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Abstract
We investigate the convergence of a recently popular class of first-order primal–dual 
algorithms for saddle point problems under the presence of errors in the proximal 
maps and gradients. We study several types of errors and show that, provided a suf-
ficient decay of these errors, the same convergence rates as for the error-free algo-
rithm can be established. More precisely, we prove the (optimal) O(1∕N) conver-
gence to a saddle point in finite dimensions for the class of non-smooth problems 
considered in this paper, and prove a O

(

1∕N2
)

 or even linear O
(

�
N
)

 convergence 
rate if either the primal or dual objective respectively both are strongly convex. 
Moreover we show that also under a slower decay of errors we can establish rates, 
however slower and directly depending on the decay of the errors. We demonstrate 
the performance and practical use of the algorithms on the example of nested algo-
rithms and show how they can be used to split the global objective more efficiently.

Keywords  First-order primal–dual algorithm · Inexact proximal operator · Nested 
algorithms · Convex optimization

1  Introduction

The numerical solution of nonsmooth optimization problems and the acceleration 
of their convergence has been regarded a fundamental issue in the past 10–20 years. 
This is mainly due to the development of image reconstruction and processing, 
data science and machine learning which require to solve large and highly nonlin-
ear minimization problems. Two of the most popular approaches are forward–back-
ward splittings [22, 23, 42], in particular the FISTA method [7, 8], and first-order 
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primal–dual methods, first introduced in [32, 54] and further studied in [15, 17]. The 
common thread of all these methods is that they split the global objective into many 
elementary bricks which, individually, may be “easy” to optimize.

In their original version, all the above mentioned approaches require that the 
mathematical operations necessary in every step of the respective algorithms can be 
executed without errors. However, one might stumble over situations in which these 
operations can only be performed up to a certain precision, e.g. due to an erroneous 
computation of a gradient or due to the application of a proximal operator lacking a 
closed-form solution. Examples where this problem arises are TV-type regularized 
inverse problems [6, 7, 30, 33, 59] or low-rank minimization and matrix completion 
[14, 44]. To address this issue, there has been a lot of work investigating the conver-
gence of proximal point methods [24, 36, 37, 39, 56, 58], where the latter two also 
prove rates, and proximal forward–backward splittings [23] under the presence of 
errors. The objectives of these publications reach from general convergence proofs 
[21, 34, 43, 53, 64] and convergence up to some accuracy level [26, 27, 47] to con-
vergence rates in dependence of the errors [5, 60, 61] also for the accelerated ver-
sions including the FISTA method. The recent paper [9] follows a similar approach 
to [61], however extending also to nonconvex problems using variable metric strate-
gies and linesearch.

For the recently popular class of first-order primal–dual algorithms mentioned 
above the list remains short: to the best of our knowledge the only work which con-
siders inaccuracies in the proximal operators for this class of algorithms is the one 
of Condat [25], who explicitly models errors and proves convergence under mild 
assumptions on the decay of the errors. However, he does not show any convergence 
rates. We must also mention Nemirovski’s approach in [48] which is an extension of 
the extragradient method. This saddle-point optimization algorithm converges with 
an optimal O(1/N) convergence rate as soon as a particular inequality is satisfied at 
each iteration, possibly with a controlled error term (cf. Prop 2.2 in [48]).

The goal of this paper is twofold: Most importantly, we investigate the conver-
gence of the primal–dual algorithms presented in [15, 17] for problems of the form

for convex and lower semicontinuous g and h and convex and Lipschitz differenti-
able f, with errors occurring in the computation of ∇f  and the proximal operators 
for g and h∗ . Following the line of the preceding works on forward–backward split-
tings, we consider the different notions of inexact proximal points used in [60] and 
extended in [5, 58, 61] and, assuming an appropriate decay of the errors, establish 
the convergence rates of [15, 17] also for perturbed algorithms. More precisely, we 
prove the well-known O(1∕N) rate for the basic version, a O

(

1∕N2
)

 rate if either 
f, g or h∗ are strongly convex, and a linear convergence rate in case both the primal 
and dual objective are strongly convex. Moreover we show that also under a slower 
decay of errors we can establish rates, however unsurprisingly slower depending on 
the errors.

In the spirit of [61] for inexact forward–backward algorithms, the second goal 
of this paper is to provide an interesting application for such inexact primal–dual 

min
x∈X

max
y∈Y

⟨Kx, y⟩ + f (x) + g(x) − h∗(y),
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algorithms. We put the focus on situations where one takes the path of inexact-
ness deliberately in order to split the global objective more efficiently. A particular 
instance are problems of the form

A popular example is the TV-L1 model with some imaging operator K1 , where g 
and h are chosen to be L1-norms and K2 = ∇ is a gradient. It has e.g been studied 
analytically by Alliney [2–4] and subsequently by Chan and Esedoglu [19], Kärk-
käinen et al. [38] and Nikolova [50, 51]. However, due to the nonlinearity and non-
differentiability of the involved terms, solutions of the model are numerically hard 
to compute. One can find a variety of approaches to solve the TV-L1 model, reaching 
from (smoothed) gradient descent [19] over interior point methods [35], primal–dual 
methods using a semi-smooth Newton method [28] to augmented Lagrangian meth-
ods [31, 62]. Interestingly, the inexact framework we propose in this paper provides 
a very simple and intuitive algorithmic approach to the solution of the TV-L1 model. 
More precisely, applying an inexact primal–dual algorithm to formulation (1), we 
obtain a nested algorithm in the spirit of [6, 7, 20, 30, 33, 59, 61],

where prox
�h∗ denotes the proximal map with respect to h∗ and step size � (cf. 

Sect. 2). It requires to solve the inner subproblem of the proximal step with respect 
to g◦K2 , i.e. a TV-denoising problem, which does not have a closed-form solution 
but has to be solved numerically (possibly with an initial guess which improves over 
the iterates). It has been observed in [7] that, using this strategy on the primal TV-L2 
deblurring problem can cause the FISTA algorithm to diverge if the inner step is not 
executed with sufficient precision. As a remedy, the authors of [61] demonstrated 
that the theoretical error bounds they established for inexact FISTA can also serve 
as a criterion for the necessary precision of the inner proximal problem and hence 
make the nested approach viable. We show that the bounds for inexact primal–dual 
algorithms established in this paper can be used to make the nested approach viable 
for entirely non-differentiable problems such as the TV-L1 model, while the results 
of [61] for partly smooth objectives can also be obtained as a special case of the 
accelerated versions.

In the context of inexact and nested algorithms it is worthwhile mentioning the 
recent ‘Catalyst’ framework [40, 41], which uses nested inexact proximal point 
methods to accelerate a large class of generic optimization problems in the context 
of machine learning. The inexactness criterion applied there is the same as in [5, 
60]. Our approach, however, is much closer to [5, 60, 61], stating convergence rates 
for perturbed algorithms, while [40, 41] focus entirely on nested algorithms, which 
we only consider as a particular instance of perturbed algorithms in the numerical 
experiments.

The remainder of the paper is organized as follows: in the next section we intro-
duce the notions of inexact proxima that we will use throughout the paper. In the 

(1)min
x

h(K1x) + g(K2x) = min
x

max
y

⟨y,K1x⟩ + g(K2x) − h∗(y).

yn+1 = prox
�h∗ (y

n + �K1(x
n+1 + �(xn+1 − xn))),

xn+1 = prox
�(g◦K2)

(xn − �K∗
1
yn+1),
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following Sect. 3 we formulate inexact versions of the primal–dual algorithms pre-
sented in [15] and [17] and prove their convergence including rates depending on 
the decay of the errors. In the numerical Sect. 4 we apply the above splitting idea 
for nested algorithms to some well-known imaging problems and show how inexact 
primal–dual algorithms can be used to improve their convergence behavior.

2 � Inexact computations of the proximal point

In this section we introduce and discuss the idea of the proximal point and several 
ways for its approximation. For a proper, convex and lower semicontinuous function 
g ∶ X → (−∞,+∞] mapping from a Hilbert space X  to the real line extended with 
the value +∞ and y ∈ X  the proximal point [45, 46, 55, 56] is given by

Since g is proper we directly obtain prox
�g(y) ∈ domg . The 1∕�-strongly convex 

mapping prox
�g ∶ X → X  is called proximity operator of �g . Letting

be the proximity function, the first-order optimality condition for the proximum 
gives different characterizations of the proximal point:

Based on these equivalences we introduce four different types of inexact computa-
tions of the proximal point, which are differently restrictive. Most have already been 
considered in literature and we give reference next to the definitions. We like to rec-
ommend [58, 61] for some illustrations of the different notions in case of a projec-
tion. We start with the first expression in (4).

Definition 1  Let � ≥ 0 . We say that z ∈ X  is a type-0 approximation of the proxi-
mal point prox

�g(y) with precision � if

This refers to choosing a proximal point from the 
√

2��-ball around the true 
proximum. It is important to notice that a type-0 approximation is not necessarily 
feasible, i.e., it can occur that z ∉ domg . This can easily be verified e.g. for g being 
the indicator function of a convex set, and requires us to treat this approximation 
slightly differently from the following ones in “Type-0 approximations” section of 
“Appendix”. Observe that it is easy to check a posteriori the precision of a type-0 
approximation provided �g is easy to evaluate. Indeed, if e ∈ ��g(z) + z − y , stand-
ard estimates show that ‖z − prox

�g(y)‖ ≤ ‖e‖ and z ≈�

0
prox

�g(y) for � = ‖e‖2∕(2�).

(2)prox
�g(y) = argmin

x∈X

�

1

2�
‖x − y‖2 + g(x)

�

.

(3)G
�
∶ X → (−∞,+∞], x ↦

1

2�
‖x − y‖2 + g(x)

(4)z = prox
�g(y) ⟺ 0 ∈ �G

�
(z) ⟺

y − z

�
∈ �g(z).

z ≈�

0
prox

�g(y)
def

⟺ ‖z − prox
�g(y)‖ ≤ √

2��.
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In order to relax the second or third expression in (4), we need the notion of an �
-subdifferential of g ∶ X → (−∞,+∞] at z ∈ X:

As a direct consequence of the definition we obtain a notion of �-optimality

Based on this and the second expression in (4), we define a second notion of an 
inexact proximum. It has e.g. been considered in [5, 60] to prove the convergence of 
inexact proximal gradient methods under the presence of errors.

Definition 2  Let � ≥ 0 . We say that z ∈ X  is a type-1 approximation of the proxi-
mal point prox

�g(y) with precision � if

Hence, by (5), a type-1 approximation minimizes the energy of the proximity func-
tion (3) up to an error of � . It turns out that a type-0 approximation is weaker than a 
type-1 approximation:

Lemma 1  Let z ≈�

1
prox

�g(y) . Then z ∈ domg and

that is z ≈�

0
prox

�g(y).

The result is easy to verify and can be found e.g. in [36, 56, 58]. An even more 
restrictive version of an inexact proximum can be obtained by relaxing the third expres-
sion in (4), which has been introduced in [39] and subsequently been used in [24, 58] in 
the context of inexact proximal point methods.

Definition 3  Let � ≥ 0 . We say that z ∈ X  is a type-2 approximation of the proxi-
mal point prox

�g(y) with precision � if

Letting �
�
(z) = ‖z − y‖2∕(2�) , the following characterization from [58] of the �

-subdifferential of the proximity function G
�
= g + �

�
 sheds light on the difference 

between a type-1 and type-2 approximation:

�
�
g(z) ∶= {p ∈ X � g(x) ≥ g(z) + ⟨p, x − z⟩ − � ∀x ∈ X}.

(5)0 ∈ �
�
g(z) ⟺ g(z) ≤ inf g + �.

z ≈�

1
prox

�g(y)
def

⟺ 0 ∈ �
�
G

�
(z).

‖z − prox
�g(y)‖ ≤ √

2��,

z ≈�

2
prox

�g(y)
def

⟺

y − z

�
∈ �

�
g(z).

(6)

�
�
G

�
(z) =

�

0≤�1+�2≤�
�
�1
g(z) + �

�2
�
�
(z)

=
�

0≤�1+�2≤�
�
�1
g(z) +

� z − y − e

�
∶ ‖e‖ ≤ √

2��2

�

.
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Equation  (6) decomposes the error in the �-subdifferential of G
�
 into two parts 

related to g respectively �
�
 . As a consequence, for a type-1 approximation it is not 

clear how the error is distributed between g or �
�
 , while for a type-2 approximation 

the error occurs solely in g. Hence a type-2 approximation can be seen as an extreme 
case of a type-1 approximation with �2 = 0.

In view of the decomposition (6), we define a fourth notion of an inexact proximum 
as the extreme case �1 = 0 , which has been considered in e.g. [36, 56].

Definition 4  Let � ≥ 0 . We say that z ∈ X  is a type-3 approximation of the proxi-
mal point prox

�g(y) with precision � if

Definition 4 gives the notion of a “correct” output for an incorrect input of the proxi-
mal operator. Being the two extreme cases, type-2 and type-3 proxima are also proxima 
of type 1. The decomposition (6) further leads to the following lemma from [60], which 
allows to treat the type-1, -2 and -3 approximations in the same setting.

Lemma 2  If z ∈ X  is a type-1 approximation of prox
�g(y) with precision � , then 

there exists r ∈ X  with ‖r‖ ≤ √

2�� such that

Now note that letting r = 0 in Lemma 2 gives a type-2 approximation, replacing the 
�-subdifferential by a normal one gives a type-3 approximation. We mention that there 
exist further notions of approximations of the proximal point, e.g. used in [36], and 
refer to [61, Section 2.2] for a compact discussion.

Even tough we prove our results for different types of approximations, the most use-
ful in practice seems to be the approximation of type 2. This is due to the following 
insights obtained by Villa et al. [61]: Without loss of generality let g(x) = w(Bx), with 
proper, convex and l.s.c. w ∶ Z → (−∞,+∞] and linear B ∶ X → Z . Then the calcu-
lation of the proximum requires to solve

Now if there exists x0 ∈ X  such that g is continuous in Bx0 , the Fenchel-Moreau-
Rockafellar duality formula [63, Corollary 2.8.5] states that

where we refer to the right hand side as the “dual” problem W
�
(z) . Furthermore we 

can always recover the primal solution x̂ from the dual solution ẑ via the relation 
x̂ = y − B∗ẑ . Most importantly, we obtain that x̂ and ẑ solve the primal respectively 
dual problem if and only if the duality gap G(x, z) ∶= G

�
(x) +W

�
(z) vanishes, i.e.

z ≈�

3
prox

�g(y)
def

⟺ ∃e ∈ X, ‖e‖ ≤ √

2�� ∶ z = prox
�g
(y + e).

(y − z − r)∕� ∈ �
�
g(z).

(7)min
x∈X

G
�
(x) = min

x∈X

1

2�
‖x − y‖2 + w(Bx).

min
x∈X

G
�
(x) = −min

z∈Z

�

2
‖B∗z‖2 − ⟨B∗z, y⟩ + w∗(z),
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The following result in [61] states that the duality gap can also be used as a criterion 
to assess admissible type-2 approximations of the proximal point:

Proposition 1  Let z ∈ Z . Then

Proposition 1 has an interesting implication: if one can construct a feasible dual 
variable z during the solution of (7), it is easy to check the admissibility of the cor-
responding primal variable x to be a type-2 approximation by evaluating the duality 
gap. We shall make use of that in the numerical experiments in Sect. 4.

Of course, since a type-2 approximation automatically is a type-1 and type-0 
approximation, the above argumentation is also valid to find feasible approximations 
in these cases. However, since type-1 and type-0 approximations are technically less 
restrictive, one should need to characterize when an approximation is of such type 
without already being an approximation of type 2. An example of a type-0 approx-
imation may be found in problems where the desired proximum is the projection 
onto the intersection of convex sets. The (inexact) proximum may be computed in a 
straightforward fashion using Dykstra’s algorithm [29], which has e.g. been done in 
[11] or [1, 17, Ex. 7.7] for Mumford–Shah-type segmentation problems. Depending 
on the involved sets, one may get an upper bound on the maximal distance of the 
current iterate of Dykstra’s algorithm to these sets, obtaining a bound on how far the 
current iterate is from the true proximum. These considerations, however, require to 
be tested in the respective cases.

3 � Inexact primal–dual algorithms

We can now prove the convergence of some primal–dual algorithms under the pres-
ence of the respective error. We start with the type-1, -2 and -3 approximations and 
outline in “Type-0 approximations” section of “Appendix” how to get a grip also 
on the type-0 approximation. The convergence analysis in this chapter is based on a 
combination of techniques derived in previous works on the topic: similar results on 
the convergence of exact primal–dual algorithms can be found e.g. in [15, 17, 18], 
the techniques to obtain error bounds for the inexact proximum are mainly taken 
from [5, 60]. We consider the saddle-point problem

where we make the following assumptions: 

1.	 K ∶ X → Y is a linear and bounded operator between Hilbert spaces X  and Y 
with norm L = ‖K‖,

0 = min
(x,z)∈X×Z

G
𝜏
(x) +W

𝜏
(z) = G(x̂, ẑ).

G(y − B∗z, z) ≤ � ⇒ y − B∗z ≈�

2
prox

�g(y).

(8)min
x∈X

max
y∈Y

L(x, y) = ⟨Kx, y⟩ + f (x) + g(x) − h∗(y),
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2.	 f ∶ X → (−∞,+∞] is proper, convex, lower semicontinuous and differentiable 
with Lf -Lipschitz gradient, 

3.	 g, h ∶ X → (−∞,+∞] are proper, lower semicontinuous and convex functions,
4.	 problem (8) admits at least one solution (x⋆, y⋆) ∈ X × Y.

It is well-known that taking the supremum over y in L(x, y) leads to the corre-
sponding “primal” formulation of the saddle-point problem (8)

which for a lot of variational problems might be the starting point. Analogously, 
taking the infimum over x leads to the dual problem. Given an algorithm producing 
iterates (xN , yN) for the solution of (8), the goal of this section is to obtain estimates

for 𝛼 > 0 and (x, y) ∈ X × Y . If (x, y) = (x⋆, y⋆) is a saddle point, the left hand side 
vanishes if and only if the pair (xN , yN) is a saddle point itself, yielding a conver-
gence rate in terms of the primal–dual objective in O(1∕N�) . Under mild additional 
assumptions one can then derive estimates e.g. for the error in the primal objective. 
If the supremum over y in L(xN , y) is attained at some ỹ , one easily sees that

giving a convergence estimate for the primal objective.
In the original versions of primal–dual algorithms (e.g. [15, 18]), the authors 

require h∗ and g to have a simple structure such that their proximal operators (2) 
can be sufficiently easily evaluated. A particular feature of most of these opera-
tors is that they have a closed-form solution and can hence be evaluated exactly. 
We study the situation where the proximal operators for g or h∗ can only be evalu-
ated up to a certain precision in the sense of Sect. 2, and as well the gradient of 
f may contain errors. As opposed to the general iteration of an exact primal–dual 
algorithm [18]

where (x̄, ȳ) and (x̃, ỹ) are the previous points, and (x̂, ŷ) are the updated exact points, 
we introduce the general iteration of an inexact primal–dual algorithm

‖∇f (x) − ∇f (x�)‖ ≤ Lf‖x − x�‖ for all x, x� ∈ domf ,

min
x∈X

f (x) + g(x) + h(Kx),

(9)L(xN , y) − L(x, yN) ≤ C(x, y, x0, y0)

N�

(10)

f (xN) + g(xN) + h(KxN) − [f (x⋆) + g(x⋆) + h(Kx⋆)]

= sup
y∈Y

L(xN , y) − sup
y∈Y

L(x⋆, y) ≤ L(xN , ỹ) − L(x⋆, yN)

≤ C(x⋆, ỹ, x0, y0)

N𝛼
,

(11)
ŷ = prox

𝜎h∗ (ȳ + 𝜎Kx̃),

x̂ = prox
𝜏g(x̄ − 𝜏(K∗ỹ + ∇f (x̄))),
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Here the updated points (x̌, y̌) denote the inexact proximal point , which are only 
computed up to precision � respectively � , in the sense of a type-2 approximation 
from Sect.  2 for y̌ and a type-i approximation for i ∈ {1, 2, 3} for x̌ . The vector 
e ∈ X  denotes a possible error in the gradient of f. We use two different pairs of 
input points (x̄, ȳ) and (x̃, ỹ) in order to include intermediate overrelaxed input points. 
It is clear, however, that we require x̃ to depend on x̌ respectively ỹ on y̌ in order to 
couple the primal and dual updates.

At first glance it seems counterintuitive that we allow errors of type 1, 2 and 
3 in x̌ , while only allowing for type-2 errors in y̌ . The following general descent 
rule for the iteration (12) sheds some more light on this fact and forms the basis 
for all the following proofs. It can be derived using simple convexity results and 
resembles the classical energy descent rules for forward–backward splittings. It 
can then be used to obtain estimates on the decay of the objective of the form (9). 
We prove the descent rule for a type-1 approximation of the primal proximum 
since we always obtain the result for a type-2 or type-3 approximation as a special 
case.

Lemma 3  Let 𝜏, 𝜎 > 0 and (x̌, y̌) be obtained from (x̄, ȳ) and (x̃, ỹ) and the updates 
(12) for i = 1 . Then for every (x, y) ∈ X × Y we have

Proof  For the inexact type-2 proximum y̌ we have by Definition 3 that 
(ȳ + 𝜎Kx̃ − y̌)∕𝜎 ∈ 𝜕

𝛿
h∗(y̌) , so by the definition of the subdifferential we find

For the inexact type-1 primal proximum, from Definition 2 and Lemma 2 we have 
that there exists a vector r with ‖r‖ ≤ √

2�� such that

Hence we find that

(12)
y̌ ≈𝛿

2
prox

𝜎h∗ (ȳ + 𝜎Kx̃),

x̌ ≈𝜀

i
prox

𝜏g(x̄ − 𝜏(K∗ỹ + ∇f (x̄) + e)).

(13)

L(x̌, y) − L(x, y̌) ≤ ‖x − x̄‖2

2𝜏
+

‖y − ȳ‖2

2𝜎
−

‖x − x̌‖2

2𝜏
−

1 − 𝜏Lf

2𝜏
‖x̄ − x̌‖2

−
‖y − y̌‖2

2𝜎
−

‖ȳ − y̌‖2

2𝜎
+ ⟨K(x − x̌), ỹ − y̌⟩

− ⟨K(x̃ − x̌), y − y̌⟩ +
�

‖e‖ +
√

2𝜀∕𝜏
�

‖x − x̌‖ + 𝜀 + 𝛿.

(14)

h∗(y̌) ≤ h∗(y) +

�

ȳ + 𝜎Kx̃ − y̌

𝜎
, y̌ − y

�

+ 𝛿

= h∗(y) +

�

ȳ − y̌

𝜎
, y̌ − y

�

+ ⟨Kx̃, y̌ − y⟩ + 𝛿

≤ h∗(y) −
‖ȳ − y̌‖2

2𝜎
−

‖y − y̌‖2

2𝜎
+

‖ȳ − y‖2

2𝜎
+ ⟨Kx̃, y̌ − y⟩ + 𝛿.

(x̄ − 𝜏(K∗ỹ + ∇f (x̄) + e) − x̌ − r)∕𝜏 ∈ 𝜕
𝜀
g(x̌).
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where we applied the Cauchy–Schwarz inequality to the error term. Further by the 
Lipschitz property and convexity of f we have (cf. [49])

Now we add the Eqs. (14), (15) and (16), insert

and rearrange to arrive at the result. � □

We point out that, as a special case, choosing a type-2 approximation for the primal 
proximum in Lemma 3 corresponds to dropping the square root in the estimate (13), 
choosing a type-3 approximation corresponds to dropping the additional � at the end. 
Also note that the above descent rule is the same as the one in [15, 18] except for the 
additional error terms in the last line of (13).

Lemma 3 has an immediate implication: in order to control the errors ‖e‖ and � in the 
last line of Lemma 3 it is obvious that we need to find a useful bound on ‖x − x̌‖ . We 
shall obtain this bound using a linear extrapolation in the primal variable x [15]. How-
ever, if we allow e.g. a type-1 approximation also in y̌ , we obtain an additional error 
term in (13) involving ‖y − y̌‖ that we need to bound as well. Even though we shall be 
able to obtain a bound in most cases, it will be arbitrarily weak due to the asymmetric 
nature of the used primal–dual algorithms, or go along with severe restrictions on the 
step sizes. This fact will become more obvious from the proofs in the following.

3.1 � The convex case: no acceleration

We start with a proof for a basic version of algorithm (12) using a technical lemma 
taken from [60] (see “Two technical lemmas” section in "Appendix"). The following 
inexact primal–dual algorithm corresponds to the choice

in algorithm (12):

(15)

g(x̌) ≤ g(x) +

�

x̄ − 𝜏(K∗ỹ + ∇f (x̄) + e) − x̌ − r

𝜏
, x̌ − x

�

+ 𝜀

≤ g(x) −
‖x̄ − x̌‖2

2𝜏
−

‖x − x̌‖2

2𝜏
+

‖x̄ − x‖2

2𝜏
+ ⟨ỹ,K(x − x̌)⟩

− ⟨∇f (x̄), x̌ − x⟩ +
�

‖e‖ +
√

(2𝜀∕𝜏
�

‖x − x̌‖ + 𝜀,

(16)f (x̌) ≤ f (x) + ⟨∇f (x̄), x̌ − x⟩ +
Lf

2
‖x̌ − x̄‖2.

⟨Kx̌, y⟩ − ⟨Kx̌, y⟩, ⟨Kx, y̌⟩ − ⟨Kx, y̌⟩, ⟨Kx̌, y̌⟩ − ⟨Kx̌, y̌⟩,

(17)(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (2xn − xn−1, yn+1)

(18)
yn+1 ≈

�n+1

2
prox

�h∗ (y
n + �K(2xn − xn−1))

xn+1 ≈
�n+1

i
prox

�g(x
n − �(K∗yn+1 + ∇f (xn) + en+1)).
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Theorem  1  Let L = ‖K‖ and choose small 𝛽 > 0 and 𝜏, 𝜎 > 0 such that 
𝜏Lf + 𝜎𝜏L2 + 𝜏𝛽L < 1 , and let the iterates (xn, yn) be defined by Algorithm (18) for 
i ∈ {1, 2, 3} . Then for any N ≥ 1 and XN ∶=

�

∑N

n=1
xn
�

∕N , YN ∶=
�

∑N

n=1
yn
�

∕N 
we have for a saddle point (x⋆, y⋆) ∈ X × Y that

where

Remark 1  The purpose of the parameter 𝛽 > 0 is only of technical nature and is 
needed in order to show convergence of the iterates of algorithm (18). In practice, 
however, we did not observe any issues setting it super small (respectively, to zero). 
Its role will become obvious in the next Theorem.

Proof  Using the choices (17) in Lemma 3 leads us to

The goal of the proof is, as usual, to manipulate this inequality such that we obtain a 
recursion where most of the terms cancel when summing the inequality. The starting 
point is an extension of the scalar product on the right hand side:

(19)

L(XN , y⋆) − L(x⋆, YN)

≤ 1

2𝜏N

�

‖x⋆ − x0‖ +

�

𝜏

𝜎
‖y⋆ − y0‖ + 2AN,i +

�

2BN,i

�2

,

AN,1 =

N
�

n=1

�‖en‖ +
√

2��n, BN,1 =

N
�

n=1

��n + ��n,

AN,2 =

N
�

n=1

�‖en‖, BN,2 =

N
�

n=1

��n + ��n,

AN,3 =

N
�

n=1

�‖en‖ +
√

2��n, BN,3 =

N
�

n=1

��n.

(20)

L(xn+1, y) − L(x, yn+1) ≤ ‖x − xn‖2

2�
−

‖x − xn+1‖2

2�

−
1 − �Lf

2�
‖xn+1

− xn‖2 +
‖y − yn‖2

2�
−

‖y − yn+1‖2

2�
−

‖yn+1 − yn‖2

2�

+ ⟨K((xn+1 − xn) − (xn − xn−1)), y − yn+1⟩

+
�

‖en+1‖ +
√

(2�n+1)∕�
�

‖x − xn+1‖ + �n+1 + �n+1.
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where we used (for 𝛼 > 0 ) that by Young’s inequality for every x, x� ∈ X  and 
y, y� ∈ Y,

and � = �L + � . This gives

Now we let x0 = x−1 and sum (22) from n = 0,… ,N − 1 to obtain

where � = 1 − �Lf − ��L2 − ��L . With Young’s inequality on the inner product 
with � =

1−�Lf

L�
 such that L�� = 1 − �Lf  and (L𝜎)∕𝛼 = (𝜏𝜎L2)∕(1 − 𝜏Lf ) < 1 we 

obtain

⟨K((xn+1 − xn) − (xn − xn−1)), y − yn+1⟩

= ⟨K(xn+1 − xn), y − yn+1⟩ − ⟨K(xn − xn−1), y − yn⟩

+ ⟨K(xn − xn−1), yn+1 − yn⟩

≤ ⟨K(xn+1 − xn), y − yn+1⟩ − ⟨K(xn − xn−1), y − yn⟩

+ (��L2 + ��L)
‖xn − xn−1‖2

2�
+

�L

�L + �

‖yn+1 − yn‖2

2�
,

(21)

⟨K(x − x�), y − y�⟩ ≤ L‖x − x�‖‖y − y�‖ ≤ L��

2�
‖x − x�‖2 +

L�

2��
‖y − y�‖2,

(22)

L(xn+1, y) − L(x, yn+1) ≤ ‖x − xn‖2

2�
−

‖x − xn+1‖2

2�

−
1 − �Lf

2�
‖xn+1 − xn‖2

+
��L2 + ��L

2�
‖xn − xn−1‖2 +

‖y − yn‖2

2�

−
‖y − yn+1‖2

2�
−

�

�L + �

‖yn+1 − yn‖2

2�

+ ⟨K(xn+1 − xn), y − yn+1⟩ − ⟨K(xn − xn−1), y − yn⟩

+
�

‖en+1‖ +
√

(2�n+1)∕�
�

‖x − xn+1‖ + �n+1 + �n+1.

N
�

n=1

L(xn, y) − L(x, yn) ≤ ‖x − x0‖2

2�
+

‖y − y0‖2

2�
−

‖x − xN‖2

2�
−

‖y − yN‖2

2�

−
1 − �Lf

2�
‖xN − xN−1‖2 − �

N−1
�

n=1

1

2�
‖xn − xn−1‖2

−
�

�L + �

N
�

n=1

‖yn − yn−1‖2

2�
+ ⟨K(xN − xN−1, y − yN⟩

+

N
�

n=1

�

‖en‖ +
√

(2�n)�
�

‖x − xn‖ +

N
�

n=1

(�n + �n),
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Note that the introduction of the parameter 𝛽 > 0 allowed us to keep an additional 
term involving the difference of the dual iterates on the right hand side of the ine-
quality. This will allow to prove the convergence of the iterates later on in Theo-
rem 2. The above inequality can now be used to bound the sum on the left hand side 
as well as ‖x − xN‖ by only the initialization (x0, y0) and the errors en , �n and �n . We 
start with the latter and let (x, y) = (x⋆, y⋆) such that the sum on the left hand side is 
nonnegative, hence with �0(x, y) ∶= ‖x − x0‖2∕(2�) + ‖y − y0‖2∕(2�) we have

(note that the remaining terms on the RHS of  (23) are negative). We multiply the 
equation by 2� and continue with a technical result by Schmidt et  al. [60, p.12]. 
Using Lemma  4 with uN = ‖x⋆ − xN‖ , SN = 2𝜏𝛥0(x

⋆, y⋆) + 2𝜏
∑N

n=1
(𝜀n + 𝛿n) and 

�n = 2(�‖en‖ +
√

2��n) we obtain a bound on ‖x⋆ − xN‖:

where we set AN ∶=
∑N

n=1
(�‖en‖ +

√

2��n) and BN ∶=
∑N

n=1
�(�n + �n) . Since AN 

and BN are increasing we find for all n ≤ N:

(23)

N
�

n=1

L(xn, y) − L(x, yn) +
1

2�
‖x − xN‖2 +

�

1 −
��L2

1 − �Lf

�

‖y − yN‖2

2�

≤ 1

2�
‖x − x0‖2 +

1

2�
‖y − y0‖2 +

N
�

n=1

�

‖en‖ +
√

(2�n)∕�
�

‖x − xn‖

+

N
�

n=1

(�n + �n) − �

N−1
�

n=1

1

2�
‖xn − xn−1‖2 −

�

�L + �

N
�

n=1

1

2�
‖yn − yn−1‖2.

1

2𝜏
‖x⋆ − xN‖2 ≤ 𝛥0(x

⋆, y⋆) +

N
�

n=1

�

‖en‖ +
√

(2𝜀n)∕𝜏
�

‖x⋆ − xn‖

+

N
�

n=1

(𝜀n + 𝛿n),

‖xN − x⋆‖ ≤ AN +

�

2𝜏𝛥0(x
⋆, y⋆) + 2BN + A2

N
,

(24)

‖xn − x⋆‖ ≤ An +

�

2𝜏𝛥0(x
⋆, y⋆) + 2Bn + A2

n

≤ AN +

�

2𝜏𝛥0(x
⋆, y⋆) + 2BN + A2

N

≤ 2AN + ‖x0 − x⋆‖ +

�

𝜏

𝜎
‖y0 − y⋆‖ +

√

2BN .
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This finally gives

and bounds the error terms. We now obtain from (23) that

which gives the assertion using the convexity of g,  f and h∗ , the definition of the 
ergodic sequences XN and YN and Jensen’s inequality. It remains to note that for a 
type-2 approximation the square root in AN can be dropped and for a type-3 approxi-
mation BN = 0 , which gives the different AN,i,BN,i . � □

We can immediately deduce the following corollary.

Corollary 1  If i ∈ {1, 2, 3} , 𝛼 > 0 and

then

Proof  Under the assumptions of the corollary, if 𝛼 > 1∕2 , the sequences {‖en‖} , 
{�n} and {�n} are summable and the error term on the right hand side of Eq. (19) is 
bounded, hence we obtain a convergence rate of O(1/N). If � = 1∕2 , all errors behave 

(25)

𝛥0(x
⋆, y⋆) +

N
�

n=1

�

‖en‖ +
√

(2𝜀n)∕𝜏
�

‖x⋆ − xn‖ +

N
�

n=1

(𝜀n + 𝛿n)

≤ 𝛥0(x
⋆, y⋆) +

1

𝜏
BN +

1

𝜏
AN

�

2AN + ‖x0 − x⋆‖ +

�

𝜏

𝜎
‖y0 − y⋆‖ +

√

2BN

�

=
1

2𝜏

�

‖x0 − x⋆‖2 +
𝜏

𝜎
‖y0 − y⋆‖2 + 2BN + 4A2

N

+2AN‖x
0 − x⋆‖ + 2AN

�

𝜏

𝜎
‖y0 − y⋆‖ + 2AN

√

2BN

�

≤ 1

2𝜏

�

‖x0 − x⋆‖ +

�

𝜏

𝜎
‖y0 − y⋆‖ + 2AN +

√

2BN

�2

,

N
�

n=1

L(xn, y⋆) − L(x⋆, yn)

≤ 1

2𝜏

�

‖x0 − x⋆‖ +

�

𝜏

𝜎
‖y0 − y⋆‖ + 2AN +

√

2BN

�2

,

‖en‖ = O

�

1

n
�+

1

2

�

, �n = O
�

1

n2�

�

, �n =

⎧

⎪

⎨

⎪

⎩

O
�

1

n2�+1

�

, if i ∈ {1, 3}

O
�

1

n2�

�

, if i = 2.

L(XN , y⋆) − L(x⋆, YN) =

⎧

⎪

⎨

⎪

⎩

O
�

N−1
�

if 𝛼 > 1∕2,

O
�

ln2(N)∕N
�

if 𝛼 = 1∕2,

O
�

N−2𝛼
�

if 𝛼 ∈ (0,
1

2
).
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like O(1/n) (note the square root on �n for i ∈ {1, 3} ), hence AN,i = BN,i = O(ln(N)) , 
which gives the second assertion. If 0 < 𝛼 < 1∕2 , then by Lemma  5 we obtain 
A2
N,i

= BN,i = O(N1−2�) , which gives the third assertion. � □

Before we establish a convergence result from Theorem 1, respectively Corollary 
1, let us comment on this result. In many useful situations it can be quite weak. Exact 
versions of such primal–dual algorithms [15, 18] guarantee inequality  (19) for all 
(x, y) ∈ X × Y , rather than for just a saddle point (x⋆, y⋆) . This allows (under some 
additional assumptions) to both state a rate for the primal and/or dual energy as well 
as the primal–dual gap and, for infinite dimensional X  and Y , that the cluster points 
of the ergodic averages (XN , YN) are saddle points and hence a solution to our initial 
problem. Theorem 1, however, due to the necessary bound on the error terms, estab-
lishes the desired inequality only for a saddle point (x⋆, y⋆) . It only implies a rate in 
a more degenerate distance, namely a Bregman distance [12, 52]. This is standard 
and easily seen rewriting the left hand side of (19), adding ⟨Kx⋆, y⋆⟩ − ⟨x⋆,K∗y⋆⟩,

Using

we obtain that (26) is the sum of two Bregman distances,

between the (ergodic) iterates (XN , YN) and the saddle point (x⋆, y⋆) . Hence, Corol-
lary 1 states the rate with respect to this distance.

As shown in, e.g., [13], a vanishing Bregman distance, e.g.,

for some (x, y) ∈ X × Y , in general does not imply that x = x⋆ or y = y⋆ , neither 
does it imply that the pair (x, y) is even a saddle point. As a matter of fact, without 
any further assumptions on f, g and h∗ , the set of zeros of a Bregman distance can be 
arbitrarily large and the left-hand side of the inequality in Corollary 1 could vanish 
even though we have not found a solution to our problem.

On the other hand, it is easy to show that  (27) yields that (x, y) is a saddle-
point whenever f + g and h∗ are strictly convex (that is, f + g strictly convex and 
h C1 in the interior of domh , with �h empty elsewhere [57, Thm. 26.3]). In that 
case obviously, (27) yields (x, y) = (x⋆, y⋆) . Other situations might be tricky. One 
of the worst cases is a simple matrix game (cf. [17]),

(26)

L(XN , y⋆) − L(x⋆, YN) = ⟨KXN , y⋆⟩ + f (XN) + g(XN) − h∗(y⋆)

− (⟨Kx⋆, YN
⟩ + f (x⋆) + g(x⋆) − h∗(YN))

= f (XN) + g(XN)

− (f (x⋆) + g(x⋆) − ⟨K∗y⋆,XN − x⋆⟩)

+ h∗(yN) − (h∗(y⋆) + ⟨Kx⋆, yN − y⋆⟩).

p = −K∗y⋆ ∈ 𝜕g(x⋆) + ∇f (x⋆), q = Kx⋆ ∈ 𝜕h∗(y⋆),

L(XN , y⋆) − L(x⋆, YN) = D
p

f+g
(XN , x⋆) + D

q

h∗
(YN , y⋆),

(27)D
p

f+g
(x, x⋆) + D

q

h∗
(y, y⋆) = 0,
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where A ∈ ℝ
k×l and �l,�k denote the unit simplices in ℝl respectively ℝk . Quite 

obviously, here we have f = 0 , g = �
�l

 and h∗ = �
�k

 , such that we have to compute 
the Bregman distances with respect to a characteristic function, which can only be 
zero or infinity. Hence, every feasible point causes the Bregman distance to vanish 
such that a rate in this distance is of no use. However, there is a simple workaround 
in such cases, whenever the primal (or even the dual) variable are restricted to some 
bounded set D, such that f and/or g have bounded domain. Note that this is a stand-
ard assumption also arising in similar works on the topic (e.g. [48]). As can be seen 
from the proof, one needs a bound on ‖xn − x⋆‖ in order to control the errors. In this 
case one can estimate ‖xn − x⋆‖ ≤ diam(D) , and following the line of the proof [cf. 
inequality (23)] we obtain for all (x, y) ∈ X × Y that

Eventually, this again allows deducing a rate for the primal–dual gap (e.g., along the 
lines in [17]).

Remark 2  Even in bad cases there might exist situations where a rate in a Bregman 
distance is useful. For instance, the basis pursuit problem aims primarily at finding 
the support of the solution, rather than its quantitative values (which are then recov-
ered easily). As shown in [13] a Bregman distance with respect to the 1-norm can 
only vanish if the support of both given arguments agrees. Hence, given a vanishing 
left-hand side in Corollary 1, we might not have found a saddle point, however, an 
element with the same support such that our problem is solved.

As we have lined out, a rate in a Bregman distance can be difficult to interpret, 
and it depends on the particular situation whether it is useful or not. However, 
we can at least show the convergence of the iterates in case X  and Y have finite 
dimension.

Theorem 2  Let X  and Y be finite dimensional and let the sequences (xn, yn) and 
(XN , YN) be defined by Theorem1. If the partial sums AN,i and BN,i in Theorem  1 
converge, there exists a saddle point (x∗, y∗) ∈ X × Y such that xn → x∗ and yn → y∗.

Proof  Since by assumption AN,i and BN,i are summable, plugging (x⋆, y⋆) into ine-
quality (23) and using (25) establishes the boundedness of the sequence (xn, yn) for 
all n ∈ ℕ . Hence there exists a subsequence (xnk , ynk ) (strongly) converging to a clus-
ter point (x∗, y∗) . Using (x, y) = (x⋆, x⋆) in (23) and the boundedness of the error 
terms established in (25) we also find that ‖xn−1 − xn‖ → 0 and ‖yn−1 − yn‖ → 0 

min
x∈�l

max
y∈�k

⟨Ax, y⟩,

L(XN , y) − L(x, YN) ≤ 1

N

�

‖x − x0‖2

2�
+

‖y − y0‖2

2�

+
diam(D)

�
AN,i +

1

�
BN,i

�

.
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(note that this is precisely the reason for the introduction of � and the strict inequal-
ity in 𝜏Lf + 𝜏𝜎L2 + 𝜏𝛽L < 1 ). As a consequence we also have ‖xnk−1 − xnk‖ → 0 and

i.e. also xnk−1 → x∗ . Let now T denote the primal update of the exact algorithm (11), 
i.e. x̂n+1 = T(x̂n) , and T

�n
 denote the primal update of the inexact Algorithm 12, i.e. 

xn+1 = T
�n
(xn) . Then, due to the continuity of T, we obtain

We apply the same argumentation to yn , which together implies that (x∗, y∗) is a fixed 
point of the (exact) iteration 11 and hence a saddle point of our original problem (8). 
We now use (x, y) = (x∗, y∗) in inequality (22) and sum from n = nk,… ,N − 1 (leav-
ing out negative terms on the right hand side) to obtain for N > nk

It remains to notice that since ‖en‖ → 0, �n → 0, �n → 0 and the above observations, 
the right hand side tends to zero for k → ∞ , which implies that also xN → x∗ and 
yN → y∗ for N → ∞ . � □

3.2 � The convex case: a stronger version

If we restrict ourselves to type-2 approximations, we can state a stronger version for 
the reduced problem with f = 0:

again assuming it has at least one saddle point (x⋆, y⋆) . We consider the algorithm

‖xnk−1 − x∗‖ ≤ ‖xnk−1 − xnk‖ + ‖xnk − x∗‖ → 0, k → ∞,

‖x∗ − T(x∗)‖ = lim
k→∞

‖xnk−1 − T(xnk−1)‖

≤ lim
k→∞

�

‖xnk−1 − T
�nk
(xnk−1)‖ + ‖T

�nk
(xnk−1) − T(xnk−1)‖

�

≤ lim
k→∞

�

‖xnk−1 − xnk‖ +
�

2��nk

�

= 0.

1

2�
‖x∗ − xN‖2 +

1

2�
‖y∗ − yN‖2

≤ ⟨K(xN − xN−1), y∗ − yN⟩ − ⟨K(xnk − xnk−1), y∗ − ynk⟩

+
��L2 + ��L

2�
‖xnk − xnk−1‖2 +

1

2�
‖x∗ − xnk‖2 +

1

2�
‖y∗ − ynk‖2

+

N
�

n=nk+1

�

‖en‖ +
√

(2�n)∕�
�

‖x∗ − xn‖ +

N
�

n=nk+1

(�n + �n).

(28)min
x∈X

max
y∈Y

L(x, y) = ⟨y,Kx⟩ + g(x) − h∗(y),

(29)
yn+1 ≈

�n+1

2
prox

�h∗ (y
n + �K(2xn − xn−1)),

xn+1 ≈
�n+1

2
prox

�g(x
n − �K∗yn+1)),
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which is the inexact analog of the basic exact primal–dual algorithm presented in 
[15]. Simply speaking, the main difference to the previous section is that, choosing 
a type-2 approximation and f = 0 , there are no errors occurring in the input of the 
proximal operators, such that we do not need a bound on ‖x − xn‖ , which allows us 
to obtain a rate for the objective for all (x, y) ∈ X × Y instead of only for a saddle 
point (x⋆, y⋆) (cf. Theorem 1). Following their line of proof, we can state the follow-
ing result:

Theorem  3  Let L = ‖K‖ and 𝜏, 𝜎 > 0 such that 𝜏𝜎L2 < 1 , and let the sequence 
(xn, yn) be defined by algorithm (29). Then for XN ∶=

�

∑N

n=1
xn
�

∕N , 

YN ∶=
�

∑N

n=1
yn
�

∕N and every (x, y) ∈ X × Y we have

Furthermore, if �n = O(n−�) and �n = O(n−�) , then

Proof  The proof can be done exactly along the lines of [15, Theorem  1] (or 
along the proof of Theorem  1), so we just give the main steps. Letting f = 0 
and choosing a type-2 approximation gives Lf = 0 and lets us drop the term 
(‖en+1‖ +

√

(2�n+1)∕�)‖x − xn+1‖ in inequality (20). This is the essential difference, 
since we do not have to establish a bound on ‖x − xn+1‖ . Choosing � =

√

�∕� in 
Young’s inequality and proceeding as before the gives

The definition of the ergodic sequences and Jensen’s inequality yield the  
assertion. � □

As before we can state convergence of the iterates if the errors {�n} and {�n} 
decay fast enough. The proof is the same as for Theorem 2.

Theorem 4  Let the sequences (xn, yn) and (XN , YN) be defined by (29) respectively. 
If the sequences {�n} and {�n} in Theorem 3 are summable, then every weak cluster 

(30)L(XN , y) − L(x, YN) ≤ 1

N

�

1

2�
‖x − x0‖2 +

1

2�
‖y − y0‖2 +

N
�

n=1

(�n + �n)

�

.

L(XN , y) − L(x, YN) =

⎧

⎪

⎨

⎪

⎩

O
�

N−1
�

, if 𝛼 > 1,

O(ln(N)∕N), if 𝛼 = 1,

O(N−𝛼), if 𝛼 ∈ (0, 1).

(31)

N
�

n=1

(L(xn, y) − L(x, yn)) + (1 − ��L2)
‖y − yN‖2

2�
+

‖x − xN‖2

2�

+ (1 −
√

��L)

N
�

n=1

‖yn − yn−1‖2

2�
+ (1 −

√

��L)

N−1
�

n=1

‖xn − xn−1‖2

2�

≤ 1

2�
‖y − y0‖2 +

1

2�
‖x − x0‖2 +

N
�

n=1

(�n + �n).
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point (x∗, y∗) of (XN , YN) is a saddle point of problem (28). Moreover, if the dimen-
sion of X  and Y is finite, there exists a saddle point (x∗, y∗) ∈ X × Y such that 
xn → x∗ and yn → y∗.

Proof  Since by assumption AN,i and BN,i are summable, plugging (x⋆, y⋆) into 
Eq. (31) establishes the boundedness of the sequence xN for all N ∈ ℕ , which also 
implies the boundedness of the ergodic average XN . Note that by the same argumen-
tation as for xN , this also establish a global bound on yN and YN . Hence there exists 
a subsequence (XNk , YNk ) weakly converging to a cluster point (x∗, y∗) . Then, since 
f, g and h∗ are l.s.c. (thus also weakly l.s.c.), we deduce from Eq. (30) that, for every 
fixed (x, y) ∈ X × Y,

Taking the supremum over (x, y) then implies that (x∗, y∗) is a saddle point itself and 
establishes the first assertion. The rest of the proof follows analogously to the proof 
of Theorem 2. � □

Remark 3  The main difference between Theorems  3 and 1 is that inequality (30) 
bounds the left hand side for all x, y ∈ X × Y and not only for a saddle point (x⋆, y⋆) . 
Following [15, Remark 2] and if {�n}, {�n} are summable we can state the same 
O(1∕N) convergence of the primal energy, dual energy or the global primal–dual gap 
under the additional assumption that h has full domain, g∗ has full domain or both 
have full domain. More precisely, if e.g. h has full domain, then it is classical that h∗ 
is superlinear and that the supremum appearing in the conjugate is attained at some 
ỹN ∈ 𝜕h(KXN) , which is uniformly bounded in N due to (31) (if (x, y) = (x⋆, y⋆) then 
(XN , YN) is globally bounded), such that

Now evoking inequality (30) and proceeding exactly along (10) we can state that

with a constant C depending on x0 , y0 , h and ‖K‖ . Analogously we can establish the 
convergence rates for the dual problem and also the global gap.

L(x∗, y) − L(x, y∗) ≤ lim inf
k→∞

L(XNk , y) − L(x, YNk )

≤ lim inf
k→∞

1

Nk

�

1

2�
‖x − x0‖2 +

1

2�
‖y − y0‖2 +

N
�

n=1

(�n + �n)

�

= 0,

max
y∈Y

L(xN , y) = ⟨ỹN ,KXN
⟩ − h∗(ỹN) + g(XN) = h(KXN) + g(XN).

h(KXN) + g(XN) − [h(Kx⋆) + g(x⋆)]

≤ 1

N

�

1

2𝜏
‖x⋆ − x0‖2 + C +

N
�

n=1

(𝜀n + 𝛿n)

�

,
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Remark 4  If h∗ has bounded domain, e.g. if h is a norm, we can even state “mixed” 
rates for the primal energy if the errors are not summable. Since in this case 
‖y − y0‖ ≤ diam(domh∗) we may take the supremum over all y ∈ domh∗ and obtain

for �n, �n ∈ O(n−�) . The above result in particular holds for the aforementioned 
TV-L1 model, which we shall consider in the numerical section.

3.3 � The strongly convex case: primal acceleration

We now turn our focus on possible accelerations of the scheme and consider 
again the full problem (8) with the additional assumption that g is �-strongly con-
vex, i.e. for any x ∈ dom�g

As g is �-strongly convex, its conjugate g∗ has 1∕�-Lipschitz gradient, so that accel-
eration is possible. We mention that we obtain the same result if f (or both g and f) 
are strongly convex, since it is possible to transfer the strong convexity from f to g 
and vice versa [18, Section 5]. Hence for simplicity we focus on the case where g is 
strongly convex. Choosing

in algorithm (12) we define an accelerated inexact primal–dual algorithm:

We prove the following theorem in “Proof of Theorem 5” of “Appendix”.

Theorem 5  Let L = ‖K‖ and �n, �n, �n such that

Let (xn, yn) ∈ X × Y be defined by the above algorithm for i ∈ {1, 2, 3} . Then for any 
saddle point (x⋆, y⋆) ∈ X × Y of (8) and

h(KXN) + g(XN) − [h(Kx⋆) + g(x⋆)]

≤ 1

N

�

‖x⋆ − x0‖2

2𝜏
+

diam(domh∗)2

2𝜎
+

N
�

n=1

(𝜀n + 𝛿n)

�

= O(N−𝛼),

g(x�) ≥ g(x) + ⟨p, x� − x⟩ +
�

2
‖x� − x‖2, ∀p ∈ �g(x), ∀x� ∈ X.

(32)(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (xn + 𝜃n(x
n − xn−1), yn+1),

(33)

yn+1 ≈
�n+1

2
prox

�nh
∗ (yn + �nK(x

n + �n(x
n − xn−1))

xn+1 ≈
�n+1

i
prox

�ng
(xn − �n(K

∗yn+1 + ∇f (xn) + en+1))

�n+1 = 1∕
√

1 + ��n, �n+1 = �n+1�n, �n+1 = �n∕�n+1.

�nLf + �n�nL
2 ≤ 1, �n+1�n+1 = �n, (1 + ��n)�n+1�n+1 ≥ �n.
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we have that

and

where

As a direct consequence of Theorem 5 we can state convergence rates of the 
accelerated algorithm (33) in dependence on the errors {‖en‖}, {�n} and {�n}.

Corollary 2  Let �0 = 1∕(2Lf ) , �0 = Lf∕L
2 and �n, �n and �n be given by (33). Let 

𝛼 > 0 , i ∈ {1, 2, 3} and

Then

TN ∶=

N
∑

n=1

�n−1

�0

, XN ∶=
1

TN

N
∑

n=1

�n−1

�0

xn, YN ∶=
1

TN

N
∑

n=1

�n−1

�0

yn,

TN(L(X
N , y⋆) − L(x⋆, YN))

≤ 1

2𝜎0

��

𝜎0

𝜏0

‖x⋆ − x0‖ + ‖y⋆ − y0‖ +
�

2BN,i + 2

�

𝜏N

𝜎N

AN,i

�2

,

𝜎N

2𝜏N
‖x⋆ − xN‖2

≤ 1

2

��

𝜎0

𝜏0

‖x⋆ − x0‖ + ‖y⋆ − y0‖ +
�

2BN,i + 2

�

𝜏N

𝜎N

AN,i

�2

,

AN,1 =

N
�

n=1

�n−1‖e
n
‖ +

�

2�2
n−1

�n

�n−1

, BN,1 = 2

N
�

n=1

�n−1(�n + �n),

AN,2 =

N
�

n=1

�n−1‖e
n
‖, BN,2 = 2

N
�

n=1

�n−1(�n + �n),

AN,3 =

N
�

n=1

�n−1‖e
n
‖ +

�

2�2
n−1

�n

�n−1

, BN,3 = 2

N
�

n=1

�n−1�n.

‖en‖ = O
�

1

n�

�

, �n = O
�

1

n2�

�

, �n =

⎧

⎪

⎨

⎪

⎩

O
�

1

n1+2�

�

, if i ∈ {1, 3}

O
�

1

n2�

�

, if i = 2.

L(XN , y⋆) − L(x⋆, YN) =

⎧

⎪

⎨

⎪

⎩

O
�

N−2
�

if 𝛼 > 1,

O
�

ln2(N)∕N2
�

if 𝛼 = 1,

O
�

N−2𝛼
�

if 𝛼 ∈ (0, 1).
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Proof  In [15] it has been shown that with this choice we have �n ∼ 2∕(n�) . Since the 
product �n�n = �0�0 = 1∕(2L2) stays constant over the course of the iterations, this 
implies that �n ∼ (n�)∕(4L2) , from which we directly deduce that TN ∼ (�N2)∕(8Lf ) , 
hence TN = O

(

N2
)

 . Moreover we find that 
√

�N∕�N ∼ (
√

8L)∕(�N) . Now let i = 1 
and � ∈ (0, 1) , then we have

Now by assumption ‖en‖ = O(n−�) and �n = O
(

n−(1+2�)
)

 which implies that 
AN,1 = O

(

N2−�
)

 . By analogous reasoning we find BN,1 = O
(

N2−2�
)

 . Summing up 
we obtain that

yielding the last row of the assertion. For � = 1 we see that 
√

�N∕�NAN,1 is finite and 
BN,1 = O(log(N)) , for 𝛼 > 1 also BN,1 is summable, implying the other two rates. It 
remains to notice that the cases i ∈ {2, 3} can be obtained as special cases. � □

3.4 � The strongly convex case: dual acceleration

This section is devoted to the comparison of inexact primal–dual algorithms and 
inexact forward–backward splittings established in [5, 60, 61], considering the 
problem

with h having a 1∕�-Lipschitz gradient and proximable g. The above mentioned 
works establish convergence rates for an inexact forward–backward splitting on this 
problem, where both the computation of the proximal operator with respect to g and 
the gradient of h might contain errors ([61] only considers errors in the proximum).

The corresponding primal–dual formulation of problem (34) reads

where now h∗ is �-strongly convex. Hence we know that the algorithm can be accel-
erated “à la” [15, 18] or as in the previous section, and we shall be able to essentially 
recover the results on inexact forward–backward splittings/inexact FISTA obtained 
by [5, 60, 61]. Choosing (note f = 0 and e = 0)

in algorithm (12) we define an accelerated inexact primal–dual algorithm:

AN,1 =

N
�

n=1

�n−1‖e
n
‖ +

�

2�2
n−1

�n

�n−1

∼

N
�

n=1

(n − 1)�

4L2
‖en‖ +

�

2�3((n − 1)3�n)

32L4

�N

�N

A2
N,1

TN
= O

(

N−2�
)

, and
BN,1

TN
= O

(

N−2�
)

,

(34)min
x∈X

h(Kx) + g(x),

(35)min
x∈X

max
y∈Y

L(x, y) = ⟨Kx, y⟩ + g(x) − h∗(y),

(36)(x̌, y̌) = (xn+1, yn+1), (x̄, ȳ) = (xn, yn), (x̃, ỹ) = (xn + 𝜃n(x
n − xn−1), yn+1),
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We prove the following theorem in “Proof of Theorem 6” of "Appendix".

Theorem 6  Let L = ‖K‖ and �n, �n, �n such that

Let (xn, yn) ∈ X × Y be defined by the above algorithm for i ∈ {1, 2, 3} . Then for a 
saddle point (x⋆, y⋆) ∈ X × Y and

we have that

and

where CN = 1 − �N�N�
2
N
L2 and

We can once more establish convergence rates depending on the decay of the 
errors.

yn+1 ≈
�n+1

2
prox

�nh
∗ (yn + �nK(x

n + �n(x
n − xn−1))

xn+1 ≈
�n+1

i
prox

�ng
(xn − �nK

∗yn+1)

�n+1 = 1∕
√

1 + 2��n, �n+1 = �n+1�n, �n+1 = �n∕�n+1.

�n�n�
2
n
L2 ≤ 1, �n+1�n+1 = �n, (1 + ��n)�n+1�n+1 ≥ �n.

TN ∶=

N
∑

n=1

�n−1

�0

, XN ∶=
1

TN

N
∑

n=1

�n−1

�0

xn, YN ∶=
1

TN

N
∑

n=1

�n−1

�0

yn,

TN(L(X
N , y⋆) − L(x⋆, YN))

≤ 1

2𝜏0

�

‖x⋆ − x0‖ +

�

𝜏0

𝜎0

‖y⋆ − y0‖ +
�

2BN,i + 2AN,i

�2

,

CN

𝜏N

𝜎N

‖y⋆ − yN‖2 ≤
�

‖x⋆ − x0‖ +

�

𝜏0

𝜎0

‖y⋆ − y0‖ +
�

2BN,i + 2AN,i

�2

,

AN,1 =

N
�

n=1

√

2�n−1�n, BN,1 = 2

N
�

n=1

�n−1(�n + �n),

AN,2 = 0, BN,2 = 2

N
�

n=1

�n−1(�n + �n),

AN,3 =

N
�

n=1

√

2�n−1�n, BN,3 = 2

N
�

n=1

�n−1�n.



404	 J. Rasch, A. Chambolle 

1 3

Corollary 3  Let �0, �0 such that �0�0L2 = 1 . Let 𝛼 > 0 , i ∈ {1, 2, 3} and

Then

Proof  We refer to [15] for a proof that using the step sizes in Theorem  6, it can 
be shown that �n ∼ 1∕(n�) and accordingly �n ∼ (n�)∕L2 . This directly implies that 
TN ∼ (�N2)∕(2L) . Now for i = 1 and � ∈ (0, 1) we have that

Now by assumption �n = O
(

n−1−2�
)

 , which implies that 
√

(n − 1)�n = O(n−�) and 
we deduce AN,1 = O

(

N1−�
)

 using Lemma 5. By an analogous argumentation

Now since �n = O
(

n−2�
)

 we deduce that n�n = O
(

n1−2�
)

 and hence BN,1 = O
(

N2−2�
)

 . 
Using TN = O

(

N2
)

 , we find

which gives the result for i = 1 and � ∈ (0, 1) . Choosing 𝛼 > 1 will yield conver-
gence for AN,1 and BN,1 , which implies the fastest overall convergence rate O

(

1∕N2
)

 , 
the case � = 1 gives AN,1 = O(log(N)) and BN,1 = O(log(N)) . It remains to note that 
the results for i = 2, 3 can be obtained as special cases. � □

Corollary  3 essentially recovers the results given in [5, 60, 61], though the 
comparison is not exactly straightforward. For an optimal O

(

N−2
)

 convergence in 
objective with a type-1 approximation the authors of [60] require �n = O

(

1∕n4+�
)

 
for any 𝜅 > 0 , for the error dn in the gradient of h◦K they need ‖dn‖ = O

�

1∕n4+�
�

 . 
Since a type-2 approximation of the proximum is more demanding, the authors of 
[61] obtain a weaker dependence of the convergence on the error and only require 
�n = O

(

n3+�
)

 . Note that they only consider the case dn = 0 . The work in [5] essen-
tially refines both results under the same assumptions on the errors. Corollary 3 now 
states that for an optimal O

(

N−2
)

 convergence we require �n = O
(

n3+�
)

 in case of a 

�n = O
�

1

n2�

�

, �n =

⎧

⎪

⎨

⎪

⎩

O
�

1

n1+2�

�

, if i ∈ {1, 3}

O
�

1

n2�

�

, if i = 2.

L(XN , y⋆) − L(x⋆, YN) =

⎧

⎪

⎨

⎪

⎩

O
�

N−2
�

if 𝛼 > 1,

O
�

ln2(N)∕N2
�

if 𝛼 = 1,

O
�

N−2𝛼
�

if 𝛼 ∈ (0, 1).

AN,1 =

N
�

n=1

√

2�n−1�n ∼

N
�

n=1

�

2�(n − 1)�n

L2
=

√

2�

L

N
�

n=1

√

(n − 1)�n.

BN,1 = 2

N
∑

n=1

�n−1(�n + �n) ∼
2�

L2

N
∑

n=1

(n − 1)(�n + �n).

BN,1

TN
= O

(

N−2�
)

, and
A2
N,1

TN
= O

(

N−2�
)

,
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type-1 approximation and �n = O
(

n2+�
)

 in case of an error of type-2, which seems 
to be one order less than the other results. We do not have a precise mathematical 
explanation at this point. The main difference appears to be the changing step sizes 
�n, �n in the proximal operators for the inexact primal–dual algorithm in Theorem 6, 
which behave like n respectively 1/n, while the step sizes remain fixed for inexact 
forward–backward. The numerical section, however, indeed confirms the weaker 
dependence of the inexact primal–dual algorithm on the errors.

Remark 5  We want to highlight that, in the spirit of Sect. 3.2 it is as well possible to 
state a stronger version in case the approximations are of type-2 in both the primal 
and dual proximal point, which then bounds the “gap” for all (x, y) ∈ X × Y instead 
of for a saddle point (x⋆, y⋆) in Theorem 6 [cf. inequality (54)]:

Under some additional assumptions we can then again derive estimates on the pri-
mal energy for every fixed N ∈ ℕ . If again h has full domain, the supremum appear-
ing in the conjugate is attained at some ỹN and exactly along (10) we derive

In case the errors are summable we again obtain that also ỹN is globally bounded (cf. 
Remark 3) and we obtain convergence in O

(

1∕N2
)

 . If the errors are not summable 
there is no similar argument to obtain the global boundedness of the ỹN , however at 
least on a heuristic level one can expect a convergence to y∗ at a similar rate as XN . 
This is indeed confirmed in the numerical section where we observe the O

(

N−2�
)

 
decay from Corollary 3 also for the primal objective for nonsummable errors.

3.5 � The smooth case

We finally discuss an accelerated primal–dual algorithm if both g and h∗ are � - 
respectively �-strongly convex. In this setting the primal objective is both smooth 
and strongly convex, and first-order algorithms can be accelerated to linear conver-
gence. We consider the algorithm

L(XN , y) − L(x, YN)

≤ 1

TN

�

1

2�0
‖x − x0‖2 +

1

2�0
‖y − y0‖2 +

N
�

n=1

�n−1

�0

(�n + �n)

�

.

h(KXN) + g(XN) + f (XN) −
�

h(Kx⋆) + g(x⋆) + f (x⋆)
�

≤ 1

TN

�

1

2𝜏0
‖x⋆ − x0‖2 +

1

2𝜎0
‖ỹN − y0‖2 +

N
�

n=1

𝜏n−1

𝜏0

(𝜀n + 𝛿n)

�

.
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and prove the following result in “Proof of Theorem 7” of “Appendix”

Theorem 7  Let L = ‖K‖ and �, �, � such that

Let (xn, yn) ∈ X × Y be defined by algorithm (37) for i ∈ {1, 2, 3} . Then for the 
unique saddle-point (x⋆, y⋆) and

we have

and

where

We can now state convergence rates, if the decay of the errors is also geometric.

Corollary 4  Let 𝛼 > 0 , i ∈ {1, 2, 3} and for 0 < q < 1

(37)

yn+1 ≈
�n+1

2
prox

�h∗ (y
n + �K(xn + �(xn − xn−1))

xn+1 ≈
�n+1

i
prox

�g(x
n − �(K∗yn+1 + ∇f (xn) + en+1)),

1

�
= 1 + �� = 1 + ��, �Lf + ���

2L2 ≤ 1,

(38)1 + �� = 1 + �� =
1

�
and �Lf + ���

2L2 ≤ 1.

TN ∶=

N
∑

n=1

1

�n−1
, XN ∶=

1

TN

N
∑

n=1

1

�n−1
xn, YN ∶=

1

TN

N
∑

n=1

1

�n−1
yn

TN(L(X
N , y⋆) − L(x⋆, YN))

≤ 1

2𝜏

�

‖x⋆ − x0‖ +

�

𝜏

𝜎
‖y⋆ − y0‖ + 2𝜃

N

2 AN,i +
�

2BN,i

�2

‖x⋆ − xN‖2 ≤ 𝜃
N

�

‖x⋆ − x0‖ +

�

𝜏

𝜎
‖y⋆ − y0‖ + 2𝜃

N

2 AN +
√

2BN

�2

AN,1 =

N
�

n=1

1

�n−1
(�‖en‖ +

√

2��n), BN,1 =

N
�

n=1

�

�n−1
(�n + �n),

AN,2 =

N
�

n=1

�‖en‖

�n−1
, BN,2 =

N
�

n=1

�

�n−1
(�n + �n),

AN,3 =

N
�

n=1

1

�n−1
(�‖en‖ +

√

2��n), BN,3 =

N
�

n=1

�

�n−1
�n.

‖en‖ = O
�

√

q
n
�

, �n = O(qn), �n = O(qn).
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Then

Proof  It is clear that we need to investigate the decay of the term

to obtain a convergence rate. In view of the specific form of AN,i and BN,i and the 
rate of �n , �n and ‖en‖ we consider

Now if q < 𝜃 < 1 , Eq. (39) implies that �NBN,i = O
(

�
N
)

 . For AN,i we note the factor 
�
N is squared, as opposed to the factor of BN,i , which implies that the decay of ‖en‖ 

and 
√

�n can be less restrictive for AN,i and explains the square root on the constant 
q for ‖en‖ . We have to distinguish whether 

√

q < 𝜃 or 
√

q > 𝜃 . In the former case we 
have by Eq. (39), now with 

√

q instead of q, that

while in the latter we obtain �2NA2
N,i

= O
(

qN
)

= O
(

�
N
)

 , which in sum gives 
CN,i = O

(

�
N
)

 . If 𝜃 < q < 1 , we have by analogous argumentation and (39) that 
�
NBN,i = O

(

qN
)

 and since 𝜃 < q <
√

q < 1 also �2NA2
N,i

= O
(

qN
)

 , which implies 
CN,i = O

(

qN
)

 . For the case � = q it is sufficient to notice that (39) is in O
(

N�N
)

 . � □

It remains to give some explicit formulation of the step sizes that fulfill the condi-
tions (38). Solving (38) for �, � and � gives [18]

L(XN , y⋆) − L(x⋆, YN) +
‖x⋆ − xN‖2

2𝜏
=

⎧

⎪

⎨

⎪

⎩

O
�

𝜃
N
�

, if 𝜃 > q,

O
�

N𝜃N
�

, if 𝜃 = q,

O
�

qN
�

, if 𝜃 < q.

CN,i ∶= �
2NA2

N,i
+ �

NBN,i

(39)�
N

N
∑

n=1

qn−1

�n−1
= �

N

N−1
∑

n=0

(q

�

)n

= (�N − qN)
�

� − q
.

�
2NA2

N,i
= (�NAN,i)

2 = O
�

(�N −
√

q
N
)2
�

= O
�

�
2N
�

= O
�

�
N
�

,

� =

1 +
√

1 + 4L2∕(��) + L2
f
∕�2 + 2Lf∕� − Lf∕�

2Lf + 2L2∕�
,

� =

1 +
√

1 + 4L2∕(��) + L2
f
∕�2 + 2Lf∕� − Lf∕�

2Lf�∕� + 2L2∕�
,

� = 1 −

√

1 + 4L2∕(��) + L2
f
∕�2 + 2Lf∕� − Lf∕� − 1

2L2∕(��)
.
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4 � Numerical experiments

There exists a large variety of interesting optimization problems, e.g. in imaging, 
that could be investigated in the context of inexact primal–dual algorithms, and 
even creating numerical examples for all the discussed notions of inexact proxima 
and different versions of algorithms clearly goes beyond the scope of this paper. 
Instead, we want to discuss two different questions on two classical imaging prob-
lems and leave further studies to the interested reader. The main goal of this sec-
tion is to confirm numerically, that the convergence rates we proved above are 
“sharp” in some sense, meaning that if the errors are close to the upper bounds 
we obtain the convergence rates predicted by the theory. The second point we 
want to address is whether one can actually benefit from the theory and employ 
different splitting strategies in order to obtain nested algorithms, which can then 
only be solved in an inexact fashion (cf. [61]).

We investigate both questions using problems of the form

K1 ∶ X → Y  , K2 ∶ X → Z , where we assume that the proximal operators of both g 
and h∗ (or g∗ and h by Moreau’s decomposition) have an exact closed form solution. 
The right hand side of (40) leads to a nested inexact primal–dual algorithm

Hence the dual proximal operator can be evaluated exactly (i.e. �n = 0 ), while the 
inner subproblem has to be computed in an inner loop up to the necessary precision 
�n . We choose the type-2 approximation since in this case, according to Proposition 
1, the precision of the proximum can be assessed by means of the duality gap. In 
order to be able to evaluate the gap, we solve the 1∕�-strongly convex dual problem

using FISTA [8]. To distinguish between outer and inner problems for the splittings 
we denote the iteration number for the outer problem by n, while the iteration num-
ber of the inner problem is k. In order to achieve the necessary precision, we iterate 
the proximal problem until the primal–dual gap (cf. also Sect. 2) satisfies

where �n = O(1∕n�) , respectively �n = O(�n) for the last experiment. We vary the 
parameter � in order to show the effect of the error decay rate on the algorithm (cf. 
Remark 4). While for the asymptotic results we proved in the previous section the 
constant C of the rate does not matter, it indeed does in practice. In order to use 
Proposition 1 as a criterion, C should correspond to the “natural” size of the duality 
gap of (41). In order not to choose the constraint too restrictive but still active we 

(40)min
x∈X

h(K1x) + g(K2x) = min
x∈X

max
y∈Y

⟨y,K1x⟩ + g(K2x) − h∗(y),

(41)
yn+1 = prox

�h∗ (y
n + �K1(x

n+1 + �(xn+1 − xn))),

xn+1 ≈
�n+1

2
prox

�(g◦K2)
(xn − �K∗

1
yn+1).

min
z∈Z

�

2
‖K∗

2
z‖2 − ⟨K∗

2
z, yn+1⟩ + g∗(z),

(42)G(yn+1 − �B∗zk, zk) ≤ C�n,
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follow [61] and choose C = G(y0 − �B∗y0, 0) , which is the duality gap of the first 
proximal subproblem for n = 1 evaluated at z = 0.

For the sake of brevity we discuss only three problems: we start with the non-
differentiable TV-L1 model for deblurring, a problem which cannot be acceler-
ated, and continue with “standard” TV-L2 deblurring, which also serves as a 
prototype for a whole list of applications with a general operator instead of a 
blurring kernel (cf. e.g. [30, 59]). Since in this case the objective is Lipschitz-
differentiable, the convex conjugate is strongly convex, which allows to accelerate 
the algorithm. The third problem we investigate is a “smoothed” version of the 
TV-L2 model, which can be accelerated to linear convergence.

We investigate two different setups: as already announced above, we want to con-
firm the convergence rates predicted by the theory numerically. We hence require the 
inexact proximal problem (41) to be solved with an error close to the accuracy level 
�n . To achieve this we, where it is necessary, deliberately solve the inner problem 
suboptimally, meaning that we use a cold start (random initialization of the algo-
rithm) and reduced step sizes for the inner problem, ensuring that the inner problem 
is not solved “accidentially” at a higher precision. We shall see that this is indeed 
necessary for the slow TV-L1 problem. In a second setup we investigate whether 
the obtained error bounds can also be used as a criterion to ensure (optimal) con-
vergence of the nested algorithm (41). As observed in e.g. [7] for the TV-L2 model 
and the FISTA algorithm, insufficient precision of the inner proximum can cause the 
algorithm to diverge. Instead of performing a fixed high number of inner iterations 
as a remedy, we solve the inner problem only up to precision �n in every step, which 
by the theory ensures that the algorithm converges with the same rate as the decay 
of the errors. We then use the best possible step sizes and a warm start strategy (ini-
tialization by the previous solution) in order to minimize the computational costs of 
the inner loop. It has already been observed in [61], that such strategy may signifi-
cantly speeds up the process. We use a standard primal–dual reconstruction (PDHG) 
after 105 iterations as a numerical “ground truth” u∗ to compute the optimal energy 
F∗ = F(u∗).

4.1 � Nondifferentiable deblurring with the TV‑L1 model

In this section we study the numerical solution of the TV-L1 model

with a discrete blurring operator A ∶ X → X . As already lined out in the introduc-
tion, there exist a variety of methods to solve the problem (e.g. [19, 28, 35, 62]), 
where most of them make use of the fact that the operator A can be written as a con-
volution. We use an easy strategy which does not rely on the structure of the opera-
tor and is hence also applicable to operators different from convolutions. Due to the 
nondifferentiability of both the data term and regularizer, a very simple approach is 
to dualize both terms (similar to ADMM [10] or ’PD-Split’ in [17]):

(43)u∗ ∈ argmin
u∈X

F(u) = ‖Au − f‖1 + �‖∇u‖1,
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where P
�
 denotes the convex set P

�
= {x ∈ X � ‖x‖∞ ≤ �} . One can then employ a 

standard primal–dual method (PDHG [15]) which reads

Unfortunately one can observe that whenever there is no primal term in the formula-
tion of the problem, the energy tends to oscillate and convergence can be quite slow 
(even though of course in O(1∕N) , cf. Fig. 1b). As an alternative we propose to split 
the problem differently and operate on the following primal–dual formulation:

We employ algorithm (29), i.e. the non-accelerated basic inexact primal–dual algo-
rithm (iPD) with type-2 errors and obtain

min
u∈X

max
y1∈X,y2∈Y

⟨y1,Au − f ⟩ + ⟨y2,∇u⟩ − �P1
(y1) − �P

�
(y2),

yn+1
1

= projP1
(yn

1
+ �A(2un+1 − un)),

yn+1
2

= projP
�

(yn
2
+ �∇(2un+1 − un)),

un+1 = un − �(A∗yn+1
1

− div(yn+1
2

)).

min
u∈X

max
y∈Y

⟨y,Au − f ⟩ − �P1
(y) + �‖∇u‖1.

(a) (b)

(c) (d)

Fig. 1   Inexact primal–dual on the TV-L1 problem. a, b loglog plots of the relative objective error versus 
the outer iteration number for different decay rates � of the errors. a Cold start, error close to the bound 
O(1∕n�) , b warm start. c, d Number of inner iterations respectively sum of inner iterations versus number 
of outer iterations for different decay rates � . One can observe in (a) that the predicted rates in the worst 
case are attained, while in practice the problem also converges for very few inner iterations (b), (c) and 
(d)
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Note that the dual proximum in this case can be evaluated error-free.
As a numerical study we perform deblurring on MATLAB’s Lily image in [0, 1] 

with resolution 256 × 192 , which has been corrupted by a Gaussian blur of approxi-
mately 12 pixels full width at half maximum (where we assume a pixel size of 1) 
and 50 percent salt-and-pepper noise, i.e. 50 percent of the pixels have been ran-
domly set to either 0 or 1. Furthermore, we performed power iterations to deter-
mine the operator norm of (A,∇) as L ≈

√

8 and set � = � = 0.99∕
√

8 for (PDHG). 
For (iPD) L can be determined analytically as L = ‖A‖ = 1 , hence � = � = 0.99 for 
(iPD).

At first, we want to confirm the convergence rates predicted by the theory numeri-
cally. One can easily observe that the decay of the relative objective is almost exactly 
as predicted: with higher � it approaches O

(

N−1
)

 , in fact for summable errors it even 
seems a little better. In the second setup we investigate whether the obtained error 
bounds can also be used as a criterion to ensure (optimal) convergence of the nested 
algorithm (44), and results for varying parameter � can be found in Fig. 1b. Interest-
ingly for this problem, the error bounds from the theory are indeed too pessimistic 
or, vice versa, the TV-L1 problem is “easier” than expected. As can be observed in 
Fig. 1b, the convergence rate for all choices of � tends towards O(1∕N) , with slight 
advantages for higher � , while the number of required inner iterations k (Fig. 1c, d) 
to reach the necessary precision is remarkably low. In fact, performing just a single 
inner iteration in every step of the algorithm resulted in a O(1∕N) convergence rate 
(cf. also Fig. 1d). The required number of inner iterations even decreases over the 
course of the outer iterations which suggests that the dual variable of the inner prob-
lem “converges” as well. Note that this does not contradict the theoretical findings 
of this paper, but the contrary: while the first study clearly confirms that in the worst 
case the proved worst-case estimates are reached, the second implies that in practice 
one might as well perform by far better.

4.2 � Differentiable deblurring with the TV‑L2 model

The second problem we investigate is the TV-L2 model for image deblurring

Again, the easiest approach to solve (45) is to write down a primal–dual formulation

Since the above problem is not strongly convex in y2 it cannot be accelerated, so a 
basic primal–dual algorithm [15] (PDHG) for the solution reads

(44)
yn+1 = projP1

(yn + �A(2un+1 − un)),

un+1 ≈
�n+1

2
argmin

u∈X

1

2�
‖u − (un − �A∗yn+1)‖2 + �‖∇u‖1.

(45)u∗ ∈ argmin
u∈X

1

2
‖Au − f‖2

2
+ �‖∇u‖1.

min
u∈X

max
y1∈X,y2∈Y

⟨y1,Au − f ⟩ + ⟨y2,∇u⟩ −
1

2
‖y1‖

2 − �P
�

(y2).
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We remark that, due to the special relation between the Fourier transform and a con-
volution, the same problem can be solved without dualizing the data term, since the 
primal proximal operator admits a closed form solution [15]. The problem however 
stays non-strongly convex, and in order to keep this a general prototype for L2-type 
problems, we do not use this formulation.

The inexact approach instead operates on a different primal–dual formulation 
given by

which is now 1-strongly convex in y and can be accelerated. Using the inexact pri-
mal–dual algorithm from Sect. 3.4 leads to

yn+1
1

=
yn
1
+ �(A(2un+1 − un) − f )

1 + �
,

yn+1
2

= projP
�

(yn
2
+ �∇(2un+1 − un)),

un+1 = un − �(A∗yn+1
1

− div(yn+1
2

)).

min
u∈X

max
y∈X

⟨y,Au − f ⟩ −
1

2
‖y‖2 + �‖∇u‖1,

(a) (b)

(c) (d)

Fig. 2   Inexact primal–dual on the TV-L2 problem. a and b loglog plots of the relative objective error 
versus the outer iteration number for different precisions C∕n−2� of the errors. a Ergodic sequence, b 
iterates. c and d number of inner iterations respectively sum of inner iterations versus number of outer 
iterations for different decay rates � . One can observe that the predicted rate of O

(

N−2�
)

 is attained both 
for the ergodic sequence and the single iterates, exactly reflecting the influence of the errors/imprecision
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with �n, �n, �n as given in Theorem  6. We again perform deblurring on MAT-
LAB’s Lily image in [0,  1] with resolution 256 × 192 , which has been corrupted 
by a Gaussian blur of approximately 12 pixels full width at half maximum (where 
we assume a pixel size of 1), and in this case Gaussian noise with standard devia-
tion s = 0.01 and zero mean. We allow errors of the size �n = C∕n−2� for � ∈ (0, 1) , 
which by Corollary 3 should result in a O

(

N−2�
)

 rate respectively O
(

N−2
)

 for 𝛼 > 1 . 
The results can be found in Fig. 2. In contrast to the TV-L1 problem, in this experi-
ment it was not necessary to employ a cold start strategy and reduced step sizes for 
the inner problem in order to obtain the worst case rates. Instead also for a warm 
start and best possible step sizes for the inner problem the bounds for the gap (42) 
were active for all choices of � . Figure 2 shows the error in relative objective for the 
ergodic sequence UN (a) and the iterates un (b) for increasing � . It can be observed 
that the rate is almost exactly the one predicted, while the iterates themselves even 
decay a little faster than the ergodic sequence. The amount of inner iterations neces-
sary to obtain the required precision of the proximum is unsurprisingly higher than 
in the non-accelerated case, though they stay reasonable for rather low outer itera-
tion numbers.

4.3 � Smooth deblurring with the TV‑L2 model

The last problem we consider is a smoothed version of the TV-L2 model from the pre-
vious experiments:

for small � , with primal–dual formulation

Since the above problem is �-strongly convex in u (note that it is also Lf = �-Lip-
schitz differentiable in the primal variable), a possible accelerated primal–dual algo-
rithm [18] (PDHGacc) for the solution reads

with �n, �n, �n given by Theorem  5 (see also [18]). We choose �0 = 0.99∕L , 
�0 = (1 − �0Lf )∕�0L

2 such that �0Lf + �0�0L
2 = 1 as required, with 

yn+1 = (yn + �n(A(u
n+1 + �n(u

n+1 − un)) − f ))∕(1 + �n),

un+1 ≈
�n+1

2
argmin

u∈X

1

2�n
‖u − (un − �nA

∗yn+1)‖2 + ‖∇u‖1,

(46)u∗ ∈ argmin
u∈X

1

2
‖Au − f‖2

2
+ �‖∇u‖1 +

�

2
‖u‖2,

(47)min
u∈X

max
y1∈X,y2∈Y

⟨y1,Au − f ⟩ + ⟨y2,∇u⟩ −
1

2
‖y1‖

2 − �P
�

(y2) +
�

2
‖u‖2.

yn+1
1

=
yn
1
+ �n(A(u

n+1 + �n(u
n+1 − un)) − f )

1 + �n

,

yn+1
2

= projP
�

(yn
2
+ �n∇(u

n+1 + �n(u
n+1 − un))),

un+1 = (1 − �n�)u
n − �n(A

∗yn+1
1

− div(yn+1
2

)),
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L = ‖(A,∇)‖ ≈
√

8 (see also the previous section). We remark that the primal term 
involving � could also be handled implicitly, leading to a linear proximal step instead 
of the explicit evaluation of the gradient which, however, did not substantially affect 
the results. In the spirit of the previous experiments we employ a different splitting 
on this problem:

The benefit is that even for small � this problem is �-strongly convex in the primal 
and 1-strongly convex in the dual variable and hence can be accelerated to linear 
convergence, which provides a huge boost in performance. Note that the same is not 
possible in formulation (47), since the problem is not strongly convex in y2 . We can 
handle the smooth primal term in (48) explicitly such that the associated inexact pri-
mal–dual algorithm (iPD) from Sect. 3.5 reads

with �, �, � defined at the end of Sect. 3.5. In this case we have � = Lf  , such that the 
formulas simplify to

We revisit the experimental setting from Sect. 4.3, such that L = ‖A‖ = 1 , � = 0.01 
and choose � = 1e − 3 . With this size of � the results were barely distinguishable 
from the results of the non-smoothed model from Sect. 4.2. This leads to � ≈ 0.96 
for the constant of the linear convergence. Figure 3 shows the results for (PDHGacc) 
and (iPD) using an error decay rate of q = 0.9 , i.e. according to Corollary  4 we 
expect a linear convergence with constant 𝜃 > q , which is indeed the case. One can 
observe that already after 250 iterations (iPD) reaches a relative objective error of 
1e−10 , while the accelerated PD version has barely reached 1e−2 . It should however 

(48)min
u∈X

max
y∈Y

⟨y,Au − f ⟩ −
1

2
‖y‖2 + �‖∇u‖1 +

�

2
‖u‖2.

yn+1 = (yn + �(A(un+1 + �(un+1 − un)) − f ))∕(1 + �),

un+1 ≈
�n+1

2
argmin

u∈X

1

2�
‖u − [(1 − ��)un − �A∗yn+1]‖2 + ‖∇u‖1.

� =

√

4 + 4L2∕(��)

2� + 2L2∕�
, � =

√

4 + 4L2∕(��)

2� + 2L2∕�
, � = 1 −

√

4 + 4L2∕(��) − 2

2L2∕(��)
.

(a) (b) (c)

Fig. 3   Inexact primal–dual on the smoothed TV-L2 problem. a and b Loglog plots of the relative objec-
tive error respectively relative error in norm versus the outer iteration numbers for accelerated primal–
dual (PDHGacc) and inexact primal–dual (iPD) for q = 0.9 , c loglog plot of the inner iteration number 
vs. outer iteration number for q = 0.9 . One can observe that the predicted convergence rate of O

(

�
N
)

 is 
exactly attained, while for lower outer iteration numbers the necessary amount of inner iterations stays 
reasonably low
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be mentioned that also (PDHGacc) reaches the O
(

N−2
)

 rate soon after these 250 
iterations. Figure 3c shows the price we pay for the inner loop, i.e. the number of 
inner iterations which is necessary over the course of the 250 outer iterations. As 
one expects for linear convergence, the number of inner iterations explodes for high 
outer iteration numbers, which substantially slows down the algorithm. However, 
the algorithm reaches an error of 1e−6 in relative objective already after approxi-
mately 100 iterations, in which case the number of inner iterations is still remark-
ably low (around 10–20), which makes the approach viable in practice. This is in 
particular interesting for problems with a very costly operator A, where the tradeoff 
between outer and inner iterations is high.

5 � Conclusion and outlook

In this paper we investigated the convergence of the class of primal–dual algo-
rithms developed in [15, 18, 54] under the presence of errors occurring in the 
computation of the proximal points and/or gradients. Following [5, 60, 61] we 
studied several types of errors and showed that under a sufficiently fast decay 
of these errors we can establish the same convergence rates as for the error-free 
algorithms. More precisely we proved the (optimal) O(1∕N) convergence to a sad-
dle-point in finite dimensions for the class of non-smooth problems considered in 
this paper, and proved a O

(

1∕N2
)

 or even linear O
(

�
N
)

 convergence rate for partly 
smooth respectively entirely smooth problems. We demonstrated both the perfor-
mance and the practical use of the approach on the example of nested algorithms, 
which can be used to split the global objective more efficiently in many situa-
tions. A particular example is the nondifferentiable TV-L1 model which can be 
very easily solved by our approach. A few questions remain open for the future: A 
very practical one is whether one can use the idea of nested algorithms to (heuris-
tically) speed up the convergence of real life problems which are not possible to 
accelerate, such as TV-type methods in medical imaging. As demonstrated in the 
numerical section, using an inexact primal–dual algorithm one can often “intro-
duce” strong convexity by splitting the problem differently and hence obtain the 
possibility to accelerate. This can in particular be interesting for problems with 
operators of very different costs, where the trade-off between inner and outer iter-
ations is high and hence a lot of inner iterations are still feasible. Following the 
same line, it would furthermore be interesting to combine the convergence results 
for inexact algorithms with stochastic approaches as done in [16], which are also 
designed to speed up the convergence for this particular situation, which could 
provide an additional boost. Another point to investigate is whether one can com-
bine the inexact approach with linesearch and variable metric strategies similar to 
[9].
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Appendix

In the “Appendix” we provide two technical results and the proofs for all the 
accelerated versions of the algorithm, since they basically follow the same line as 
the basic proof.

Two technical lemmas

The following lemma is taken from [60].

Lemma 4  [60] Assume that the sequence {uN} is nonnegative and satisfies the 
recursion

for all N ≥ 1 , where {SN} is an increasing sequence, S0 ≥ u2
0
 , and �n ≥ 0 for all 

n ≥ 0 . Then for all N ≥ 1

Lemma 5  For 𝛼 > −1 let sN ∶=
∑N

n=1
n� . Then

Proof  Let � ∈ (−1, 0) and n ≥ 1 . Then by the monotonicity of x ↦ x� we have for all 
n − 1 ≤ x ≤ n that x� ≥ n� . Integrating both sides of the inequality from n − 1 to n 
and summing from n = 1,… ,N we obtain

We proceed analogously for n ≤ x ≤ n + 1 to obtain

u2
N
≤ SN +

N
∑

n=1

�nun

uN ≤ 1

2

N
�

n=1

�n +

⎛

⎜

⎜

⎝

SN +

�

1

2

N
�

n=1

�n

�2
⎞

⎟

⎟

⎠

1

2

.

sN = O
(

N1+�
)

.

sN ≤ �
N

0

x�dx.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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By computing both integrals we hence find

which implies sN = O(N1+�) . The proof for 𝛼 > 0 follows the same idea. Now for 
every n − 1 ≤ x ≤ n we have that (n − 1)� ≤ x� ≤ n� . Integrating the inequality from 
n − 1 to n and summing from n = 1,… ,N we obtain

Furthermore sN−1 = sN − N� , so for every N ≥ 1

from which we deduce that sN = O(N1+�) . � □

Type‑0 approximations

It is interesting to consider the notion of a type-0 approximation (cf. Definition 2) 
as well, since it seems to be the most intuitive one (the authors of [5] mention it 
but do not explicitly handle the situation). The problem however is that neither 
the inexact proximal point needs to be feasible, nor do we have an equivalent defi-
nition of a type-0 approximation in terms of an ( � -) subdifferential. For simplicity 
we briefly outline a possible strategy on the reduced problem

and consider the algorithm

where again (x̌, y̌) are the erroneus proximal points and (x̃, ỹ) and (x̄, ȳ) are the previ-
ous points. A possible way to deal with the type-0 approximation is to “transfer” 
the error in the primal proximum to the dual proximum. Note that, following the 
same line as before, by interchanging the order of iterates (starting with the primal 
variable x) we can now perform the overrelaxation in the dual variable instead of the 
primal in order to get a bound on y.

�
N+1

1

x�dx ≤ sN .

1

1 + �

[

(N + 1)1+� − 1
]

= �
N+1

1

x�dx ≤ sN ≤ �
N

0

x�dx =
1

1 + �
N1+� ,

sN−1 =

N−1
∑

n=1

n� ≤ �
N

0

x�dx =
1

1 + �
N1+� ≤

N
∑

n=1

n� = sN .

1

1 + �
N1+� ≤ sN ≤ 1

1 + �
N1+� + N� ,

min
x∈X

max
y∈Y

⟨y,Kx⟩ + g(x) − h∗(y)

(49)
x̌ ≈𝜀

0
prox

𝜏g(x̄ − 𝜏K∗ỹ)),

ŷ ≈𝛿

2
prox

𝜎h∗ (ȳ + 𝜎Kx̃),
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So let x̂ be the true primal proximum and choose x̃ = x̌ . Then by the defini-
tion of the type-0 approximation there exists s ∈ X  with ‖s‖ ≤ √

2�� such that 
x̌ = x̂ + s , which implies that

Hence with d = Ks we can rewrite (49) as

Now

with � ∶= (��‖K‖2)∕� . This reveals that a type-0 approximation of x̂ with precision 
� can essentially be interpreted as a type-3 approximation y̌ of ŷ , which in sum with 
the type-2 approximation gives an overall approximation of type 1 for y̌ , now how-
ever with “mixed” precision � and � . Using the choices

we formally obtain the following algorithm:

This situation can then be treated similarly to the above analysis (cf. Theorem 2) and 
is summarized in Corollary 5. The main difference here is now that we get an esti-
mate on the true proximum x̂n+1 while computing xn+1 in practice.

Corollary 5  Let L = ‖K‖ and choose 𝛽 > 0 and 𝜏, 𝜎 > 0 such that 𝜎𝜏L2 + 𝜎𝛽L < 1 
and let (x̂n, y̌n) be defined by Algorithm (51). Then for X̂N ∶=

�

∑N

n=1
x̂n
�

∕N and 

YN ∶=
�

∑N

n=1
yn
�

∕N we have for any saddle point (x⋆, y⋆) ∈ X × Y that

with AN =
∑N

n=1

√

2��n and BN =
∑N

n=1
��n.

Proof  We can easily verify the assertion by dropping f and simply interchanging the 
roles of x and y (and thus � and � ) in Theorem 1. � □

As for Theorem 1 we can now state a rate for (X̂N , YN) if the partial sums AN 
and

√

BN  are in o(
√

N) . Since the result still relies on the unknown true proxima 
x̂n , it then remains to note that for X̌N ∶= (

∑N

i=1
x̌n)∕N we have

y̌ ≈2 prox𝜎h∗ (ȳ + 𝜎Kx̃) = prox
𝜎h∗ (ȳ + 𝜎Kx̌) = prox

𝜎h∗ (ȳ + 𝜎(Kx̂ + Ks)).

(50)

x̂ = prox
𝜏g(x̄ − 𝜏K∗ỹ),

x̌ = x̂ + s

y̌ ≈𝛿

2
prox

𝜎h∗ (ȳ + 𝜎(Kx̂ + d)).

‖d‖ = ‖Ks‖ = ‖K(x̂ − x̌)‖ ≤ ‖K‖
√

2𝜏𝜀 =
√

2𝜎𝜅

(x̂, y̌) = (x̂n+1, yn+1), (x̄, ȳ) = (xn, yn), ỹ = 2yn − yn−1,

(51)
x̂n+1 = prox

𝜏g(x
n − 𝜏K∗(2yn − yn−1)),

y̌n+1 ≈
𝛿n+1,𝜅n+1
1

prox
𝜎h∗ (y

n + 𝜎Kx̂n+1).

L(X̂N , y⋆) − L(x⋆, YN) ≤ 1

2𝜎N

��

𝜎

𝜏
‖x⋆ − x0‖ + ‖y⋆ − y0‖ + 2AN +

√

2BN

�2

,
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which implies strong convergence of X̌N to X̂N with the same rate.
Hence we can essentially handle the situation of a type-0 approximation by 

the same means as before. The major difference is still that none of the x̌n need 
to be feasible, which could impose problems in practice. Since type-0 approxi-
mations are the weakest among the introduced notions, they should technically 
impose the least restrictive error criteria. It however is an open question how to 
check ‖x̂ − x̌‖ ≤ √

2𝜏𝜀 effectively. It is easy to see that the duality gap bounds this 
quantity, in which situation Proposition 1 “unfortunately” states that x̌ is already 
a stronger type-2 approximation. Hence it remains to find a different criterion for 
the precision of a type-0 approximation to make this approach feasible in practice.

Proof of Theorem 5

Proof  Using Lemma 3, we proceed exactly as in the proof of Theorem 1 (now only 
including the �-strong convexity of g as well as � = �n, � = �n and introducing �n ), 
to arrive at the basic inequality

where we let �n(x, y) ∶= ‖x − xn‖2∕(2�n) + ‖y − yn‖2∕(2�n) for the sake of clarity. 
The goal of the proof is, again, to manipulate this inequality such that we obtain a 
recursion where most of the terms cancel when summing the inequality. In order to 
get a useful recursion in the first line it is clear that we require

such that we obtain the estimate

For a useful recursion for the second line we expand

‖X̂N − X̌N
‖ ≤ 1

N

N
�

i=1

‖x̂n − x̌n‖ ≤ 1

N

N
�

i=1

√

2𝜎𝜅n =
1

N
AN ,

L(xn+1, y) − L(x, yn+1) ≤ �n(x, y) −
1 + ��n

2�n
‖x − xn+1‖2 −

‖y − yn+1‖2

2�n

+ ⟨K(xn+1 − xn), yn+1 − y⟩ − �n⟨K(x
n − xn−1), yn+1 − y⟩

−
1 − �nLf

2�n
‖xn − xn+1‖2 −

‖yn − yn+1‖2

2�n

+
�

‖en+1‖ +
√

(2�n+1)∕�n

�

‖x − xn+1‖ + �n+1 + �n+1,

(52)�n = �n+1�n+1, (1 + ��n)�n+1�n+1 ≥ �n,

−
1 + ��n

2�n
‖x − xn+1‖2 −

‖y − yn+1‖2

2�n
= −

(1 + ��n)�n+1

�n

‖x − xn+1‖2

2�n+1

−
�n+1

�n

‖y − yn+1‖2

2�n+1
≤ −

1

�n+1

�n+1(x, y).
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and compute [cf. Eq. (21) with now � = �n�nL]

where we used (52) such that �n�n = �n−1 . We note that since �nLf + �n�nL
2 ≤ 1 we 

furthermore have

Putting everything together and rearranging we arrive at (note that the terms 
‖yn+1 − yn‖2∕(2�n) cancel and �n+1∕�n = 1∕�n+1)

We multiply the inequality by �n∕�0 to reveal the recursion and sum from 
n = 0,… ,N − 1:

Now, as above, we use that

which gives

−�n⟨K(x
n − xn−1), yn+1 − y⟩ = −�n⟨K(x

n − xn−1), yn+1 − yn⟩

− �n⟨K(x
n − xn−1), yn − y⟩,

−�n⟨K(x
n − xn−1), yn+1 − yn⟩ ≤ �n−1�nL

2

2
‖xn−1 − xn‖2 +

‖yn+1 − yn‖2

2�n
,

−
1 − �nLf

2�n
‖xn − xn+1‖2 ≤ −

�nL
2

2
‖xn − xn+1‖2.

L(xn+1, y) − L(x, yn+1)

≤ �n(x, y) − �n⟨K(x
n − xn−1), yn − y⟩ +

�n−1�nL
2

2
‖xn−1 − xn‖2

−
�n+1

�n

�

�n+1(x, y) − �n+1⟨K(x
n+1 − xn, yn+1 − y⟩ +

�n�n+1L
2

2
‖xn+1 − xn‖2

�

+
�

‖en+1‖ +
√

(2�n+1)∕�n

�

‖x − xn+1‖ + �n+1 + �n+1.

N
�

n=1

�n−1

�0

(L(xn, y) − L(x, yn))

≤ �0(x, y) −
�N

�0

�

�N(x, y) − �N⟨K(x
N − xN−1), yN − y⟩ +

�N−1�NL
2

2
‖xN − xN−1‖2

�

+
1

�0

N
�

n=1

�

�n−1‖e
n
‖ +

�

(2�2
n−1

�n)�n−1

�

‖x − xn‖ +
1

�0

N
�

n=1

�n−1(�n + �n).

�N⟨K(x
N − xN−1, yN − y⟩ ≤ �N−1�NL

2

2
‖xN − xN−1‖2 +

‖y − yN‖2

2�N
,
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This equation can now be use as before to bound all terms on the left hand side. 
Again for a saddle point (x⋆, y⋆) ∈ X × Y the sum is nonnegative, hence we obtain 
the inequality:

For the sake of readability let us denote

Then as before with Lemma 4 we find,

Since AN and BN are increasing we have for all n ≤ N

Now evoking Eq. (53) we obtain

(53)

N
�

n=1

�n−1

�0

(L(xn, y) − L(x, yn)) +
�N

�0

1

2�N
‖x − xN‖2

≤ �0(x, y) +
1

�0

N
�

n=1

�

�n−1‖e
n
‖ +

�

(2�2
n−1

�n)∕�n−1

�

‖x − xn‖ +
1

�0

N
�

n=1

�n−1(�n + �n).

‖x⋆ − xN‖2 ≤ 𝜏N

𝜎N

𝜎0

𝜏0

‖x⋆ − x0‖2 +
𝜏N

𝜎N

‖y⋆ − y0‖2

+ 2
𝜏N

𝜎N

N
�

n=1

�

𝜎n−1‖e
n
‖ +

�

(2𝜎2
n−1

𝜀n)∕𝜏n−1

�

‖x − xn‖

+ 2
𝜏N

𝜎N

N
�

n=1

𝜎n−1(𝜀n + 𝛿n).

�N =
�N

�N

, AN =

N
�

n=1

�

�n−1‖e
n
‖ +

�

(2�2
n−1

�n)∕�n−1

�

, BN =

N
�

n=1

�n−1(�n + �n).

‖x⋆ − xN‖ ≤ 𝜂NAN +

�

𝜂N

𝜎0

𝜏0

‖x⋆ − x0‖2 + 𝜂N‖y
⋆ − y0‖2 + 2𝜂NBN + 𝜂

2
N
A2
N

�
1

2

.

‖x⋆ − xn‖ ≤ 𝜂nAn +

�

𝜂n

𝜎0

𝜏0

‖x⋆ − x0‖2 + 𝜂n‖y
⋆ − y0‖2 + 2𝜂nBn + 𝜂

2
n
A2
n

�
1

2

≤ 𝜂NAN +

�

𝜂N

𝜎0

𝜏0

‖x⋆ − x0‖2 + 𝜂N‖y
⋆ − y0‖2 + 2𝜂NBN + 𝜂

2
N
A2
N

�
1

2

≤ 2𝜂NAN +
√

𝜂N

�

𝜎0

𝜏0

‖x⋆ − x0‖ +
√

𝜂N‖y
⋆ − y0‖ +

√

𝜂N

√

2BN .
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The convexity of (𝜉, 𝜁) ↦ L(𝜉, y⋆) − L(x⋆, 𝜁) and the definition of the ergodic aver-
ages yields the assertion (cf. the proof of Theorem 6). The estimate on ‖x⋆ − xN‖2 
follows analogously. It remains to note that for a type-2 approximation the square 
root in AN can be dropped and for a type-3 approximation BN = 0 , which gives the 
different AN,i,BN,i . � □

Proof of Theorem 6

Proof  We proceed exactly as in the proof of Theorem 5 with interchanged roles of 
x, y, �n and �n to arrive at the basic inequality

where we again let �n(x, y) ∶= ‖x − xn‖2∕(2�n) + ‖y − yn‖2∕(2�n) . In order to get a 
useful recursion for the first two lines it is clear that we need to require

such that the second line becomes

N
�

n=1

𝜎n−1

𝜎0

(L(xn, y) − L(x, yn))

≤ 1

2𝜏0
‖x⋆ − x0‖2 +

1

2𝜎0
‖y⋆ − y0‖2 +

1

𝜎0

BN

+
1

𝜎0

AN

�

2𝜂NAN +
√

𝜂N

�

𝜎0

𝜏0

‖x⋆ − x0‖ +
√

𝜂N‖y
⋆ − y0‖ +

√

𝜂N

√

2BN

�

≤ 1

2𝜎0

�

𝜎0

𝜏0

‖x⋆ − x0‖2 + ‖y⋆ − y0‖2 + BN + 4𝜂NA
2
N

+ 2
√

𝜂NAN

�

𝜎0

𝜏0

‖x⋆ − x0‖ + 2AN

√

𝜂N‖y
⋆ − y0‖ + 2AN

√

𝜂N

√

2BN

�

≤ 1

2𝜎0

��

𝜎0

𝜏0

‖x⋆ − x0‖ + ‖y⋆ − y0‖ + 2
√

𝜂NAN +
√

2BN

�2

L(xn+1, y) − L(x, yn+1) ≤ �n(x, y) −
1

2�n
‖x − xn+1‖2 −

1 + ��n

2�n
‖y − yn+1‖2

+ ⟨K(xn+1 − xn), yn+1 − y⟩ − �n⟨K(x
n − xn−1), yn+1 − y⟩

−
1

2�n
‖xn − xn+1‖2 −

1

2�n
‖yn − yn+1‖2

+

⎛

⎜

⎜

⎝

‖en+1‖ +

�

2�n+1

�n

⎞

⎟

⎟

⎠

‖x − xn+1‖ + �n+1 + �n+1,

�n = �n+1�n+1,

(1 + ��n)�n+1�n+1 ≥ �n,
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For a useful recursion for the third line we expand

and compute with Young’s inequality [cf. Eq. (21) with � = 1∕(�n�nL)]

In order to obtain a recursion for the first term on the right hand side we note that

in the fourth line. Putting everything together and rearranging we arrive at

Requiring that �n�n�2nL
2 ≤ 1 we can discard the related term and multiply the ine-

quality by �n∕�0 to reveal the recursion:

We now sum the above inequality from n = 0,… ,N − 1:

−
1

2�n
‖x − xn+1‖2 −

1 + ��n

2�n
‖y − yn+1‖2

= −
�n+1

�n

‖x − xn+1‖2

2�n+1
−

(1 + ��n)�n+1

�n

‖y − yn+1‖2

2�n+1

≤ −
1

�n+1

�n+1(x, y).

− �n⟨K(x
n − xn−1), yn+1 − y⟩

= −�n⟨K(x
n − xn−1), yn+1 − yn⟩ − �n⟨K(x

n − xn−1), yn − y⟩,

−�n⟨K(x
n − xn−1), yn+1 − yn⟩ ≤ 1

2�n
‖xn−1 − xn‖2 + (�n�n�

2
n
L2)

‖yn+1 − yn‖2

2�n
.

−
1

2�n
‖xn − xn+1‖2 = −

�n+1

�n

1

2�n+1
‖xn − xn+1‖2

L(xn+1, y) − L(x, yn+1) ≤ �n(x, y) − �n⟨K(x
n − xn−1), yn − y⟩ +

1

2�n
‖xn − xn−1‖2

−
�n+1

�n

�

�n+1(x, y) − �n+1⟨K(x
n+1 − xn), yn+1 − y⟩ +

1

2�n+1
‖xn+1 − xn‖2

�

− (1 − �n�n�
2
n
L2)

‖yn+1 − yn‖2

2�n
+

�

2�n+1

�n

‖x − xn+1‖ + �n+1 + �n+1.

�n

�0

L(xn+1, y) − L(x, yn+1)

≤ �n

�0

�

�n(x, y) − �n⟨K(x
n − xn−1), yn − y⟩ +

1

2�n
‖xn − xn−1‖2

�

−
�n+1

�0

�

�n+1(x, y) − �n+1⟨K(x
n+1 − xn), yn+1 − y⟩ +

1

2�n+1
‖xn+1 − xn‖2

�

+
1

�0

√

2�n�n+1‖x − xn+1‖ +
�n

�0

(�n+1 + �n+1).
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Now, as above, we use that

which gives the first intermediate result:

This equation can now be use as before to bound all terms on the left hand side and 
hence gives the necessary bound on ‖x − xN‖ appearing in the error term. For a sad-
dle point (x⋆, y⋆) ∈ X × Y the sum on the left hand side is nonnegative and:

Hence, again with Lemma 4,
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Then we find [again by Eq. (54)]

Using the convexity of (𝜉, 𝜁) ↦ L(𝜉, y⋆) − L(x⋆, 𝜁) and Jensen’s inequality as well 
as the definition of the ergodic averages (XN , YN) yields the first assertion. The esti-
mate on ‖x⋆ − xN‖2 and ‖y⋆ − yN‖2 then follows analogously from inequality (54). It 
remains to note that for a type-2 approximation the square root in AN can be dropped 
and for a type-3 approximation BN = 0 , which gives the different AN,i,BN,i . � □

Proof of Theorem 7

Proof  We again start with the general descent rule in Lemma 3:

Now we expand and apply Young’s inequality
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which gives

Ensuring that 1 + �� = 1 + �� = 1∕� and (1 − �Lf )∕� ≥ ��
2L2 we derive

We now multiply by �−n and sum from n = 0,… ,N − 1:
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For a saddle point (x⋆, y⋆) , the sum on the left hand side is positive, hence we obtain

Evoking Lemma 4 and denoting

we obtain

By monotonicity we have the same bound for all n ≤ N:

We now again use inequality (55) to obtain a bound for the sum:
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to deduce the assertion by convexity and Jensen’s inequality. By the same argumen-
tation as above we can also use inequality (55) to obtain the convergence of the 
iterates:

 □
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