H), finds the solution ẑ in just one iteration — hatring
some bad luck, as already discussed. If we set z = 0, thus CH(0) = ẑ and problem (29) becomes the minimum
norm of under-determined system problem (MNP). It is well-known that if A has full rank we can solve (29)
by using the Moore-Penrose pseudo-inverse of A, as ẑ = z +AT (AAT )−1(b−Az).

In order to illustrate various possible choices of blocks for Bw-CRM, we solve problem (29) using matrix
coming from a finite element modeling, called FIDAP005, and available at Matrix Market [16]. The matrix A
is given by selecting respectively the first 12, 24 and 27 rows of FIDAP005, b is the correspondent vector of
ones and we take z = 0. The structure of the entire sparse matrix FIDAP005 is shown in Figure 2. Next, we

Fig. 2: Matrix FIDAP005 sparsity structure.

show the results for Bw-CRM in Tables 2 to 4, where each subspace under consideration is given by a row
equation of As = b. The different size of block choices are displayed in the first column of the tables, followed
by the number of blocks, the number of projections/reflections, the number of iterations, the norm of the
residue and the CPU time, in seconds. The stopping criterion was having the norm of the residue smaller
than the labeled tolerance tol. Note that Table 4 presents the results where the sparse block structure of
matrix FIDAP005 is explored.

Table 2: Results for Bw-CRM – Matrix size: 12× 27 – tol = 10−5.

Method-Block size Blocks Proj/Reflec Iter ‖AzIter − b‖ CPU (s)

Bw-CRM-1 (MAP) 12 180 15 4.2323× 10−6 6.2563× 10−4

Bw-CRM-2 6 156 13 7.1863× 10−6 8.7344× 10−4

Bw-CRM-3 4 180 15 5.2967× 10−6 9.3172× 10−4

Bw-CRM-4 3 120 10 8.5466× 10−6 5.7481× 10−4

Bw-CRM-6 2 132 11 3.4566× 10−6 6.1370× 10−4

Bw-CRM-12 (CRM) 1 12 1 7.8280× 10−14 9.9924× 10−5

As expected by the results of Section 4, the full block Bw-CRM converges in one iteration for the hy-
perplane intersection problems above. Note that we have to be careful when looking at the CPU time as it
depends on the inner linear system solver for finding circumcenters. What we can say, though, is that the
number of iterations tends to slightly increase as the number of blocks increase. It would be interesting to
investigate whether there exists a sort of optimal block size, with respect to particular instances.
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Table 3: Results for Bw-CRM – Matrix size: 24× 27 – tol = 10−5.

Method-Block size Blocks Proj/Reflec Iter ‖AzIter − b‖ CPU (s)

Bw-CRM-1 (MAP) 24 12 048 502 9.8869× 10−6 6.9701× 10−2

Bw-CRM-2 12 11 904 496 9.8041× 10−6 1.2950× 10−1

Bw-CRM-3 8 11 160 465 9.9053× 10−6 9.9697× 10−2

Bw-CRM-4 6 9576 399 9.9067× 10−6 6.5870× 10−2

Bw-CRM-6 4 11 880 495 9.8665× 10−6 8.9289× 10−2

Bw-CRM-8 3 10 440 435 9.7581× 10−6 7.0528× 10−2

Bw-CRM-12 2 8328 347 9.7967× 10−6 8.1303× 10−2

Bw-CRM-24 (CRM) 1 24 1 1.4852× 10−12 1.4166× 10−4

Table 4: Results for Bw-CRM – Matrix size: 27× 27 – tol = 10−3.

Method-Block size Blocks Proj/Reflec Iter ‖AzIter − b‖ CPU (s)

BW-CRM-1 (MAP) 27 3 992 166 147 858 9.9998× 10−4 3.0667× 101

BW-CRM-3 9 3 448 602 127 726 9.9997× 10−4 2.6326× 101

BW-CRM-9 3 3 209 355 118 865 9.9999× 10−4 2.9115× 101

BW-CRM-27 (CRM) 1 27 1 6.9229× 10−10 1.5987× 10−4

In contrast to the feasible set of the problems regarding Tables 2 and 3, the feasible set of the problem
addressed in Table 4 reduces to a singleton. Even though it is known that MAP suffers from zig-zag behavior,
we got surprised with the huge amount of iterations that it took to converge in the case of Table 4. We have
established connections between Bw-CRM and MAP in Section 3.2 and unfortunately it seems that, in the
case, when MAP performs poorly this is inherited by Bw-CRM, except for the full block Bw-CRM. This is a
motivation for future investigation on randomized order of subspaces or blocks for Bw-CRM, as randomized
versions of MAP performs a lot better [29].

6 Concluding remarks

We presented new notions and results regarding circumcenter schemes for projecting a given point onto
the (nonempty) intersection of a finite number of affine subspaces. Circumcenter iterations were introduced
in [13] and shown to provide a better bond between reflections than the one considered in the classical
Douglas-Rachford approach. The results in [14] improved [13] by enabling the Circumcentered-Reflection
Method (CRM) to deal with m > 2 affine subspaces. In the present article we also dealt with more than two
sets. We defined the Block-wise Circumcentered-Reflection Method (Bw-CRM), which considers the m affine
subspaces in blocks. More precisely, we composed circumcenter operators along a partition of the indices
1, 2, . . . ,m. In this way, the original circumcenter method from [14] can be seen as Bw-CRM with one full
block, where this block contains all m affine subspaces. It was interesting that by considering Bw-CRM
with m blocks, i.e., the case where each block contains exactly one affine subspace, we recovered the famous
method of alternating projections (MAP). Linear convergence for any blocks choice of Bw-CRM was proven.
Our proof was carried out in a unified fashion thanks to the introduction of a new concept, the one of
best approximation mapping. In addition to deriving theoretical linear convergence of Bw-CRM, numerical
experiments were run. For the numerical tests we considered blocks with homogeneous cardinality in order to
investigate the relation between speed of convergence (time/complexity) and number of blocks in Bw-CRM.
The experiments also indicated what became a curious result in this paper: it turns out that CRM (Bw-CRM
with one full block) finds the projection of any given point onto the intersection of hyperplanes in one single
step.

This work contributed not only with a deeper understanding of circumcenter type methods, we think that
our results represent another step towards using circumcenters in other settings. Our future research will be
focused on enforcing circumcenter iterations for solving the nonconvex problem: Find z ∈ S with

S = U ∩ V,
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where U =
⋃m
i=1 Ui, with Ui, for each i, being a subspaces and V being an affine subspace. This problem

contains as a particular case the nonconvex sparse affine feasibility problem for which DRM and MAP
fail to converge globally. We have strong convictions based on initial numerical tests and some preliminary
proofs that a (block-wise) circumcenter method can perform very well (global convergence) for this kind of
affine-structured problem.
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