Skip to main content
Log in

Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the case of singular (and possibly even nonisolated) solutions of nonlinear equations, while superlinear convergence of the Newton method cannot be guaranteed, local linear convergence from large domains of starting points still holds under certain reasonable assumptions. We consider a linesearch globalization of the Newton method, combined with extrapolation and over-relaxation accelerating techniques, aiming at a speed up of convergence to critical solutions (a certain class of singular solutions). Numerical results indicate that an acceleration is observed indeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena, Belmont (1999)

    MATH  Google Scholar 

  2. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  3. Facchinei, F., Fischer, A., Herrich, M.: A family of Newton methods for nonsmooth constrained systems with nonisolated solutions. Math. Meth. Oper. Res. 77, 433–443 (2013)

    Article  MathSciNet  Google Scholar 

  4. Facchinei, F., Fischer, A., Herrich, M.: An LP-Newton method: Nonsmooth equations, KKT systems, and nonisolated solutions. Math. Program. 146, 1–36 (2014)

    Article  MathSciNet  Google Scholar 

  5. Fan, J.-Y., Yuan, Y.-X.: On the quadratic convergence of the Levenberg-Marquardt method. Computing 74, 23–39 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fernández, D., Solodov, M.: Stabilized sequential quadratic programming for optimization and a stabilized Newton-type method for variational problems. Math. Program. 125, 47–73 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fischer, A.: Local behavior of an iterative framework for generalized equations with nonisolated solutions. Math. Program. 94, 91–124 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fischer, A., Izmailov, A.F., Solodov, M.V.: Unit stepsize for the Newton method close to critical solutions. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01496-z

    Article  Google Scholar 

  9. Griewank, A.: Analysis and modification of Newton’s method at singularities. PhD Thesis. Australian National University, Canberra, (1980)

  10. Griewank, A.: Starlike domains of convergence for Newton’s method at singularities. Numer. Math. 35, 95–111 (1980)

    Article  MathSciNet  Google Scholar 

  11. Griewank, A.: On solving nonlinear equations with simple singularities or nearly singular solutions. SIAM Rev. 27, 537–563 (1985)

    Article  MathSciNet  Google Scholar 

  12. Izmailov, A.F., Solodov, M.V.: Stabilized SQP revisited. Math. Program. 122, 93–120 (2012)

    Article  MathSciNet  Google Scholar 

  13. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  14. Marquardt, D.W.: An algorithm for least squares estimation of non-linear parameters. SIAM J. 11, 431–441 (1963)

    MATH  Google Scholar 

  15. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: Critical solutions of nonlinear equations: Local attraction for Newton-type methods. Math. Program. 167, 355–379 (2018)

    Article  MathSciNet  Google Scholar 

  16. Izmailov, A.F., Kurennoy, A.S., Solodov, M.V.: Critical solutions of nonlinear equations: Stability issues. Math. Program. 168, 475–507 (2018)

    Article  MathSciNet  Google Scholar 

  17. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer Series in Operations Research and Financial Engineering. Springer, Switzerland (2014)

    Book  Google Scholar 

  18. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MathSciNet  Google Scholar 

  19. Schnabel, R.B., Frank, P.D.: Tensor methods for nonlinear equations. SIAM J. Numer. Anal. 21, 815–843 (1984)

    Article  MathSciNet  Google Scholar 

  20. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11, 253–275 (1998)

    Article  MathSciNet  Google Scholar 

  21. Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis, pp. 239–249. Springer, Vienna (2001)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 409756759, by the Russian Foundation for Basic Research Grants 19-51-12003 NNIO_a and 20-01-00106, by CNPq Grant 303913/2019-3, by FAPERJ Grant E-26/202.540/2019, by PRONEX–Optimization, and by Volkswagen Foundation. The authors thank Ivan Rodin and Dmitriy Bannikov for their assistance with numerical experiments, and the two anonymous referees for helpful comments on the original version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Izmailov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, A., Izmailov, A.F. & Solodov, M.V. Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations. Comput Optim Appl 78, 273–286 (2021). https://doi.org/10.1007/s10589-020-00230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00230-x

Keywords

Mathematics Subject Classifications

Navigation