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Quantitative analysis for a class of two-stage

stochastic linear variational inequality problems
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Abstract This paper considers a class of two-stage stochastic linear vari-
ational inequality problems whose first stage problems are stochastic linear
box-constrained variational inequality problems and second stage problems
are stochastic linear complementary problems having a unique solution. We
first give conditions for the existence of solutions to both the original problem
and its perturbed problems. Next we derive quantitative stability assertions
of this two-stage stochastic problem under total variation metrics via the cor-
responding residual function. Moreover, we study the discrete approximation
problem. The convergence and the exponential rate of convergence of optimal
solution sets are obtained under moderate assumptions respectively. Finally,
through solving a non-cooperative game in which each player’s problem is
a parameterized two-stage stochastic program, we numerically illustrate our
theoretical results.
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1 Introduction

We consider a class of two-stage stochastic linear variational inequality prob-
lems in the following form [2,3,5]:

{

0 ∈ Ax+ EP [B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x + q2(ξ) ≥ 0, for P−a.e. ξ ∈ Ξ,
(1)

where l, u ∈ R
n and l < u in the sense of componentwise; ξ : Ω → Ξ ⊆ R

s

with the probability space being (Ω,F ,P), P ∈ P(Ξ) and P(Ξ) denotes the
set of probability distributions on the support set Ξ, A ∈ R

n×n, q1 ∈ R
n;

B(·) : R
s → R

n×m, M(·) : R
s → R

m×m, N(·) : R
s → R

m×n and q2(·) :
R

s → R
m are all matrix-valued or vector-valued mappings. The mathematical

expectation EP is taken in a componentwise fashion with respect to (w.r.t.)
the corresponding probability distribution P := P ◦ ξ−1. Problem (1) aims
to find a pair (x, y(·)) ∈ [l, u] × Y satisfying (1), where Y is the collection
of measurable functions from Ξ to R

m such that the expectation in the first
stage problem of model (1) is well-defined. N[l,u](x) denotes the normal cone
to the box [l, u] at x. We say that problem (1) satisfies the relatively complete
recourse if the second stage problem of (1) has a solution y∗(x, ξ) for any
x ∈ [l, u] and a.e. every ξ ∈ Ξ.

The deterministic variational inequality problem has been extensively in-
vestigated, see monographs [6,7,10] and the references therein. Recently, to
describe uncertainty in the complex decision process, stochastic variational
inequality problems have been put forward and studied increasingly. Chen,
Pong and Wets [1] introduced the two-stage stochastic variational inequali-
ty problem and an expected residual minimization procedure for solving it.
Rockafellar and Wets [20] considered the multi-stage stochastic variational in-
equality problem when the support set is discrete, which lays a theoretical
foundation for numerical solution by reformulating the multi-stage stochastic
problem in an extensive form. Closely following this work, Rockafellar and Sun
employed in [17] the well-known Progressive Hedging Method (PHM) to solve
the multi-stage stochastic variational inequality problem. It is worth point-
ing out that PHM was introduced by Rockafellar and Wets in [18] to solve
multi-stage stochastic programs. Recently, Chen, Sun and Xu [3] proposed
a discretization scheme for the two-stage stochastic linear complementarity
problem (SLCP) with continuous random variables, and studied the distribu-
tionally robust counterpart of the two-stage SLCP when the ambiguity set
is constructed with the first order moment information. More recently, Chen,
Shapiro and Sun [2] generalized the two-stage stochastic variational inequal-
ity problem to two-stage stochastic generalized equations. They studied the
convergence of sample average approximation (SAA) without the relatively
complete recourse assumption. As a special case, they also considered a mixed
two-stage stochastic nonlinear variational inequality problem and examined
the uniqueness of its solution and the exponential convergence of its discrete
approximation.
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It is easy to verify that the first stage problem of (1) can be equivalently
rewritten as

x−mid{l, u, x−Ax − EP [B(ξ)y(ξ)] − q1} = 0,

where the “mid” function is defined componentwise as follows:

mid{li, ui, zi} =







li, zi < li,
zi, li ≤ zi ≤ ui,
ui, zi > ui,

i = 1, . . . , n.

Assume that for any pair (x, ξ) ∈ X × Ξ, the second stage SLCP of problem
(1) has a unique solution y∗(x, ξ). Then substituting it into the first stage
problem, we obtain

0 ∈ Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x),

where the right-hand side only depends on x. This inspires us to consider a
residual function fP : Rn → R+ as follows:

fP (x) : = ‖x−mid{l, u, x−Ax − EP [B(ξ)y∗(x, ξ)] − q1}‖2. (2)

If there is an x ∈ R
n such that fP (x) = 0, then xmust be a solution to problem

(1). For the convenience of further discussion in the sequel, we equivalently
consider the following box-constrained optimization problem

min
x∈[l,u]

fP (x). (3)

In this paper, we analyze the quantitative stability of problem (1) by em-
ploying the minimization problem (3). It is noteworthy that recasting the
stochastic variational inequality problem (1) as a stochastic (nonconvex) op-
timization problem, such as (3), provides a vehicle for conducting the analysis
in this paper. It is not a necessarily avenue to compute an approximation
solution, see for example [3,9,11,20].

The main contributions of this paper can be summarized as follows. First,
we examine different sufficient conditions for the existence of solutions to prob-
lem (1) and its perturbed problems. Next, under the assumption that the
solution to the second stage problem is unique, we carry out quantitative sta-
bility analysis of problem (1) w.r.t. suitable probability metrics. Moreover, we
consider the discrete approximation to problem (1), and derive both the con-
vergence and exponential rate of convergence of the optimal solution sets of
the discrete approximation problems to that of the original problem. Finally,
to confirm these theoretical results as well as their applications, we consider a
multi-player non-cooperative two-stage stochastic game problem and present
numerical results by using PHM.

Throughout this paper, we adopt the following notation. Rn
+ := {x ∈ R

n :
x ≥ 0} and R

n
++ := {x ∈ R

n : x > 0}. B denotes the closed ball centred at zero
with radius one in the corresponding space according to context. ‖·‖ stands
for the Euclidean norm of a vector or the induced matrix norm. Pk(Ξ) :=
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{P ∈ P(Ξ) : EP [‖ξ‖k] < +∞}. For any a ∈ R
n and A,B ⊆ R

n, we define
d(a,B) = infb∈B ‖a− b‖ and d(A,B) = supa∈A infb∈B ‖a− b‖.

The paper is organized as follows. In section 2, we present the existence
of solutions and quantitative stability results. In section 3, we consider the
discrete approximation and conduct convergence analyses using problem (3).
In section 4, we consider a multi-player non-cooperative two-stage stochastic
game problem and its numerical process by PHM. In section 5, we make some
concluding remarks.

2 Quantitative stability

Stability analysis of stochastic optimization problems is important for not
only theoretical study but also numerical approximation. When we handle a
stochastic optimization problem numerically, usually the first step is the dis-
crete or empirical approximation to the included high dimensional integrals.
Then some critical questions arise: what is the quantitative relationship be-
tween the original continuous problem and its discrete approximation; whether
the optimal value and/or optimal solution set of the approximation problem
converge to those of the original problem. All these questions can be answered
through stability analysis. In view of this, we carry out the quantitative stabil-
ity analysis of problem (1) in this section. For this purpose, we first introduce
some prerequisites.

2.1 Prerequisites

Probability metrics are distance functions on the space of probability measures
or probability distributions. In this paper, we need the so-called pseudo metric
between two probability measures/distributions. We call them pseudo metrics
because they usually do not satisfy the axioms of distance. In pseudo metrics,
there is a large class of probability metrics called ζ-structure metrics.

Definition 1 (probability metric with ζ-structure, see [12]) Let G be
a collection of real-valued measurable functions on support set Ξ. Then, for
any two probability measures P,Q ∈ P(Ξ), we call

DG(P,Q) = sup
g∈G

|EP [g(ξ)]− EQ[g(ξ)]|

the ζ-structure probability metric between P and Q induced by G.
DG(P,Q) is a pseudo metric because DG(P,Q) = 0 does not imply P =

Q unless G is rich enough. Obviously, we have the symmetry and triangle
inequality for DG . It is known from Definition 1 that different ζ-structure
metrics can be derived through choosing different Gs. For example, if we take

GTV := {g : Ξ → R : g is measurable and sup
ξ∈Ξ

|g(ξ)| ≤ 1},
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the resulting ζ-structure metric

DTV (P,Q) := sup
g∈GTV

|EP [g(ξ)]− EQ[g(ξ)]|

is called the total variation metric. If

GFMp
:=
{

g : Ξ → R : |g(ξ1)− g(ξ2)| ≤ max
{

1, ‖ξ1‖ , ‖ξ2‖
}p−1 ‖ξ1 − ξ2‖

}

,

the corresponding ζ-structure metric

ζp(P,Q) := sup
g∈GFMp

|EP [g(ξ)]− EQ[g(ξ)]|

is called the pth order Fortet-Mourier metric, which is often used in the stabili-
ty analysis of stochastic programs. The selection of probability metric depends
on the properties of the stochastic optimization problem. For example, to em-
ploy the total variation metric, some boundedness properties of the objective
function are needed. This can be easily observed from its definition. The Fortet-
Mourier metric requires some locally Lipschitz continuity conditions for the
objective function, which is widely used in the quantitative stability analysis
of two-stage stochastic linear programming problems. One can refer to [21]
and [25] and references therein for more details. Here we employ these two
ζ-structure metrics due to the boundedness and locally Lipschitz continuity
of the corresponding objective functions. As for their equivalence, weak con-
vergence and discrete approximations of above pseudo metrics, the reader is
referred to [21].

In what follows, we give some useful properties about the solution to the
second stage SLCP problem. A matrixM ∈ R

m×m is a P-matrix if all principal
minors of M are positive.

Proposition 1 ([4]) Let M(ξ) be a P-matrix for every ξ ∈ Ξ. The following
assertions hold for problem (1).

(i) For any given x ∈ [l, u] and ξ ∈ Ξ, the second stage problem of (1) has a
unique solution y∗(x, ξ), which can be implicitly written as

y∗(x, ξ) = −W (x, ξ)(N(ξ)x + q2(ξ)),

where W (x, ξ) := [I −D(x, ξ)(I −M(ξ))]−1D(x, ξ) and D(x, ξ) is the m-
dimensional diagonal matrix defined by

Djj(x, ξ) =

{

1, if (M(ξ)y∗(x, ξ) +N(ξ)x + q2(ξ))j ≤ y∗j (x, ξ),

0, otherwise

for j = 1, · · · ,m;
(ii) y∗(·, ξ) is Lipschitz continuous, i.e.,

‖y∗(x1, ξ)− y∗(x2, ξ)‖ ≤ max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖ ‖x1 − x2‖ ,

where MJ×J(ξ) is the sub-matrix of M(ξ), whose entries are indexed by
J × J , and J denotes the power set of {1, 2, · · · ,m}.
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For further discussion, we need the following assumption (see, for example,
[2,3]).

Assumption 1 Let M(ξ) be a P-matrix for every ξ ∈ Ξ. Moreover, there
exists a continuous function κM : Ξ → R++, such that

max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ≤ 1

κM (ξ)

for any ξ ∈ Ξ.

A sufficient condition for Assumption 1 is yTM(ξ)y ≥ κM (ξ) ‖y‖2 for any
y ∈ R

m and ξ ∈ Ξ, from which we can deduce from [3, Lemma 2.1] that M(ξ)
is a P-matrix and in addition

∥

∥M−1
J×J(ξ)

∥

∥ ≤ 1
κM (ξ) for any J ∈ J . A stronger

assumption is adopted in [3, Assumption 2.1] (see Assumption 2 below).

2.2 Existence of solutions

The existence of solutions to stochastic variational inequality problems have
been studied in [8,13–16]. Specially, Ravat and Shanbhag considered in [13]
the stochastic Nash game where the expectation of each player’s cost function
is minimized. Conditions to admit an equilibrium for both smooth and nons-
mooth (but continuous) objective functions were investigated. More recently,
the same authors discussed in [14] some verifiable sufficiency conditions for
the existence of solutions to stochastic (quasi-)variational inequality problem-
s which extended the results in [13] from single-valued stochastic variation-
al inequality problems to multi-valued stochastic quasi-variational inequality
problems.

The existing works mainly concentrate on the deterministic case or the
single-stage case. Here, we adopt these pioneering works or concepts to give
some assertions about the existence of solutions to the two-stage stochastic
ones. In the two-stage case, Chen, Sun and Xu employed the strong mono-
tonicity in terms of a redefined inner product on the product space of the
first stage and second stage variables in [3], under which the existence and
uniqueness assertion of solutions to the two-stage SLCP were derived. Under
Assumption 1, we know that there always exists a unique solution y∗(x, ξ) to
the second stage SLCP for any given pair (x, ξ) ∈ [l, u]×Ξ. Namely, problem
(1) satisfies the relatively complete recourse condition. However, this does not
necessarily ensure the existence of a solution to problem (1). Therefore, in
the sequel, we will introduce several conditions such that problem (1) has at
least one solution under probability distribution P , and so does its perturbed
problem under Q, i.e.,

{

0 ∈ Ax+ EQ[B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x+ q2(ξ) ≥ 0, for Q−a.e. ξ ∈ Ξ.
(4)

To introduce the first sufficient condition, we make the following assump-
tion which was first used in [3] to study the two-stage SLCP.
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Assumption 2 There exists a continuous function κ(·) : Ξ → R++, such
that

(xT , yT )

(

A B(ξ)
N(ξ) M(ξ)

)(

x
y

)

≥ κ(ξ)(‖x‖2 + ‖y‖2) (5)

P -a.e. ξ ∈ Ξ, for any x ∈ R
n and y ∈ R

m, where EP [κ(ξ)] < +∞.

It is easy to see that Assumption 2 implies Assumption 1 by letting x = 0.
Then, under Assumption 2, Chen, Sun and Xu [3] gave the following conclu-
sion.

Proposition 2 Suppose that Assumption 2 holds. Then problem (1) has a
unique solution.

Assumption 2 is sufficient for problem (1) to have a unique solution. In this
paper, we give a weaker condition for the existence of solutions to problem (1)
without the uniqueness. For this purpose, we introduce the following notation
and the concept of pseudomonotonicity.

Define the mapping ΦP : Rn → R
n as

ΦP (x) = Ax+ EP [B(ξ)y∗(x, ξ)] + q1.

Recall that ΦP is pseudomonotone [7, Definition 2.3.1] if

〈x1 − x2, ΦP (x2)〉 ≥ 0 ⇒ 〈x1 − x2, ΦP (x1)〉 ≥ 0.

Immediately, based on [7], we have the following proposition.

Proposition 3 Suppose that Assumption 1 holds and the following integral
∫

Ξ

‖B(ξ)‖max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖P (dξ)

is finite. Then the solution set of problem (1) is nonempty and its projection
on the first stage variable is compact. If, in addition, ΦP is pseudomonotone
on [l, u], this projection is convex too.

Proof We first verify that ΦP (x) is continuous w.r.t. x. Note that

‖ΦP (x1)− ΦP (x2)‖ ≤ ‖A‖ ‖x2 − x1‖+ ‖EP [B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))]‖ .
(6)

For the second term of the right-hand side of (6), we have estimation

‖EP [B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))]‖
≤ EP [‖B(ξ)(y∗(x2, ξ)− y∗(x1, ξ))‖]
≤ EP [‖B(ξ)‖max

J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖] ‖x1 − x2‖ .

Due to the finiteness of EP [‖B(ξ)‖maxJ∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖], we know that
ΦP is Lipschitz continuous, which is obviously continuous. Then, we derive
from [7, Proposition 2.2.3] that

−ΦP (x) ∈ N[l,u](x) (7)
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has a solution. Since Assumption 1 holds, there always exists a solution for
the second stage problem for any x ∈ [l, u]. To summarize, problem (1) has a
solution.

Corollary 2.2.5 in [7] tells us that: if X ⊆ R
n is compact and convex, and

F : X → R
n is continuous, the solution set of−F (x) ∈ NX(x) is nonempty and

compact. If, in addition, F is pseudomonotone, it is known from [7, Theorem
2.3.5] that the solution set is convex.

Due to the boundedness and convexity of interval [l, u], we know from
[7, Corollary 2.2.5] that the solution set of (7) is nonempty and compact.
Moreover, if ΦP is pseudomonotone, based on [7, Theorem 2.3.5], the solution
set of (7) is convex. ⊓⊔

To establish the existence of solutions to the perturbed problem, we need
the following assumption.

Assumption 3 There exist constants α ≥ 0 and C > 0, such that the random
matrices and vector in problem (1) are bounded as

‖Λ(ξ)‖ ≤ Cmax{1, ‖ξ‖}α, for a.e. ξ ∈ Ξ,

where Λ(ξ) = B(ξ),M(ξ), N(ξ) or q2(ξ).

Remark 1 We have the following observations for the assumptions in Propo-
sition 3.

(i) If Assumptions 1 and 3 hold, and κM (ξ) ≥ κ for some positive constant
κ, we have

‖B(ξ)‖max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖ ≤ C2 max{1, ‖ξ‖}2α
κ

.

Then a sufficient condition for the integrability of the left-hand side is
simply P ∈ P2α(Ξ), which can be verified easily.

(ii) As for the pseudomonotonicity of ΦP over [l, u], we can verify the mono-
tonicity of ΦP instead of the pseudomonotonicity if possible. This might
be easier to implement, which is only necessary to examine the mono-
tonicity of Ax + B(ξ)y∗(x, ξ) + q1 for almost everywhere ξ ∈ Ξ. It is
known from Proposition 1 that, for any x1, x2 ∈ [l, u], we have

〈x1 − x2, Ax1 +B(ξ)y∗(x1, ξ) + q1 − (Ax2 +B(ξ)y∗(x2, ξ) + q1)〉
≥ 〈x1 − x2, A(x1 − x2)〉 −max

J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖B(ξ)‖ ‖N(ξ)‖ ‖x1 − x2‖2

≥
(

λmin(A) −max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖B(ξ)‖ ‖N(ξ)‖
)

‖x1 − x2‖2 ,

where λmin(A) is the minimal eigenvalue of A. Then a sufficient condition
for the monotonicity is that

λmin(A)−max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖B(ξ)‖ ‖N(ξ)‖ ≥ 0
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holds for a.e. ξ ∈ Ξ. This can be further simplified under some spe-
cific settings. For example, if we have y∗(x, ξ) = −M(ξ)−1(N(ξ)x +
q2(ξ)) ≥ 0 for almost everywhere ξ ∈ Ξ and each x ∈ [l, u], that is,
A − B(ξ)W (x, ξ)N(ξ) = A − B(ξ)M(ξ)−1N(ξ), the monotonicity con-
dition holds when A− B(ξ)M(ξ)−1N(ξ) is positive semidefinite for a.e.
ξ ∈ Ξ, which can be easily verified.

In what follows, we consider the existence of solutions to the perturbed
problem (4) under certain conditions. To ease the statement, we define the
multifunction ΘP : [l, u] ⇉ R

n as

ΘP (x) = Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

and its inverse is

Θ−1
P (y) := {x ∈ [l, u] : y ∈ ΘP (x)}.

Proposition 4 Under assumptions of Proposition 3, z ∈ ΘP (x) is solvable
for any z ∈ R

n.

Proof Note that, for any x ∈ R
n, z ∈ ΘP (x) is equivalent to −ΦP (x) + z ∈

N[l,u](x). We know from the proof of Proposition 3 that −ΦP (x) is continuous
w.r.t x, so does −ΦP (x)+z. Then, by the same argument as that in Proposition
3, we know that z ∈ ΘP (x) is solvable for any x ∈ R

n, which completes the
proof. ⊓⊔

With the aid of Assumption 3, we have the following lemma.

Lemma 1 Suppose that Assumptions 1 and 3 hold, κM (ξ) ≥ κ > 0 and P,Q ∈
P2α+1(Ξ). Then there exists a positive number L such that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 , (8)

when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.

Proof From [4, Theorem 2.1], the matrix W (x, ξ) defined in Proposition 1 is
well-defined and

‖W (x, ξ)‖ ≤ max
J∈I

∥

∥M−1
J×J(ξ)

∥

∥ .

This and Assumption 1 imply that ‖W (x, ξ)‖ ≤ 1
κM (ξ) . Under Assumptions 1

and 3, we have from (i) of Proposition 1 that

‖y∗(x, ξ)‖ ≤ 1

κM (ξ)
‖N(ξ)x + q2(ξ)‖ ≤ (R+ 1)C

κ
max{1, ‖ξ‖}α, (9)

where R := maxx∈[l,u] ‖x‖. Thus,

‖B(ξ)y∗(x, ξ)‖ ≤ (R + 1)C2

κ
max{1, ‖ξ‖}2α. (10)
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Meanwhile, we have

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤
∫

{ξ∈Ξ:‖ξ‖>Γ}

‖B(ξ)y∗(x, ξ)‖ (P +Q)(dξ)

+

∥

∥

∥

∥

∫

{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

.

Here, we select Γ ≥ 1. For the second term at the right-hand side, we have
∥

∥

∥

∥

∥

∫

{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

∥

=
(R+ 1)C2Γ 2α

κ

∥

∥

∥

∥

∥

∫

{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)

(R + 1)C2Γ 2α/κ
(P −Q)(dξ)

∥

∥

∥

∥

∥

.

It is known from (10) that

‖B(ξ)y∗(x, ξ)‖ ≤ (R+ 1)C2Γ 2α

κ

for any ξ with ‖ξ‖ ≤ Γ . This implies

(B(ξ)y∗(x, ξ))i
(R+ 1)C2Γ 2α/κ

≤ 1

due to |(B(ξ)y∗(x, ξ))i| ≤ ‖B(ξ)y∗(x, ξ)‖, for i = 1, 2, · · · , n. Define gi(x, ξ)
by

gi(x, ξ) =

{

(B(ξ)y∗(x,ξ))i
(R+1)C2Γ 2α/κ , ‖ξ‖ ≤ Γ ;

0, otherwise.

Obviously, we have gi(x, ξ) ∈ GTV , which indicates that
∣

∣

∣

∣

∫

Ξ

gi(x, ξ)(P −Q)(dξ)

∣

∣

∣

∣

≤ DTV (P,Q)

for i = 1, 2, · · · , n. Denote by g = (g1, · · · , gn)T . Then, by the definition of
total variation metric, we have
∥

∥

∥

∥

∥

∫

{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)

(R+ 1)C2Γ 2α/κ
(P −Q)(dξ)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∫

Ξ

g(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

=

(

n
∑

i=1

∣

∣

∣

∣

∫

Ξ

gi(x, ξ)(P −Q)(dξ)

∣

∣

∣

∣

2
)

1
2

≤ √
nDTV (P,Q).

Finally, we obtain
∥

∥

∥

∥

∫

{ξ∈Ξ:‖ξ‖≤Γ}

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

≤ √
n
(R+ 1)C2

κ
Γ 2α

DTV (P,Q).
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Note that ‖ξ‖p /p ∈ GFMp
for any p ≥ 1, which means

∫

Ξ

‖ξ‖pQ(dξ)−
∫

Ξ

‖ξ‖p P (dξ) ≤ pζp(P,Q).

Thus,
∫

{ξ∈Ξ:‖ξ‖>Γ}

‖B(ξ)y∗(x, ξ)‖ (P +Q)(dξ)

(10)

≤
∫

{ξ∈Ξ:‖ξ‖>Γ}

(R + 1)C2

κ
max{1, ‖ξ‖}2α(P +Q)(dξ)

≤ (R+ 1)C2

κΓ

∫

{ξ∈Ξ:‖ξ‖>Γ}

‖ξ‖2α+1
(P +Q)(dξ)

≤ (R+ 1)C2

κΓ

(

2EP [‖ξ‖2α+1
] + (2α+ 1)ζ2α+1(P,Q)

)

.

To summarize the above estimation, we obtain that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤
√
n
(R+ 1)C2

κ
Γ 2α

DTV (P,Q) +
(R+ 1)C2

κΓ
(2EP [‖ξ‖2α+1

] + 2α+ 1),

which comes from the assumption that DTV (P,Q)+ζ2α+1(P,Q) ≤ 1. Specially,
we define

Γ = DTV (P,Q)−1/(2α+1) ≥ 1.

Finally, we derive that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 ,

where L =
(

(R+ 1)C2(
√
n+ 2EP [‖ξ‖2α+1] + 2α+ 1)

)

/κ. ⊓⊔

Proposition 5 Suppose that Assumptions 1 and 3 hold, κM (ξ) ≥ κ > 0 a.s.
and P,Q ∈ P2α(Ξ). Then the perturbed problem (4) is solvable.

Proof We have from Assumptions 1 and 3, and κM (ξ) ≥ κ > 0 almost surely
(a.s.) that

‖B(ξ)‖max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖ ≤ C2 max{1, ‖ξ‖2α}
κM (ξ)

a.s.
≤ C2 max{1, ‖ξ‖2α}

κ
.

Recall P2α(Ξ) = {P ∈ P(Ξ) : EP [‖ξ‖2α] < +∞}. This and P ∈ P2α(Ξ) imply
that Proposition 4 holds.

Moreover, it is known from (10) that

‖B(ξ)y∗(x, ξ)‖
a.s.
≤ (R + 1)C2

κ
max{1, ‖ξ‖}2α.
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Since P,Q ∈ P2α(Ξ), we obtain that both EP [B(ξ)y∗(x, ξ)] and EQ[B(ξ)y∗(x, ξ)]
are well-defined and have finite value. Let

z = EP [B(ξ)y∗(x, ξ)] − EQ[B(ξ)y∗(x, ξ)] ∈ R
n.

According to Proposition 4,

EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)] ∈ ΘP (x)

is solvable, that is,

0 ∈ Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

or the perturbed problem (4) is solvable. ⊓⊔
King and Rockafellar in [8] put forward the concept of subinvertibility to

investigate the existence of the solution to perturbed generalized equations,
which can be applied to the situation without the differentiability assumption.
In the following, we employ the concept of subinvertibility to establish the
existence assertion. The subinvertibility of a multifunction is defined on its
graph. For more details about the graph of a multifunction, one can refer to
[19]. Specifically, we have the following definition of subinvertibility.

Definition 2 (subinvertibility, [8]) ΘP (x) is said to be subinvertible at
(x∗, 0), if 0 ∈ ΘP (x

∗) and there exist a compact neighborhood U of x∗, a
positive scalar ǫ and a nonempty convex-valued multifunction G : ǫB → U ,
such that the graph of G, denoted by gphG, is closed, x∗ ∈ G(0) and G(y) is
contained in Θ−1

P (y) for each y ∈ ǫB.

As for more discussion of subinvertibility, one can refer to [8] for details.
Then, based on the concept of subinvertibility and [8, Proposition 3.1], we
have the following proposition.

Proposition 6 Suppose that all assumptions in Lemma 1 hold and ΘP (x) is
subinvertible at (x∗, 0). Then there exist a compact and convex neighborhood
U of x∗ and a scalar ǫ ∈ (0, 1], such that

0 ∈ Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

has at least one solution in U for every Q ∈ P2α(Ξ) satisfying DTV (P,Q) +
ζ2α+1(P,Q) ≤ ǫ.

Proof According to Lemma 1, if DTV (P,Q) + ζ2α+1(P,Q) ≤ 1, there is L > 0
such that

‖EQ[B(ξ)y∗(x, ξ)] − EP [B(ξ)y∗(x, ξ)‖ ≤ LDTV (P,Q)
1

2α+1 .

From [8, Proposition 3.1], we know that there exists an ǫ0 > 0 such that the
perturbed problem

0 ∈Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

=Ax+ EP [B(ξ)y∗(x, ξ)] + q1 +N[l,u](x)

+Ax+ EQ[B(ξ)y∗(x, ξ)] + q1 − (Ax+ EP [B(ξ)y∗(x, ξ)] + q1)
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has at least one solution in a compact and convex neighborhood U of x∗ for
any Q satisfying

LDTV (P,Q)
1

2α+1 ≤ ǫ0.

Let ǫ = min{
(

ǫ0
L

)2α+1
, 1}. We complete the proof. ⊓⊔

The subinvertibility of ΘP (x) can be verified under some typical cases, see
[8]. The following remark tells us that our conditions are not limiting compared
with those in [3,17].

Remark 2 As we mentioned before, in [3], the authors required Assumption 2,
which is stronger than Assumption 1. On the other hand, in [17], the authors
directly assumed that problem (1) is solvable, and the coefficient matrix

(

A B(ξ)
N(ξ) M(ξ)

)

is positive semidefinite for any ξ ∈ Ξ, where their support set Ξ is assumed
to be finite. In this case, the positive semidefinite assumption is equivalent to
monotonicity. Our conditions are weaker than those in [17]. To clarify this, we
consider the following coefficient matrix:

(

A 0
N · ξ M · ξ2

)

,

where ξ ∈ Ξ := [ 12 , 1], A ∈ R
n×n is negative definite, N ∈ R

m×n and M ∈
R

m×m is positive definite. Obviously, due to the negative definiteness of A, this
kind of coefficient matrix is not positive semidefinite. When the coefficient
matrix takes the above form, the first stage problem is always solvable if
x = −A−1q1 ∈ [l, u]. Moreover, the positive semidefiniteness of M(ξ) ensures
that the second stage problem is always solvable. However, this situation still
fails to satisfy the requirement in [17].

2.3 Quantitative stability

In this subsection, we consider the quantitative stability analysis of problem
(1). Denote by S(P ) and υ(P ) the optimal solution set and optimal value
of problem (3), respectively. Similarly, we use S(Q) and υ(Q) to denote the
optimal solution set and optimal value of the perturbed problem (3) with
probability measure Q. In subsection 2.2, we provide conditions that ensure
S(P ) and S(Q) are nonempty.

Note the fact that

∣

∣

∣‖a‖2 − ‖b‖2
∣

∣

∣ =
∣

∣(a− b)T (a+ b)
∣

∣ ≤ ‖a− b‖ (‖a‖+ ‖b‖)
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for any a, b ∈ R
n. By this fact and (2), we have the following estimation:

|fP (x)− fQ(x)|
≤ ‖EP [B(ξ)y∗(x, ξ)] − EQ[B(ξ)y∗(x, ξ)]‖
·
(

2 ‖x‖+ ‖mid{l, u, x− (Ax + EP [B(ξ)y∗(x, ξ)] + q1)}‖
+ ‖mid{l, u, x− (Ax+ EQ[B(ξ)y∗(x, ξ)] + q1)}‖

)

. (11)

Firstly, we assume that the support set Ξ is a compact subset in R
s. Then

we have

‖EP [B(ξ)y∗(x, ξ)] − EQ[B(ξ)y∗(x, ξ)]‖ =

∥

∥

∥

∥

∫

Ξ

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

.

It is known from (10) that

|Bi(ξ)y
∗(x, ξ)| ≤ ‖B(ξ)y∗(x, ξ)‖ ≤ (R+ 1)C2

κM (ξ)
max{1, ‖ξ‖}2α, i = 1, 2, · · · , n,

where R = maxx∈[l,u]{1, ‖x‖}. Moreover, we have

0 < max
ξ∈Ξ

{

(R+ 1)C2

κM (ξ)
max{1, ‖ξ‖}2α

}

< +∞

because of the compactness of Ξ and the positivity and continuity of κM (ξ).
Therefore, the following inequality holds
∣

∣

∣

∣

∫

Ξ

Bi(ξ)y
∗(x, ξ)(P −Q)(dξ)

∣

∣

∣

∣

≤ max
ξ∈Ξ

{

(R+ 1)C2

κM (ξ)
max{1, ‖ξ‖}2α

}

DTV (P,Q),

for i = 1, 2, · · · , n. Thus we obtain
∥

∥

∥

∥

∫

Ξ

B(ξ)y∗(x, ξ)(P −Q)(dξ)

∥

∥

∥

∥

≤ √
n(R+ 1)C2 max

ξ∈Ξ

{

max{1, ‖ξ‖}2α
κM (ξ)

}

DTV (P,Q).

For the second term of the right-hand side of (11), we can bound it above
by

2

(

4R+ ‖A‖R+ (R+ 1)C2 max
ξ∈Ξ

(

max{1, ‖ξ‖}2α
κM (ξ)

)

+ ‖q1‖
)

:= η.

To sum up, we have the following quantitative estimation.

Lemma 2 Let Assumptions 1 and 3 hold and Ξ be a compact set. Then there
exists a positive constant L1, such that

sup
x∈[l,u]

|fP (x)− fQ(x)| ≤ L1DTV (P,Q),

where L1 := η
√
n(R + 1)C2 maxξ∈Ξ

(

{1,‖ξ‖}2α

κM (ξ)

)

.
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Before establishing the relationship between S(Q) and S(P ), we introduce
the growth function and its inverse. We call ψP : R+ → R the growth function
of problem (3) if

ψP (τ) := min{fP (x) : d(x, S(P )) ≥ τ, x ∈ [l, u]}.
It is not difficult to verify from its definition that ψP (·) is nondecreasing and
lower semicontinuous. Its inverse function is defined by

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}, (12)

which, of course, is nondecreasing too. For more information, we refer to [19,
Example 7.63] and [21].

On the basis of Lemma 2, we immediately obtain the following quantitative
description of optimal solution sets.

Theorem 1 Let Assumptions 1 and 3 hold and the support set Ξ be compact.
Then

S(Q) ⊆ S(P ) + ψ−1
P (L1DTV (P,Q))B,

where L1 is defined in Lemma 2 and B is the closed unit ball centered at 0.

Proof A similar proof can be found in [21, Theorem 9]. To keep the paper
self-contained, we provide a brief proof. If S(Q) = ∅, the assertion obviously
holds. In the following, we assume S(Q) 6= ∅. For any x̃ ∈ S(Q), we have
υ(Q) = fQ(x̃) = 0 and υ(P ) = 0. Then we have

L1DTV (P,Q) = L1DTV (P,Q) + fQ(x̃)− υ(P )

≥ fP (x̃)− fQ(x̃) + fQ(x̃)− υ(P )

= fP (x̃)− υ(P )

≥ ψP (d(x̃, S(P ))).

Thus, we have

d(x̃, S(P )) ≤ ψ−1
P (L1DTV (P,Q)).

Since x̃ ∈ S(Q) is selected arbitrarily, we have actually shown that

S(Q) ⊆ S(P ) + ψ−1
P (L1DTV (P,Q))B.

⊓⊔
In what follows, we derive the corresponding conclusions without compact-

ness of the support set Ξ by utilizing the conclusion in Lemma 1.

Theorem 2 Suppose that Assumptions 1 and 3 hold, P,Q ∈ P2α+1(Ξ) and
κM (ξ) ≥ κ > 0. Then there exists a positive constant L2, such that

sup
x∈[l,u]

|fP (x) − fQ(x)| ≤ L2DTV (P,Q)
1

2α+1 , (13)

S(Q) ⊆ S(P )) + ψ−1
P (L2DTV (P,Q)

1
2α+1 )B, (14)

when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.
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Proof We know from Lemma 1 that there exists a positive constant L > 0,
such that

‖EP [B(ξ)y∗(x, ξ)]− EQ[B(ξ)y∗(x, ξ)]‖ ≤ LDTV (P,Q)
1

2α+1 , (15)

when DTV (P,Q) + ζ2α+1(P,Q) ≤ 1.
For the second term in the right-hand side of (11), we can bound it above

by

8R+ 2 ‖A‖R+ 2 ‖q1‖+
(R + 1)C2

(

EP [‖ξ‖2α] + EQ[‖ξ‖2α] + 2
)

κ

≤ 8R+ 2 ‖A‖R+ 2 ‖q1‖+
2(R+ 1)C2

κ
(EP [‖ξ‖2α] + αζ2α(P,Q) + 1)

≤ 8R+ 2 ‖A‖R+ 2 ‖q1‖+
2(R+ 1)C2

κ
(EP [‖ξ‖2α] + α+ 1) := C1, (16)

where R is defined as that in Lemma 1 and the second inequality comes from
(see [21])

∣

∣

∣EQ[‖ξ‖2α]− EP [‖ξ‖2α]
∣

∣

∣ ≤ 2αζ2α(P,Q).

Combining (15) and (16), and letting L2 = LC1, we obtain (13). We can
derive (14) by using a similar proof as that of Theorem 1, and thus omit the
proof. ⊓⊔

Theorems 1 and 2 assert that the solution set of the perturbed problem
can be somehow bounded by that of the original problem under specific con-
ditions. In order to quantify it, we adopt a general growth function, instead
of imposing a specific growth condition, on the objective function of the orig-
inal problem. Since the general growth function will vanish at 0, see [21] for
details, a sufficiently small perturbation will not change the solution set too
much. This stability property is important for both theoretical research and
practical calculation. Recall that we say the general growth function ψP has
the kth order growth for some scalar k ≥ 1 if ψP (τ) ≥ Cτk for small τ ∈ R+

and positive constant C. If ψP has kth order growth, Theorems 1 and 2 would
establish the Hölder continuity of S(·) at P with rate 1/k.

3 Exponential rate of convergence

In this section, we consider the discrete approximation to problem (1). Assume
that, according to the probability distribution P , we have independent and
identically distributed samples ξ1, ξ2, · · · , ξK . Then, for each fixed positive
integer K, we have the following discrete approximation to problem (1) with
the sample size K, i.e.,

{

0 ∈ Ax+ 1
K

∑K
i=1(B(ξi)y(ξi)) + q1 +N[l,u](x),

0 ≤ y(ξi)⊥M(ξi)y(ξi) +N(ξi)x+ q2(ξ
i) ≥ 0, for i = 1, 2, · · · ,K. (17)
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In the sequel, we investigate the approximation properties between problems
(1) and (17) as K tends to infinity. To this end, we define the discrete approx-
imation distribution PK with the sample size K by

PK(ξ) =
1

K

K
∑

i=1

δξi(ξ), for ξ ∈ Ξ,

where δξi(·) are indicator functions, that is, δξi(ξ) = 1 if ξ = ξi; otherwise
δξi(ξ) = 0 for i = 1, 2, · · · ,K. Under Assumption 1, we can equivalently
rewrite (17) as a minimization problem as follows:

min
x∈[l,u]

fPK
(x), (18)

where fPK
is defined in (2) by substituting P with PK .

Different from the usual convergence analysis about stochastic variational
inequality problems (see for instance [2,3,22]) which does not adopt the resid-
ual function, we consider the convergence and exponential rate of convergence
between problems (3) and (18).

To investigate the convergence of the optimal solution set of problem (18)
to that of problem (3), we need to consider the convergence between fPK

(x)
and fP (x). For this purpose, we first derive the uniform convergence of term
‖EP [B(ξ)y∗(x, ξ)] − EPK

[B(ξ)y∗(x, ξ)]‖ on [l, u]. Thus, we have the following
proposition.

Proposition 7 Suppose that Assumptions 1 and 3 hold, and P ∈ P(Ξ) sat-
isfies

EP

[

‖ξ‖2α
κM (ξ)

]

< +∞. (19)

Then
sup

x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)] − EPK
[B(ξ)y∗(x, ξ)]‖ → 0

as K → ∞, with probability one.

Proof It is easy to see from Proposition 1 that B(ξ)y∗(·, ξ) is continuous in
[l, u]. Moreover, we know from (9) and Assumption 3 that

‖B(ξ)y∗(x, ξ)‖ ≤ 1

κM (ξ)
‖N(ξ)x+ q2(ξ)‖ ‖B(ξ)‖

≤ (R + 1)C2

κM (ξ)
max{1, ‖ξ‖}2α

≤ (R + 1)C2

κM (ξ)

(

1 + ‖ξ‖2α
)

. (20)

By (19), we have that the right-hand side of (20) is integrable under probability
distribution P . All these arguments ensure the uniform convergence by [23,
Theorem 7.53]. ⊓⊔
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Based on Proposition 7, we immediately obtain the following corollary.

Corollary 1 Under the same assumptions of Proposition 7, we have that

lim
K→∞

sup
x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]‖ ≤ sup

x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ + 1

with probability one.

Lemma 3 Let ψ−1
P be defined in (12). Then for any ǫ > 0, there exists a

sufficiently small scalar δ > 0 such that ψ−1
P (δ) ≤ ǫ, namely, ψ−1

P (δ) → 0 as
δ → 0.

Proof Recall that

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}.

For any ǫ > 0, there exists a sufficiently small δ > 0 with δ ≤ ψP (ǫ), which
implies ǫ ≥ ψ−1

P (δ). ⊓⊔
Corollary 2 Let Assumption 1 hold. Then S(PK) 6= ∅ for any positive integer
K .

Proof Since PK is the empirical distribution with finite support set {ξ1, · · · , ξK},
we have that

∫

Ξ

‖B(ξ)‖max
J∈J

∥

∥M−1
J×J(ξ)

∥

∥ ‖N(ξ)‖PK(dξ)

=
1

K

K
∑

i=1

∥

∥B(ξi)
∥

∥max
J∈J

∥

∥M−1
J×J(ξ

i)
∥

∥

∥

∥N(ξi)
∥

∥

≤ 1

K

K
∑

i=1

∥

∥B(ξi)
∥

∥

∥

∥N(ξi)
∥

∥

κM (ξi)

< +∞
for any positive integer K, where the last inequality comes from Assumption
1. Then according to Proposition 3 with Q = PK , S(PK) is nonempty. ⊓⊔
Theorem 3 Under assumptions of Proposition 7, we have

d(S(PK), S(P )) → 0

as K → ∞, with probability one.

Proof Note that S(PK) is nonempty from Corollary 2. For any x̃ ∈ S(PK), we
have υ(PK) = fPK

(x̃) = 0 and υ(P ) = 0. Then we have

sup
x∈[l,u]

|fP (x)− fPK
(x)| = sup

x∈[l,u]

|fP (x)− fPK
(x)|+ fPK

(x̃)− υ(P )

≥ fP (x̃)− fPK
(x̃) + fPK

(x̃)− υ(P )

= fP (x̃)− υ(P )

≥ ψP (d(x̃, S(P ))).
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Thus, we have

d(x̃, S(P )) ≤ ψ−1
P

(

sup
x∈[l,u]

|fP (x)− fPK
(x)|

)

for any x̃ ∈ S(PK), which implies that

d(S(PK), S(P )) ≤ ψ−1
P

(

sup
x∈[l,u]

|fP (x) − fPK
(x)|

)

. (21)

Therefore, to establish the assertion, we only need to prove

sup
x∈[l,u]

|fP (x) − fPK
(x)| → 0

with probability one as K → ∞. We have from (11) that

sup
x∈[l,u]

|fP (x) − fPK
(x)| ≤

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK
[B(ξ)y∗(x, ξ)]‖ · θ(PK , P ),

where

θ(PK , P ) =8R+ 2R ‖A‖ + 2 ‖q1‖
+ sup

x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]‖ + sup

x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ . (22)

Then, we obtain

lim
K→∞

sup
x∈[l,u]

|fP (x) − fPK
(x)| ≤

lim
K→∞

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)] − EPK
[B(ξ)y∗(x, ξ)]‖ · lim

K→∞
θ(PK , P ).

It can be deduced from Proposition 7 and Corollary 1 that

lim
K→∞

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK
[B(ξ)y∗(x, ξ)]‖ = 0

and

lim
K→∞

sup
x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]‖ ≤ sup

x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ + 1

with probability one, respectively. The second assertion above indicates that

lim
K→∞

θ(PK , P ) ≤ λ(P )

with probability one, where

λ(P ) = 8R+ 2R ‖A‖ + 2 ‖q1‖+ 2 sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ + 1. (23)
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All these imply that

lim
K→∞

sup
x∈[l,u]

|fP (x)− fPK
(x)| = 0

with probability one. Due to Lemma 3, we obtain

lim
K→∞

ψ−1
P

(

sup
x∈[l,u]

|fP (x)− fPK
(x)|

)

= 0

with probability one, which completes the proof. ⊓⊔

Now we derive the exponential rate of convergence of the SAA using sim-
ilar conditions in [24]. The authors of [24] studied the uniformly exponential
convergence of the SAA for stochastic mathematical programs with variation-
al constraints through the Cramér’s Large Deviation Theorem. To derive the
exponential rate of convergence of the SAA for the two-stage stochastic lin-
ear variational inequality problem, we need that [B(ξ)y∗(x, ξ)] is Lipschitz
continuous w.r.t. x, that is,

‖B(ξ)y∗(x1, ξ)−B(ξ)y∗(x2, ξ)‖ ≤ ‖B(ξ)‖ ‖N(ξ)‖ ‖x1 − x2‖ /κM (ξ)

= C(ξ) ‖x1 − x2‖

where C(ξ) = ‖B(ξ)‖ ‖N(ξ)‖ /κM (ξ), which is ensured by Assumption 1.
To establish the exponential rate of convergence, similar to that in [24], we

need the following assumptions.

Assumption 4 Let the following assertions hold:

(i) For each x ∈ [l, u], the moment generating functions of random variables
[B(ξ)y∗(x, ξ)]i − (EP [B(ξ)y∗(x, ξ)])i, i.e.,

EP [exp(t([B(ξ)y∗(x, ξ)]i − (EP [B(ξ)y∗(x, ξ)])i))]

for i = 1, 2, · · · , n, are finite valued for each t in a neighborhood of zero;
(ii) The moment generating function of C(ξ), i.e.,

EP [exp(tC(ξ))]

is finite valued for each t in a neighborhood of zero.

Proposition 8 Let Assumptions 1 and 4 hold. Then for any ǫ > 0, there exist
two positive scalars L(ǫ) and β(ǫ) which depend only on ǫ, such that

P

{

sup
x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]− EP [B(ξ)y∗(x, ξ)]‖ ≥ ǫ

}

≤ L(ǫ) exp(−Kβ(ǫ)).

This proposition can be directly obtained from [24, Theorem 5.1]. We thus
omit the proof here.

From Proposition 8, we can immediately obtain the following exponential
rate of convergence about the optimal solution set.
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Theorem 4 Let Assumptions 1 and 4 hold. Then, for any ǫ > 0, there exist
two positive scalars L̄(ǫ) and β̄(ǫ), such that

P {d(S(PK), S(P )) ≥ ǫ} ≤ L̄(ǫ) exp(−Kβ̄(ǫ)).

Proof We have from (21) the following estimation:

P{d(S(PK), S(P )) ≥ ǫ} ≤ P

{

ψ−1
P

(

sup
x∈[l,u]

|fP (x)− fPK
(x)|

)

≥ ǫ

}

≤ P

{

sup
x∈[l,u]

|fP (x) − fPK
(x)| ≥ ψP (ǫ)

}

.

The second inequality follows from the nondecreasing property of ψP .
We know from Proposition 8 that

P

{

sup
x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]− EP [B(ξ)y∗(x, ξ)]‖ < 1

}

≥ 1−L(1) exp(−Kβ(1)),

which implies

P

{

sup
x∈[l,u]

‖EPK
[B(ξ)y∗(x, ξ)]‖ < sup

x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]‖ + 1

}

≥ 1− L(1) exp(−Kβ(1)).
In addition, we have that

sup
x∈[l,u]

|fP (x) − fPK
(x)| ≤

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK
[B(ξ)y∗(x, ξ)]‖ · θ(PK , P ),

where θ(PK , P ) is defined in (22). Therefore, we obtain

P {θ(PK , P ) < λ(P )} ≥ 1− L(1) exp(−Kβ(1)),
where λ(P ) is defined in (23). Thus, we continue

P

{

sup
x∈[l,u]

|fP (x)− fPK
(x)| ≥ ψP (ǫ)

}

≤ P

{

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)]− EPK
[B(ξ)y∗(x, ξ)]‖ · θ(PK , P ) ≥ ψP (ǫ)

}

≤ L(1) exp(−Kβ(1))+

P

{

sup
x∈[l,u]

‖EP [B(ξ)y∗(x, ξ)] − EPK
[B(ξ)y∗(x, ξ)]‖ · λ(P ) ≥ ψP (ǫ)

}

≤ L(1) exp(−Kβ(1)) + L

(

ψP (ǫ)

λ(P )

)

exp

(

−Kβ
(

ψP (ǫ)

λ(P )

))

,



22 J. Jiang, X. Chen and Z. Chen

where the third inequality comes from Proposition 8.
Letting

L̄(ǫ) := L(1) + L

(

ψP (ǫ)

λ(P )

)

and

β̄(ǫ) := min

{

β(1), β

(

ψP (ǫ)

λ(P )

)}

,

we complete the proof. ⊓⊔

In this section, we study the discrete approximation properties of problem
(1) under mild conditions. The convergence of the SAA is derived in Theorem
3. However, this result did not address an important issue which is interesting
from both the theoretical and computational points of view. That is, what is
the rate of convergence or how large the sample size should be to achieve a
desired accuracy of SAA estimators. We supplement it in Theorem 4 under
ordinary assumptions. These estimates provide an important insight into the
theoretical complexity and practical application of the considered problem (1).

4 Numerical results

To illustrate the application of the two-stage stochastic linear variational in-
equality problem (1) and to verify the obtained convergence results, we con-
sider in this section a multi-player non-cooperative two-stage game problem
(see also [2,3] for the two-players case) and its numerical solution. There is a
significant amount of recent research on this topic. For example, [11] investi-
gated the two-stage game wherein each player is risk-averse and solved a rival-
parameterized stochastic program with quadratic recourse. The convergence
results for different versions of the best-response schemes are discussed. [9]
considered a stochastic Nash game where each player minimizes a parameter-
ized expectation-valued convex objective function by proposing three inexact
proximal best-response schemes. Different from those in [9,11] where the Nash
equilibrium point is determined by (inexact) best-response schemes, we em-
ploy the PHM to solve the discrete two-stage stochastic variational inequality
problem (17).

4.1 A multi-player non-cooperative two-stage game

Two-stage stochastic variational inequality problems have many practical ap-
plications (see [1]). Here we consider the multi-player (say I players) non-
cooperative two-stage game. It can be described in the form of the two-stage
stochastic variational inequality problem (1). Let (x1, y1(·)), (x2, y2(·)), · · · ,
(xI , yI(·)) ∈ R

n × Y denote the decisions of player 1 to player I in the two-
stage stochastic game, respectively. We use x−i to denote {xj}j 6=i and so does
y−i. θi : R

nI → R is the cost function of player i in the first stage and
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φi : R
nI × YI × Ξ → R is the cost function of player i in the second stage.

Then, to minimize his total cost, the player i (i = 1, 2, · · · , I) will make a deci-
sion through solving the following two-stage stochastic optimization problem:

min
xi∈[li,ui]

θi(xi, x−i) + EP [ϕi(xi, x−i, y−i(ξ), ξ)], (24)

for li < ui and li, ui ∈ R
n, i = 1, 2, · · · , I, where ϕi(xi, x−i, y−i(ξ), ξ) is

defined by

ϕi(xi, x−i, y−i(ξ), ξ) = min
yi≥0

φi(xi, x−i, yi, y−i(ξ), ξ). (25)

We know that a two-stage stochastic programming problem can be equiv-
alently reformulated as a two-stage variational inequality problem from the
first order optimality necessary conditions. Therefore, we consider the opti-
mality condition of the two-stage stochastic program (24)-(25). To simpli-
fy the formulation, we assume that θi(·, x−i) is differentiable w.r.t. xi and
φi(xi, x−i, ·, y−i, ξ) is differentiable w.r.t. yi. In addition, ϕi(·, x−i, y−i(ξ), ξ) is
differentiable and Lipschitz continuous with some integrable Lipschitz constant
w.r.t. xi. Then, we know from [23, Theorem 7.49] that

∇xi
EP [ϕi(xi, x−i, y−i(ξ), ξ)] = EP [∇xi

ϕi(xi, x−i, y−i(ξ), ξ)].

Finally, we obtain the equivalent form of problem (24)-(25) as

{

0 ∈ ∇xi
θi(xi, x−i) + EP [∇xi

ϕi(xi, x−i, y−i(ξ), ξ)] +N[li,ui](xi)

0 ≤ yi⊥∇yi
φi(xi, x−i, yi, y−i, ξ) ≥ 0, for a.e. ξ ∈ Ξ,

(26)

for i = 1, 2, · · · , I.
To satisfy the above conditions and to obtain concrete numerical results, we

consider a two-stage stochastic quadratic programming problem. Specifically,
we define

θi(xi, x−i) =
1

2
xTi Hixi + bTi xi +

∑

j 6=i

xTi Pjxj

and

φi(xi, x−i, yi, y−i, ξ) =
1

2
yTi Qi(ξ)yi+ci(ξ)

T yi+

I
∑

j=1

yTi Sij(ξ)xj+
∑

j 6=i

yTi Oj(ξ)yj(ξ),

where Hi, Pi ∈ R
n×n, Sij : Ξ → R

m×n, Oi : Ξ → R
m×m, Qi : Ξ → R

m×m,
bi ∈ R

n, ci : Ξ → R
m for i, j = 1, 2, · · · , I.

With the above notation, we can rewrite problem (26) as the following
large-scale two-stage stochastic linear variational inequality problem (see [2]):

{

0 ∈ Ax+ EP [B(ξ)y(ξ)] + q1 +N[l,u](x),

0 ≤ y(ξ)⊥M(ξ)y(ξ) +N(ξ)x + q2(ξ) ≥ 0, for a.e. ξ ∈ Ξ,
(27)
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where

x =







x1
...
xI






, y(ξ) =







y1(ξ)
...

yI(ξ)






, q1 =







b1
...
bI






,

q2(ξ) =







c1(ξ)
...

cI(ξ)






, l =







l1
...
lI






, u =







u1
...
uI






,

A =











H1 P2 · · · PI

P1 H2 · · · PI

...
...

. . .
...

P1 P2 · · · HI











, B(ξ) =











ST
11(ξ) 0 · · · 0
0 ST

22(ξ) · · · 0
...

...
. . .

...
0 0 · · · ST

II(ξ)











,

M(ξ) =











Q1(ξ) O2(ξ) · · · OI(ξ)
O1(ξ) Q2(ξ) · · · OI(ξ)

...
...

. . .
...

O1(ξ) O2(ξ) · · · QI(ξ)











, N(ξ) =











S11(ξ) S12(ξ) · · · S1I(ξ)
S21(ξ) S22(ξ) · · · S2I(ξ)

...
...

. . .
...

SI1(ξ) SI2(ξ) · · · SII(ξ)











.

A well-known algorithm for solving two-stage stochastic variational in-
equality problems is PHM, see [17,18,20], which is convergent for monotone
problems. The main idea of this algorithm is to construct a nonanticipative
first stage solution through solving several discrete problems corresponding to
individual scenarios. Let ξ1, ξ2, · · · , ξK be K samples or scenarios, and PHM
can be stated as follows.

Algorithm 1 (PHM to solve problem (27))

Step 0: Choose initial points: x̄0, x
k
0 = x̄0, y

k
0 , w

k
0 with

∑K
k=1 w

k
0 = 0, and

for k = 1, 2, · · · ,K. Let r > 0 and set i = 0.
Step 1: For k = 1, 2, · · · ,K, solve the following two-stage mixed problem:

{

0 ∈ Ax+ B(ξk)y + q1 + wk
i + r(x − xki ) +N[l,u](x),

0 ≤ y⊥M(ξk)y +N(ξk)x+ q2(ξ
k) + r(y − yki ) ≥ 0.

(28)

The obtained solution is denoted by (x̂ki , ŷ
k
i );

Step 2: Let x̄i+1 = 1
K

∑K
k=1 x̂

k
i . Then, for k = 1, 2, · · · ,K, set xki+1 =

x̄i+1, y
k
i+1 = ŷki and wk

i+1 = wk
i + r(x̂ki − x̄i+1). If a termination criterion

is satisfied, stop. Otherwise, let i = i+ 1 and go back to Step 1.

A termination criterion can be chosen as

1

K

K
∑

k=1

∥

∥

∥

∥

∥

xki −mid

{

l, u, xki −
(

Axki +
1

K

K
∑

k=1

B(ξk)yki + q1

)}∥

∥

∥

∥

∥

≤ ǫ, (29)

where ǫ is a sufficiently small positive number.
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4.2 Parameter settings and numerical results

We consider a 3-player two-stage non-cooperative game with n = 4, m = 4.
We adopt the following stopping criterion for PHM: Either the residual in (29)
is less than or equal to 10−5 or the iteration number i attains 6000. Arbitrar-
ily generate Ĥi ∈ R

n×n, Q̂i ∈ R
m×m, P̂i ∈ R

n×n, Ŝij ∈ R
m×n, Ôi ∈ R

m×m

with entries choosing from [−1, 1] and bi ∈ R
n, ci ∈ R

m, for i, j = 1, 2, 3. Let
ξ = (ξ1, ξ2, · · · , ξ18) be the random vector which follows a uniform distribu-
tion on the support set [0, 1]18. Then we set Ŝ11(ξ) = ξ1Ŝ11, Ŝ12(ξ) = ξ2Ŝ12,
Ŝ13(ξ) = ξ3Ŝ13, Ŝ21(ξ) = ξ4Ŝ21, Ŝ22(ξ) = ξ5Ŝ22, Ŝ23(ξ) = ξ6Ŝ23, Ŝ31(ξ) =
ξ7Ŝ31, Ŝ32(ξ) = ξ8Ŝ32, Ŝ33(ξ) = ξ9Ŝ33, Ô1(ξ) = ξ10Ô1, Ô2(ξ) = ξ11Ô2,
Ô3(ξ) = ξ12Ô3, Q̂1(ξ) = ξ13Q̂1, Q̂2(ξ) = ξ14Q̂2, Q̂3(ξ) = ξ15Q̂3, c1(ξ) = ξ16c1,
c2(ξ) = ξ17c2 and c3(ξ) = ξ18c3. The main reason to choose the above random
parameters is to satisfy Assumption 3, which is needed in Theorems 1 and
3. Meanwhile, there are plenty of existing works and applications where the
parameters are assumed to be affinely linear w.r.t. ξ, see for example [21].

To ensure the positive definiteness of coefficient matrices in problem (27),
we construct those matrices as follows:

A =





Ĥ1 P̂2 P̂3

P̂1 Ĥ2 P̂3

P̂1 P̂2 Ĥ3



 + γI3n, B(ξ) =





ŜT
11(ξ) 0 0

0 ŜT
22(ξ) 0

0 0 ŜT
33(ξ)



 ,

M(ξ) =





Q̂1(ξ) Ô2(ξ) Ô3(ξ)

Ô1(ξ) Q̂2(ξ) Ô3(ξ)

Ô1(ξ) Ô2(ξ) Q̂3(ξ)



 + γI3m, N(ξ) =





Ŝ11(ξ) Ŝ12(ξ) Ŝ13(ξ)

Ŝ21(ξ) Ŝ22(ξ) Ŝ23(ξ)

Ŝ31(ξ) Ŝ32(ξ) Ŝ33(ξ)



 ,

q1 =





b1
b2
b3



 , q2(ξ) =





c1(ξ)
c2(ξ)
c3(ξ)



 ,

where γ = 3(m + n), I3n and I3m stand for the identity matrices in R
3n×3n

and R
3m×3m, respectively. Obviously, the above setting guarantees that As-

sumption 2 holds for any ξ ∈ [0, 1]18, which is sufficient for the convergence of
the PHM. Due to the affine linearity of all the above coefficients, Assumption
3 holds with α = 1. Moreover, we adopt the uniform distribution here that
must satisfy (19) in Proposition 7. Therefore, Theorems 1 and 3 hold in our
specific settings.

From (i) of Proposition 1, the solution of the second stage satisfies

‖y∗(x, ξ)‖ ≤ ‖W (x, ξ)‖ (‖N(ξ)‖ ‖x‖+ ‖q2(ξ)‖) ≤ Γ

uniformly for any ξ ∈ [0, 1]18 and some positive number Γ . This implies that we
can employ the homotopy-smoothing method for box-constrained variational
inequalities (see [5]) to solve the two-stage mixed problem (28) in Step 1.

With the above detailed parameter selection and the solution method in
Step 1, we can then solve the concrete 3-player two-stage non-cooperative
game problem. We show in Figure 1 the box plot for each component of the
first stage decision variable x w.r.t. the number of samples. Since our parameter
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setting satisfies Assumption 2, there exist a unique solution for both the origi-
nal problem and its SAA problem (see [3]). As we discussed before, Theorem 3
holds in our setting. For each sample sizeK = 10, 50, 200, 500, 1000, 2000, 4000,
we solve 100 randomly generated problems and draw the empirical distribution
of the solutions in Figure 1. The 12 plots in Figure 1 show the convergence of
the SAA problem (17) by adopting the hybrid algorithm combining PHM [18]
and the homotopy-smoothing method [5] as the sample size goes to infinity.
Actually, we know from Theorem 3 and the uniqueness of solution that the
SAA solutions will converge to the true solution with probability one.
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Fig. 1: The box plots for components of x
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Now we numerically verify the quantitative stability results in section 2
to this example. For this purpose, we assume that the original probability
distribution P is the uniform distribution on interval [0, 1]18. The perturbed
distribution Qν (ν ∈ N) is the uniform distribution with the support set being
[

0, ν
ν+1

]18

, that is, the probability for taking values in [0, 1]18\
[

0, ν
ν+1

]18

is

zero. Then, we have

DTV (P,Qν) = sup
h∈GTV

{

∫

[0, ν
ν+1 ]

18
h(ξ)

(

(

ν + 1

ν

)18

− 1

)

dξ −
∫

[0,1]18\[0, ν
ν+1 ]

18
h(ξ)dξ

}

= 2

[

1−
(

ν

ν + 1

)18
]

. (30)

Here the optimal element in GTV is

h(ξ) =











1, ξ ∈
[

0, ν
ν+1

]18

;

−1, ξ ∈ [0, 1]18\
[

0, ν
ν+1

]18

.

Therefore, DTV (P,Qν) → 0 as ν → +∞. In what follows, we fix the number
of scenarios at K = 5000 and use the sample approximation problem to ap-
proximate the original problem. Let ν = 1, 2, 3, 4, 5, 6, 7, we use PHM to solve
the original problem under P and the corresponding problem under perturbed
distribution Qν , respectively. Since Assumption 2 holds, there always exists a
unique solution for the original problem under P , as well as the problem under
the perturbation Qν .

We calculate the distance between the unique solution x∗ under probability
distribution P and the unique solution x∗ν under probability distribution Qν .
It is known from Theorem 1 that

‖x∗ − x∗ν‖ ≤ ψ−1
P (L1DTV (P,Qν)) (31)

for some positive constant L1. Note that ψ−1
P is lower semicontinuous and

nondecreasing, and vanishes at 0. Specially, under our specific setting, we
know from

ψP (τ) = min{fP (x) = fP (x)− fP (x
∗) : d(x, x∗) ≥ τ, x ∈ [l, u]},

where fP (x
∗) = 0, and the continuity of fP (x) w.r.t. x that ψP is continuous

at 0. Moreover, ψP (τ) > 0 for any τ > 0 due to the uniqueness of solutions.
Its inverse function is defined by (12), that is,

ψ−1
P (t) = sup{τ ∈ R+ : ψP (τ) ≤ t}

is continuous at t = 0, see Lemma 3.
Based on the above discussion, we have from (31) that ‖x∗ − x∗ν‖ should

converge to 0 as ν → ∞. Table 1 shows this kind of convergence. We can see
from Table 1 that the distance between x∗ and x∗ν monotonically decreases with
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the increase of ν. These results perfectly illustrate and support the quantitative
analysis results in section 2.

Table 1: The distance between the pairing solutions under P and Qν

ν 1 2 3 4 5 6 7

‖x∗ − x
∗

ν
‖ 1.33e-2 1.00e-2 0.77e-2 0.64e-2 0.54e-2 0.49e-2 0.41e-2

5 Concluding remarks

In this paper, we study a class of two-stage stochastic linear variational inequal-
ity problems through the residual minimization problem (3). The quantitative
stability and convergence analysis are conducted with respect to problem (3).
Specifically, we first provide sufficient conditions for the existence of solutions
of both the original problem and the perturbed problems. Next we conduct
the quantitative stability analysis under the total variation metric, and further
investigate the convergence of discrete approximations of the two-stage linear
stochastic variational inequality problem. Finally, by a 3-player two-stage non-
cooperative game problem, we numerically illustrate our convergence conclu-
sion and quantitative stability results.

There are still a few issues that are worth for further investigation. For ex-
ample, quantitative stability analysis for multi-stage stochastic linear/nonlinear
variational inequality problems.
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