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Abstract

This paper presents Riemannian conjugate gradient methods and global

convergence analyses under the strong Wolfe conditions. The main idea

of the proposed methods is to combine the good global convergence prop-

erties of the Dai-Yuan method with the efficient numerical performance of

the Hestenes-Stiefel method. One of the proposed algorithms is a general-

ization to Riemannian manifolds of the hybrid conjugate gradient method

of the Dai and Yuan in Euclidean space. The proposed methods are

compared well numerically with the existing methods for solving several

Riemannian optimization problems.

1 Introduction

This paper focuses on the conjugate gradient method. Nonlinear conjugate
gradient methods in Euclidean space are a class of important methods for solv-
ing unconstrained optimization problems. In [10], Hestenes and Stiefel devel-
oped a conjugate gradient method for solving linear systems with a symmetric
positive-definite matrix of coefficients. In [7], Fletcher and Reeves extended
the conjugate gradient method to unconstrained nonlinear optimization prob-
lems. Theirs is the first nonlinear conjugate gradient method in Euclidean space.
Al-Baali [3] indicated that the Fletcher-Reeves method converges globally and
generates the descent direction with an inexact line search when the step size
satisfies the strong Wolfe conditions [22, 23]. Polak and Ribière [13] introduced
a conjugate gradient method with good numerical performance. Dai and Yuan
[4] introduced a conjugate gradient method with a better global convergence
property than that of the Fletcher-Reeves method. The Hestenes-Stiefel and
Polak-Ribière-Polyak methods do not always converge under the strong Wolfe
conditions, and for this reason, hybrid conjugate gradient methods have been
presented in [5, 11, 19]. Touati-Ahmed and Storey [19], and Hu and Storey
[11] proposed methods combining the Fletcher-Reeves and Polak-Ribière-Polyak
methods. Moreover, Dai and Yuan [5] proposed the hybrid conjugate gradient
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method, which combines the Dai-Yuan method and the Hestenes-Stiefel method.
These nonlinear conjugate gradient methods in Euclidean space are summarized
by Hager and Zhang in [8].

The conjugate gradient method in Euclidean space is applicable to a Rieman-
nian manifold. In [18], Smith introduced the notion of Riemannian optimization
using the exponential map and parallel translation. However, using the expo-
nential map or parallel translation on a Riemannian manifold is generally not
computationally efficient. Absil, Mahony, and Sepulchre [2] proposed to use a
mapping called a retraction that approximates the exponential map. Moreover,
they introduced the notion of vector transport, which approximates parallel
transport. In addition, Ring and Wirth [14] introduced generalized line search
methods (e.g., the Wolfe conditions [22, 23]) on Riemannian manifolds.

Using the retraction and vector transport, Ring and Wirth [14] presented
a Fletcher-Reeves type of nonlinear conjugate gradient method on Riemannian
manifolds. They indicated that the Fletcher-Reeves methods have a global con-
vergence property under the strong Wolfe conditions. However, their conver-
gence analysis assumed that the vector transport does not increase the norm of
the search direction vector, which is not the standard assumption (see [16, Sec-
tion 5]). To remove this unnatural assumption, Sato and Iwai [16] introduced
the notion of scaled vector transport [16, Definition 2.2]. They proved that
by using scaled vector transport, the Fletcher-Reeves method on a Rieman-
nian manifold generates a descent direction at every iteration and converges
globally without impractical assumptions. Similarly, in [15], Sato used scaled
vector transport in a convergence analysis. He indicated that the Dai-Yuan-
type Riemannian conjugate gradient method generates a descent direction at
every iteration and converges globally under the Wolfe conditions. This means
that the Dai-Yuan method has a better global convergence property than that
of the Fletcher-Reeves method on Riemannian manifolds, since the latter has
to resort to the strong Wolfe conditions, whereas the former only requires the
Wolfe conditions.

In this paper, we propose hybrid Riemannian conjugate gradient methods
exploiting the idea used in the paper [5]. One of the methods we propose has
already been used in numerical experiments (e.g., [9, (43)], [17, Table 1]), but
no convergence analysis has yet been presented for it. Our methods combine the
good numerical performance of the Hestenes-Stiefel method with the efficient
global convergence property of the Dai-Yuan method. Moreover, we present
convergence analyses of our methods. The proofs are along the lines of [5,
Theorem 2.3], except that the step-size assumption is stronger than that of
the Euclidean case. This is due to the use of scaled vector transport. Our
hybrid methods converge globally if the size of the parameter, which is used to
determine the search direction, with respect to that of the Dai-Yuan method
is in a certain range (Theorem 3.2). We provide two examples which satisfy
such a condition. In numerical experiments, we show that our hybrid methods
outperform the Dai-Yuan and Polak-Ribière-Polyak methods.

This paper is organized as follows. Section 2 reviews the fundamentals of
Riemannian geometry and Riemannian optimization. Section 3 proposes the hy-
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brid Riemannian conjugate gradient methods and presents global convergence
analyses for them. Section 4 compares our methods with the existing Rieman-
nian conjugate gradient methods through numerical experiments. Section 5
concludes the paper with mention of future work.

2 Riemannian Conjugate Gradient Methods

Let us start by reviewing the nonlinear conjugate gradient methods in Euclidean
space. The search direction ηk of the nonlinear conjugate gradient method is
determined by η0 = −∇f(x0) and

ηk+1 = −∇f(xk+1) + βk+1ηk, (1)

where x0 ∈ R
n, β0 = 0, and βk is a parameter to be suitably defined. Well-

known formulas for βk are the Fletcher-Reeves (FR) [7], Dai-Yuan (DY) [4],
Polak-Ribière-Polyak (PRP) [13], and Hestenes-Stiefel (HS) [10] formulas, given
by

βFR
k =

‖∇f(xk)‖
2

‖∇f(xk−1)‖
2 , (2)

βDY
k =

‖∇f(xk)‖
2

η⊤k−1yk−1
, (3)

βPRP
k =

∇f(xk)
⊤yk−1

‖∇f(xk−1)‖
2 , (4)

βHS
k =

∇f(xk)
⊤yk−1

η⊤k−1yk−1
, (5)

respectively, where yk−1 = ∇f(xk)−∇f(xk−1).
In the Euclidean space setting, a line search optimization algorithm updates

the current iterate xk to the next iterate xk+1 with the updating formula,

xk+1 = xk + αkηk, (6)

where αk > 0 is a positive step size. One often chooses a step size αk > 0 to
satisfy the Wolfe conditions [22, 23], namely,

f(xk + αkηk) ≤ f(xk) + c1αk∇f(xk)
⊤ηk, (7)

∇f(xk + αkηk)
⊤ηk ≥ c2∇f(xk)

⊤ηk, (8)

where 0 < c1 < c2 < 1. When the step size satisfies the following condition,
which is a substitute of (8):

|∇f(xk + αkηk)
⊤ηk| ≤ c2|∇f(xk)

⊤ηk|, (9)

we call (7) and (9) the strong Wolfe conditions.
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In [5], Dai and Yuan proved that the method defined by (1) and (6) produces
a descent search direction at every iteration and converges globally if the step
size αk > 0 satisfies (7) and (8), and βk satisfies

−σ ≤
βk

βDY
k

≤ 1,

where σ := (1 − c2)/(1 + c2) and c2 is a constant in the second condition
(8). In this paper, we extend these choices of the parameter βk to Riemannian
manifolds.

Now we will briefly outline Riemannian optimization, especially the Rie-
mannian conjugate gradient method, by summarizing [2]. Moreover, we will
introduce relevant notation of Riemannian geometry.

Let (M, g) be a Riemannian manifold with a Riemannian metric g, and let
TxM be the tangent vector space of M at a point of x ∈ M . In addition, let
TM be the tangent bundle of M , which is defined by TM =

⋃

x∈M TxM . Let
f : M → R be a smooth objective function. Throughout this paper, to simplify
the notation, we will write the Riemannian metric g(·, ·) as 〈·, ·〉. Given a smooth
function f : M → R, the gradient of f at a point x ∈ M , denoted by gradf(x),
is defined as the unique element of TxM that satisfies

dfx(ξ) = 〈gradf(x), ξ〉x (ξ ∈ TxM).

An unconstrained optimization problem on a Riemannian manifold M is
expressed as follows:

Problem 2.1. Let f : M → R be smooth. Then, we would like to

minimize f(x),

subject to x ∈ M.

In order to generalize line search optimization algorithms to Riemannian
manifolds, we will use the notions of a retraction and vector transport (see [2]),
which are defined as follows:

Definition 2.1 (Retraction). Let M be a manifold and TM be a tangent bundle
of a manifold M . Any smooth map R : TM→M is called a retraction on M , if
it has the following properties.

• Rx(0x) = x, where 0x denotes the zero element of TxM ;

• With the canonical identification T0xTxM ≃ TxM , Rx satisfies DRx(0x)[ξ] =
ξ for all ξ ∈ TxM ,

where Rx denotes the restriction of R to TxM and DR is the differential of R
(see [2, Section 3]).

Definition 2.2 (Vector transport). Let M be a manifold and TM be a tangent
bundle of M . Any smooth map T : TM⊕TM→TM , where ⊕ denotes the
Whitney sum, is called vector transport on M , if it has the following properties.
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• There exists a retraction R, called the retraction associated with T , such
that Tη(ξ) ∈ TRx(η)M for all x ∈ M , and for all η, ξ ∈ TxM ;

• T0x(ξ) = ξ for all ξ ∈ TxM ;

• Tη(aξ + bζ) = aTη(ξ) + bTη(ζ) for all a, b ∈ R, and for all η, ξ, ζ ∈ TxM .

where Tη(ξ) denotes T (η, ξ).

In this paper, we will focus on the differentiated retraction T R as a vector
transport, defined by

T R
η (ξ) := DRx(η)[ξ] (ξ ∈ TxM), (10)

where x ∈ M and η ∈ TxM . It is easy to prove that T R satisfies the properties
of Definition 2.1 (see [2, Chapter 8]).

In Riemannian optimization, by using a retraction R and vector transport
T on M , we can generalize the updating formula (6) and the search direction
of the conjugate gradient method (1) to, respectively,

xk+1 = Rxk
(αkηk), (11)

ηk+1 = −gradf(xk+1) + βk+1Tαkηk
(ηk), (12)

where αk > 0 is a positive step size (see [2]). We call the search direction ηk a
descent direction if ηk satisfies

〈gradf(xk), ηk〉xk
< 0.

Moreover, the line search conditions (7) and (8) can be generalized to Rieman-
nian manifolds as follows:

f(Rxk
(αkηk)) ≤ f(xk) + c1αk 〈gradf(xk), ηk〉xk

, (13)

〈gradf(Rxk
(αkηk)),DRxk

(αkηk)[ηk]〉Rxk
(αkηk)

≥ c2 〈gradf(xk), ηk〉xk
, (14)

where 0 < c1 < c2 < 1 (see [15, 16]). We call (13) the Armijo condition.
Moreover, the second of the strong Wolfe conditions (9) can be rewritten as

∣

∣

∣
〈gradf(Rxk

(αkηk)),DRxk
(αkηk)[ηk]〉Rxk

(αkηk)

∣

∣

∣
≤ c2

∣

∣〈gradf(xk), ηk〉xk

∣

∣ . (15)

Sato and Iwai [16] introduced the notion of scaled vector transport. A scaled
vector transport of the k-th iterate T (k) associated with T R is defined by

T (k)
αkηk

(ηk) :=











T R
αkηk

(ηk), if
∥

∥T R
αkηk

(ηk)
∥

∥

xk+1

≤ ‖ηk‖xk
,

‖ηk‖xk
∥

∥T R
αkηk

(ηk)
∥

∥

Rαkηk
(ηk)

T R
αkηk

(ηk), otherwise.

(16)
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Note that scaled vector transport does not satisfy the properties of Definition
2.2. Thus, we cannot call this vector transport with mathematical exactitude;
however, by using scaled vector transport, we often obtain good convergence
properties for the Riemannian conjugate gradient methods.

Scaled vector transport T (k) satisfies the following inequalities:

∣

∣

∣

∣

〈

gradf(xk+1), T
(k)
αkηk

(ηk)
〉

xk+1

∣

∣

∣

∣

≤
∣

∣

∣

〈

gradf(xk+1), T
R
αkηk

(ηk)
〉

xk+1

∣

∣

∣
(17)

and
∥

∥

∥
T (k)
αkηk

(ηk)
∥

∥

∥

xk+1

≤ ‖ηk‖xk
. (18)

Now, we would like to verify that inequality (17) holds. From the definition of
scaled vector transport (16), we obtain

∣

∣

∣

∣

〈

gradf(xk+1), T
(k)
αkηk

(ηk)
〉

xk+1

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

gradf(xk+1), s
(k)T R

αkηk
(ηk)

〉

xk+1

∣

∣

∣

∣

,

where s(k) denotes

s(k) := min

{

1,
‖ηk‖xk

‖T R
αkηk

(ηk)‖xk+1

}

≤ 1.

Therefore, it follows that

∣

∣

∣

∣

〈

gradf(xk+1), T
(k)
αkηk

(ηk)
〉

xk+1

∣

∣

∣

∣

= s(k)
∣

∣

∣

〈

gradf(xk+1), T
R
αkηk

(ηk)
〉

xk+1

∣

∣

∣

≤
∣

∣

∣

〈

gradf(xk+1), T
R
αkηk

(ηk)
〉

xk+1

∣

∣

∣
,

which leads to (17). Obviously, (16) implies (18).
Throughout this paper, we will replace vector transport T by scaled vec-

tor transport T (k) in (12). Therefore, the (k + 1)-th search direction of the
Riemannian conjugate gradient method is determined by

ηk+1 = −gradf(xk+1) + βk+1T
(k)
αkηk

(ηk). (19)

In (19), βk+1 is also given by generalizations of the formulas (2), (3), (4), and
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(5), i.e.,

βFR
k =

‖gradf(xk)‖
2
xk

‖gradf(xk−1)‖2xk−1

, (20)

βDY
k =

‖gradf(xk)‖
2
xk

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

− 〈gradf(xk−1), ηk−1〉xk−1

, (21)

βPRP
k =

〈

gradf(xk), gradf(xk)− T
(k−1)
αk−1ηk−1

(gradf(xk−1)
〉

xk

‖gradf(xk−1)‖2xk−1

, (22)

βHS
k =

〈

gradf(xk), gradf(xk)− T
(k−1)
αk−1ηk−1

(gradf(xk−1)
〉

xk
〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

− 〈gradf(xk−1), ηk−1〉xk−1

. (23)

We call these formulas the Fletcher-Reeves, Dai-Yuan, Polak-Ribière-Polyak
and Hestenes-Stiefel formulas, respectively. In the next section, we propose a
new choice of βk.

In [16], Sato and Iwai proved that by using the scaled vector transport T (k)

substitute of T in (12) and a step size which satisfies the strong Wolfe conditions
(13) and (15), the Fletcher-Reeves type conjugate gradient method defined by
(11), (19), and (20) generates sequences that converge globally. Similarly, in
[15], Sato indicated that if we use scaled vector transport, with a step size
satisfying the Wolfe conditions, (13) and (14), the Dai-Yuan type conjugate
gradient method defined by (11), (19), and (21) generates globally convergent
sequences.

3 Riemannian Hybrid Conjugate Gradient Method

and Its Global Convergence Analysis

3.1 Proposed hybrid Riemannian conjugate gradient method

This section describes the Riemannian conjugate gradient descent method using
a hybrid βk, which exploits the idea described in [5].

Let rk be the size of βk with respect to βDY
k defined by (21), namely,

rk :=
βk

βDY
k

. (24)

We will prove that, for the method defined by (11) and (19), the search direction
ηk is a descent direction at every iteration and the method converges globally
if the step size αk > 0 satisfies the strong Wolfe conditions (13) and (15), and
the scalar βk is such that

−σ ≤ rk ≤ 1, (25)
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where σ := (1 − c2)/(1 + c2) > 0 and c2 denotes the constant in the second of
the strong Wolfe conditions (15). Furthermore, since the following two choices
of βk:

βk = max{0,min{βDY
k , βHS

k }} (26)

and

βk = max{−σβDY,min{βDY
k , βHS

k }} (27)

satisfy the condition (25), we can use either of these hybrid formulas βk de-
fined by (26) and (27) as the scalar in (19). The above two choices of βk are
examples of the hybrid methods in Euclidean space [5]. This implies that our
hybrid method is a generalization of the method in [5]. The parameter (26) is
used in the numerical experiments of [9, (43)] and [17, Table 1]. The hybrid
methods using (26) and (27) combine the good global convergence properties
of the Dai-Yuan method (21) with the efficient numerical performance of the
Hestenes-Stiefel method (23). Now, we note that, in Euclidean space, the hy-
brid methods using (26) and (27) converge globally under the Wolfe conditions
(7) and (8), whereas, on a Riemannian manifold, the hybrid methods need the
strong Wolfe conditions (13) and (15) to converge globally. In Section 4, we
provide a numerical evaluation showing that the Riemannian conjugate gradi-
ent methods with the hybrid βk defined by (26) and (27) perform better than
the Polak-Ribière-Polyak method.

3.2 Global convergence analysis

Zoutendijk’s theorem is described on Riemannian manifolds as follows:

Theorem 3.1 (Zoutendijk [14]). Let (M, g) be a Riemannian manifold and R
be a retraction on M. Let f : M → R be a smooth, bounded below function with
the following property: there exists L > 0 such that

|D(f ◦Rx)(tη)[η] −D(f ◦Rx)(0x)[η]| ≤ Lt (η ∈ TxM, ‖η‖x = 1, x ∈ M, t ≥ 0) .

Suppose that in the line search optimization algorithm (11), each step size αk >
0 satisfies the strong Wolfe conditions (13) and (15), and each search direction
ηk is a descent direction. Then the following series converges:

∞
∑

k=0

〈gradf(xk), ηk〉
2
xk

‖ηk‖2xk

< ∞. (28)

The proof of this theorem is along the lines of Zoutendijk’s theorem in Eu-
clidean space (see [14, Theorem 3.3]). Next, we will prove the main convergence
theorem.

Theorem 3.2. Let f : M → R be a function satisfying the assumptions of
Zoutendijk’s theorem. If each αk > 0 satisfies the strong Wolfe conditions (13)
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and (15), and if βk is such that1 −σ ≤ rk ≤ 1, then any sequence {xk} generated
by the Riemannian conjugate gradient method defined by (11) and (19) satisfies

lim inf
k→∞

‖gradf(xk)‖xk
= 0. (29)

Let us start with a brief outline of the proof strategy of Theorem 3.2, with an
emphasis on the main difficulty that has to be overcome in order to generalize the
proof in [5, Theorem 2.3] to manifolds. The flow of our proof is the same as in [5].
First, we show that the search direction in each iteration of the hybrid methods
is the descent direction. Therefore, the assumption, ”each search direction ηk is
a descent direction”, of Zoutendijk’s theorem is satisfied. Then, assuming that
equation (29) does not hold, the proof is completed by deriving a contradiction.

In general Riemannian manifolds, the inner product of tangent vectors at
different points cannot be defined, so the inner product is taken using scaled vec-
tor transport. However, the use of scaled vector transport causes a problem that
does not occur in Euclidean space. Specifically, the absolute value is required
for the inequality in (36) when generalizing to the Riemannian manifold.

Theorem 3.2. If gradf(xk0
) = 0 for some k0, then (29) follows. Thus, it is

sufficient to prove (29) only when gradf(xk) 6= 0 for all k ≥ 0.
First, we prove that each search direction ηk is a descent direction by induc-

tion. For η0 = −gradf(x0), it is obvious that η0 is a descent direction.
Assume that ηk−1 is a descent direction. Then, we find that

〈gradf(xk), ηk〉xk

=
〈

gradf(xk),−gradf(xk) + βkT
(k−1)
αk−1ηk−1(ηk−1)

〉

xk

= −‖gradf(xk)‖
2
xk

+ rk

‖gradf(xk)‖
2
xk

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk
〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

− 〈gradf(xk−1), ηk−1〉xk−1

=
〈gradf(xk−1), ηk−1〉xk−1

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

− 〈gradf(xk−1), ηk−1〉xk−1

‖gradf(xk)‖
2
xk

+
(rk − 1)

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk
〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

− 〈gradf(xk−1), ηk−1〉xk−1

‖gradf(xk)‖
2
xk

(30)

where the first equation comes from (19) and the second equation comes from
βk = rkβ

DY
k and (21). Accordingly, (21) ensures that

〈gradf(xk), ηk〉xk

=

{

〈gradf(xk−1), ηk−1〉xk−1
+ (rk − 1)

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

}

βDY
k ,

1The formulas defined by (26) and (27) satisfy −σ ≤ rk ≤ 1.
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which, together with (24), implies that

βk = rkβ
DY
k

=
rk 〈gradf(xk), ηk〉xk

〈gradf(xk−1), ηk−1〉xk−1
+ (rk − 1)

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

.

Let lk and ξk be

lk :=

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

〈gradf(xk−1), ηk−1〉xk−1

, (31)

ξk :=
rk

1 + (rk − 1)lk
. (32)

Using (31) and (32), we obtain

βk = rkβ
DY
k

= ξk
〈gradf(xk), ηk〉xk

〈gradf(xk−1), ηk−1〉xk−1

. (33)

Furthermore, let ζk be

ζk :=
1 + (rk − 1)lk

lk − 1
. (34)

Then, (30) guarantees that

〈gradf(xk), ηk〉xk
= ζk ‖gradf(xk)‖

2
xk

. (35)

On the other hand, since αk satisfies the strong Wolfe conditions, (15) implies
that

∣

∣

∣

〈

gradf(xk),DRxk−1
(αk−1ηk−1)[ηk−1]

〉

xk

∣

∣

∣
≤ c2

∣

∣

∣
〈gradf(xk−1), ηk−1〉xk−1

∣

∣

∣
,

which, together with (10), (17) and (31) implies that

|lk| =

∣

∣

∣

∣

〈

gradf(xk), T
(k−1)
αk−1ηk−1

(ηk−1)
〉

xk

∣

∣

∣

∣

∣

∣

∣
〈gradf(xk−1), ηk−1〉xk−1

∣

∣

∣

≤

∣

∣

∣

∣

〈

gradf(xk), T
R
αk−1ηk−1

(ηk−1)
〉

xk

∣

∣

∣

∣

∣

∣

∣
〈gradf(xk−1), ηk−1〉xk−1

∣

∣

∣

=

∣

∣

∣

〈

gradf(xk),DRxk−1
(αk−1ηk−1)[ηk−1]

〉

xk

∣

∣

∣

∣

∣

∣
〈gradf(xk−1), ηk−1〉xk−1

∣

∣

∣

≤ c2.

(36)
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This means |lk| ≤ c2 < 1, which implies lk − 1 < 0. Similar to equation (2.18)
in [5], we obtain 1 + (rk − 1)lk > 0. Hence,

ζk =
1 + (rk − 1)lk

lk − 1
< 0,

which, together with (35), implies that ηk is a descent direction. Thus, induction
shows that each ηk is a descent direction.

Finally, we prove (29) by contradiction. Assume that

lim inf
k→∞

‖gradf(xk)‖xk
> 0.

Then, noting ‖gradf(xk)‖xk
6= 0 for all k, there exists γ > 0 such that

‖gradf(xk)‖xk
≥ γ > 0.

for all k. Since (19) means that

ηk + gradf(xk) = βkT
(k−1)
αk−1ηk−1

(ηk−1),

taking the norms of the above equation and its square, it follows that

‖ηk‖
2
xk

= β2
k‖T

(k−1)
αk−1ηk−1

(ηk−1)‖
2
xk

− 2 〈gradf(xk), ηk〉xk
− ‖gradf(xk)‖

2
xk
.

Similar to equation (2.21) in [5], by dividing both sides of the above equation

by 〈gradf(xk), ηk〉
2
xk

6= 0, (33) and (35) give,

‖ηk‖
2
xk

〈gradf(xk), ηk〉
2
xk

= ξ2k
‖T

(k−1)
αk−1ηk−1

(ηk−1)‖
2
xk

〈gradf(xk−1), ηk−1〉
2
xk−1

+
1

‖gradf(xk)‖2xk

{

1−

(

1 +
1

ζk

)2
}

.

(37)

Similar to equation (2.24) in [5], we obtain

|1 + (rk − 1)lk| ≥ |rk|,

which, together with (32), implies

|ξk| ≤ 1.

From the above inequality with (37) and (18), we obtain

‖ηk‖
2
xk

〈gradf(xk), ηk〉
2
xk

≤
‖T

(k−1)
αk−1ηk−1

(ηk−1)‖
2
xk

〈gradf(xk−1), ηk−1〉
2
xk−1

+
1

‖gradf(xk)‖2xk

≤
‖ηk−1‖

2
xk−1

〈gradf(xk−1), ηk−1〉
2
xk−1

+
1

‖gradf(xk)‖2xk

.
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Using the above inequality recursively and noting the hypothesis, ‖gradf(xk)‖xk
≥

γ > 0, and ‖η0‖
2
x0

= ‖gradf(x0)‖
2
x0
, it follows that

‖ηk‖
2
xk

〈gradf(xk), ηk〉
2
xk

≤

k
∑

i=0

1

‖gradf(xi)‖2xi

≤

k
∑

i=0

1

γ2
=

k + 1

γ2
.

This means

〈gradf(xk), ηk〉
2
xk

‖ηk‖2xk

≥
γ2

k + 1
,

which indicates

∞
∑

k=0

〈gradf(xk), ηk〉
2
xk

‖ηk‖2xk

≥

∞
∑

k=0

γ2

k + 1
= ∞.

This contradicts (28) in Zoutendijk’s theorem and completes the proof.

4 Numerical Experiments

This section compares the performances of the existing Riemannian conjugate
gradient methods with those of the proposed methods. We solved 7 types of
Riemann optimization problems (Problem 4.1–4.7) on several manifolds and
objective functions. We solved these problems 10 times with each algorithm,
that is, 70 times in total. Then, we calculated a performance profile [6] for
each algorithm to show the advantages of our algorithms. Our experiments
used the source code of pymanopt (https://github.com/pymanopt, see [20]).
In particular, the Riemannian conjugate gradient method was implemented in
pymanopt, so we changed only the parameter βk for the experiments.

4.1 The Rayleigh-quotient minimization problem on the

unit sphere

Problem 4.1 is the Rayleigh-quotient minimization problem on the unit sphere
(see [2, Chapter 4.6]). The optimal solutions of Problem 4.1 are the unit eigen-
vectors of A associated with the smallest eigenvalue (see [2, Chapter 2]).

Problem 4.1. For A ∈ Sn
++,

minimize f(x) = x⊤Ax,

subject to x ∈ S
n−1 := {x ∈ R

n : ‖x‖ = 1},

where Sn
++ denotes the set of all symmetric positive-definite matrices.

In the experiments, we set n = 100 and generated a matrix A ∈ Sn
++ with

randomly chosen elements by using sklearn.datasets.make spd matrix.

12

https://github.com/pymanopt


4.2 Computation of Stability Number

For an undirected graph G, a stable set in G is a set of vertices, which are
mutually nonadjacent. We define S(G) as the size of a maximum stable set in
G. In [12], Motzkin and Straus showed that the computation of the stability
number of graphs problem is equivalent to Problem 4.2. Specifically, the value
of the objective function in the global optimal solution of Problem 4.2 is equal
to S(G)−1. In addition, Yuan, Gu, Lai, and Wen [24, Section 5.3] considered
the problem as a Riemannian optimization problem.

Problem 4.2. Let G = (V,E) be an undirected graph.

minimize f(x) =

n
∑

i=1

x4
i + 2

∑

(i,j)∈E

x2
ix

2
j ,

subject to x ∈ S
n−1 := {x ∈ R

n : ‖x‖ = 1},

where n = |V | and ‖·‖ denotes the Euclidean norm.

In the experiments, we set n = 20 and generated a graph G = (V,E) ran-
domly by using networkx.fast gnp random graph. Here, we set the probability
for edge creationto 1/4.

4.3 The brockett-cost-function minimization problem on

a Stiefel manifold

Problem 4.3 is the Brockett-cost-function minimization problem on a Stiefel
manifold (see [2, Chapter 4.8]).

Problem 4.3. For A ∈ Sn
++ and N = diag(µ0, · · · , µp) (0 ≤ µ0 ≤ · · · ≤ µp),

minimize f(X) = tr(X⊤AXN)

subject to X ∈ St(p, n) := {X ∈ R
n×p : X⊤X = Ip}.

In the experiments, we set p = 5, n = 20 and N := diag(1, · · · , p) and gener-
ated a matrixA ∈ Sn

++ with randomly chosen elements by using sklearn.datasets.make spd matrix.

4.4 The closest unit norm column approximation problem

Problem 4.4 is the closest unit norm column approximation problem, whose im-
plementation is given in pymanopt/examples/closest unit norm column approximation.py.

Problem 4.4. For A ∈ R
m×n,

minimize f(X) = ‖X −A‖
2
F

subject to X ∈ OB(m,n) := {X ∈ R
m×n : ddiag(X⊤X) = Im},

where ‖·‖F denotes the Frobenius norm and ddiag(X) denotes a diagonal matrix
whose diagonal elements are those of X.

In the experiments, we set m = 10 and n = 1000 and generated a matrix
A ∈ R

m×n with randomly chosen elements by using numpy.random.randn.
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4.5 Off-diagonal cost function minimization

In [1, Section 3], Absil and Gallivan introduced a cost function on oblique man-
ifolds, which is an off-diagonal cost function written as

f(X) :=

N
∑

i=1

∥

∥X⊤CiX − ddiag(X⊤CiX)
∥

∥

2

F
,

where Ci (i = 1, 2, · · · , N) are symmetric matrices. Problem 4.5 is one of
minimizing the off-diagonal cost function on an oblique manifold.

Problem 4.5. For Ci ∈ Sn (i = 1, · · · , N),

minimize f(X) =

N
∑

i=1

∥

∥X⊤CiX − ddiag(X⊤CiX)
∥

∥

2

F

subject to X ∈ OB(n, p) := {X ∈ R
n×p : ddiag(XTX) = Ip},

where Sn denotes the set of all symmetric matrices.

In the experiments, we set N = 5, n = 10 and p = 5 and generated 5
matrices Bi ∈ R

n×n (i = 1, 2, · · · , 5) with randomly chosen elements by using
numpy.random.randn. We set symmetric matrices Ci ∈ Sn asCi := (Bi+B⊤

i )/2
(i = 1, 2, · · · , 5).

4.6 The low-rank matrix approximation problem

Problem 4.6 is the low-rank matrix approximation problem whose implementa-
tion is given in pymanopt/examples/low rank matrix approximation.py.

Problem 4.6. For A ∈ R
m×n,

minimize f(X) = ‖X −A‖
2
F ,

subject to X ∈ Mk := {X ∈ R
m×n : rank(X) = k}.

In the experiments, we set m = 100, n = 80 and k = 4 and generated a ma-
trix A ∈ R

m×n with randomly chosen elements by using numpy.random.randn.

4.7 The robust matrix completion problem

Problem 4.7 is the robust matrix completion problem, discussed by Vanderey-
cken [21, Section 1.1 (1.5)].

Problem 4.7. For A ∈ R
m×n, and a subset Ω of the complete set of entries

{1, · · · ,m} × {1, · · · , n},

minimize f(X) = ‖PΩ(X − A)‖
2
F ,

subject to X ∈ Mk := {X ∈ R
m×n : rank(X) = k},

14



where

PΩ : Rm×n → R
m×n, Xij 7→

{

Xij (i, j) ∈ Ω

0 (i, j) 6∈ Ω
.

In the experiments, we set m = 10, and m = 8 and k = 4, and Ω contained
each pair (i, j) ∈ {1, · · · ,m} × {1, · · · , n} with probability 1/2. Moreover, we
used a matrix A ∈ R

m×n that was generated with randomly chosen elements
by using numpy.random.randn.

We used line search algorithms for the strong Wolfe conditions (13) and (15)
with c1 = 0.0001 and c2 = 0.9. We determined that a sequence had converged
to an optimal solution if the stopping condition,

‖gradf(xk)‖xk
< 10−6

was satisfied.
The experiments used a MacBook Air (2017) with a 1.8 GHz Intel Core i5,

8 GB 1600 MHz DDR3 memory, and macOS Mojave version 10.14.5 operating
system. The algorithms were written in Python 3.7.6 with the NumPy 1.17.3
package and the Matplotlib 3.1.1 package. We modified the strong Wolfe line
search provided as scipy.optimize.line search in the SciPy package, to compute
the step size in (11).

For comparison, we chose two Riemannian conjugate gradient methods, i.e.,
the Dai-Yuan method (21) and the Polak-Ribière-Polyak method (22). Below,
we call the hybrid methods using (26) and (27), Hybrid1 and Hybrid2, respec-
tively.

Table 1 and 2 summarize the results such as the average and median values
of the above 70 experiments. In particular, Table 1 shows summary statistics
for the number of iterations and Table 2 shows those for the elapsed time. From
Table 1 and 2, we can see that the hybrid methods converge to optimal solutions
in fewer iterations and in less time than the DY and PRP methods.

Table 1: Summary statistics on the iteration of 70 experiments of the Rieman-
nian optimization problems.

DY PRP Hybrid1 Hybrid2

mean 1438.7 399.9 212.2 235.0
std 1765.9 513.8 217.0 212.0
min 46 21 20 20

median 570.5 161 129 135
max 7061 2037 952 803

Then, we calculate the performance profiles [6]. The performance pro-
file Ps : R → [0, 1] is defined as follows: let P and S be the set of prob-
lems and solvers, respectively. For each p ∈ P and s ∈ S, we define t :=
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Table 2: Summary statistics on the elapsed time of 70 experiments of the Rie-
mannian optimization problems.

DY PRP Hybrid1 Hybrid2

mean 18.70 4.39 2.56 2.91
std 26.22 4.53 2.13 2.46
min 0.43 0.14 0.15 0.14

median 10.34 2.74 2.31 2.44
max 147.46 20.95 10.74 11.42

(computing time required to solve problem p by solver s). We define the per-
formance ratio rp,s as

rp,s :=
tp,s

mins′∈S tp,s′
.

Next, we define the performance profile, for all τ ∈ R, as

Ps(τ) :=
size{p ∈ P : rp,s ≤ τ}

sizeP
,

where sizeA denotes the number of elements of a set A.
Figure 1 plots the performance profile of each algorithm versus the number

of iterations. It shows that the hybrid methods have much higher performance
than the DY method. Moreover, the hybrid methods outperform the PRP
method. Also, it can be seen that Hybrid1 is superior to Hybrid2. Figure 2
plots the performance profiles of each algorithm versus the elapsed time. We
can see that the hybrid methods are superior to both DY and PRP. In particular,
they perform much better than the DY method. In addition, Hybrid1 is again
superior to Hybrid2.

5 Conclusion and Future Work

This paper presented hybrid Riemannian conjugate gradient methods and
showed their global convergence properties. It compared them numerically with
the existing Riemannian conjugate gradient methods on several Riemannian op-
timization problems. The results of the numerical experiments demonstrated
the efficiency of the hybrid methods.

Various hybrid conjugate methods have been proposed for Euclidean space,
such as

βk = max{0,min{βPRP
k , βFR

k }}.

The hybrid conjugate methods in Euclidean space are summarized in [8]. We
will present more hybrid methods and convergence analyses in a future paper.
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Figure 1: Performance profile versus number of iterations.
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Figure 2: Performance profile versus elapsed time.
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