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Abstract

We extend the result on the spectral projected gradient method by Birgin et al. in 2000 to
a log-determinant semidefinite problem (SDP) with linear constraints and propose a spectral
projected gradient method for the dual problem. Our method is based on alternate projections
on the intersection of two convex sets, which first projects onto the box constraints and then
onto a set defined by a linear matrix inequality. By exploiting structures of the two projec-
tions, we show the same convergence properties can be obtained for the proposed method as
Birgin’s method where the exact orthogonal projection onto the intersection of two convex sets
is performed. Using the convergence properties, we prove that the proposed algorithm attains
the optimal value or terminates in a finite number of iterations. The efficiency of the proposed
method is illustrated with the numerical results on randomly generated synthetic/deterministic
data and gene expression data, in comparison with other methods including the inexact primal-
dual path-following interior-point method, the adaptive spectral projected gradient method,
and the adaptive Nesterov’s smooth method. For the gene expression data, our results are
compared with the quadratic approximation for sparse inverse covariance estimation method.
We show that our method outperforms the other methods in obtaining a better optimal value
fast.

Key words. Dual spectral projected gradient methods, log-determinant semidefinite programs
with linear constraints, dual problem, theoretical convergence results, computational efficiency.
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1 Introduction

We consider a convex semidefinite program with linear constraints of the form:

(P)
min : f(X) := Tr(CX)− µ log detX +Tr(ρ|X|)
s.t. : A(X) = b,X ≻ O,
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where C, X and ρ are n × n symmetric matrices S
n, the elements of ρ ∈ S

n are nonnegative,
Tr denotes the trace of a matrix, |X | ∈ S

n the matrix obtained by taking the absolute value
of every element Xij (1 ≤ i, j ≤ n) of X, X ≻ O means that X is positive definite, and A
a linear map of Sn → R

m. In (P), C,ρ ∈ S
n, µ > 0, b ∈ R

m, and the linear map A given by
A(X) = (Tr(A1X), . . . ,Tr(AmX))T , where A1, . . . ,Am ∈ S

n, are input data.
Problem (P) frequently appears in statistical models such as sparse covariance selection or

Gaussian graphical models. In particular, the sparse covariance selection model [6] or its graphical
interpretation known as Gaussian Graphical Model (GGM) [11] are special cases of (P) for ρ = O

and linear constraints taking the form Xij = 0 for (i, j) ∈ Ω ⊆ {(i, j) | 1 ≤ i < j ≤ n}.
Many approximate solution methods for solving variants of (P) have been proposed over the

years. The methods mentioned below are mainly from recent computational developments. The
adaptive spectral gradient (ASPG) method and the adaptive Nesterov’s smooth (ANS) method
proposed by Lu [14] are one of the earlier methods which can handle large-scale problems. Ueno
and Tsuchiya [16] proposed a Newton method by localized approximation of the relevant data.
Wang et al. [18] considered a primal proximal point algorithm which solves semismooth subprob-
lems by the Newton-CG iterates. Employing the inexact primal-dual path-following interior-point
method, Li and Toh in [12] demonstrated that the computational efficiency could be increased,
despite the known inefficiency of interior-point methods for solving large-sized problems. Yuan [20]
also proposed an improved Alternating Direction Method (ADM) to solve the sparse covariance
problem by introducing an ADM-oriented reformulation. For a more general structured mod-
els/problems, Yang et al. [19] enhanced the method in [18] to handle block structured sparsity,
employing an inexact generalized Newton method to solve the dual semismooth subproblem. They
demonstrated that regularization using ‖·‖2 or ‖·‖∞ norms instead of ‖·‖1 in (P) are more suitable
for the structured models/problems. Wang [17] first generated an initial point using the proximal
augmented Lagrangian method, then applied the Newton-CG augmented Lagrangian method to
problems with an additional convex quadratic term in (P). Li and Xiao [13] employed the sym-
metric Gauss-Seidel-type ADMM in the same framework of [18]. A more recent work by Zhang
et al. [21] shows that (P) with simple constraints as Xij = 0 for (i, j) ∈ Ω can be converted into
a more computationally tractable problem for large values of ρ. Among the methods mentioned
here, only the methods discussed in [18, 19, 17] can handle problems as general as (P).

We propose a dual-type spectral projected gradient (SPG) method to obtain the optimal value
of (P). More precisely, an efficient algorithm is designed for the dual problem with g : Rm×S

n → R:

(D)
max : g(y,W ) := bTy + µ log det(C +W −AT (y)) + nµ− nµ log µ

s.t. : |W | ≤ ρ,C +W −AT (y) ≻ O,

under the three assumptions: (i) A is surjective, that is, the set of A1, . . . ,Am is linearly inde-
pendent; (ii) The problem (P) has an interior feasible point, i.e., there exists X ≻ O such that
A(X) = b; (iii) A feasible point for (D) is given or can be easily computed. i.e., there exists
y ∈ R

m and W ∈ S
n such that |W | ≤ ρ and C +W +AT (y) ≻ O. These assumptions are not

strong as many applications satisfy these assumptions with slight modifications.
Our approach for solving (D) by a projected gradient method is not the first one. A dual

approach was examined in [7], however, their algorithm which employs the classical gradient pro-
jection method cannot handle linear constraints.

The spectral projection gradient (SPG) method by Birgin et al. [2], which is slightly modified in
our method, minimizes a smooth objective function over a closed convex set. Each iteration of the
SPG requires (a) projection(s) onto the feasible closed convex set and performs a non-monotone
line search for the Barzilai-Borwein step size [1]. An important advantage of the SPG method
is that it requires only the information of function values and first-order derivatives, therefore,
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the computational cost of each iteration is much less than methods which employ second-order
derivatives such as interior-point methods. The ASPG method [14] described above repeatedly
applies the SPG method by decreasing ρ adaptively, but the ASPG method was designed for the
only specific constraint Xij = 0 for (i, j) ∈ Ω. We extend these results to directly handle a more
general linear constraint A(X) = b.

Our proposed algorithm called Dual SPG, which is a dual-type SPG, adapts the SPG methods
of [2] to (D). A crucial difference between our method and the original method is that the Dual
SPG first performs an orthogonal projection onto the box constraints and subsequently onto the
set defined by an LMI, while the original method computes the exact orthogonal projection of the
search direction over the intersection of the two convex sets. The projection onto the intersection
of the two sets requires some iterative methods, which frequently causes some numerical difficul-
ties. Moreover, the projection by an iterative method is usually inexact, resulting in the search
direction that may not be an ascent direction. We note that an ascent direction is necessary for the
convergence analysis as shown in Lemma 3.2 in Section 3. On the other hand, the projections onto
the box constraints and the LMI constraints can be exactly computed within numerical errors.

The convergence analysis for the Dual SPG (Algorithm 2.1) presented in Section 3 shows
that such approximate orthogonal projections do not affect convergence, in fact, the convergence
properties of the original SPG also hold for the Dual SPG. For instance, stopping criteria based
on the fixed point of the projection (Lemma 3.8) and other properties described in the beginning
of Section 3 can be proved for the Dual SPG. The properties are used to finally prove that the
algorithm either terminates in a finite number of iterations or successfully attains the optimal
value.

We should emphasize that the proof for the original SPG developed in [2] cannot be applied
to the Dual SPG proposed here. As the Dual SPG utilizes the two different projections instead of
the orthogonal projection onto the feasible region in the original SPG, a new proof is necessary, in
particular, for Lemma 3.8 where the properties of the two projections are exploited. We also use
the duality theorem to prove the convergence of a sub-sequence (Lemma 3.15) since the Dual SPG
solves the dual problem. Lemma 3.15 cannot be obtained by simply applying the proof in [2].

The implementation of Algorithm 2.1, called DSPG in this paper, were run on three classes
of problems: Randomly generated synthetic data (Section 4.1), deterministic synthetic data (Sec-
tion 4.2), and gene expression data (Section 4.3; with no constraints) from the literature. Com-
parison of the DSPG against high-performance code such as ASPG [14], ANS [14], and IIPM [12]
shows that our code can be superior or at least competitive with them in terms of computational
time when high accuracy is required. In particular, against QUIC [9], the DSPG can be faster for
denser instances.

This paper is organized as follows: We proposed our method DSPG in Section 2. Section 3
is mainly devoted to the convergence of the proposed method. Section 4 presents computational
results of the proposed method in comparison with other methods. For the gene expression data,
our results are compared with QUIC. We finally conclude in Section 5.

1.1 Notation

We use ||y|| :=
√

yTy for y ∈ R
m and ||W || :=

√
W •W for W ∈ S

n where W • V =
Tr(WV ) =

∑n
i=1

∑n
j=1WijVij for V ∈ S

n, as the norm of vectors and matrices, respectively. We

extend the inner-product to the space of Rm× S
n by (y1,W 1) • (y2,W 2) := yT

1 y2+W 1 •W 2 for
(y1,W 1), (y2,W 2) ∈ R

m×S
n. The norm of linear maps is defined by ||A|| := max||X ||=1 ||A(X)||.

The superscript of T indicates the transpose of vectors or matrices, or the adjoint of linear
operators. For example, the adjoint of A is denoted by AT : Rm → S

n. The notation X � Y (X ≻
Y ) stands for X−Y being a positive semidefinite matrix (a positive definite matrix, respectively).
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We also use X ≥ Y to describe that X − Y is a non-negative matrix, that is, Xij ≥ Yij for all
i, j = 1, . . . , n.

The induced norm for R
m × S

n is given by ||(y,W )|| :=
√
(y,W ) • (y,W ). To evaluate the

accuracy of the solution, we also use an element-wise infinity norm defined by

||(y,W )||∞ := max{ max
i=1,...,m

|yi|, max
i,j=1,...,n

|Wij |}.

For a matrix W ∈ S
n, [W ]≤ρ is the matrix whose (i, j)th element is min{max{Wij ,−ρij}, ρij}.

The set of such matrices is denoted by W := {[W ]≤ρ : W ∈ S
n}. In addition, P S denotes the

projection onto a closed convex set S;

P S(x) = argmin
y∈S

||y − x||.

We denote an optimal solution of (P) and (D) byX∗ and (y∗,W ∗), respectively. For simplicity,
we use X(y,W ) := µ(C +W − AT (y))−1. The gradient of g is a map of Rm × S

n → R
m × S

n

given by

∇g(y,W ) := (∇yg(y,W ),∇W g(y,W ))

= (b− µA((C +W −AT (y))−1), µ(C +W −AT (y))−1)

= (b−A(X(y,W )),X(y,W ))

We use F and F∗ to denote the feasible set and the set of optimal solutions of (D), respectively;

F := {(y,W ) ∈ R
m × S

n : W ∈ W ,C +W −AT (y) ≻ O}
F∗ := {(y∗,W ∗) ∈ R

m × S
n : g(y∗,W ∗) ≥ g(y,W ) for (y,W ) ∈ F}.

Finally, f∗ and g∗ are used to denote the optimal values of (P) and (D), respectively.

2 Spectral Projected Gradient Method for the Dual Problem

To propose a numerically efficient method, we focus on the fact that the feasible region of (D) is

the intersection of two convex sets: F = Ŵ ∩ F̂ where

Ŵ := R
m ×W

F̂ := {(y,W ) ∈ R
m × S

n : C +W −AT (y) ≻ O}.

Although the projection onto this intersection requires elaborated computation, the projection
onto the first set can be simply obtained by

P ̂W (y,W ) = (y, [W ]≤ρ). (1)

Next, we consider the second set F̂ . If the kth iterate (yk,W k) satisfies C + W k − AT (yk) ≻
O and the direction toward the next iterate (yk+1,W k+1) is given by (∆yk,∆W k), then the
step length λ can be computed such that (yk+1,W k+1) := (yk,W k) + λ(∆yk,∆W k) satisfies
C +W k+1 − AT (yk+1) ≻ O using a similar procedure to interior-point methods. (See 4 below.)

By the assumption (iii), we can start from some initial point (y0,W 0) ∈ F = Ŵ ∩ F̂ and it is
easy to keep all the iterations inside the intersection F .

We now propose Algorithm 2.1 for solving the dual problem (D). The notation Xk :=
X(yk,W k) = µ(C +W k +AT (yk))−1 is used.
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Algorithm 2.1. (Dual Spectral Projected Gradient Method)

Step 0: Set parameters ǫ ≥ 0, γ ∈ (0, 1), τ ∈ (0, 1), 0 < σ1 < σ2 < 1, 0 < αmin < αmax < ∞ and
an integer parameter M ≥ 1. Take the initial point (y0,W 0) ∈ F and an initial projection
length α0 ∈ [αmin, αmax]. Set an iteration number k := 0.

Step 1: Compute a search direction (a projected gradient direction) for the stopping criterion

(∆yk
(1),∆W k

(1)) := P ̂W ((yk,W k) +∇g(yk,W k))− (yk,W k)

= (b−A(Xk), [W k +Xk]≤ρ −W k). (2)

If ||(∆yk
(1),∆W k

(1))||∞ ≤ ǫ, stop and output (yk,W k) as the approximate solution.

Step 2: Compute a search direction (a projected gradient direction)

(∆yk,∆W k) := P ̂W ((yk,W k) + αk∇g(yk,W k))− (yk,W k)

= (αk(b−A(Xk)), [W k + αkXk]≤ρ −W k). (3)

Step 3: Apply the Cholesky factorization to obtain a lower triangular matrix L such that C+W k−
AT (yk) = LLT . Let θ be the minimum eigenvalue of L−1(∆W k − AT (∆yk))L−T . Then,
compute

λ
k
:=

{
1 (θ ≥ 0)
min

{
1,−1

θ
× τ
}

(θ < 0)
(4)

and set λk
1 := λ

k
. Set an internal iteration number j := 1.

Step 3a: Set (y+,W+) := (yk,W k) + λk
j (∆yk,∆W k).

Step 3b: If

g(y+,W+) ≥ min
0≤h≤min{k,M−1}

g(yk−h,W k−h) + γλk
j∇g(yk,W k) • (∆yk,∆W k) (5)

is satisfied, then go to Step 4. Otherwise, choose λk
j+1 ∈ [σ1λ

k
j , σ2λ

k
j ], and set j := j+1,

and return to Step 3a.

Step 4: Set λk := λk
j , (y

k+1,W k+1) := (yk,W k) + λk(∆yk,∆W k), (s1,S1) := (yk+1,W k+1) −
(yk,W k) and (s2,S2) := ∇g(yk+1,W k+1) − ∇g(yk,W k). Let bk := (s1,S1) • (s2,S2).
If bk ≥ 0, set αk+1 := αmax. Otherwise, let ak := (s1,S1) • (s1,S1) and set αk+1 :=
min{αmax,max{αmin,−ak/bk}}.

Step 5: Increase the iteration counter k := k + 1 and return to Step 1.

The projection length αk+1 ∈ [αmin, αmax] in Step 4 is based on the Barzilai-Borwein step [1].
As investigated in [8, 15], this step has several advantages. For example, a linear convergence can
be proven for unconstrained optimization problems without employing line search techniques on
the conditions that its initial point is close to a local minimum and the Hessian matrix of the
objective function is positive definite.
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3 Convergence Analysis

We prove in Theorem 3.16, one of our main contributions, that Algorithm 2.1 with ǫ = 0 generates
a point of F∗ in a finite number of iterations or it generates a sequence {(yk,W k)} ⊂ F that
attains limk→∞ g(yk,W k) = g∗.

For the proof of Theorem 3.16, we present lemmas: Lemma 3.2 shows that the sequences
{(yk,W k)} by Algorithm 2.1 remain in a level set of g for each k. Lemma 3.3 discusses on the
boundedness of the level set, Lemma 3.7 on the uniqueness of the optimal solution in (P), Lemma
3.8 on the validity of the stopping criteria in Algorithm 2.1, Lemma 3.10 on the bounds for the
search direction (∆yk,∆W k). Lemmas 3.12 and 3.15, which use Lemma 3.11 in their proofs, show
that Algorithm 2.1 does not terminate before computing an approximate solution. Lemma 3.12
provides a lower bound for the step length λk of Algorithm 2.1. Lemmas 3.13 and 3.15, which uses
Lemma 3.14, discuss the termination of Algorithm 2.1 with ǫ = 0 in a finite number of iterations
attaining the optimal value g∗ or Algorithm 2.1 attains lim infk→∞ g(yk,W k) = g∗.

In the proof of Theorem 3.16, the properties of projection will be repeatedly used. The rep-
resentative properties are summarized in Proposition 2.1 of [8]. We list some of the properties
related to this paper in the following and their proofs can also be found in [8] and the references
therein.

Proposition 3.1. ([8]) For a convex set S ⊂ R
n and a function f : Rn → R,

(P1) (x− P S(x))
T (y − P S(x)) ≤ 0 for ∀x ∈ R

n, ∀y ∈ S.

(P2) (P S(x)− P S(y))
T (x− y) ≥ ||(P S(x)− P S(y)||2 for ∀x,∀y ∈ R

n.

(P3) ||P S(x)−P S(y)|| ≤ ||x− y|| for ∀x,∀y ∈ R
n.

(P4) ||P S(x− α∇f(x))− x|| is non-decreasing in α > 0 for ∀x ∈ S.

(P5) ||P S(x− α∇f(x))− x||/α is non-increasing in α > 0 for ∀x ∈ S.

To establish Theorem 3.16, we begin with a lemma that all the iterate points remain in a subset
of F .

Lemma 3.2. Let L be the level set of g determined by the initial value g(y0,W 0),

L := {(y,W ) ∈ R
m × S

n : (y,W ) ∈ F , g(y,W ) ≥ g(y0,W 0)}.

Then, the sequence {(yk,W k)} generated by Algorithm 2.1 satisfies (yk,W k) ∈ L for each k.

Proof. First, we prove that (yk,W k) ∈ F for each k. By the assumption (iii), we have (y0,W 0) ∈
F . Assume that (yk,W k) ∈ F for some k. Since 0 ≤ λk ≤ 1 in Step 4 and W k ∈ W, the convexity
of W indicates W k+1 = W k + λk∆W k = (1 − λk)W k + λk[W k + αkXk]≤ρ ∈ W . In addition,

the value θ of Step 3 ensures C + (W k + λ∆W k) −AT (yk + λ∆yk) ≻ O for λ ∈ [0, λ
k
]. Hence,

(yk+1,W k+1) ∈ F .
Now, we verify that g(yk,W k) ≥ g(y0,W 0) for each k. The case k = 0 is clear. The case
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k ≥ 1 depends on the fact (∆yk,∆W k) is an ascent direction of g at (yk,W k);

∇g(yk,W k) • (∆yk,∆W k)

= (∇yg(y
k,W k),∇W g(yk,W k)) • (∆yk,∆W k)

= αk||b−A(Xk)||2 +Xk • ([W k + αkXk]≤ρ −W k)

≥ αk||b−A(Xk)||2 + 1

αk
||[W k + αkXk]≤ρ −W k||2

=
1

αk
||(∆yk,∆W k)||2 (6)

≥ 0.

The first inequality comes from (P2) by putting W as S, W k + αkXk as x and W k as y, and
using the relations PW (W k+αkXk) = [W k+αkXk]≤ρ and PW (W k) = W k by (yk,W k) ∈ F .

When the inner iteration terminates, we have

g(yk+1,W k+1) ≥ min
0≤h≤min{k,M−1}

g(yk−h,W k−h) + γλk∇g(yk,W k) • (∆yk,∆W k)

≥ min
0≤h≤min{k,M−1}

g(yk−h,W k−h).

Therefore, if min0≤h≤k g(y
h,W h) ≥ g(y0,W 0), we obtain g(yk+1,W k+1) ≥ g(y0,W 0). By in-

duction, we conclude (yk,W k) ∈ L for each k.

The key to establishing Theorem 3.16 is the boundedness of the level set L.

Lemma 3.3. The level set L is bounded.

Proof. If (y,W ) ∈ L, then W ∈ W. Thus, the boundedness of W is clear from |Wij | ≤ ρij. We

then fix Ŵ ∈ W and show the boundedness of

L̂W
:= {y ∈ R

m : g(y,Ŵ ) ≥ g(y0,W 0), C + Ŵ −AT (y) ≻ O}.

Let Z := C + Ŵ − AT (y) for y ∈ L̂W
. Since A is surjective, the map AAT : Rm → R

m is

nonsingular and

||y|| = ||(AAT )−1A(C + Ŵ −Z)|| ≤ ||(AAT )−1|| · ||A|| · (||C||+ ||Ŵ ||+ ||Z||).

Hence, if we can prove the boundedness of Z, the desired result follows.
Since we assume that (P) has at least one interior point, there exists X̂ such that A(X̂) = b

and X̂ ≻ O. We denote the eigenvalues of Z by 0 < λ1(Z) ≤ λ2(Z) ≤ · · · ≤ λn(Z). For simplicity,
we use λmin(Z) := λ1(Z) and λmax(Z) := λn(Z). Letting c̄0 := g(y0,W 0)−nµ+nµ log µ, we can

derive equivalent inequalities from g(y,Ŵ ) ≥ g(y0,W 0);

g(y,Ŵ ) ≥ g(y0,W 0)

⇔ bTy + µ log det(C + Ŵ −AT (y)) ≥ c̄0

⇔ A(X̂)Ty + µ log detZ ≥ c̄0

⇔ X̂ • AT (y) + µ log detZ ≥ c̄0

⇔ X̂ • (C + Ŵ −Z) + µ log detZ ≥ c̄0

⇔ X̂ •Z − µ log detZ ≤ −c̄0 + X̂ • (C + Ŵ )

7



Since X̂ • Ŵ =
∑n

i=1

∑n
j=1 X̂ijŴij ≤ ∑n

i=1

∑n
j=1 |X̂ij |ρij = |X̂| • ρ, it holds that X̂ • Z −

µ log detZ ≤ c, where c := −c̄0 + X̂ •C + |X̂ | • ρ. From mint{at− log t : t > 0} = 1 + log a for
any a > 0, it follows that

X̂ •Z − µ log detZ ≥
n∑

i=1

[λmin(X̂)λi(Z)− µ log λi(Z)]

≥ (n− 1)µ

(
1 + log

λmin(X̂)

µ

)
+ λmin(X̂)λmax(Z)− µ log λmax(Z).

Hence,

λmin(X̂)λmax(Z)− µ log λmax(Z) ≤ c− (n− 1)µ

(
1 + log

λmin(X̂)

µ

)
.

Note that the right-hand side is determined by only X̂ and is independent from Z, and that
λmin(X̂) > 0 from X̂ ≻ O. Hence, there exists βmax

Z
< ∞ such that λmax(Z) ≤ βmax

Z
for all

(y,Ŵ ) ∈ L.
In addition, from X̂ •Z − µ log detZ ≤ c and X̂ •Z ≥ 0, we have

log detZ ≥ − c

µ

log λmin(Z) ≥ − c

µ
−

n∑

i=2

log λi(Z) ≥ − c

µ
− (n− 1) log βmax

Z

λmin(Z) ≥ βmin
Z := exp

(
− c

µ
− (n− 1) log βmax

Z

)
> 0.

Therefore, the minimum and maximum eigenvalues of Z are bounded for (y,Ŵ ) ∈ L. This
completes the proof.

Remark 3.4. From Lemmas 3.2 and 3.3, ||yk|| and ||W k|| are bounded; ||yk|| ≤ ηy := ||(AAT )−1||·
||A|| · (||C ||+ ||ρ||+√

nβmax
Z

) and ||W k|| ≤ ηW := ||ρ||.

Remark 3.5. Lemma 3.3 implies that the set {X(y,W ) : (y,W ) ∈ L} is also bounded. If we
denote βmin

X
:= µ

βmax

Z

> 0 and βmax
X

:= µ

βmin

Z

< ∞, then we have βmin
X

I � X(y,W ) � βmax
X

I

for (y,W ) ∈ L. In particular, since (yk,W k) ∈ L from Lemma 3.2, Xk = X(yk,W k) =
µ(C +W −AT (yk))−1 is also bounded; βmin

X
I � Xk � βmax

X
I. Furthermore, for (y,W ) ∈ L, we

obtain the bounds ||X(y,W )|| ≤ ηX and ||X−1(y,W )|| ≤ η
X

−1 , where ηX :=
√
nβmax

X
> 0 and

η
X

−1 :=
√
n

βmin

X

> 0. Hence, it holds that ||Xk|| ≤ ηX and ||(Xk)−1|| ≤ η
X

−1 for each k.

Remark 3.6. It follows from Remark 3.5 that ||∆yk|| and ||∆W k|| are also bounded by η∆y :=
αmax(||b||+ ||A||ηX ) and η∆W := αmaxηX , respectively. These bounds are found by

||∆yk|| = ||αk(b−A(Xk))|| ≤ αk(||b||+ ||A|| · ||Xk||) ≤ αmax(||b||+ ||A||ηX)

||∆W k|| = ||[W k + αkXk]≤ρ −W k|| ≤ ||αkXk|| ≤ αmaxηX .

For ||∆W k||, we substitute S = W , x = W k + αkXk and y = W k = PW(W k) to (P3).

8



From Lemma 3.3, the set of the optimal solutions F∗ is a subset of {(y,W ) ∈ R
m × S

n :
|W | ≤ ρ, βmin

Z
I � C + W − AT (y) � βmax

Z
I} and it is a closed convex set and bounded.

From the continuity of the objective function g, the dual problem (D) has an optimal solution.
Furthermore, since both (P) and (D) has an interior feasible point, the duality theorem holds [3, 4],
that is, the primal problem (P) also has an optimal solution and there is no duality gap between
(P) and (D), f∗ = g∗. In the following Lemma 3.7, we show the uniqueness of the optimal solution
in (P) and a property of the optimal solutions in (D).

Lemma 3.7. The optimal solution of (P) is unique. In addition, if both (y∗
1,W

∗
1) and (y∗

2,W
∗
2)

are optimal solutions of (D), then X(y∗
1,W

∗
1) = X(y∗

2,W
∗
2) and bTy∗

1 = bTy∗
2.

Proof. Since the function − log detX is strictly convex [4], we have

− log det

(
X1 +X2

2

)
< −1

2
log detX1 −

1

2
log detX2 for ∀X1 ≻ O,∀X2 ≻ O(X1 6= X2). (7)

Suppose that we have two different optimal solutions (y∗
1,W

∗
1) and (y∗

2,W
∗
2) for (D) such that

C +W ∗
1 −AT (y∗

1) 6= C +W ∗
2 −AT (y∗

2). Since (y∗
1,W

∗
1) and (y∗

2,W
∗
2) attain the same objective

value, it holds that g∗ = bTy∗
1+µ log det(C+W ∗

1−AT (y∗
1))+nµ−nµ log µ = bTy∗

2+µ log det(C+

W ∗
2 −AT (y∗

2)) +nµ−nµ log µ. Since the feasible set of (D) is convex,
(
y∗

1
+y∗

2

2 , W
∗

1+W
∗

2

2

)
is also

feasible. However, the inequality (7) indicates

bT
(
y∗
1 + y∗

2

2

)
+ µ log det

(
C +

W ∗
1 +W ∗

2

2
+AT

(
y∗
1 + y∗

2

2

))
+ nµ− nµ log µ

>
1

2

(
bTy∗

1 + µ log det(C +W ∗
1 −AT (y∗

1)) + nµ− nµ log µ
)

+
1

2

(
bTy∗

2 + µ log det(C +W ∗
2 −AT (y∗

2)) + nµ− nµ log µ
)
=

g∗

2
+

g∗

2
= g∗.

This is a contradiction to the optimality of g∗. Hence, we obtain C + W ∗
1 − AT (y∗

1) = C +
W ∗

2 − AT (y∗
2), which is equivalent to X(y∗

1,W
∗
1) = X(y∗

2,W
∗
2). Since the objective values of

both (y∗
1,W

∗
1) and (y∗

2,W
∗
2) are g∗, it is easy to show bTy∗

1 = bTy∗
2 from C +W ∗

1 − AT (y∗
1) =

C +W ∗
2 −AT (y∗

2).
The uniqueness of optimal solution in (P) can also be obtained by the same argument using

(7).

Next, we examine the validity of the stopping criteria in Algorithm 2.1.

Lemma 3.8. (y∗,W ∗) is optimal for (D) if and only if (y∗,W ∗) ∈ F and

P Ŵ((y∗,W ∗) + α∇g(y∗,W ∗)) = (y∗,W ∗) (8)

for some α > 0.

As proven in [8], for a general convex problem

min f1(x) s.t. x ∈ S1

with a differentiable convex function f1 : R
n → R and a closed convex set S1 ⊂ R

n, a point
x∗ ∈ S1 is optimal if and only if P S1

(x∗ − α∇f1(x
∗)) = x∗ for some α > 0. This condition is

further extended to P S1
(x∗ − α∇f1(x

∗)) = x∗ for any α > 0. This results cannot be applied to

(D) since the projection onto the intersection F = Ŵ ∩ F̂ is not available at a low computation

cost. The projection considered in the proposed method is onto Ŵ, thus we prove Lemma 3.8 as
follows.
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Proof. It is easy to show that the condition (8) for some α > 0 is equivalent to (8) for any α > 0,
following the proof for the condition (P6) of [8].

We now suppose that (y∗,W ∗) ∈ F and P ̂W ((y∗,W ∗) + α∇g(y∗,W ∗)) = (y∗,W ∗) for any

α > 0. Let X∗ := X(y∗,W ∗) = µ(C +W ∗ −AT (y∗))−1. By considering the definitions of P ̂W
and ∇g into (8), we have two equalities A(X∗) = b and [W ∗ + αX∗]≤ρ = W ∗. Since X∗ ≻ O,
X∗ is a feasible point of (P). The second equality [W ∗+αX∗]≤ρ = W ∗ indicates the three cases:

Case 1 (X∗
ij > 0) : There exists α > 0 such that W ∗

ij +αX∗
ij > ρij . From [W ∗ +αX∗]≤ρ = W ∗, we

obtain W ∗
ij = ρij .

Case 2 (X∗
ij < 0) : In a similar way to Case 1, we obtain W ∗

ij = −ρij.

Case 3 (X∗
ij = 0) : In this case, we know only |W ∗

ij| ≤ ρij.

Using the relations X∗ = µ(C +W ∗ −AT (y∗))−1 and A(X∗) = b, we consider the difference
of the primal and dual objective functions,

f(X∗)− g(y∗,W ∗)

= (C •X∗ − µ log detX∗ + ρ • |X∗|)
−
(
bTy∗ + µ log det(C +W ∗ −AT (y∗)) + nµ(1− log µ)

)

= ρ • |X∗| −W ∗ •X∗ (9)

The above three cases imply that this difference is 0. Note that X∗ and (y∗,W ∗) are feasible for
(P) and (D), respectively, and there is no duality gap, hence, X∗ and (y∗,W ∗) are optimal for
(P) and (D).

For the converse, we suppose that (y∗,W ∗) is an optimal solution of (D). Again, let X∗ =
µ(C +W ∗ −A∗(yT ))−1. Since (D) is a concave maximization problem, (y∗,W ∗) satisfies

∇g(y∗,W ∗) • ((y,W )− (y∗,W ∗)) ≤ 0 for ∀(y,W ) ∈ F ,

or equivalently,

(b−A(X∗))T (y − y∗) +X∗ • (W −W ∗) ≤ 0 for ∀(y,W ) ∈ F . (10)

Since C + W ∗ − AT (y∗) ≻ O and AT is a continuous map, there is a small t > 0 such that
C +W ∗ −AT (y∗ + t(b−A(X∗))) ≻ O. Therefore (y∗ + t(b−A(X∗)),W ∗) is feasible, and when
we put (y∗ + t(b − A(X∗)),W ∗) ∈ F into (y,W ) of (10), we obtain A(X∗) = b. Hence, we
have y∗ + α(b − A(X∗)) = y∗. Similarily, when we perturb W ∗ in element-wise, we obtain two
indications; if X∗

ij > 0 then W ∗
ij = ρij and if X∗

ij < 0 then W ∗
ij = −ρij. This leads to the results

[W ∗ + αX∗]≤ρ = W ∗. Hence, we have shown that (8) holds for ∀α > 0.

From Lemma 3.8 and Lemma 3.7, we also find the relation of the optimal solutions of (P) and
(D).

Remark 3.9. The matrix X∗ computed by X∗ := X(y∗,W ∗) for an optimal solution (y∗,W ∗)
of (D) is the unique optimal solution of (P). Furthermore, from (y∗,W ∗) ∈ L and Remark 3.5,
the optimal solution X∗ satisfies βmin

X
I � X∗ � βmax

X
I and ||X∗|| ≤ ηX .

From the definition in (3), (∆yk,∆W k) depends on αk. However, the stopping criteria
shown in Lemma 3.8 is practically independent of αk. For the subsequent analysis, we introduce
(∆yk

(1),∆W k
(1)) by setting αk = 1;

(∆yk
(1),∆W k

(1)) := P ̂W ((yk,W k) +∇g(yk,W k))− (yk,W k)

= (b−A(Xk), [W k +Xk]≤ρ −W k). (11)
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and we now investigate the relation between (∆yk,∆W k) and (∆yk
(1),∆W k

(1)).

Lemma 3.10. The search direction (∆yk,∆W k) is bounded by (∆yk
(1),∆W k

(1)). More precisely,

min{1, αmin}||(∆yk
(1),∆W k

(1))|| ≤ ||(∆yk,∆W k)|| ≤ max{1, αmax}||(∆yk
(1),∆W k

(1))||. (12)

Proof. It holds that ∆yk = αk∆yk
(1) from the definitions. From (P4) of Proposition 3.1, we

know that ||PW (W k + αXk)−W k|| is non-decreasing for α > 0, therefore, it holds for the case

αk > 1 that ||∆W k|| = ||[W k + αkXk]≤ρ − W k|| ≥ ||[W k + Xk]≤ρ − W k|| = ||∆W k
(1)||. In

addition, (P5) of Proposition 3.1 indicates that ||PW (W k +αXk)−W k||/α is non-increasing for

α > 0. Since we choose αk from [αmin, αmax], we have ||∆W k|| = ||[W k + αkXk]≤ρ − W k|| ≥
αk||[W k + Xk]≤ρ − W k|| ≥ αmin||[W k + Xk]≤ρ − W k|| = αmin||∆W k

(1)|| for the case αk ≤ 1.

The combination of these two shows the left inequality of (12). The right inequality is also derived
from (P4) and (P5) in a similar way.

The condition ||(∆yk,∆W k)|| > 0 can be assumed without loss of generality, since ||(∆yk,∆W k)|| =
0 indicates that (yk,W k) is an optimal solution by Lemmas 3.8 and 3.10 and (11) and that Algo-
rithm 2.1 stops at Step 2.

Algorithm 2.1 may terminate before computing an approximate solution with a required ac-
curacy in the following two cases: (i) The step length λk converges to 0 before ||(∆yk,∆W k)||
reaches 0, and (yk,W k) cannot proceed, (ii) The norm of the search direction ||(∆yk,∆W k)||
converges to 0 before g(yk,W k) reaches the optimal value g∗. Lemmas 3.12 and 3.15 show that
the two cases will not happen. For the proofs of the two lemmas, we first discuss some inequalities
related to matrix norms.

Lemma 3.11. Suppose that 0 < β̂min < β̂max < ∞. For ∀X,∀Y ∈ S2 := {X ∈ S
n : β̂minI �

X � β̂maxI}, it holds
(i) (Y −X) • (X−1 − Y −1) ≥ 1

(β̂max)2
||Y −X||2,

(ii) (Y −X) • (X−1 − Y −1) ≥ (β̂min)2||Y −1 −X−1||2,

(iii) ||Y −X || ≥ (β̂min)2||Y −1 −X−1||.
Proof. From the discussions of [5], the function f2(X) = − log det(X) is strongly convex with the
convexity parameter 1

2(β̂max)2
on the set S2. Therefore, it holds that

f2(Y ) ≥ f2(X) +∇f2(X) • (Y −X) +
1

2(β̂max)2
||Y −X||2 (13)

for ∀X,∀Y ∈ S2. By swapping X and Y , we also have

f2(X) ≥ f2(Y ) +∇f2(Y ) • (X − Y ) +
1

2(β̂max)2
||X − Y ||2.

Since ∇f2(X) = −X−1, adding these two inequalities generates (i). When we use X−1,Y −1 ∈
{X : 1

β̂max
I � X � 1

β̂min
I}, we obtain (ii) in a similar way to (i). Finally, an application of the

Cauchy-Schwartz inequality to (ii) lead to

(β̂min)2||Y −1 −X−1||2 ≤ (Y −X) • (X−1 − Y −1) ≤ ||Y −X|| · ||X−1 − Y −1||.
If X 6= Y , (iii) is obtained by dividing the both sides with ||X−1 − Y −1||, meanwhile if X = Y ,
(iii) is obvious.
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Lemma 3.12. The step length λk of Algorithm 2.1 has a lower bound,

λk ≥ min

{
λmin,

2σ1(1− γ)

Lαmax

}

where λmin := min

{
1,

βmin

Z
τ

η
∆W+||AT ||η∆y

}
and L :=

µ
√

2(||A||2+1)max{1,||A||}
((1−τ)βmin

Z
)2

.

Proof. We first show the lower bound of λ
k
of Step 3. Since λ

k
is determined by (4), we examine a

bound of λ such that Z(λ) := C+(W k+λ∆W k)−AT (yk+λ∆yk) � O. It follows from Remark 3.5
that µ(Xk)−1 � βmin

Z
I. From Remark 3.6, we also have ||∆yk|| ≤ η∆y and ||∆W k|| ≤ η∆W .

Therefore, we obtain

Z(λ) = µ(Xk)−1 + λ(∆W k −AT (∆yk))

� βmin
Z I − λ(η∆W + ||AT ||η∆y)I. (14)

Hence, for any λ ∈
[
0,

βmin

Z

η
∆W +||AT ||η∆y

]
, we have Z(λ) � O, and consequently, we obtain λ

k ≥

λmin.

If θ of (4) is non-negative, Z(λ) � Z(0) � (1−τ)Z(0). In the case θ < 0, we have λ
k ≥ −1

θ
×τ ,

and this leads to Z(λ) � (1−τ)Z(0) for λ ∈ [0, λ
k
]. Therefore, Z(λ) � (1−τ)Z(0) � (1−τ)βmin

Z
I

for λ ∈ [0, λ
k
]. Hence, it follows from (iii) of Lemma 3.11 that

||Z(λ)−1 −Z(0)−1|| ≤ ||Z(λ)−Z(0)||
((1− τ)βmin

Z
)2

for λ ∈ [0, λ
k
].

Hence, we acquire some Lipschitz continuity on ∇g for the direction (∆yk,∆W k). For λ ∈ [0, λ
k
],

we have

||∇g(yk + λ∆yk,W k + λ∆W k)−∇g(yk,W k)||
=

∣∣∣∣(b−A(µZ(λ)−1), µZ(λ)−1)
)
−
(
b−A(µZ(0)−1), µZ(0)−1)

)∣∣∣∣
= µ

∣∣∣∣(−A(Z(λ)−1) +A(Z(0)−1),Z(λ)−1 −Z(0)−1
)∣∣∣∣

≤ µ
√

||A||2 + 1||Z(λ)−1 −Z(0)−1||

≤ µ
√
||A||2 + 1

((1 − τ)βmin
Z

)2
||Z(λ)−Z(0)||

=
λµ
√

||A||2 + 1

((1 − τ)βmin
Z

)2
||∆W k −AT (∆yk)||

≤ λµ
√

2(||A||2 + 1)max{1, ||A||}
((1 − τ)βmin

Z
)2

||(∆yk,∆W k)||

= λL||(∆yk,∆W k)||, (15)

Here, we have used the inequalities ||∆W k−AT (∆yk)|| ≤ ||∆W k||+||AT ||·||∆yk|| and ||∆W k||+
||∆yk|| ≤

√
2||(∆yk,∆W k)||.

We examine how the inner loop, Step 3 of Algorithm 2.1, is executed. As in the Armijo rule,
the inner loop terminates at a finite number of inner iterations. If (5) is satisfied at j = 1, then

λk = λ
k ≥ λmin. If (5) is satisfied at j ≥ 2, then (5) is not satisfied at j − 1. Thus, we have

g(yk + λk
j−1∆yk,W k + λk

j−1∆W k)

< min
0≤h≤min{k,M−1}

g(yk−h,W k−h) + γλk
j−1∇g(yk,W k) • (∆yk,∆W k)

≤ g(yk,W k) + γλk
j−1∇g(yk,W k) • (∆yk,∆W k).
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From Taylor’s expansion and (15), it follows that

g(yk + λk
j−1∆yk,W k + λk

j−1∆W k)− g(yk,W k)

= λk
j−1∇g(yk,W k) • (∆yk,∆W k)

+

∫ λk
j−1

0

(
∇g(yk + λ∆yk,W k + λ∆W k)−∇g(yk,W k)

)
• (∆yk,∆W k)dλ

≥ λk
j−1∇g(yk,W k) • (∆yk,∆W k)−

(λk
j−1)

2L

2
||(∆yk,∆W k)||2,

since λk
j−1 ≤ λ

k
. Combining these two inequalities, we obtain λk

j−1 ≥
2(1−γ)

L

∇g(yk,W k
)•(∆yk,∆W k

)

||(∆yk,∆W k
)||2

.

It follows from (6) that

∇g(yk,W k) • (∆yk,∆W k)

||(∆yk,∆W k)||2
≥ 1

αk
≥ 1

αmax
. (16)

Since λk
j is chosen from [σ1λ

k
j−1, σ2λ

k
j−1], we obtain λk = λk

j ≥ 2σ1(1−γ)
Lαmax

.

We now prove that the search direction generated by Algorithm 2.1 shrinks to zero in the
infinite iterations.

Lemma 3.13. Algorithm 2.1 with ǫ = 0 stops in a finite number of iterations attaining the optimal
value g∗, or the infimum of the norm of the search direction tends to zero as k increases,

lim inf
k→∞

||(∆yk
(1),∆W k

(1))|| = 0.

Proof. When Algorithm 2.1 stops in a finite number of iterations, the optimality is guaranteed by
Lemma 3.8. From Lemma 3.10, it is sufficient to prove lim infk→∞ ||(∆yk,∆W k)|| = 0, Suppose,
to contrary, that there exist δ > 0 and an integer k0 such that ||(∆yk,∆W k)|| > δ for ∀k ≥ k0.
Let us denote gk := g(yk,W k) and gmin

ℓ := min{gℓM+1, . . . , g(ℓ+1)M}. It follows from Lemma 3.12,
(5) and (16) that

gk+1 ≥ min{gk, . . . , gk−M+1}+ δ̂ for ∀k ≥ max{k0,M},

where δ̂ = γmin{λmin,
2σ1(1−γ)
Lαmax

} δ2

αmax
.

When ℓ is an integer such that ℓ > max{k0,M}
M

, we have

g(ℓ+1)M+1 ≥ min{g(ℓ+1)M , . . . g(ℓ+1)M−M+1}+ δ̂ = gmin
ℓ + δ̂.

By induction, for j = 2, . . . ,M ,

g(ℓ+1)M+j ≥ min{g(ℓ+1)M+j−1, . . . g(ℓ+1)M−M+j}+ δ̂ ≥ min{gmin
ℓ + δ̂, gmin

ℓ }+ δ̂ = gmin
ℓ + δ̂.

Therefore, we obtain

gmin
ℓ+1 = min{g(ℓ+1)M+1, . . . , g(ℓ+1)M+M} ≥ gmin

ℓ + δ̂.

From Lemma 3.2, we know g(y0,W 0) ≤ gk ≤ g∗ for each k. Starting from an integer ℓ0 such that

ℓ0 >
max{k0,M}

M
, it follows that

g∗ ≥ gmin
ℓ ≥ gmin

ℓ0
+ (ℓ− ℓ0)δ̂ ≥ g(y0,W 0) + (ℓ− ℓ0)δ̂ for ℓ ≥ ℓ0.

When we take large ℓ such that ℓ > ℓ0 + (g∗ − g(y0,W 0))/δ̂, we have a contradiction. This
completes the proof.
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For the proof of the main theorem, we further investigate the behavior of the objective function
in Lemma 3.15, which requires Lemma 3.14. We use a matrix Uk ∈ S

n defined by Uk
ij := ρij |Xk

ij |−
W k

ijX
k
ij , and ρmax := max{ρij : i, j = 1, . . . , n}. The notation [∆W k

(1)]ij denotes the (i, j)th

element of ∆W k
(1) = [W k +Xk]≤ρ −W k.

Lemma 3.14. It holds that

|Uk| ≤ max{2ρmax, ηX}|∆W k
(1)|. (17)

Proof. We investigate the inequality by dividing into three cases.

1. Case Xk
ij = 0: We have Uk

ij = 0, hence (17) holds.

2. Case Xk
ij > 0: We have Uk

ij = (ρij −W k
ij)X

k
ij ≥ 0.

(a) Case W k
ij = ρij: We have Uk

ij = 0, hence (17) holds.

(b) CaseW k
ij < ρij : IfW

k
ij+Xk

ij ≤ ρij , then [∆W k
(1)]ij = W k

ij+Xk
ij−W k

ij = Xk
ij . FromW k

ij ≥
−ρij, we have 0 ≤ Uk

ij = (ρij − W k
ij)[∆W k

(1)]ij ≤ 2ρij [∆W k
(1)]ij ≤ 2ρmax|[∆W k

(1)]ij|.
Otherwise, if W k

ij +Xk
ij > ρij , then [∆W k

(1)]ij = ρij −W k
ij, hence Uk

ij = Xk
ij [∆W k

(1)]ij .

From |Xk
ij | ≤ ||Xk|| ≤ ηX , we obtain 0 ≤ Uk

ij ≤ ηX |[∆W k
(1)]ij|.

3. Case Xk
ij < 0: We compute simliarily to the case Xk

ij > 0.

Combining these cases results in (17).

Lemma 3.15. Algorithm 2.1 with ǫ = 0 stops in a finite number of iterations attaining the
optimal value g∗, or the infimum of the difference of the objective functions between (yk,W k) and
(y∗,W ∗) ∈ F∗ tends to zero as k increases, i.e.,

lim inf
k→∞

|g(yk,W k)− g∗| = 0. (18)

Proof. If Algorithm 2.1 stops at the kth iteration, (yk,W k) is an optimal solution, therefore,
g∗ = g(yk,W k). The proof for (18) is based on an inequality

|g(yk,W k)− g(y∗,W ∗)| ≤ |g(yk,W k)− f(Xk)|+ |f(Xk)− f(X∗)|+ |f(X∗)− g(y∗,W ∗)|.(19)

We know that f(X∗) = g(y∗,W ∗) from the duality theorem, hence, we evaluate the first and
second terms.

From the definition of f and g, the first term will be bounded by

|f(Xk)− g(yk,W k)|
=

∣∣∣ρ • |Xk| −W k •Xk + (A(Xk)− b)Tyk
∣∣∣

≤
∣∣∣ρ • |Xk| −W k •Xk

∣∣∣+ ηy||A|| · ||Xk −X∗||. (20)

Using Lemma 3.14, we further have

∣∣∣ρ • |Xk| −W k •Xk
∣∣∣ =

∣∣∣∣∣∣

n∑

i=1

n∑

j=1

Uk
ij

∣∣∣∣∣∣
=

n∑

i=1

n∑

j=1

|Uk
ij | ≤ max{2ρmax, ηX}

n∑

i=1

n∑

j=1

|[∆W k
(1)]ij |

≤ max{2ρmax, ηX}n||∆W k
(1)|| ≤ max{2ρmax, ηX}n||(∆yk

(1),∆W k
(1))||. (21)
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For the second inequality, we have used the relation between the two norms
∑n

i=1

∑n
j=1 |Vij | ≤

n||V || that holds for any V ∈ S
n.

Next, we evaluate the second term of (19). Since f2(X) = − log det(X) is a convex function,

f2(X
k) ≥ f2(X

∗) +∇f2(X
∗) • (Xk −X∗)

and

f2(X
∗) ≥ f2(X

k) +∇f2(X
k) • (X∗ −Xk).

These two inequalities indicate

|f2(Xk)− f2(X
∗)| ≤ max{||∇f2(X

k)||, ||∇f2(X
∗)||}||Xk −X∗|| ≤ η

X
−1 ||Xk −X∗||.

For the last inequality, we have used ∇f2(X) = −X−1 for any X ≻ O and Remark 3.5. In
addition, we have

|ρ • (|Xk| − |X∗|)| ≤
n∑

i=1

n∑

j=1

ρij

∣∣∣|Xk
ij | − |X∗

ij |
∣∣∣

≤
n∑

i=1

n∑

j=1

ρij |Xk
ij −X∗

ij | ≤ ||ρ|| · ||Xk −X∗||.

Hence, the second term of (19) is bounded by

|f(Xk)− f(X∗)|
≤ |C • (Xk −X∗)|+ µ|f2(Xk)− f2(X

∗)|+ |ρ • (|Xk| − |X∗|)|
≤ (||C||+ µη

X
−1 + ||ρ||)||Xk −X∗||. (22)

We now evaluate the norm ||Xk−X∗||. It follows from (P1) of Proposition 3.1 and (y∗,W ∗) ∈
Ŵ that (

((yk,W k) +∇g(yk,W k))− PŴ((yk,W k) +∇g(yk,W k))
)

•
(
(y∗,W ∗)− PŴ((yk,W k) +∇g(yk,W k))

)
≤ 0.

Therefore, we obtain
(
∇g(yk,W k))− (∆yk

(1),∆W k
(1))
)
•
(
(y∗,W ∗)− (yk,W k)− (∆yk

(1),∆W k
(1))
)
≤ 0,

and this is equivalent to
(
∆yk

(1),∆W k
(1)

)
•
(
(y∗,W ∗)− (yk,W k)

)
+∇g(yk,W k) •

(
∆yk

(1),∆W k
(1)

)
− ||(∆yk

(1),∆W k
(1))||2

≥ ∇g(yk,W k) •
(
(y∗,W ∗)− (yk,W k)

)
. (23)

On the other hand, it follows from (i) of Lemma 3.11 that
(
∇g(yk,W k)−∇g(y∗,W ∗)

)
•
(
(y∗,W ∗)− (yk,W k)

)

= (−A(Xk) +A(X∗),Xk −X∗) • (y∗ − yk,W ∗ −W k)

= (Xk −X∗) • (−AT (y∗ − yk)) + (Xk −X∗) • (W ∗ −W k)

= (Xk −X∗) • ((C +W ∗ −AT (y∗))− (C +W k −AT (yk)))

= (Xk −X∗) • (µ(X∗)−1 − µ(Xk)−1)

≥ µ

(βmax
X

)2
||Xk −X∗||2,
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and this is equivalent to

∇g(yk,W k) •
(
(y∗,W ∗)− (yk,W k)

)
≥ µ

(βmax
X

)2
||Xk −X∗||2 +∇g(y∗,W ∗) •

(
(y∗,W ∗)− (yk,W k)

)

By connecting this inequality and (23), we obtain
(
∆yk

(1),∆W k
(1)

)
•
(
(y∗,W ∗)− (yk,W k)

)
+∇g(yk,W k) •

(
∆yk

(1),∆W k
(1)

)
− ||(∆yk

(1),∆W k
(1))||2

≥ µ

(βmax
X

)2
||Xk −X∗||2 +∇g(y∗,W ∗) •

(
(y∗,W ∗)− (yk,W k)

)
,

and this is equivalent to

µ

(βmax
X

)2
||Xk −X∗||2 −

(
∆yk

(1),∆W k
(1)

)
•
(
(y∗,W ∗)− (yk,W k)

)
+ ||(∆yk

(1),∆W k
(1))||2

≤ ∇g(yk,W k) •
(
∆yk

(1),∆W k
(1)

)
−∇g(y∗,W ∗) •

(
(y∗,W ∗)− (yk,W k)

)
. (24)

Since (9) and there is no duality gap, we know that X∗ •W ∗ = ρ • |X∗|. Therefore,

∇g(y∗,W ∗) •
(
(y∗,W ∗)− (yk,W k)− (∆yk

(1),∆W k
(1))
)

= (b−A(X∗),X∗) •
(
(y∗,W ∗)− (yk,W k)− (∆yk

(1),∆W k
(1))
)

= (0,X∗) •
(
(y∗ − yk −∆yk

(1),W
∗ −W k −∆W k

(1))
)

= X∗ •W ∗ −X∗ • [W k +Xk]≤ρ

= |X∗| • ρ−X∗ • [W k +Xk]≤ρ
≥ 0.

Hence, it follows that

∇g(yk,W k) • (∆yk
(1),∆W k

(1))−∇g(y∗,W ∗) •
(
(y∗,W ∗)− (yk,W k)

)

=
(
∇g(yk,W k)−∇g(y∗,W ∗)

)
• (∆yk

(1),∆W k
(1))

−∇g(y∗,W ∗) •
(
(y∗,W ∗)− (yk,W k)− (∆yk

(1),∆W k
(1))
)

≤
(
∇g(yk,W k)−∇g(y∗,W ∗)

)
• (∆yk

(1),∆W k
(1))

≤ ||∇g(y∗,W ∗)−∇g(yk,W k)|| · ||(∆yk
(1),∆W k

(1))||
= ||(−A(X∗) +A(Xk),X∗ −Xk)|| · ||(∆yk

(1),∆W k
(1))||

≤ (1 + ||A||)||Xk −X∗|| · ||(∆yk
(1),∆W k

(1))||. (25)

From (24) and (25), we obtain

µ

(βmax
X

)2
||Xk −X∗||2 − (∆yk

(1),∆W k
(1)) •

(
(y∗,W ∗)− (yk,W k)

)
+ ||(∆yk

(1),∆W k
(1))||2

≤ (1 + ||A||)||Xk −X∗|| · ||(∆yk
(1),∆W k

(1))||.

Using ||(y∗,W ∗) − (yk,W k)|| =
√

||y∗ − yk||2 + ||W ∗ −W k||2 ≤ ||y∗ − yk|| + ||W ∗ − W k|| ≤
||y∗||+ ||yk||+ ||W ∗||+ ||W k|| ≤ 2(ηy + ηW ) and ||(∆yk

(1),∆W k
(1))||2 ≥ 0, it holds that

µ

(βmax
X

)2
||Xk −X∗||2 − 2(ηy + ηW )||(∆yk

(1),∆W k
(1))|| ≤ (1 + ||A||)||Xk −X∗|| · ||(∆yk

(1),∆W k
(1))||.
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This is a quadratic inequality with respect to ||Xk −X∗||, and solving this quadratic inequality
leads us to

||Xk −X∗|| ≤ u1(||(∆yk
(1),∆W k

(1))||), (26)

where u1(t) :=
1
2µ(1 + ||A||)(βmax

X
)2t+

βmax

X

2µ

√(
(1 + ||A||)(βmax

X
)
)2

t2 + 8µ(ηy + ηW )t.

Using (20), (21), (22) and (26), the inequality (19) is now evaluated as

|g(yk,W k)− g(y∗,W ∗)| ≤ u2(||(∆yk
(1),∆W k

(1))||)

where

u2(t) := max{2ρmax, ηX}nt+ (ηy||A||+ ||C||+ µη
X

−1 + ||ρ||)u1(t). (27)

Since all the coefficients are positive, the function u2(t) is continuous for t ≥ 0, and u2(t) > 0 for
t > 0. Hence, it follows Lemma 3.13 that

lim inf
k→∞

|g(yk,W k)− g(y∗,W ∗)| = 0.

Finally, we are ready to show the main result, the convergence of the sequence generated by
Algorithm 2.1 to the optimal value.

Theorem 3.16. Algorithm 2.1 with ǫ = 0 stops in a finite number of iterations attaining the
optimal value g∗, or generate a sequence {(yk,W k)} such that

lim
k→∞

|g(yk,W k)− g∗| = 0.

Proof. Suppose, to contrary, that there exists ǭ > 0 such that we have an infinite sequence
{k1, k2, . . . , kj , . . .} that satisfies gkj < g∗ − ǭ.

We should remark that it holds kj+1 − kj ≤ M . If kj+1 − kj > M , since we can as-
sume that gi + ǭ ≥ g∗ for each i ∈ [kj + 1, . . . , kj+1 − 1], the inequality (5) indicates gkj+1

≥
min{gkj+1−1, . . . , gkj+1−M} ≥ g∗−ǭ. Hence, we know kj+1−kj ≤ M and the sequence {k1, k2, . . . , kj ,
. . .} should be actually infinite.

Since u2(t) in (27) is continuous for t ≥ 0 and u2(t) > 0 for t > 0, there exists δ̄ such that
||(∆ykj ,∆W kj)|| > δ̄ for each j. We apply the same discussion as Lemma 3.13 to the infinite
sequence {gk1 , gk2 , . . . , gkj , . . .}. If j becomes sufficiently large, we have a contradiction to the
upper bound gkj ≤ g∗.

4 Numerical Experiments

We present numerical results obtained from implementing Algorithm 2.1 on the randomly gener-
ated synthetic data, deterministic synthetic data and gene expression data in [12] which includes
one of most efficient computational results. Our numerical experiments were conducted on larger
instances than the test problems in [12] whenever it was possible.

We compare our code DSPG, Algorithm 2.1, with the inexact primal-dual path-following
interior-point method (IIPM) [12], the Adaptive Spectral Projected Gradient method (ASPG)
[14], and the Adaptive Nesterov’s Smooth method (ANS) [14]. For the gene expression data,
our results are also compared with the QUadratic approximation for sparse Inverse Covariance
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estimation method (QUIC) [9] in Section 4.3. A comparison with the results on the Newton-CG
primal proximal-point algorithm (PPA) [18] is not included since its performance was reported to
be inferior to the IIPM [12] and it failed to solve some instances.

We note that different stopping criteria are used in each of the aforementioned codes. They
obviously affect the number of iterations and consequently the overall computational time. For a
fair comparison, we set the threshold values for the IIPM, ASPG, ANS, and QUIC comparable to
that of DSPG. More precisely, the stopping criteria of the DSPG was set to

||(∆yk
(1),∆W k

(1))||∞ ≤ ǫ,

where ǫ = 10−5. For the IIPM, we employed

max

{
gap

1 + |f(Xk)|+ |g(yk,W k)|
, pinf, dinf

}
≤ gaptol := 10−6,

where gap, pinf, dinf were specified in [12], and for the ASPG and ANS, we used two thresholds
ǫ0 := 10−3 and ǫc := 10−5 such that f(X) ≥ f(X∗)− ǫ0 and max(i,j)∈Ω |Xij | ≤ ǫc [12]. The QUIC

stops when ‖∂f(Xk)‖/Tr(ρ|Xk|) < 10−6.
The DSPG was experimented with the following parameters: γ = 10−4, τ = 0.5, 0.1 = σ1 <

σ2 = 0.9, αmin = 10−15 = 1/αmax, α0 = 1, and M = 50. In the DSPG, the mexeig routine of the
IIPM was used to reduce the computational time. All numerical experiments were performed on
a computer with Intel Xeon X5365 (3.0 GHz) with 48 GB memory using MATLAB.

We set the initial solution as (y0,W 0) = (0,O), which satisfies the assumption (iii) for the
instances tested in Sections 4.1 and 4.2. Let (yk,W k) be the output of Algorithm 2.1. The
recovered primal solution Xk := µ(C +W k − AT (yk))−1 may not satisfy the equalities Xij = 0
for (i, j) ∈ Ω in (P) due to numerical errors. In this case, we replace the value of Xij with 0 for
(i, j) ∈ Ω. For the tested instances, this replacement did not affect the semidefiniteness of X,
since the primal optimal solution was unique (Lemma 3.7) and the nonzero values of Xij were very
small.

In the tables in Sections 4.1 and 4.2, the entry corresponding to the DSPG under the column
“primal obj.” indicates the minimized function value (P) for X after replacing nonzero values of
Xij with 0 for (i, j) ∈ Ω, while “gap” means the maximized function value (D) for (y,W ) minus
the primal one. Therefore, it should have a minus sign. The entries for the IIPM, ASPG, and ANS
under “primal obj.” column show the difference between the corresponding function values and
the primal objective function values of the DSPG. Thus, if this value is positive, it means that the
DSPG obtained a lower value for the minimization problem. The tables also show the minimum
eigenvalues for the primal variable, number of (outer) iterations, and computational time.

In order to measure the effectiveness of recovering the inverse covariance matrix Σ−1, we
adopt the strategy in [12]. The normalized entropy loss (lossE) and the quadratic loss (lossQ) are
computed as

lossE :=
1

n
(tr(ΣX) log det(ΣX)− n), lossQ :=

1

n
‖ΣX − I‖,

respectively. Notice that the two values should ideally be zero if the regularity term ρ • |X | is
disregarded in (P). Also, the sensitivity and the specificity defined as

the sensitivity :=
TP

TP + FN
, the specificity :=

TN

TN+ FP
,

are computed, where TP, TN, FP, and FN are the true positives, true negatives, false positive,
and false negative, respectively. In our case, the true positives are correct nonzero entries in Σ−1
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and the true negatives are correct zero entries in the same matrix. Therefore, the sensitivity and
specificity measure the correct rates of nonzero and of zero entries of Σ−1, respectively. The values
close to one for both sensitivity and specificity would be desirable. Thus, we set values of ρ > 0
such that ρ = ρE where E is the matrix of all ones in (P) for which the sensitivity and specificity
become close to each other, and also µ equals to one.

4.1 Randomly generated synthetic data

As in [12, Section 4.1], we generated the test data by first generating a sparse positive definite
matrix Σ−1 ∈ S

n for a density parameter δ > 0, and then computing a sample covariance matrix
C ∈ S

n from 2n i.i.d. random vectors selected from the n-dimensional Gaussian distribution
N (0,Σ).

Our experiments were carried out on different sizes n of matrix Σ−1, two choices of density
parameters δ = 0.1 and 0.9, and problem (P) without the linear constraints A(X) = b and with
linear constraints Xij = 0 for (i, j) ∈ Ω, where Ω specifies the zero elements of Σ−1.

Table 1: Comparative numerical results for the DSPG, IIPM, ASPG and ANS on unconstrained
randomly generated synthetic data. n =1000, 3000, and 5000, density δ = 0.1 and 0.9.

n ρ method primal obj. iter. time (s) δ = 0.1

DSPG −648.85805752 89 42.7 λmin(X) 7.64e−02
(gap) −0.00006098 lossE 1.8e−01

1000 5/1000 IIPM +0.00000385 15 78.0 lossQ 2.2e−02
= 0.005 ASPG +0.00046235 77 49.5 sensitivity 0.90

ANS +0.00093895 310 172.4 specificity 0.88

DSPG −4440.85648991 62 657.2 λmin(X) 2.42e−01
(gap) −0.00009711 lossE 1.3e−02

3000 4/3000 IIPM +0.00015710 15 1219.9 lossQ 2.0e−01
= 0.001333 ASPG +0.00082640 49 801.9 sensitivity 0.82

ANS +0.00089732 269 3255.9 specificity 0.85

DSPG −9576.24150224 57 3015.4 λmin(X) 1.0e−02
(gap) −0.00015026 lossE 1.9e−01

5000 3/5000 IIPM +0.00039297 15 4730.0 lossQ 1.0e−02
= 0.0006 ASPG +0.00012477 52 4137.0 sensitivity 0.82

ANS +0.00084603 248 14929.4 specificity 0.81

n ρ method primal obj. iter. time (s) δ = 0.9

DSPG −3584.93243464 33 16.5 λmin(X) 3.30e+01
(gap) −0.00000122 lossE 9.4e−02

1000 0.15/1000 IIPM +0.00031897 15 56.1 lossQ 1.5e−02
= 0.00015 ASPG +0.00070753 21 18.0 sensitivity 0.50

ANS +0.00094435 78 49.2 specificity 0.53

DSPG −13012.61749049 26 278.9 λmin(X) 7.56e+01
(gap) −0.00000818 lossE 8.3e−02

3000 0.125/3000 IIPM +0.00125846 18 1133.4 lossQ 8.1e−03
= 0.0000417 ASPG +0.00049848 21 474.8 sensitivity 0.49

ANS +0.00097430 81 1135.8 specificity 0.54

DSPG −23487.45518427 26 1381.3 λmin(X) 1.07e+02
(gap) −0.00000534 lossE 9.0e−02

5000 0.1/5000 IIPM +0.00068521 23 5928.7 lossQ 6.5e−03
= 0.00002 ASPG +0.00044082 21 2405.7 sensitivity 0.53

ANS +0.00097990 90 6150.1 specificity 0.49

Table 1 shows the results for problems without any linear constraints in (P). Clearly, the
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DSPG requires less time to compute a lower objective value than the other codes. The advantage
of the DSPG is greater for the denser problems (δ = 0.9, which is the case not considered in [12])
or larger problems (n = 5000). Moreover, the dense problems tend to be easier to compute in
terms of computational time, although their recovery can be slightly worse than the problems with
δ = 0.1, as indicated by the values of the sensitivity and specificity. For denser instances, lossE
and lossQ are improved.

Table 2: Comparative numerical results for the DSPG, IIPM, ASPG and ANS on constrained
randomly generated synthetic data. n =1000, 3000, and 5000, density δ = 0.1 and 0.9.

n ρ/# constraints method primal obj. iter. time (s) δ = 0.1

5/1000 DSPG −631.25522377 144 76.1 λmin(X) 7.70e−02
=0.005 (gap) −0.00013566 lossE 1.7e−01

1000 IIPM −0.00013004 16 103.1 lossQ 2.1e−02
221,990 ASPG +0.00074651 1025 635.8 sensitivity 0.93

ANS +0.00076506 5464 3027.2 specificity 0.92

3/3000 DSPG −4582.28297352 126 1383.8 λmin(X) 2.41e−01
=0.001 (gap) −0.00006496 lossE 1.6e−01

3000 IIPM −0.00004689 17 1692.4 lossQ 1.2e−02
1,898,796 ASPG +0.00062951 755 9658.4 sensitivity 0.92

ANS +0.00083835 5863 67170.0 specificity 0.88

3/5000 DSPG −9489.67203718 96 5180.8 λmin(X) 4.85e−01
= 0.0006 (gap) −0.00005274 lossE 1.8e−01

5000 IIPM +0.00001554 16 6359.0 lossQ 9.7e−03
5,105,915 ASPG +0.00074531 704 43955.2 sensitivity 0.85

ANS +0.00085980 5056 286746.6 specificity 0.89

n ρ/# constraints method primal obj. iter. time (s) δ = 0.9

0.1/1000 DSPG −3625.96768067 42 20.7 λmin(X) 3.08e+01
= 0.0001 (gap) −0.00000072 lossE 1.3e−01

1000 IIPM +0.00014852 17 65.0 lossQ 1.9e−02
32,565 ASPG +0.00079319 376 547.9 sensitivity 0.64

ANS +0.00098958 1938 1102.3 specificity 0.69

0.07/3000 DSPG −13178.75746518 35 372.6 λmin(X) 6.84e+01
= 0.0000233 (gap) −0.00000049 lossE 1.4e−01

3000 IIPM +0.00089508 24 1528.1 lossQ 1.1e−02
238,977 ASPG +0.00030434 451 15295.4 sensitivity 0.67

ANS +0.00099513 3309 38990.8 specificity 0.67

0.07/5000 DSPG −23644.31706813 29 1543.3 λmin(X) 1.01e+02
= 0.000014 (gap) −0.00000833 lossE 1.2e−01

5000 IIPM +0.00101943 28 7247.3 lossQ 7.9e−03
604,592 ASPG +0.00034229 344 30880.9 sensitivity 0.64-0.65

ANS +0.00098642 3272 188957.0 specificity 0.68-0.69

For the problems tested in Table 2, the sparsity of Σ−1 ∈ S
n is imposed as linear constraints

in (P) as Xij = 0 for (i, j) ∈ Ω, where |Ω| ≡“# constraints” in the table. From the results in
Table 2, we observe that the ASPG and ANS require much more computational time than in the
unconstrained case. The IIPM is the only code which violates the linear constraints Xij = 0 for
(i, j) ∈ Ω, resulting in values less than 6.01× 10−9 for maxi,j=1,...,n |Xij | at the final iteration. We
also see that lossE and lossQ do not change when density δ is changed.
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4.2 Deterministic synthetic data

The numerical results on eight problems where A ∈ S
n has a special structure such as diagonal

band, fully dense, or arrow-shaped [12] are shown in Tables 3 and 4. For each A, a sample covari-
ance matrix C ∈ S

n is computed from 2n i.i.d. random vectors selected from the n-dimensional
Gaussian distribution N (0,A−1). Finally, we randomly select 50% of the zero entries for each A

to be the linear constraints in (P), excepting for the Full problem in Table 3.
Similar observation to Section 4.1 can be made for the results presented in Tables 3 and 4. The

DSPG took less computational time than the other methods in most cases and obtained slightly
worse objective function values.

Table 3: Comparative numerical results for the DSPG, IIPM, ASPG and ANS on unconstrained
deterministic synthetic data. n =2000.

problem ρ method primal obj. iter. time (s)

DSPG 2189.07471338 20 57.8 λmin(X) 8.42e−01
(gap) −0.33302912 lossE 7.9e−03

Full 0.1 IIPM −0.33297893 11 185.9 lossQ 2.1e−03
ASPG −0.33297903 54 244.1
ANS −0.33283013 40 150.5

4.3 Gene expression data

Five problems from the gene expression data [12] were tested for performance comparison. Since
it was assumed that the conditional independence of their gene expressions is not known, linear
constraints were not imposed in (P). In this experiment, we additionally compared the performance
of the DSPG with QUIC [9] which is known to be fast for sparse problems.

Figures 1-3 show the computational time (left axis) for each problem when ρ is changed. As ρ
grows larger, the final solution Xk (of the DSPG) becomes sparser, as shown in the right axis for
the number of nonzero elements of Xk.

Figure 1: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on the
problems “Lymph” (n = 587) and “ER” (n = 692) when ρ is changed; the number of nonzero
elements of Xk for the final iterate of the DSPG (the right axis).
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Table 4: Comparative numerical results for the DSPG, IIPM, ASPG and ANS on constrained
deterministic synthetic data. n =2000.

problem ρ/# constraints method primal obj. iter. time (s)

0.1 DSPG 3707.57716442 2001 6060.5 λmin(X) 1.00-1.25e−06
(gap) −0.32561268 lossE 3.1e−02

ar1 IIPM −0.32526710 38 3577.3 lossQ 2.3e−01
998,501 ASPG −0.32474270 19034 69534.6 sensitivity 1.00

ANS −0.32448637 29347 88733.8 specificity 1.00

0.1 DSPG 3029.94934978 55 167.6 λmin(X) 2.73e−01
(gap) −0.00329417 lossE 4.4e−02

ar2 IIPM −0.00291044 11 290.1 lossQ 5.8e−03
997,502 ASPG −0.00309541 196 821.2 sensitivity 1.00

ANS −0.00241116 1241 4230.7 specificity 1.00

0.03 DSPG 2552.71613399 78 236.8 λmin(X) 1.70e−01
(gap) −0.00553547 lossE 1.8e−02

ar3 IIPM −0.00545466 14 433.2 lossQ 4.4e−03
996,503 ASPG −0.00480321 353 1242.4 sensitivity 1.00

ANS −0.00468946 2712 8592.6 specificity 1.00

0.01 DSPG 2340.10866746 73 222.7 λmin(X) 2.31e−01
(gap) −0.00050381 lossE 5.6e−02

ar4 IIPM −0.00048223 14 403.3 lossQ 8.4e−03
995,505 ASPG +0.00030934 1095 3975.8 sensitivity 1.00

ANS +0.00044155 5996 19379.6 specificity 1.00

0.1 DSPG 2253.67375651 14 44.4 λmin(X) 7.70e−01
(gap) −0.00114736 lossE 1.5e−02

Decay IIPM −0.00094913 10 170.5 lossQ 3.6e−03
981,586 ASPG −0.00106549 12 69.9 sensitivity 0.00

ANS −0.00089883 32 126.6 specificity 1.00

0.1 DSPG 2204.50539735 82 248.7 λmin(X) 2.50-2.51e−07
(gap) −0.00018704 lossE 4.8e−03

Star IIPM −0.00001083 11 179.6 lossQ 4.5e−01
997,501 ASPG −0.00002462 31 159.0 sensitivity 0.33

ANS −0.00017677 92 311.4 specificity 1.00

0.05 DSPG 3519.14112855 1094 3307.0 λmin(X) 1.24-1.61e−06
(gap) −0.07034481 lossE 2.9e−02

Circle IIPM −0.07032168 28 1976.8 lossQ 2.6e−01
998,500 ASPG −0.06948986 11557 42437.1 sensitivity 1.00

ANS −0.06946870 19714 59672.3 specificity 1.00
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Figure 2: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on problems
“Arabidopsis” (n = 834) and “Leukemia” (n = 1255) when ρ is changed; the number of nonzero
elements of Xk for the final iteration of the DSPG (the right axis).

Figure 3: Computational time (the left axis) for the DSPG, IIPM, QUIC, ASPG, ANS on the
problem “Hereditary bc” (n = 1869) when ρ is changed; the number of nonzero elements of Xk

for the final iteration of the DSPG (the right axis).
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We see that the DSPG (solid blue line) is as competitive with the IIPM (dashed red line) and
even faster than the QUIC (dotted black line), which is known for their fast convergence, when
ρ is small. The performance of the QUIC is closely related to the sparsity of the final iterate of
Xk for the DSPG (solid brown line) as expected. Here we used the threshold |Xk|ij ≥ 0.05 to
determine nonzero elements.

5 Conclusion

We have proposed a dual-type spectral projected gradient method for (P) to efficiently handle
large-scale problems. Based on the theoretical convergence results of the proposed method, the
Dual SPG algorithm has been implemented and the numerical results on randomly generated
synthetic data, deterministic synthetic data and gene expression data are reported. We have
demonstrated the efficiency in computational time to obtain a better optimal value for (P). In
particular, when ρ is small, we have observed that the performance of the proposed method
increases.

To further improve the performance of the Dual SPG method, our future research includes
reducing the computational time by employing an approach similar to Dahl et al. [21] and/or
exploiting the structured sparsity as discussed in [10].
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