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Abstract

In this work we introduce and study novel Quasi Newton minimization methods
based on a Hessian approximation Broyden Class-type updating scheme, where a suit-
able matrix B̃k is updated instead of the current Hessian approximation Bk. We iden-
tify conditions which imply the convergence of the algorithm and, if exact line search is
chosen, its quadratic termination. By a remarkable connection between the projection
operation and Krylov spaces, such conditions can be ensured using low complexity ma-
trices B̃k obtained projecting Bk onto algebras of matrices diagonalized by products
of two or three Householder matrices adaptively chosen step by step. Extended exper-
imental tests show that the introduction of the adaptive criterion, which theoretically
guarantees the convergence, considerably improves the robustness of the minimization
schemes when compared with a non-adaptive choice; moreover, they show that the
proposed methods could be particularly suitable to solve large scale problems where
L-BFGS performs poorly.

Keywords— Unconstrained minimization quasi-Newton methods matrix algebras matrix
projections preserving directions

1 Introduction

In minimizing a function f : Rn → R, in order to reduce the computational cost per itera-
tion and the memory required for implementation of the well known BFGS minimization
method, it is proposed in [16, 19, 17, 18, 15] to use a BFGS-type updating scheme which
updates, at each step, a suitable approximation of the Hessian approximation Bk, usually
denoted by B̃k. This scheme is named LQN when the matrix B̃k is the projection LBk

of the
matrix Bk in a matrix algebra L of matrices simultaneously diagonalized by a given unitary
transform U (we write L := sdU , see (2) for a precise definition). The implementation of
the LQN turns out to be very cheap when U defines a low complexity transform.

While in [4, 9, 24] L is a fixed matrix algebra, in [15, 17] it is observed that an adaptive
choice of L, i.e, using different algebras L(k) for each iteration k, could preserve more
information from the original matrix Bk, and thus improve the efficiency of LQN. In [12]
it is introduced a convergent L(k)QN scheme whose effectiveness is shown by preliminary
numerical experiences.

The main contribution of this work is twofold. On the one hand we extend the theoretical
framework and the convergence theory developed in [16, 12] for BFGS-type techniques to
the restricted Broyden Class-type of quasi Newton methods (for the restricted Broyden
Class see [8]).

On the other hand, we consider the special Broyden Class-type methods in which the
update of Bk has the form

Bk+1 = Φ(L(k)
Bk
, sk,yk, φ), (1)

where sk := xk+1 − xk, yk := gk+1 − gk (gk := ∇f(xk)), xk is the current guess of the
minimum and the transform Uk, which diagonalizes the matrices of L(k), is the product of
few Householder reflections. Exploiting the fact that a Householder reflection is a rank one
modification of the identity, we propose an algorithm to implement the update in equation
(1) using O(n) operations per step: hence the complexity of the Quasi-Newton methods so
obtained is comparable to the more traditional methods of limited-memory type. Addition-

ally, we show that if the projections L(k)
Bk

are such that

trL(k)
Bk
≤ trBk, detL(k)

Bk
≥ detBk, (I)
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and
L(k)
Bk

sk = Bksk, (II)

then the new L(k)QN method is sound (see Algorithm 3) if the objective function is convex
and has a minimizer (see Theorem 1, Theorem 3 and Corollary 1).

The L(k)QN methods so obtained turn out to be a remarkable refinement of the methods
introduced in [12]. Observe that equation (II), which allows to mimic the BFGS self

correction properties (see Section 4), is equivalent to the equality (L(k)
Bk

)−1gk = B−1k gk, i.e.,
the new introduced method (Algorithm 3) belongs to both the Secant and Non Secant class
of Broyden Class-type methods (see [16, 12] and Section 2.2 for the precise definitions), thus
rising a question on the very meaning of secant equation in Quasi-Newton methods [12].

Moreover, developing a further adaptive criterion (see (58)) for the choice of B̃k = L(k)
Bk

,

we produce a low complexity convergent L(k)QN with quadratic termination property (see
Algorithm 5).

The proposed adaptive criteria can be satisfied by L(k) = sdUk where Uk is the product
of three Householder matrices. Algorithm 3 and Algorithm 5 can be implemented by storing,
respectively, 15 or 17 vectors of length n, whereas L-BFGS – a limited memory version of
BFGS suitable to solve large scale problems [22, 34] – requires 2M + 2 vectors of length
n (being M the number of sj ,yj used to define Bk+1). Even if L-BFGS is usually used
with small values of M , it is well known that for some problems (see for example [28]) a
greater value of M could be required, and hence, for these problems, the memory required
for the implementation of the algorithms here proposed could be considerably smaller. Note,
moreover, that in contrast with L-BFGS where some information is discarded at each step,
in Algorithm 3 and Algorithm 5 the second order information generated in all the previous
steps is stored in an approximate way.

Using performance profiles [21] based on iterations, function evaluations and time, the
results of numerical experiences on set of problems, taken from CUTEst [26], are provided.
These experiences confirm that the proposed scheme (Algorithm 5) permits to guarantee a
better level of approximation of second order information if compared with L-BFGS (even
if a big value of M is chosen) resulting on an increased robustness. Additional numerical
experiences on a different set of problems, see Experiment 2, highlight the competitiveness
of our proposals if compared to previous LQN algorithms studied in literature.

Moreover, following the ideas developed, for instance, in [1, 2], a suitable scaling improves
the efficiency of L(k)QN . In particular, Scaled (Sc) L(k)QN turns out to be competitive, in
some cases, with respect to L-BFGS (see Remark 7 and Section 8).

2 Notation and preliminaries

We will freely use familiar properties of symmetric positive definite matrices and fundamen-
tal results concerning algebras of matrices simultaneously diagonalized by a given unitary
transform.

We use the shorthand pd to denote a real symmetric positive definite matrix. Given
a vector z ∈ Rn we write z > 0 to denote entry-wise positivity. Let d(z) be the diagonal
matrix whose diagonal entries are the components of z; let d(A) and λ(A) be the vectors
of the diagonal entries and of the eigenvalues of a given matrix A, respectively. Finally, the
symbol ‖ · ‖ will denote both the euclidean norm for vectors and the corresponding induced
norm for matrices.

2.1 Matrix Algebras

Let Mn(C) be the set of all n × n matrices with complex entries. Given a unitary matrix
U ∈ Mn(C) (i.e. U n× n and UH = U−1), define the following algebra L of matrices:

L := sd U = {Ud(z)UH : z ∈ Cn}. (2)

Given a matrix B ∈Mn(C), by the Hilbert projection theorem, there exists a unique element
LB ∈ L such that

||LB −B||F ≤ ||X −B||F , ∀ X ∈ L, (3)

where ‖ · ‖F denotes the Frobenius norm. It is easy to find the following explicit formula for
LB (see for example [16]):

LB = Ud(zB)UH , where [zB ]i = [UHBU ]ii, i = 1, . . . , n. (4)

LB will be called the best approximation in Frobenius norm of B in L.
For the sake of completeness we recall hereafter few important results on the projection

LB of a matrix B onto a sdU subspace.
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Lemma 1. Let U be an unitary matrix, let L = sdU and let B ∈ Mn(C).

1. If B = xyT , then zxyT = d(UHx)UTy where x,y ∈ Cn.

2. If B = BH , then LB = LHB and min λ(B) ≤ λ(LB) ≤ max λ(B) where λ(X) denotes
the generic eigenvalue of X. Therefore LB is Hermitian positive definite whenever B
is Hermitian positive definite.

3. If B ∈ Rn×n then LB ∈ Rn×n whenever L is closed under conjugation (i.e., A ∈ L ⇒
A ∈ L).

4. tr (LB) = tr (B)

5. If B is pd, then det(B) ≤ det(LB) where the equality holds iff U diagonalizes B, i.e.,
iff UHBU is diagonal.

Proof. For 1. see [16], for 2., 3. and 4. see Propositions 5.2 in [20]. Concerning 5., let
A be a pd matrix. Then we have detA ≤

∏n
i=1 aii (Hadamard inequality, see [27]), and

det(A) =
∏n
i=1 aii if and only if A is diagonal (see Theorem 7.8.1 [27] ). In order to obtain

5. it is sufficient to apply these remarks to the pd matrix UHBU . In fact, we have

det(B) = det(UHBU) ≤
n∏
i=1

(UHBU)ii = det(LB)

and equality holds if and only if UHBU is diagonal.

The properties 4. and 5. of Lemma 1 will be crucial to state the conditions (18) and (19),
for the convergence of the new method (see Theorem 1).

For a more exhaustive treatment of the contents of Lemma 1, and its relevance for
L(k)QN minimizations algorithms and optimal preconditioning of linear systems, one can
see [16] and [20]. Even if in the following sections we will use real unitary matrices U , in
many situations the transform U that diagonalizes matrices of L, is defined on C. This is
the typical case of circulant matrices, where U is the Fourier transform. Then, to maintain
a suitable degree of generality, the notation UH is necessary instead of UT , and partial

results of the computational process, implicit in the iteration step Bk = Φ(L(k)
Bk
, sk,yk, φ)

(see Algorithm 3), will be complex numbers. This does not compromise the fact that in each
instruction the final numerical results are real. However, in this paper we will consider just
real transforms U , so we will exchange the word ‘unitary’ with the word ‘orthogonal’ and
the superscript ‘H’ (Hermitian) with the superscript ‘T ’ (transpose) from the next section
on.
The algebras L considered in this article will be of low complexity, i.e., the matrix vector
product Ax, for A ∈ L, will be computable in a number of operations which grows slower
than O(n2).

2.2 Broyden Class-type methods

Let us consider a function f : Rn → R where n ≥ 2.
In this paper we will study the following class of minimization methods obtained by gener-
alizing the Broyden Class methods considered in [8]:

Data: x0 ∈ Rn, g0 = ∇f(x0), B̃0 pd, B0 pd, d0 = −B−10 g0, k = 0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies conditions (6), (7) */

3 sk = xk+1 − xk;
4 gk+1 = ∇f(xk+1);
5 yk = gk+1 − gk;

6 Bk+1 = Φ(B̃k, sk,yk, φ) ;

7

{
Define B̃k+1 pd, set dk+1 = −B̃−1k+1gk+1 (NS)

Set dk+1 = −B−1k+1gk+1, define B̃k+1 pd (S)
;

8 Set k := k + 1 ;

9 end
Algorithm 1: Broyden Class-type

where B̃k is an approximation of Bk and the updating formula is the Broyden’s one applied
to B̃k, i.e.

Φ(B̃k, sk,yk, φ) := B̃k −
B̃ksks

T
k B̃k

sTk B̃ksk
+

yky
T
k

yTk sk
+ φ sTk B̃kskvkv

T
k . (5)

3



In (5) the vector vk is defined by

vk =
yk

yTk sk
− B̃ksk

sTk B̃ksk

and φ is a non negative parameter so that Φ(B̃k, sk,yk, φ) is pd whenever B̃k is pd and
yTk sk > 0.

For φ ∈ [0, 1] we call the Broyden Class-type family “restricted”. If B̃k = Bk for all k,
then for φ = 0 and φ = 1 one obtains, respectively, the BFGS and the DFP method [34].

We assume that the step-length parameter λk is chosen by an inexact line search satis-
fying the Wolfe conditions

f(xk + λkdk) ≤ f(xk) + αλkg
T
k dk (6)

g(xk + λkdk)Tdk ≥ βgTk dk (7)

where 0 < α < 1/2 and α < β < 1. Condition (7) implies yTk sk > 0.

Let us observe that in the S case of Algorithm 1, the matrices generating the search directions
dk+1 satisfy the Secant Equation Bk+1sk = yk. Instead, in the NS case such property is

not necessarily fulfilled, i.e., in general, B̃k+1sk 6= yk.
In the following three remarks we collect some useful properties we will use in Section 3.

Remark 1. Observe that

tr (Bk+1) = tr (Φ(B̃k, sk,yk, φ)) = tr (B̃k) +
‖yk‖2

yTk sk
+ φ
‖yk‖2

yTk sk

sTk B̃ksk
yTk sk

−(1− φ)
‖B̃ksk‖2

sTk B̃ksk
− 2φ

yTk B̃ksk
yTk sk

.

(8)

Since φ sTk B̃ksk ≥ 0, the last term in (5) increases the eigenvalues of the previous part of
the update, and hence

det(Bk+1) ≥ det(B̃k −
B̃ksks

T
k B̃k

sTk B̃ksk
+

yky
T
k

yTk sk
) = det(B̃k)

yTk sk

sTk B̃ksk
(9)

(for the last equality see [34]).

Remark 2. From (7) it follows that, using definitions in Algorithm 1,

yTk sk = gTk+1sk − gTk sk ≥ −(1− β)gTk sk (10)

from which we obtain

sTk B̃ksk
yTk sk

≤ sTk B̃ksk
(1− β)(−gTk sk)

=
λk

1− β
(11)

(sTk B̃ksk = sTk (−λkgk) in the NS case) and

sTkBksk
yTk sk

≤ sTkBksk
(1− β)(−gTk sk)

=
λk

1− β
(12)

(sTkBksk = sTk (−λkgk) in the S case).

Remark 3. Let us define f∗ to be the infimum of f . Using (6) we have (in both NS and
S methods)

N∑
k=0

sTk (−gk) =

N∑
k=0

−λkdTk gk

≤ 1

α

N∑
k=0

[f(xk)− f(xk+1)]

≤ 1

α
[f(x0)− f∗] <∞.

(13)

Then the sum converges for n→ +∞, from which we obtain

lim
k→+∞

sTk (−gk) = 0.
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2.3 Assumptions for the function f

In Section 3, in order to obtain a convergence result for the Broyden Class-type, we will do
the following:

Assumption 1. The level set

D = {x ∈ Rn : f(x) ≤ f(x0)}

is convex, the function f(x) is twice continuously differentiable, convex and bounded below
in D and the Hessian matrix is bounded in D, i.e.

‖G(x)‖ ≤M, being M a positive contant. (14)

Remark 4. Observe that the condition (14) could be replaced by uniform convexity of f(x)
and Lipschitz condition on G(x). Moreover, if Assumption 1 is fulfilled, then the following
boundedness condition on the the Powell’s ratio ‖yk‖2/sTk yk [37] holds:

‖yk‖2

sTk yk
≤M. (15)

where sk, yk are the difference vectors produced by Algorithm 1. In fact, if we define (see
[8], [34]) the pd matrix

G =

∫ 1

0

G(xk + τsk)dτ, (16)

then we have from standard analysis results,

yk = Gsk (17)

and hence if zk = G
1
2 sk,

‖yk‖2

sTk yk
=

sTkG
2
sk

sTkGsk
=

zTkGzk
zTk zk

≤ sup
τ ∈ [0,1]

‖G(xk + τsk)‖ ≤M.

We recall that condition (15) is typically used to prove the global convergence of BFGS
method [37] and of LQN methods [16]. Observe that, if one could impose the discrete
convexity condition (15) by a suitable line-search, the convergence results in the following
sections would hold under the weaker assumptions f ∈ C1 and bounded below.

3 Conditions for the convergence of the Secant and Non
Secant Broyden Class-type

The matrices which generate the descent directions in the S case exhibit explicitly second
order information (or, in other words, they satisfy the secant equation). Moreover, in
contrast with the limited memory versions of Quasi-Newton methods, they store, in an
approximate way, the second order information generated in all the previous steps of the
algorithm. In this section we will prove that both S and NS versions of Algorithm 1 are
convergent if B̃k is suitably chosen.
Now, using techniques and ideas developed in [8, 7], we state the following result which
generalizes to the Broyden class of updating formulas [8] what has been proved in [12] for
BFGS-type S methods.

Theorem 1. If the S version of Algorithm 1 with φ ∈ [0, 1) is applied to a function that

satisfies Assumption 1 and B̃k is chosen such that

tr B̃k ≤ trBk (18)

det B̃k ≥ detBk (19)

||Bksk||2

(sTkBksk)2
≤ ||B̃ksk||2

(sTk B̃ksk)2
. (20)

for all k, then
lim inf
k→∞

‖gk‖ = 0 (21)

for any starting point x0 and any pd matrix B0.

5



The main idea to prove Theorem 1 is to compare the third and fifth term of (8). Let us
define ψk as

ψk :=
[‖yk‖2

yTk sk

sTk B̃ksk
yTk sk

− 2
yTk B̃ksk
yTk sk

] sTk B̃ksk

‖B̃ksk‖2
(22)

so that (8) becomes

tr (Bk+1) = tr (B̃k) +
‖yk‖2

yTk sk
− (1− φ− ψkφ)

‖B̃ksk‖2

sTk B̃ksk
. (23)

In the following remarks we state upper bounds for the addends appearing in (22).

Remark 5.

‖yk‖2

yTk sk

sTk B̃ksk
yTk sk

sTk B̃ksk

‖B̃ksk‖2
≤M (sTk B̃ksk)2

yTk sk‖B̃ksk‖2

≤M (sTkBksk)2

yTk sk‖Bksk‖2
=
M(sTk (−gk))2

yTk sk‖ − gk‖2

≤ M(sTk (−gk))

(1− β)‖ − gk‖2
,

(24)

where first inequality follows using (15), the second using (20) and last inequality follows
using (10).

Remark 6.

|yTk B̃ksk|
yTk sk

sTk B̃ksk

‖B̃ksk‖2
≤ ‖yk‖s

T
k B̃ksk

yTk sk‖B̃ksk‖

≤
√
MsTk B̃ksk√

yTk sk‖B̃ksk‖

≤
√
MsTkBksk√

yTk sk‖Bksk‖
=

√
M(sTk (−gk))√
yTk sk‖ − gk‖

≤

√
M(sTk (−gk))
√

1− β‖ − gk‖
,

(25)

where the first inequality follows from Cauchy-Schwarz inequality, the second from (15), the
third from (20), the fourth from (10).

We can now prove Theorem 1.

Proof. Arguing by contradiction, let us assume ‖gk‖ bounded away from zero, i.e., there
exists γ > 0 such that

‖gk‖ ≥ γ > 0. (26)

From Remark 3 we obtain

lim
k→∞

sTk (−gk)

‖ − gk‖2
= 0. (27)

Now we show that (27) leads to a contradiction, thus (26) cannot hold. From (22), using
Remark 5, Remark 6 and (27) we obtain

lim
k→∞

ψk = 0. (28)

Using (28), since φ ∈ [0, 1), we have that there exist an index s and constants l1 > 0, l2 > 0
such that

l2 ≥ (1− φ− ψkφ) ≥ l1 > 0 for all k ≥ s. (29)

Then we can write (for j ≥ s), using (23),

trBj+1 ≤ trBs +

j∑
k=s

1

yTk sk
‖yk‖2 −

j∑
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1− φ− ψkφ), (30)

and hence

trBj+1 ≤ trBs +

j∑
k=s

1

yTk sk
‖yk‖2 ≤ trBs +M(j + 1− s) ≤ c1(j + 2− s) (31)

6



where c1 = max{ trBs,M} (the trace grows at most linearly for all j ≥ s).
Let us remember that, given n real positive numbers ai, it holds:

n∏
i=1

ai ≤
(∑n

i=1 ai
n

)n
(32)

from which we obtain:

detBj+1 =

n∏
i=1

λi(Bj+1) ≤
(∑n

i=1 λi(Bj+1)

n

)n
≤
(
c1(j + 2− s)

n

)n
. (33)

Let us note, moreover, that from (30) and (31), since Bj+1 is pd, we have:

j∑
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1− φ− ψkφ) ≤ trBs − trBj+1 +

j∑
k=s

1

yTk sk
‖yk‖2

≤ trBs +

j∑
k=s

1

yTk sk
‖yk‖2 ≤ c1(j + 2− s)

(34)

and applying once more (32) we have:

j∏
k=s

1

sTk B̃ksk
‖B̃ksk‖2(1− φ− ψkφ) ≤ (2c1)j+1−s. (35)

From (9) and (19) we have:

detBj+1 ≥
sTj yj

sTj B̃jsj
det B̃j ≥

sTj yj

sTj B̃jsj
detBj ,

from which we obtain:
j∏

k=s

sTk yk

sTk B̃ksk
≤ detBj+1

detBs
. (36)

From (10) we have

(1− β)j+1−s ≤
j∏

k=s

sTk yk
−gTk sk

,

and hence, by the equality Bksk = −λkgk and by (20), (33), (35), (36),

(1− β)j+1−s
j∏

k=s

‖gk‖2

sTk (−gk)
(1− φ− ψkφ)

≤
j∏

k=s

(1− φ− ψkφ)
‖ − λkgk‖2

sTk (−λkgk)

sTk yk
sTk (−λkgk)

=

j∏
k=s

(1− φ− ψkφ)
‖Bksk‖2

sTkBksk

sTk yk
sTk Bksk

≤
j∏

k=s

(1− φ− ψkφ)
‖B̃ksk‖2

sTk B̃ksk

sTk yk

sTk B̃ksk

≤ (2c1)j+1−s
(
c1(j + 2− s)

n

)n
1

detBs
,

(37)

i.e.,
j∏

k=s

(1− φ− ψkφ)
‖gk‖2

sTk (−gk)
≤ cj+1−s

2 for all j ≥ s, (38)

for a suitable constant c2 dependent on s and M (defined in Assumption 1). For the details
see Appendix 2.
On the other hand, by (27) and by the bound 1−φ−ψkφ ≥ l1 > 0 in (29), we have that the
ratios (1− φ− ψkφ)‖gk‖2/sTk (−gk) go to +∞, as k → +∞; thus a natural number j∗ ≥ s
must exist such that

j∏
k=s

(1− φ− ψkφ)f‖gk‖2sTk (−gk) > cj+1−s
2 , ∀ j ≥ j∗, (381)

(see again Appendix 2 for more details) but this contradicts (38) choosing j ≥ max{s, j∗}.
We have hence proved that (21) holds.

7



The condition (20) is satisfied, in particular, when B̃k is such that

B̃ksk = Bksk. (39)

In the following the above equality has a crucial role. As it is clear from Algorithm 1,
the equality (39) regards the basic relationship between the search directions produced by
S and NS algorithms. In fact, if equality (39) holds, such search directions are perfectly

equivalent even if Bk 6= B̃k. To prove the convergence property of the S scheme we have
exploited the condition (20), which is fulfilled if (39) is fulfilled.
In the next Sections 4 and 5 we will investigate some further consequences of condition
(39) and we will prove that it can be imposed by choosing B̃k as the projection of Bk
onto algebras of matrices diagonalized by a fixed, small number of orthogonal Householder
transforms.

The following result generalizes what proven in [16] for BFGS-type NS methods.

Theorem 2. If the NS version of Algorithm 1 with φ ∈ [0, 1) is applied to a function that

satisfies Assumption 1 and B̃k is chosen such that (18) and (19) hold for all k, then

lim inf
k→∞

‖gk‖ = 0 (40)

for any starting point x0 and any pd matrix B0.

Proof. Proceed as in the proof of Theorem 1 noting that the hypothesis (20) on B̃k is no
longer necessary to obtain Remark 5 (see (24)), Remark 6 (see (25)) and (37), since in NS
methods B̃ksk turns out to be equal to −λkgk.

In Figure 1 we illustrate in a pictorial way the restricted Broyden Class-type Secant andNon
Secant methods satisfying the conditions tr B̃k ≤ trBk, det B̃k ≥ detBk and f ∈ C2, which
appear basic in proving convergence results for both classes of methods. At the moment
only a subset of the pictured Secant methods are certainly convergent, those satisfying the
surplus condition (20). In the following we will focus on Broyden Class-type methods such

that B̃ksk = Bksk, which form a subset of the intersection between convergent S and NS,
with the aim to define new efficient BFGS-type algorithms.

NS S

Secant methods satisfying (20)

[12]

Non Secant=Secant methods satisfying (39)

Figure 1: Restricted Broyden Class-type methods satisfying the conditions on trace, deter-
minant.

4 Self correcting properties implied by convergence con-
ditions

In this section, assuming φ = 0 in Algorithm 1, we will study how (39) reverberates on self
correcting properties of the algorithm.

There are experimental evidences (in the case the matrix B̃k is chosen in some fixed
matrix algebra L), that the S version of Algorithm 1 performs better if compared with
the NS one (see [4] and [9]). In this section we will try to motivate theoretically this
experimental observation by comparing trBk+1 and detBk+1 produced by classic BFGS
and Algorithm 1 when φ = 0. Observe moreover, that in [12] some preliminary experimental
experiences have shown that even if condition (39) is imposed in an approximate way (i.e

B̃ksk ≈ Bksk) performances of Algorithm 1 are competitive with those of HQN , which, in
turn, has been proved to be competitive with L-BFGS on some neural networks problem
(see [16, 4]).

Finally let us stress the fact that, even if “the Quasi-Newton updating is inherently an
overwriting process rather than an averaging process” (see [6]), the following analysis will
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show how algorithms proposed in this work exhibit an interaction between averaging and
overwriting phases more similar to BFGS than to L-BFGS (remember that the curva-
ture information constructed by BFGS are good enough to endow the algorithm with a
superlinear rate of convergence, see [34]).

Performing one step of the “classic” BFGS, one has (see (8) and (9))

Bk+1 = Φ(Bk, sk,yk, 0)

trBk+1 = trBk−
‖Bksk‖2

sTkBksk
+
‖yk‖2

yTk sk

(41)

det(Bk+1) = det(Bk)
yTk sk

sTkBksk
= det(Bk)

sTk (Gsk)

sTkBksk
, (42)

from which it is possible to observe that BFGS (and all updates in the restricted Broyden
class) “have a strong self correcting property with respect to the determinant” (see [8]). In
particular curvatures of the model are inflated or deflated (and hence corrected) accordingly

to the ratio
sTk (Gsk)

sTkBksk
, allowing the algorithm to compare the computed model with the true

Hessian. In fact, the previous ratio is used to correct the spectrum of the operator defining
the descent direction at next step.

On the contrary, by performing one step of Algorithm 1, we obtain equations (41) and

(42) where Bk is replaced by B̃k. It is then clear that if B̃ksk is not suitably chosen, then

the ratio
sTk (Gsk)

sTk B̃ksk
could not exhibit a reasonable behavior, making the algorithm not able to

self-correct bad estimated curvatures and hence loosing efficiency. Hypothesis (39) is hence
further justified from the “self-correcting properties point of view”. Observe that if we choose

B̃k = L(k)
Bk

, the error we introduce contributes to inappropriately inflate the curvatures of

the model because by Lemma 1, even if tr B̃k = trBk, we have det B̃k ≥ detBk (see [32]
and references therein for more information regarding the inappropriate inflations problems
affecting BFGS). Recall that by the same Lemma 1, det B̃k = detBk iff Uk diagonalizes
Bk. Thus, in order to reduce the inappropriate inflation of the curvatures of the model, Uk
should be chosen, in principle, besides of low complexity, as close as possible to a matrix
which diagonalizes Bk.

The problem concerning the possibility to exploit B̃k in order to improve such self cor-
recting properties as much as possible remains open. Anyway, the relative weakness of the
hypothesis of Theorem 1 leaves room, in principle, for possible different choices of B̃k, besides
the specific choice considered in this work, which could improve self correcting property.

A quite natural choice of B̃k, alternative to B̃k = L(k)
Bk

, can be B̃k = σkL(k)
Bk

for a suitable
σk, as considered in the following Remark 7 (see also [1, 2]).

Remark 7. In section 8, in order to mitigate the inappropriate inflation of the curvatures
introduced by the projection operation, following a well known line of research [1, 2, 35, 36,
3], we numerically investigate the introduction of a self-scaling factor σk, i.e., we will use

B̃k = σkL(k)
Bk

. More in detail, after the construction of the matrix algebra L(k) such that

L(k)
Bk

sk = Bksk (see Section 5, Line 10 of Algorithm 3 and Line 12 of Algorithm 5), we scale

L(k)
Bk

; in particular, we use the updating formula

Bk+1 = Φ(σkL(k)
Bk
, sk,yk, 0) (43)

where

σk := max{min{ yTk sk

sTkL
(k)
Bk

sk
, 1}, (det(Bk)/ det(L(k)

Bk
))1/n}.

Such choice of σk guarantees that all the hypothesis of Theorem 1 are satisfied. Moreover,
as σk ≤ 1 for all k, we have

det(Bk+1) = det(σkL(k)
Bk

)
yTk sk

sTk σkL
(k)
Bk

sk
≤ det(L(k)

Bk
)

yTk sk

sTkL
(k)
Bk

sk
,

which implies

det(Bk+1) = det(Φ(σkL(k)
Bk
, sk,yk, 0)) ≤ det(Φ(L(k)

Bk
, sk,yk, 0)),

i.e., the determinants of the matrices Bk+1 generated with the σk-scaled updating formula
(43) are smaller than the determinants of the matrices Bk+1 generated through the not scaled
formula (1) with φ = 0.

9



In the experiments considered in Section 8, the choice B̃k = σkL(k)
Bk

turns out to im-

prove in certain cases, the not-scaled L(k)QN methods and indicates a possible optimization
strategy, based on L(k)QN , competitive with L-BFGS.

Finally, let us observe that in [12] the authors investigated BFGS-type methods where

σkL(k)
Bk

sk = Bksk for some σk > 0. Nevertheless, in [12] σk was a parameter used in the

construction of the matrix algebra L(k).

5 How to ensure Secant convergence conditions by low
complexity matrices

In this section we will show that it is always possible to satisfy hypothesis of Theorem 1
by a low complexity matrix B̃k. In particular, a matrix B̃k satisfying (18), (19) and (39)
will be explicitly constructed.
As noticed in Lemma 1, spectral conditions (18), (19) are always fulfilled when we choose

B̃k = LBk
for some L = sdU.

Nevertheless, the condition
LBk

sk = Bksk. (44)

is not satisfied for a generic matrix algebra L and we have to face the following Problem 1
(see [12] for an analogous problem involving a parameter σ):
Problem 1. Given a pd matrix A ∈ Rn×n and a vector s ∈ Rn, find a low complexity
orthogonal matrix U such that

LAs = As (45)

where L = sdU .

Observe that Problem 1 has been solved in [11] in the particular case when s is an eigenvector
of A with the aim to speed-up the Pagerank computation by the preconditioned Euler-
Richardson method. The following Lemma 2 completely characterizes solution of Problem
1 in this case.

Lemma 2. Le A be a n × n symmetric matrix, if s is such that As = γs, then for any
orthogonal matrix L such that s/‖s‖ is among its columns, we have

LAs = As

where L = sdL. In particular L can be chosen as an orthogonal Householder matrix.

Proof. Consider an orthogonal L such that Lek = s/‖s‖ for some fixed k ∈ {1, . . . , n}. From
(4) we have LA = Ld(zA)LT being zA the vector

zA = [. . . , (LTAL)ii, . . . ]
T ,

and hence

LAs = (zA)ks =
sTAs

‖s‖2
s = γs = As. (46)

For the second part see Lemma 5 in the Appendix.

The following Theorem 3 solves Problem 1 in the general case and, at the same time,
sheds light on algorithmic details necessary for the construction of the solution. In [13] it is
solved a more general problem where the projection LA retains the action of A on a set of
vectors instead on a single one.

Let us begin recalling the well-known Arnoldi algorithm [39] for finding an orthogonal basis
of the Krylov subspace

Km(A,v) :=< v, Av, . . . , Am−1v > .

In what follows we will assume dimKm(A,v) = m.

Data: A, v1 := v/‖v‖2;
1 while j ≤ m do
2 Compute w := Avj ;
3 while i ≤ j do
4 Compute hi,j = (w,vi) ;
5 Compute w := w − hi,jvi ;

6 end
7 Compute hj+1,j := ‖w‖2 and vj+1 := w/hj+1,j ;

8 end
Algorithm 2: Arnoldi Algorithm

10



The above algorithm produces an orthonormal basis Vm = [v1, . . . ,vm] of the Krylov sub-
space Km(A,v) such that

AVm = VmHm + hm+1,mvm+1e
T
m,

where the matrix Hm denotes the m ×m upper Hessenberg matrix whose coefficients are
the hi,j computed by the algorithm. From the above observations we obtain

V TmAVm = Hm. (47)

Moreover, the following lemma holds :

Lemma 3 ([38]). Let A be a n × n real matrix and Vm, Hm the results of m steps of the
Arnoldi or Lanczos method applied to A. Then for any polynomial pj of degree j ≤ m − 1
the following equality holds:

pj(A)v1 = Vmpj(Hm)e1. (48)

Theorem 3. Let A ∈ Rn×n be a symmetric matrix. For every fixed integer m and 1 ≤ m ≤
n and for any s ∈ Rn there exists an orthogonal matrix L ∈ Rn×n such that if L = sdL and
LA is the best approximation in Frobenius norm of A in L, then

pj(LA)s = pj(A)s (49)

for any polynomial pj of degree j ≤ m−1. Moreover, the thesis is satisfied also by any other
orthogonal matrix having, among its columns, m particular columns of L (see (52)).

Proof. Consider the matrices Vm and Hm constructed from Arnoldi Algorithm applied to
Km(A, s) (observe that the first column of Vm is v1 := s/‖s‖). From Lemma 3 with j = 1
we have

Av1 = VmHmV
T
mv1.

From (47) we can write

Av1 = VmQQ
TV TmAVmQQ

TV Tmv1 (50)

for any orthogonal matrix Q. In particular, being V TmAVm symmetric, we can choose in (50)
Q as the orthogonal matrix which diagonalizes V TmAVm, i.e.

Av1 = VmQ


x1 0 . . . 0

0
. . .

. . . 0

0
. . .

. . . 0
0 . . . 0 xm

QTV Tmv1, (51)

where xi = eTi Q
TV TmAVmQei for i = 1, . . . ,m. Consider now the matrix

L = [VmQe1| . . . |VmQem|qm+1| . . . |qn] (52)

where {qm+1, . . . ,qn} is any orthonormal basis for

< VmQe1, . . . , VmQem >⊥=< Vme1, . . . , Vmem >⊥ (53)

(for example L can be obtained as the product of m Householder matrices, see Lemma 5 in
the Appendix), set L = sdL and consider LA the best approximation in Frobenius norm of
A in L.
In order to prove that LA satisfies (49) it is sufficient to prove that

LjAv1 = Ajv1 for 0 ≤ j ≤ m− 1. (54)

Of course, (54) is true for j = 0. The equality LAv1 = Av1 follows observing that using (4)
we have

LAv1 = (

n∑
i

(LTAL)iiLei(Lei)
T )v1

= (

m∑
i

xi(VmQei)(VmQei)
T )v1 = Av1

(55)

where in the second equality we take into account that qTi v1 = 0 for i ∈ {m+ 1, . . . , n} (see
(53)) and (52).
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Suppose now (54) true for all indexes j in [1, k], k ≤ m − 2 and let us prove it for
j = k + 1. From inductive hypothesis and Lemma 3 we have

Lk+1
A v1 = LALkAv1 = LAAkv1 = LAVmHk

me1.

From direct computation using (53) and the definition of Q, we have LAVm = VmHm and
thus

LAVmHk
me1 = VmH

k+1
m e1 = Ak+1v1,

where the last equality follows using again Lemma 3. Hence (54) holds also for j ∈ [1, k+1].

Corollary 1. Solutions U of Problem 1 are obtained by using Theorem 3 for m = 2 and
j = 1. Observe that just two of the columns of such orthogonal matrices U are uniquely
determined (they are suitable linear combinations of the vectors s and As), and hence one
of such U can be chosen as the product of two Householder matrices that can be determined
by performing two products of A by a vector plus O(n) FLOPs.

Proof. For the second statement see (52) in the proof of Theorem 3 and Lemma 5 in the
Appendix.

5.1 Convergent L(k)QN scheme

In order to impose (44) for each k, an adaptive choice of the space L = sdU is necessary. Any
method obtained in this way will be called L(k)QN extending the notation LQN introduced
in [16] to denote the BFGS-type methods with B̃k = LBk

being L fixed. As a result of
what discussed in Section 3 and in the first part of this section we report here the following
Algorithm 3 which can be considered a refinement and an extension of the scheme proposed
in [12]:

Data: x0 ∈ Rn, B0 pd, d0 = −g0, k = 0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies conditions (6), (7) */

3 sk = xk+1 − xk;
4 yk = gk+1 − gk;

/* Defininition of the new algebra L(k) */

5 if ‖Bksk − skBksk
‖sk‖2 sk‖ < toll then

6 define Uk applying Lemma 2 ;
7 else
8 define Uk applying Corollary 1 ;
9 end

10 Compute L(k)
Bk

;

/* L(k) := sdUk satisfies L(k)
Bk

sk = Bksk */

11 Bk+1 = Φ(L(k)
Bk
, sk,yk, φ) ;

12 Compute dk+1 = −B−1k+1gk+1 ;

13 Set k := k + 1 ;

14 end

Algorithm 3: A convergent L(k)QN

In more details, observe that, to perform Line 8 of Algorithm 3, it is necessary to apply

Corollary 1 to Bk = Φ(L(k−1)
Bk−1

, sk−1,yk−1, φ) and sk, obtaining Uk := H(h
(k)
2 )H(h

(k)
1 ). The

vectors h
(k)
1 and h

(k)
2 can be determined by performing two products of Bk by a vector.

As Bk is a low rank correction of the low complexity matrix L(k−1)
Bk−1

, such products can be

calculated in O(n) FLOPs (see Corollary 1). To compute L(k)
Bk

in Line 10, observe that, by
Lemma 1,

L(k)
Bk

= L(k)

L(k−1)
Bk−1

− L(k)

L(k−1)
Bk−1

sk−1sT
k−1
L(k−1)
Bk−1

sT
k−1
L(k−1)
Bk−1

sk−1

+ L(k)
yk−1yT

k−1

yT
k−1

sk−1

+ (φ sTk−1L
(k−1)
Bk−1

sk−1)L(k)

vk−1vT
k−1

,

and hence, it is sufficient to compute its eigenvalues (see (4)), i.e.,

λ(L(k)
Bk

) = d([UTk BkUk])

= d(UTk L
(k−1)
Bk−1

Uk)− d(UTk
L(k−1)
Bk−1

sk−1s
T
k−1L

(k−1)
Bk−1

sTk−1L
(k−1)
Bk−1

sk−1
Uk)+

+ d(UTk
yk−1y

T
k−1

yTk−1sk−1
Uk + (φ sTk−1L

(k−1)
Bk−1

sk−1)UTk vk−1v
T
k−1Uk).

(56)
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Notice that the above equality is an extension of an eigenvalues updating formula obtained
in [16] where L(k) ≡ L for all k.

5.2 Complexity

For every k the orthogonal matrices at Line 6 or Line 8 of Algorithm 3 are the product of
at most two (only one if Line 6) Householder reflections, that can be constructed in O(n)

FLOPs (see Lemma 5 in the Appendix). Now, to calculate λ(L(k)
Bk

) in (56), we compute the

matrix vector products L(k−1)
Bk−1

sk−1 in O(n) FLOPs, and the same amount of operations is

sufficient to compute d(UTk L
(k−1)
Bk−1

Uk) (using Proposition 1 in [13]). Finally, observe that
Line 12 of Algorithm 3 can be performed using Sherman-Morrison formula, which states

that B−1k+1 is a low rank correction of (L(k)
Bk

)−1; for example if φ = 0 in Line 11 of Algorithm
3, then

B−1k+1 = (I − sky
T
k

sTk yk
)(L(k)

Bk
)−1(I − yks

T
k

sTk yk
) +

sks
T
k

sTk yk
.

Thus it is possible to infer that the computational complexity of Algorithm 3 is O(n) in

space and time (to store the matrices L(k)
Bk

= Ukd(zBk
)UTk it is sufficient to store zBk

and

the vectors h
(k)
i needed to define Uk). When φ = 0, assuming that the matrices Uk are

always constructed according to Line 8 of Algorithm 3, a straightforward implementation of
Algorithm 3 requires roughly 70n multiplications and the storage of 15 vectors of length n.

6 The quadratic finite termination property

In literature Quasi-Newton methods are studied that terminate in a finite number of steps
when applied to quadratic functions (quadratic finite termination). See [29, 33] and refer-
ences therein. In this section, extending the analogous result obtained in [29] for L-BFGS,

we will introduce conditions on B̃k (see (58)) which endow the S BFGS-type methods with
the quadratic finite termination property.

Let us consider a pd matrix A and the problem

min
x∈Rn

f(x) where f(x) :=
1

2
xTAx− xTb. (57)

In order to solve Problem (57) consider the following Algorithm 4 which is the S version of

Algorithm 1 where we use the exact line search and where we set Hk = B−1k , H̃k = B̃−1k
and φ = 0 (in Line 8 we have the Sherman-Morrison representation of Hk+1 = B−1k+1).

Data: x0 ∈ Rn, g0 = Ax0 − b, H̃0 = H0 pd, d0 = −H0g0, k=0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk := arg minλ f(xk + λdk) */

3 sk = xk+1 − xk;
4 gk+1 = Axk+1 − b;
5 yk = gk+1 − gk;

6 ρk = 1/sTk yk ;

7 Define H̃k pd ;

8 Hk+1 = (I − ρkskyTk )H̃k(I − ρkyksTk ) + ρksks
T
k ;

9 Set dk+1 = −Hk+1gk+1;
10 Set k := k + 1 ;

11 end
Algorithm 4: BFGS-type for quadratic problems

Theorem 4. Let us consider Algorithm 4. If

H̃kgk+1 = βkH0gk+1 for some βk 6= 0, (58)

then we have :
gTk+1sj = 0 for all j = 0, . . . , k; (59)

sTk+1Asj = 0 for all j = 0, . . . , k; (60)

Span {s0, . . . , sk+1} = Span {H0g0, . . . ,H0gk+1}; (61)

Proof. By induction. The case k = 0 can be easily verified. Let us suppose the thesis true
for k = 0, . . . , k̂ − 1 and prove it for k = k̂. Let us prove (59) : gT

k̂+1
sk̂ = 0 since we are

using exact line search; if j < k̂ we have

gT
k̂+1

sj = gT
k̂

sj + yT
k̂

sj = gT
k̂

sj + sT
k̂
Asj = 0 (62)
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by induction hypothesis. To prove (60) observe that for j < k̂

sT
k̂+1

Asj = −λk̂+1g
T
k̂+1

Hk̂+1yj =

− λk̂+1g
T
k̂+1

((I − ρk̂sk̂y
T
k̂

)H̃k̂(I − ρk̂yk̂s
T
k̂

) + ρk̂sk̂s
T
k̂

)yj =

− λk̂+1g
T
k̂+1

H̃k̂yj = −βk̂λk̂+1g
T
k̂+1

H0yj = 0

(63)

where the third equality follows observing that gT
k̂+1

sk̂ = 0 and that sT
k̂
yj = 0 for j < k̂ by

induction hypothesis; the fourth equality follows by (58); the last equality follows observing

that, since gT
k̂+1

ŝi = 0 for all j = 0, . . . , k̂ and Span {s0, . . . , sk̂} = Span {H0g0, . . . ,H0gk̂}
by induction hypothesis, it holds that

gT
k̂+1

H0gj = 0 for all j = 0, . . . , k̂. (64)

Now let us consider the case j = k̂. Since sk̂+1 = −λk̂+1Hk̂+1gk̂+1, by direct computation

using the definition of Hk̂+1, it can be verified that sT
k̂+1

Ask̂ = sT
k̂+1

yk̂ = 0. Let us prove

now (61) : we have

sk̂+1 = −λk̂+1Hk̂+1gk̂+1 = −λk̂+1H̃k̂gk̂+1 + λk̂+1ρk̂y
T
k̂
H̃k̂gk̂+1sk̂ =

− βk̂λk̂+1H0gk̂+1 + λk̂+1ρk̂y
T
k̂
H̃k̂gk̂+1sk̂

(65)

and hence
Span {H0g0, . . . ,H0gk̂+1} = Span {s0, . . . , sk̂+1}

since Span {H0g0, . . . ,H0gk̂} = Span {s0, . . . , sk̂} and {s0, . . . , sk̂+1} are linearly indepen-
dent since they are A-conjugate.

Corollary 2. If the pd matrices H̃k satisfy hypothesis of Theorem 4, then Algorithm 4
generates the same iterates as the Conjugate Gradient method preconditioned with H0 and
hence it converges in at most n steps.

Proof. Analogous to the proof of Corollary 2.3 in [29], observing that under hypothesis of
Theorem 4 conditions (59), (60) and (61) hold for Algorithm 4.

Interestingly enough, using the above corollary it can be shown that the iterates of Al-
gorithm 4 coincide with those from BFGS and L-BFGS since they all coincide with the
Preconditioned Conjugate Gradient (see [33, 29]).
We can now prove that the convergence condition (39) and the quadratic termination con-

dition (58) can be verified simultaneously if B̃−1k = H̃k = L−1Bk
provided that H0 in (58) is

a multiple of the identity.

Lemma 4. For any pair of vectors sk, gk+1 and pd matrix Bk generated by Algorithm 4
with H0 = I, there exists a low complexity orthogonal matrix Lk and hence a matrix algebra
L(k) = sdLk such that

L(k)
Bk

sk = Bksk,

L(k)
Bk

gk+1 = αkgk+1 for some αk 6= 0.
(66)

Lk can be effectively constructed as the product of at most three Householder matrices.

Proof. For the sake of simplicity we use, in the following, the symbols L and L in place of
Lk and L(k).

1. Case Bksk = γsk.
From Theorem 4 we have gTk+1sk = 0. Any orthogonal matrix L which has among
its columns sk/‖sk‖ and gk+1/‖gk+1‖ is such that, defining L = sdL, LBk

satisfies
conditions in (66) (the columns of L are eigenvectors of any matrix in L). One of such
orthogonal matrix L can be constructed as the product of two orthogonal Householder
matrices (see Lemma 5 in Appendix and see [13] for more details).

2. Case Bksk 6= γsk.
Any matrix L in (52) with m = 2 satisfies LBk

sk = Bksk if L = sdL; it is then enough
to consider a matrix L where gk+1/‖gk+1‖ is chosen to be one of the vectors qi; observe
that this can be done since, from Theorem 4, gTk+1sk = 0 = gTk+1gk (see (64) with
H0 = I) and since the first two columns of L in (52), namely V2Qe1 and V2Qe2, are
suitable linear combinations of sk and Bksk = −λkgk (see the proof of Theorem 3
with m = 2 and sk, Bk in the roles of s and A respectively). An orthogonal matrix L
with three columns fixed as V2Qe1, V2Qe2 and gk+1/‖gk+1‖, can be constructed as
the product of three orthogonal Householder matrices (see Lemma 5 in Appendix and
see [13] for more details).
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7 A convergent L(k)QN method with quadratic termi-
nation property

The L(k)QN scheme that we consider in this section combines the results obtained in Section
3 for the Secant scheme with φ = 0 and in Section 6 for quadratic termination, setting in

both B̃k = L(k)
Bk

. In particular it combines the convergence result stated in Theorem 1 for
general non linear problems with the quadratic termination result obtained in Theorem 4.
The main motivation for this choice can be traced to the key observation that in this way the
resulting method coincides, as already pointed out in Section 6, with BFGS and L-BFGS
when applied on quadratic problems using exact line search.

7.1 The proposed method

Data: x0 ∈ Rn, B0 = I, toll, d0 = −g0, k = 0;
1 while gk 6= 0 do
2 xk+1 = xk + λkdk ; /* λk verifies conditions (6), (7) */

3 sk = xk+1 − xk;
4 yk = gk+1 − gk;

/* Defininition of the new algebra L(k) */

5 if ‖Bksk − skBksk
‖sk‖2 sk‖ < toll then

6 Define gk+1 as the projection of gk+1 on < sk >
⊥ ;

7 Define Uk using Case 1. in Lemma 4 ;

8 else
9 Define gk+1 as the projection of gk+1 on < sk, Bksk >

⊥ ;
10 Define Uk using Case 2. in Lemma 4 ;

11 end

12 Compute L(k)
Bk

;

/* L(k) := sdUk verifies L(k)
Bk

sk = Bksk and L(k)
Bk

gk+1 = αkgk+1 */

13 Bk+1 = Φ(L(k)
Bk
, sk,yk, 0) ;

14 Compute dk+1 = −B−1k+1gk+1;

15 Set k := k + 1 ;

16 end

Algorithm 5: A convergent L(k)QN method with quadratic termination property veri-
fied if exact line search is used.

Observe that the applicability of Lemma 4, and hence the existence of the orthogonal ma-
trices Uk at lines 7 and 10 of Algorithm 5, are guaranteed by the definition of gk+1. Indeed,
in Lemma 4, where f is quadratic, gk+1 is orthogonal to sk and to Bksk. When f is not
quadratic, gk+1 has to be replaced by the vector gk+1 which is, by construction, orthogo-
nal to both sk and Bksk. In particular, to perform Line 10 of Algorithm 5, one computes
the projection of gk+1 on the space < sk, Bksk >⊥, that is, gk+1 := (I − V V T )gk+1

being V := [v1|v2] an orthonormal basis of < sk, Bksk >, and then apply Lemma 4

to Bk = Φ(L(k−1)
Bk−1

, sk−1,yk−1, 0), sk and gk+1, to obtain Uk := H(h
(k)
3 )H(h

(k)
2 )H(h

(k)
1 )

(see, moreover, Lemma 5 in the Appendix). For Line 7, proceed analogously; in this case

Uk := H(h
(k)
2 )H(h

(k)
1 ). Regarding Line 12 observe that, as in Algorithm 3, they consist in

computing the eigenvalues of L(k)
Bk

by (56).

7.2 Complexity

An analogous analysis as in Section 5.2 permits to infer that the computational complexity
of Algorithm 5 is O(n) in space and time. Assuming that the matrices Uk are always con-
structed according to Line 10 of Algorithm 5, a straightforward implementation of Algorithm
5 requires roughly 120n multiplications and the storage of 17 vectors of length n.

8 Numerical Results

In our numerical experimentation we have used performance profiles (see [21]) in order to
investigate and compare the numerical behavior of Algorithm 3 with φ = 0 (refinement of the
method introduced in [12]), Algorithm 5, DQN [9], HQN [4, 16] and L-BFGS with M = 5
and M = 30 [22]. The latter method, that has been implemented by the Poblano toolbox
[23], has a computational cost of roughly 4Mn multiplications and requires the storage of
(4M+2 vectors to be implemented. We have tested the algorithms on a set of medium/large
scale problems using the line-search routine provided in Poblano, i.e., the Moré-Thuente
cubic interpolation line search (which implements the Strong-Wolfe conditions) enforcing

15



the reproducibility of our results. In order to make a fair comparison we have used for
all the algorithms the same stopping criteria as those from Poblano. The results have been
obtained on a laptop running Linux with 16Gb memory and CPU Intel(R) Core(TM) i7-8th
generation CPU with clock 2.00GHz. The scalar code is written and executed in MATLAB
R2018b. We have used the following parameters where the names of the variables are the
same as those from Poblano (LineSearch ftol=α in (6) and LineSearch gtol=β in (7)) :

LineSearch_xtol =1e-15;

LineSearch_ftol =1e-4;

LineSearch_gtol =0.9;

LineSearch_stpmin =1e-15;

LineSearch_stpmax =1e15;

LineSearch_maxfev =20;

StopTol =1e-6;

MaxIters =10000;

MaxFuncEvals =50000;

RelFuncTol =1e-20.

Finally, let us point out that, as in Poblano, the successful termination is achieved when
‖gk‖2/n ≤ StopTol being n the dimension of the problem.

In all the following Figures “L(k)QN Sc” and “L(k)QN” indicate Algorithm 3 using, re-
spectively, scaling as in Remark 7 or not. Analogously, “L(k)QN(q.t.) Sc” and “L(k)QN(q.t.)
” indicate Algorithm 5 using, respectively, scaling as in Remark 7 or not.

8.0.1 Experiment 1

In this experiment we have chosen a problem set from CUTEst [26] where L-BFGS performs
poorly. See Table 1 for the complete list of considered problems. In Figure 2 we show, using
a logarithmic scale, the performance profiles of the selected solvers.
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Figure 2: Performance profiles for Algorithm 3, Algorithm 5, DQN [9], HQN [4, 16] and
L-BFGS with M = 5 and M = 30 [22] on a set of 14 problems from CUTEst [26]. Line-
Search ftol=1e-4; LineSearch gtol=0.9;

Table 1: Problem Set
Prob Dim. N.Z.
1] BROYDN7D 5000 17497
2] CHAINWOO 10000 19999
3] CURLY10 1000 10945
4] EIGENBLS 2550 3252525
5] EIGENCLS 2652 3517878
6] GENHUMPS 5000 9999
7] GENROSE 500 999

Prob Dim. N.Z.
8] MODBEALE 20000 39999
9] MSQRTALS 4900 12007450
10] MSQRTBLS 4900 12007450
11] NONCVXU2 10000 39987
12] SBRYND 1000 6979
13] TESTQUAD 1000 1000
14] TRIDIA 5000 9999
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8.0.2 Experiment 2

In this experiment we have investigated the problem of approximating a given matrix A ∈
Am×n by a rank-k approximation of the form UV T , i.e., the function we wish to optimize is

min
U∈Rm×k,V ∈Rn×k

‖A− UV T ‖2F . (67)

Problem (67) arises in may applications (see for example [25] for applications connected with
data mining). In particular, we focus on the dimensionality reduction problem ((m+n)k <<
mn) for MINST database [30]. The MINST test-set contains 10000 labeled handwritten
digits from 0 to 9 stored as 28 × 28 matrices. For each class, we solve problem (67) where
A is a m × n = 282 × class-size, being class-size the number of examples contained in
the dataset for the considered digit. In Figures 3 and 4 we show, using a logarithmic scale,
the performance profile of the selected solvers when k = 26 and k = 27. For details on the
choice of the parameters see the preliminaries of this section; we use as x0 a random vector.
In Table 2 we report the dimensions of the involved problems.
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Figure 3: Performance profiles for Algorithm 3, Algorithm 5, DQN [9], HQN [4, 16]
and L-BFGS with M = 5 and M = 30 [22] when k = 26. LineSearch ftol=1e-4; Line-
Search gtol=0.9.
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Figure 4: Performance profiles for Algorithm 3, Algorithm 5, DQN [9], HQN [4, 16]
and L-BFGS with M = 5 and M = 30 [22] when k = 27. LineSearch ftol=1e-4; Line-
Search gtol=0.9.

Table 2: MINST factorization: problems dimensions
Class/Rank 0 1 2 3 4 5 6 7 8 9
k = 26 112896 122816 116224 114816 113024 107264 111488 115968 112512 114752
k = 27 225792 245632 232448 229632 226048 214528 222976 231936 225024 229504
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8.1 Conclusions and future works

In this work we have proposed and studied the convergence of novel optimization schemes
L(k)QN obtained by generalizing the updates in the restricted Broyden class by means of
projections of the Hessian approximations Bk on adaptive low complexity matrix algebras
L(k), and in particular, we have studied in detail two new BFGS-type methods with theo-
retical guarantee of convergence.

The finite quadratic termination is not really relevant for general Quasi-Newton methods
[29]. However, the numerical results presented in the previous subsections, see “L(k)QN”
and “L(k)QN(q.t)” in Figures 2,3 and 4, confirm that if this property is added to BFGS-
type algorithms, as in Algorithm 5, then we succeed in improving the performances of the
basic L(k)QN scheme in Algorithm 3, which is a convergent refinement of the methods
considered in [12].

Moreover the numerical results show that, by an adaptive choice of the matrix algebras
L(k), the robustness of the existing fixed algebras LQN methods, DQN and HQN , can be
overcome (see Figures 3 and 4), even though this does not guarantee the best performance
in terms of Iteration, Function Evaluations or Execution Time (see Figure 2). Notice,
moreover, that the methods DQN and HQN [4, 9, 24] are competitive for other classes of
problems.

Now, in Experiment 1, the comparison of the proposed L(k)QN methods is not totally
favorable. In fact, Figure 2 shows that the best performers are DQN and HQN . How-
ever, the improved robustness of our proposal, already traceable in Experiment 1, is further
underpinned by Experiment 2, where Algorithm 5 always reaches the required level of ac-
curacy within the maximum number of allowed iterations, whereas L-BFGS with M = 5
and M = 30 drastically changes its behavior when switching from rank 26 to rank 27. In
this experiment, a straightforward implementation of our proposals does not guarantee to
outperform L-BFGS with M = 5.

However, on this set of problems, the efficiency of our proposals is dramatically improved
by introducing a self-scaling factor as outlined in Remark 7. In this case, see “L(k)QN Sc”
and “L(k)QN(q.t) Sc” in Figure 4, our proposals clearly outperform L-BFGS with M = 5
and M = 30.

It is important to note that our proposals dot not require the choice of a problem
dependent parameter as M in L-BFGS and that, in general, if M is big, require less
memory to be implemented.

By the above reasons, further investigation urges in order to understand if the new
method could be a valid competitor of L-BFGS, in particular for those problems where large
values of the parameter M must be chosen in order to guarantee satisfactory performances
(see also [28]) or for those problems where the computation of the gradient is expensive, as
those coming from data science or optimal control (see, for example, [5, 14]).

It is clear that L(k)QN methods should be also compared with the class of nonlinear
conjugate gradient methods. Moreover, it would be important to understand if the matrices
generated by means of our Quasi Newton-type updates could be useful as preconditioners
for nonlinear conjugate gradient methods as in [10]. Of course, further investigation should
be devoted, in future, in order to understand if the Broyden Class-version of Algorithm 3
or Algorithm 5 can produce better performances for φ ∈ (0, 1). Last but not least, it could
be interesting to understand if the results presented in this paper can be extended to the
modified BFGS method for non-convex functions as in [31]. Finally the connections with
Quasi-Newton Self-Scaling methods [35, 2] should be further explored.
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9 Appendix 1: Householder Matrices

The results contained in this section are borrowed from [13] and we refer the interested
reader there for more details.

Definition 1 (Householder Orthogonal Matrix). Given a vector p ∈ Rn define

H(p) := In −
2

‖p‖2
ppT .

Consider two vectors v, z ∈ Rn. From direct computation one can check that defining
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p = v − ‖v‖‖z‖ z with z 6= 0, we have

H(p)v =
‖v‖
‖z‖

z.

Lemma 5 ([13]). Consider W = [w1| . . . |ws] ∈ Rn×s, V = [v1| . . . |vs] ∈ Rn×s of full rank
and such that s ≤ n, WTW = V TV . Then there exist h1, . . . ,hs ∈ Rn, ‖hi‖ =

√
2, such

that the orthogonal matrix U = H(hs) · · ·H(h1), product of s Householder matrices, satisfies
the following identities

Uwi = vi for all i ∈ {1, . . . , s}.

The vectors hi for i ∈ {1, . . . , s} can be obtained by setting:

h̃i := H(hi−1) · · ·H(h1)(wi −wi−1)− (vi − vi−1),

hi := (
√

2/‖h̃i‖)h̃i
(68)

(where we set h0 = w0 = v0 = 0). If s = n we have hn = 0 or hn =
√
2

‖vn‖vn. The cost of

the computation of the hi for i = 1, . . . , s is:

[s(s− 1)n+ s(2n+ 1)] mult. + [(s(s+ 2)− 2)n+ s(n− 1)] add. + s sq. roots.

Observe that when wi = eki for i = 1, . . . , s, that is when v1, . . . ,vs are orthonormal and we
are interested to construct an orthogonal U with s columns fixed as v1, . . . ,vs, it is possible
to save (s− 1)n mult. and (3s− 2)n add..

Proof. The explicit expression of the hi in (68) is obtained by applying the techniques for
their construction introduced in [13].

10 Appendix 2: details on Theorem 1

In order to prove inequality (38) it is enough to prove that:

Lemma 6. There exists c3 constant with respect to j and depending only on s and M such
that

γ((j + 1− s) + 1)n ≤ cj+1−s
3 for all j ≥ s, where γ := (

c1
n

)n
1

detBs

(of course, such c3 turns out to be greater than 1).

In fact, once Lemma 6 is proved, the constant c2 (constant with respect to j) for which
(38) is verified, will be c2 = 2c1c3/(1−β) (note that c2 depends only s, M , β but not on j).

Proof. Fix c̃3 > 1. Note that the sequence of positive numbers

γ((j + 1− s) + 1)n

c̃j+1−s
3

for j = s, s+ 1, . . .

converges to zero as j → +∞; thus there exists j∗ ≥ s (depending on s, M and c̃3) s.t.

γ((j + 1− s) + 1)n ≤ c̃j+1−s
3 for all j ≥ j∗.

Note also that for all j ∈ {s+ 1, . . . , j∗ − 1} we have

γ((j + 1− s) + 1)n ≤ γ(j∗ − s+ 1)n (69)

and consider ĵ ≥ j∗ s.t. γ(ĵ − s + 1)n > 1 (ĵ depends on s, M , γ and c̃3). From (69) we
have

γ((j + 1− s) + 1)n ≤ γ(ĵ − s+ 1)n ≤ (γ(ĵ − s+ 1)n)j+1−s

for all j ∈ {s, s+ 1, . . . j∗ − 1}.
Collecting the above results, we can conclude that

γ((j + 1− s) + 1)n ≤ cj+1−s
3 for all j ≥ s (70)

where c3 := max{c̃3, γ(ĵ − s+ 1)n} (c3 > 1 and depends on s, M and c̃3).
Finally note that, once c̃3 is fixed, it is clear that c3 depends only on s,M .
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In order to prove inequality (381), define ak := (1 − φ − ψkφ)‖gk‖2/sTk (−gk) > 0. We
know that limk→+∞ ak = +∞ and we have to show that there exists j∗ ≥ s such that

j∏
k=s

ak > cj+1−s
2 for all j ≥ j∗. (71)

If ak ≥ c2 for all k ≥ s, since it must be ak > c2 for infinite indexes k, then the thesis is
obvious. So assume that there exists some index k such that ak < c2. Let r ≥ s be such
that ak > c2 for all k > r. Note that c2 > mink=s,...,r ak. Set

t :=
( c2

mink=s,...,r ak

)r+1−s
> 1.

Let j∗ > r + 1 be such that ak ≥ tc2 for all k ≥ j∗. Then we have

j∗∏
k=s

ak = (

r∏
k=s

ak)(

j∗−1∏
k=r+1

ak)aj∗ >

( min
k=s,...,r

ak)r−s+1cj
∗−r−1

2 tc2 =

( min
k=s,...,r

ak)r−s+1
( c2

mink=s,...,r ak

)r−s+1
cj
∗−r

2 = cj
∗−s+1

2 ,

i.e.,
∏j∗

k=s ak > cj
∗−s+1

2 . Thus we obtain (71) since ak ≥ tc2 > c2 for k > j∗.
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