Skip to main content
Log in

Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Our contribution in this paper is twofold. First, the global convergence analysis of the recently proposed pattern search implicit filtering algorithm (PSIFA), aimed at linearly constrained noisy minimization problems, is revisited to address more general locally Lipschitz objective functions corrupted by noise. Second, PSIFA is applied for solving the damped harmonic oscillator parameter identification problem. This problem can be formulated as a linearly constrained optimization problem, for which the constraints are related to the features of the damping. Such a formulation rests upon a very expensive objective function whose evaluation comprises the numerical solution of an ordinary differential equation (ODE), with intrinsic numerical noise. Computational experimentation encompasses distinct choices for the ODE solvers, and a comparative analysis of the most effective options against the pattern search and the implicit filtering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The matlab code is available at http://www4.ncsu.edu/~ctk/darts/imfil.m.

References

  1. Audet, C., Dennis Jr., J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MathSciNet  Google Scholar 

  2. Audet, C., Dennis Jr., J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009). https://doi.org/10.1137/070692662

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  6. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM, Philadelphia (2009). https://doi.org/10.1137/1.9780898718768

    Book  MATH  Google Scholar 

  7. Custódio, A.L., Dennis Jr., J.E., Vicente, L.N.: Using simplex gradients of nonsmooth functions in direct search methods. IMA J. Numer. Anal. 28(4), 770–784 (2008)

    Article  MathSciNet  Google Scholar 

  8. Custódio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18(2), 537–555 (2007)

    Article  MathSciNet  Google Scholar 

  9. Diniz-Ehrhardt, M.A., Ferreira, D.G., Santos, S.A.: A pattern search and implicit filtering algorithm for solving linearly constrained minimization problems with noisy objective functions. Optim. Methods Softw. 34(4), 827–852 (2019). https://doi.org/10.1080/10556788.2018.1464570

    Article  MathSciNet  MATH  Google Scholar 

  10. Diniz-Ehrhardt, M.A., Martínez, J.M., Raydan, M.: A derivative-free nonmonotone line-search technique for unconstrained optimization. J. Comput. Appl. Math. 219(2), 383–397 (2008). https://doi.org/10.1016/j.cam.2007.07.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  12. Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)

    Article  MathSciNet  Google Scholar 

  13. Finkel, D.E., Kelley, C.T.: Convergence analysis of sampling methods for perturbed Lipschitz functions. Pac. J. Optim. 5(2), 339–350 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5(2), 269–285 (1995). https://doi.org/10.1137/0805015

    Article  MathSciNet  MATH  Google Scholar 

  15. Gonçalves, D.F.: Derivative-free methods for nonlinear programming: linearly constrained problems with noise objective function. Ph.D. thesis, Institute of Mathematics, University of Campinas, Campinas (SP), Brazil (2017) (in Portughese)

  16. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic feasible descent for bound and linearly constrained problems. preprint 17-10, Department of Mathematics, University of Coimbra (2017)

  17. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. In: Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer (1981)

  18. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999). https://doi.org/10.1137/1.9781611970920

    Book  MATH  Google Scholar 

  19. Kelley, C.T.: Implicit Filtering. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  20. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003). https://doi.org/10.1137/S003614450242889

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis, R.M., Shepherd, A., Torczon, V.: Implementing generating set search methods for linearly constrained minimization. SIAM J. Sci. Comput. 29(6), 2507–2530 (2007). https://doi.org/10.1137/050635432

    Article  MathSciNet  MATH  Google Scholar 

  22. Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM J. Optim. 10(3), 917–941 (2000). https://doi.org/10.1137/S1052623497331373

    Article  MathSciNet  MATH  Google Scholar 

  23. Lucidi, S., Sciandrone, M., Tseng, P.: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37–59 (2002). https://doi.org/10.1007/s101070100266

    Article  MathSciNet  MATH  Google Scholar 

  24. Moler, C.B.: Numerical Computing with MATLAB. SIAM, Philadelphia (2004)

    Book  Google Scholar 

  25. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009). https://doi.org/10.1137/080724083

    Article  MathSciNet  MATH  Google Scholar 

  26. Rill, G.: Road Vehicle Dynamics: Fundamentals and Modeling. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  27. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  28. Stoneking, D.E., Bilbro, G.L., Gilmore, P.A., Trew, R.J., Kelley, C.T.: Yield optimization using a gaas process simulator coupled to a physical device model. IEEE Trans. Microw. Theory Tech. 40(7), 201–213 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to professors Lúcio Tunes dos Santos (Institute of Mathematics, University of Campinas) and Pablo Siqueira Meirelles (Faculty of Mechanical Engineering, University of Campinas) for the discussions and valuable suggestions concerning the oscillator problem. We also thank the Associate Editor, professor Ernesto G. Birgin, and the anonymous reviewers, whose comments and remarks helped us to improve the presentation of our work. We are particularly indebted to the third referee, for pointing out fundamental corrections in the convergence analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Brazilian Funding Agencies Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grants 2013/12964-4, 2013/07375-0, 2018/24293-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant 302915/2016-8). This paper is dedicated to professor J. M. Martínez on the occasion of his 70th birthday, with our great respect and admiration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz-Ehrhardt, M.A., Ferreira, D.G. & Santos, S.A. Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification. Comput Optim Appl 76, 835–866 (2020). https://doi.org/10.1007/s10589-020-00182-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00182-2

Keywords

Mathematics Subject Classification

Navigation