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T-positive semidefiniteness of third-order symmetric

tensors and T-semidefinite programming
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Abstract

The T-product for third-order tensors has been used extensively in the literature.
In this paper, we first introduce the first-order and second-order T-derivatives for
the multi-vector real-valued function with the tensor T-product; and inspired by
an equivalent characterization of a twice continuously T-differentiable multi-vector
real-valued function being convex, we present a definition of the T-positive semidefi-
niteness of third-order symmetric tensors. After that, we extend many properties of
positive semidefinite matrices to the case of third-order symmetric tensors. In par-
ticular, analogue to the widely used semidefinite programming (SDP for short), we
introduce the semidefinite programming over the third-order symmetric tensor space
(T-semidefinite programming or TSDP for short), and provide a way to solve the
TSDP problem by converting it into an SDP problem in the complex domain. Fur-
thermore, we give several examples which can be formulated (or relaxed) as TSDP
problems, and report preliminary numerical results for two unconstrained polyno-
mial optimization problems. Experiments show that finding the global minimums
of polynomials via the TSDP relaxation outperforms the traditional SDP relaxation
for the test examples.
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1 Introduction

With the availability of inexpensive storage and advances in instrumentation, the data col-
lected and stored now is more complex than ever before. Especially in practical problems
such as psychometrics, signal processing, computer vision, data mining, graphical analysis,
neuroscience and so on, it is usually necessary to store information in a multidimensional
array, and then use the multidimensional structure to compress, sort, and/or manipulate
the data. Among the many problems described by high-dimensional arrays (or tensors),
third-order tensors have become increasingly prevalent in recent years with the emergence
of the tensor T-product, which is a new type of multiplication between third-order tensors
introduced by Kilmer, Martin, and Perrone [1]. The tensor T-product has shown to be
a useful tool arising in a wide variety of application areas, including, but not limited to,
image processing [2–7], computer vision [8–12], signal processing, low rank tensor recovery
and robust tensor PCA [13–18], and data completion and denoising [19–31], because the
tensor T-product provides an effective approach to transform the tensor multiplication
into block diagonal matrix multiplication in the discrete Fourier domain.

Since Kilmer, Martin, and Perrone [1] introduced the new type of multiplications
between two third-order tensors so as to devise new types of factorizations for tensors to
be easily used in applications, the exploration of the algebraic properties of T-products
has been in progress. Specifically, in [32] some factorization strategies were established for
third-order tensors via the tensor T-product. In [33] and [3], the authors provided useful
frameworks to better view the action of the third-order tensors upon a set of matrices.
In [34], a lot of familiar tools of linear algebra were extended to the third-order tensors,
including the T-Jordan canonical form, tensor decomposition theory, T-group inverse and
T-Drazin inverse, and so on. In addition, Lund [35] proposed the definition of tensor
functions based on the T-product of third-order F-square tensors, which was found to
be of great use in stable tensor neural networks for rapid deep learning [36], and then
Miao, Qi and Wei generalized the tensor T-function from F-square third order tensors to
rectangular tensors in [37].

It is well known that the positive (semi)definite (P(S)D for short) matrix is an impor-
tant class of matrices, which has a wealth of theoretical results and applications. Actually,
P(S)D matrices can be used for inequality proof, eigenvalue solving, extremum solving,
system stability discrimination, and so on. As a result, P(S)D matrices have been applied
in various fields, such as numerical analysis, optimization theory, probability and statistics,
operations research, control theory, mechanics, electricity, information science and tech-
nology, management science and engineering, and so on. More information about P(S)D
matrices can refer to the monographs [38, 39]. In addition, the semidefinite programming
(SDP for short) as one of the important applications of PSD matrices has received ex-
tensive attention. Especially with the appearance of some effective algorithms for SDP
problems [40–42], SDP problems have been increasingly arisen in practical applications.
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There are rich and mature results for SDPs in both theory and algorithms. See [43–45]
and references therein.

Motivated by that mentioned above, we extend the positive (semi)definiteness of matri-
ces and the SDP problem to the case of third-order tensors. Our contribution is threefold:

1) We explore the Fréchet derivatives of the multi-vector real-valued function based
on the inner product and the tensor T-product. We establish the necessary and
sufficient conditions for a multi-vector real-valued function being first-order and
second-order T-differentiable, respectively, and present the exact forms of the T-
derivatives. In particular, we propose a second-order condition to judge the convexity
of the multi-vector real-valued function under the premise that the function is twice
continuously T-differentiable.

2) We give a definition of a third-order symmetric tensor being T-positive semidefinite
(T-PSD for short) inspired by the second-order T-derivative, and show that the
new definition is equivalent to the one given by [3, Definition 2.7] and the one
by [34, Definition 15] in real case. In particular, we show that the set of symmetric
T-PSD tensors is a nonempty, closed, convex, pointed and self-dual cone, and extend
many properties of PSD matrices to the case of third-order T-PSD tensors, including
some results related to the T-eigenvalue decomposition, the T-roots, the T-Schur
complement, and so on.

3) As an important application of the T-positive semidefiniteness of third-order sym-
metric tensors, we introduce the semidefinite programming over the third-order sym-
metric tensor space (T-semidefinite programming or TSDP for short) and show that
a TSDP problem of size m ˆ m ˆ p can be transformed into an SDP problem with
p`1

2
or p`2

2
blocks of matrices of m ˆ m in the complex domain. Then we present

several examples which can be modeled (or relaxed) as TSDPs, such as minimizing
the maximum T-eigenvalue of a third-order tensor, minimizing the spectral norm
of a third-order tensor, minimizing the nuclear norm of a third-order tensor, inte-
ger quartic programming and calculating the global lower bound of a polynomial.
Besides, we report preliminary numerical results for solving the unconstrained poly-
nomial optimization problem via the TSDP relaxation, which can achieve higher
accuracy and consume less time compared with the traditional SDP relaxation.

The rest of our paper is organized as follows. In Section 2, some notation and basic
results are reviewed. In Section 3, we explore the T-derivatives for the multi-vector real-
valued function and the relationship between a new type of tensors: the T-Hessian Tensor
and convexity of the multi-vector real-valued function. In Section 4, we give the definition
of the symmetric T-PSD tensor, then discuss some characterizations and properties of
symmetric T-PSD tensors, and investigate the set of T-PSD tensors. In Section 5, we
introduce and study the TSDP; and convert the TSDP into the corresponding SDP in the
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complex domain. We also present several examples for applications and report preliminary
numerical results. Finally, we sum up the conclusions and do some further discussions in
Section 6.

2 Preliminary

In this section, we give some notation and basic results.

2.1 Notation

Throughout this paper, we use small letters a, b, . . . for scalars, small bold letters a,b, . . .
for vectors, capital letters A,B, . . . for sets, capital bold letters A, B, . . . for matrices,
and calligraphic letters A ,B, . . . for tensors. For any positive integer n, denote rns :“
t1, 2, . . . , nu. Let Rn :“ tx :“ px1, x2, . . . , xnqT : xi P R for all i P rnsu and Cn :“ tx :“
px1, x2, . . . , xnqT : xi P C for all i P rnsu where R (C) is the set of real (complex) numbers.
Letm, n and p be positive integers. Rmˆn and Rmˆnˆp denote the sets consisting of all real
matrices of size mˆn and all real tensors of size mˆnˆp, respectively. Let N denote the
set of nonnegative integers. For α P N

n, denote |α| :“ α1 ` α2 ` ¨ ¨ ¨ ` αn. For any x P R
n

and α P Nn, xα means xα1

1
¨ ¨ ¨xαn

n , and xT represents the transpose of x. For any A , B P
Rmˆnˆp, the inner product between A , B is denoted as A ‚B “ xA ,By :“ ř

i,j,k aijkbijk,

and the Frobenius norm associated with the above inner product is }A } “
?

A ‚ A .
Specially, any matrix A P Rnˆp can be regarded as a tensor A P Rnˆ1ˆp with the i-th
frontal slice of A being the i-th column of A for all i P rps.

Recall that a complex matrix A is said to be symmetric (Hermitian) if and only if
AT “ A (AH “ A), where AT (AH) represents the transpose (conjugate transpose) of
A. We denote the set consisting of all real symmetric (complex Hermitian) matrices of
size n ˆ n as SRnˆn (HCnˆn). For any x P C and X :“ pxijq P Cmˆn, x denotes the
conjugate of x and X :“ pxijq denotes the conjugate of the matrix X. Let U ľ pą

q0 represent that U is (Hermitian) positive semidefinite (positive definite) for any U P
HCnˆn, and SRnˆn

`` pSRnˆn
` q denote the set of all real symmetric positive (semi)definite

matrices of size n ˆ n, while HC
nˆn
`` pHC

nˆn
` q denotes the set of all complex Hermitian

positive (semi)definite matrices of size nˆn . “b” denotes the Kronecker product between
two matrices and “¨” means standard matrix product.
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2.2 Tensor T-product, transpose and inverse

For a third-order tensor A P Rmˆnˆp, a new perspective was proposed in [1,32] based on
treating A as a stack of frontal slices, which were denoted as Apkq P Rmˆn for all k P rps.
Furthermore, several operators on A P Rmˆnˆp were introduced as follows:

bcircpA q :“

»
———–

Ap1q Appq App´1q ¨ ¨ ¨ Ap2q

Ap2q Ap1q Appq ¨ ¨ ¨ Ap3q

...
. . .

. . .
. . .

...
Appq App´1q ¨ ¨ ¨ Ap2q Ap1q

fi
ffiffiffifl , unfoldpA q :“

»
———–

Ap1q

Ap2q

...
Appq

fi
ffiffiffifl ,

foldpunfoldpA qq :“ A , and bcirc´1pbcircpA qq :“ A .

With the help of the above operators, the following definitions and properties were
given in [3] (see also [1, 10, 32, 34]).

Definition 2.1. [3, Definition 2.5] (T-product) Let A P R
mˆnˆp and B P R

nˆsˆp be
two real tensors. Then the T-product A ˚ B is an m ˆ s ˆ p real tensor defined by
A ˚ B :“ foldpbcircpA qunfoldpBqq.

Definition 2.2. [3, Definition 2.7] (Transpose and conjugate transpose) If A is a third-
order tensor of size m ˆ n ˆ p, then the transpose A T is obtained by transposing each
of the frontal slices and then reversing the order of transposed frontal slices 2 through p.
The conjugate transpose A H is obtained by conjugate transposing each of the frontal slices
then reversing the order of transposed frontal slices 2 through p.

For any A P R
nˆnˆp, we say A is a symmetric tensor if and only if A T “ A . The set

consisting of all the real symmetric tensor of size nˆ n ˆ p is denoted by SRnˆnˆp.

Definition 2.3. [3, Definition 2.8,2.10] (Identity tensor and inverse) The n ˆ n ˆ p

identity tensor Innp is the tensor whose first frontal slice is the nˆn identity matrix Inˆn,
and whose other frontal slices are all zeroes. For a frontal square tensor A P Rnˆnˆp, we
say A is nonsingular if it has inverse tensor Bp“ A ´1q, provided that A ˚B “ B ˚A “
Innp.

It is easy to check that A ˚ Innp “ Immp ˚ A “ A for any A P Rmˆnˆp. In addition,
it should be noticed that the invertibility of the third-order frontal square tensor A is
equivalent to the invertibility of the matrix bcircpA q, which can be seen from the following
lemma [34, Lemma 3].

Lemma 2.1. Suppose that A P Rnˆnˆp and B P Rnˆsˆp. Then

(a) bcircpA ˚ Bq “ bcircpA qbcircpBq,
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(b) bcircpA qk “ bcircpA kq for all k P t0, 1, 2, . . .u,

(c) bcircpA Tq “ bcircpA qT, bcircpA Hq “ bcircpA qH .

In the rest of this paper, for simplicity, we will use the following notation: for any
Ai P Rmiˆniˆp and Vi P Rmiˆnˆp with i P rls, we denote

DiagpA1,A2, ¨ ¨ ¨ ,Alq :“

»
———–

A1

A2

. . .

Al

fi
ffiffiffifl , vecpV1,V2, ¨ ¨ ¨ ,Vlq :“

»
———–

V1

V2

...
Vl

fi
ffiffiffifl ,

and sometimes, they are abbreviated asDiagpAi : i P rlsq and vecpVi : i P rlsq, respectively.
When all Ai pViq become matrices (or vectors or scalars), similar symbols are also used.

Recall that each circular matrix A P Rnˆn can be diagonalized with the normalized
discrete Fourier transform (DFT) matrix [47], i.e., there exists a diagonal matrix D such
that A “ FH

n DFn, where Fn is the Fourier matrix of size nˆ n defined as

Fn “ 1?
n

»
———–

1 1 1 1 . . . 1
1 ω ω2 ω3 ¨ ¨ ¨ ωn´1

...
...

...
...

. . .
...

1 ωn´1 ω2pn´1q ω3pn´1q ¨ ¨ ¨ ωpn´1qpn´1q

fi
ffiffiffifl (2.1)

where ω “ e
2πi

n with i2 “ ´1. Similarly, block circular matrices can be block diagonalized
by using the Fourier transform. In [3], the authors showed that for any third-order tensor
A P Rmˆnˆp, there exists a block diagonal matrix DiagpAi : i P rpsq such that bcircpA q “
pFH

n b ImˆmqDiagpAi : i P rpsqpFp b Inˆnq, and pointed out the conjugate symmetry
between these block matrices Ai.

Lemma 2.2. [3] Let A P Rmˆnˆp be block diagonalized as

bcircpA q “ pFH
p b ImˆmqDiagpAi : i P rpsqpFp b Inˆnq, (2.2)

where Fp is the Fourier matrix defined by (2.1). Then, A1 P R
mˆn, Ai P C

mˆn and
Ai “ Ap`2´i for any i P rpszt1u. In particular, if A P SRnˆnˆp and Apiq P SRnˆn, then
Ai P Rnˆn for any i P rps and Ai “ Ap`2´i for any i P rpszt1u.
Remark 2.1. It should be noticed that, for any A P Rmˆnˆp which can be block diagonal-
ized as (2.2), most of the matrices Ai pi P rpsq may be complex because of the participating
of Fourier matrix Fp, and they satisfy the relationships: A1 P Rmˆn and Ai “ Ap`2´i for
any i P rpszt1u. It should be noted that most of the matrices Ai pi P rpsq may be complex
even when A is symmetric, since Apiq “ App`2´iq for any i P rpszt1u may not hold in
this case. On the other hand, it should be noticed that any Ai P Cmˆn with i P rps, which
satisfy the above relationships, can lead to a real tensor by the construction as (2.2).
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3 T-Hessian tensor and convexity of the multi-vector

real-valued function

As is well-known to us, the local curvature of a multi-variable real-valued function can be
characterized by the positive semidefiniteness of its Hessian matrix, which is widely used
in Newton-type methods for solving various optimization problems. In this section, we
generalize the Hessian matrix to the third-order tensor: T-Hessian tensor, and study the
discriminant condition of the convexity of the multi-vector real-valued function.

3.1 Derivatives of multi-vector real-valued functions

In this subsection, we explore the derivatives of multi-vector real-valued functions. The
tensor space is a normed linear space with inner product. In the following, we regard a
matrix as a third-order tensor and derive the multi-vector real-valued function with the
help of the inner product and tensor T-product. We adopt the Fréchet derivative: Let
V and W be normed vector spaces, and U Ď V be an open subset of V . A function
f : U Ñ W is called to be Fréchet differentiable at x P U if there exists a bounded linear
operator A : V Ñ W such that

lim
hÑ0

}fpx ` hq ´ fpxq ´ Aphq}W
}h}V

“ 0.

Recently, in [33] and [3], the authors showed that third-order tensors can be seen as
linear operators on a space of matrices with the help of the newly proposed tensor T-
product and obtained many good theoretical and computational results. Inspired by that,
we wonder whether or not can we adopt the third-order tensor as the linear operator in
the above definition of Fréchet derivative when the variety is a matrix? To this end, we
introduce the following definition first.

Definition 3.4. Let f : U Ď Rnˆ1ˆp Ñ R be a continuous map. Then, we say f is
T-differentiable at X P U if and only if there exists a third-order tensor ∇T fpX q such
that

lim
H ÑO

}fpX ` H q ´ fpX q ´ x∇T fpX q,H y}
}H } “ 0,

and we denote the first-order T-derivative of f at X as ∇T fpX q :“ Bf
BX

; and we say f is
twice T-differentiable at X P U if and only if f is continuously T-differentiable and there
exists a third-order tensor ∇2

T
fpX q such that

lim
H ÑO

}∇T fpX ` H q ´ ∇T fpX q ´ ∇2

T
fpX q ˚ H }

}H } “ 0,
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and we denote the second-order T-derivative of f at X as ∇2

T
fpX q :“ B∇T fpX q

BX
.

Furthermore, we say f is T-differentiable (twice T-differentiable) on U if and only if
f is T-differentiable (twice T-differentiable) at every X P U .

Remark 3.2. From the fact that the tensor T-product of two tensors of size m ˆ n ˆ p

reduces to the matrix multiplication when p “ 1, it follows that f : U Ď Rnˆ1ˆp Ñ R being
T-differentiable (twice T-differentiable) on U is equivalent to f being differentiable (twice
differentiable) on U when p “ 1.

Theorem 3.1. Let f be a continuous map from U Ď Rnˆ1ˆp to R. Then

(i) f is T-differentiable on U if and only if BfpX q
BrunfoldpX qs

exists for every X P U . Espe-

cially, for any X P U , ∇T fpX q “ foldr BfpX q
BrunfoldpX qs

s;

(ii) f is twice T-differentiable on U if and only if f is continuously T-differentiable on

U and Brunfoldp∇T fpX qs
BrunfoldpX qs

is a block circular matrix with each block being of size n ˆ n

for every X P U . In particular, ∇2

T
fppX qq “ bcirc´1r Brunfoldp∇T fpX qqs

BrunfoldpX qs
s for any

X P U .

Proof. (i) pñq: If f is T-differentiable on U , then for any X P U , there exists a bounded
operator L such that

lim
H ÑO

}fpX ` H q ´ fpX q ´ xL ,H y}
}H } “ 0,

which, together with xL ,H y “ xunfoldpL q, unfoldpH qy, implies that

lim
unfoldpH qÑO

}fpX ` H q ´ fpX q ´ xunfoldpL q, unfoldpH qy}
}unfoldpH q} “ 0.

Furthermore, by introducing gpunfoldpX qq :“ fpX q, we have that

lim
H ÑO

}grunfoldpX ` H qs ´ gpunfoldpX qq ´ xunfoldpL q, unfoldpH qy}
}unfoldpH q} “ 0,

which means that BrgpunfoldpX qqs
BrunfoldpX qs

“ unfoldpL q, i.e., BrfpX qs
BrunfoldpX qs

“ unfoldpL q. Thus,
BfpX q

BrunfoldpX qs
exists, and ∇T fpX q “ L “ foldr BfpX q

BrunfoldpX qs
s.

pðq: Reversing the above process, we can obtain that if BfpX q
BrunfoldpX qs

exists, then f is
T-differentiable on U .
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(ii) pñq: If f is twice T-differentiable on U , then f is continuously T-differentiable
and for any X P U , there exists a bounded operator L : Rnˆ1ˆp Ñ Rnˆ1ˆp such that

lim
H ÑO

}∇T fpX ` H q ´ ∇T fpX q ´ L ˚ H }
}H } “ 0,

which, together with }X } “ }unfoldpX q} for any X P Rnˆ1ˆp, implies that

lim
H ÑO

}unfoldr∇T fpX ` H qs ´ unfoldr∇T fpX qs ´ bcircpL qunfoldpH q}
}unfoldpH q} “ 0.

Denote h : Rnp Ñ Rnp with hrunfoldpX qs “ unfoldp∇T fpX qq, then we have that
Brunfoldp∇T fpX qs

BrunfoldpX qs
“ BrhrunfoldpX qs

BrunfoldpX qs
“ bcircpL q, which is a block circular matrix with each

block being of size n ˆ n. Thus Brunfoldp∇T fpX qs
BrunfoldpX qs

exists, and

∇2

T fpX q “ L “ bcirc´1rBrunfoldp∇T fpX qqs
BrunfoldpX qs s.

pðq: Reversing the above process, we can obtain the desired result.

In Theorem 3.1, we establish the necessary and sufficient conditions for a general
multi-vector real-valued function being T-differentiable and twice T-differentiable, respec-
tively, and we give the specific expressions when the derivatives exist. Then what are
the relationships between the derivatives obtained in this way and the derivatives in the
traditional sense? We construct an example to illustrate that.

Example 3.1. Given a map f : R2ˆ1ˆ2 Ñ R with for any X “ rxi1js P R2ˆ1ˆ2,

fpX q “ x2
111

` 2x111x112 ` x2
112

` x2
211

` x2
212
.

(1) First, we discuss the relationship between ∇f and ∇T f . By the traditional way,
we can obtain that

∇fpX q “
«

Bf
Bx111

Bf
Bx112

Bf
Bx211

Bf
Bx212

ff
“

„
2x111 ` 2x112 2x111 ` 2x112

2x211 2x212


.

Now, let us to seek the ∇T f by the procedure given in Theorem 3.1. Noting that
unfoldpX q “ rx111, x211, x112, x212sT, thus we can obtain that

BrfpX qs
BrunfoldpX qs

“ r Bf
Bx111

, Bf
Bx211

, Bf
Bx112

, Bf
Bx212

sT “ 2rx111 ` x112, x211, x111 ` x112, x212sT,

furthermore, we can get

∇T fpX q “ foldr BfpX q
BrunfoldpX qs

s “
„
2x111 ` 2x112 2x111 ` 2x112

2x211 2x212


“ ∇fpX q.
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(2) Next, we investigate the relationship between ∇2f and ∇2

T
f .

Since ∇fpX q is actually a matrix of size 2 ˆ 2 and X is also a matrix of size 2 ˆ 2,
thus by the traditional derivative, ∇2fpX q should be a tensor of fourth-order with the
elements being same as ones in the matrix A P R4ˆ4 where:

A “ Bp∇fpX qq
BX

“ rBp∇fpX qq
Bxij

s4ˆ4 “

»
——–

2 2 2 2
0 0 0 0
0 0 0 0
2 0 0 2

fi
ffiffifl .

While, by Theorem 3.1, we can get that

bcircp∇2

T fpX qq “ Brunfoldp∇T fpX qqs
BrunfoldpX qs “

»
——–

2 0 2 0
0 2 0 0
2 0 2 0
0 0 0 2

fi
ffiffifl

which is a block circular matrix and ∇2

T
fpX q is a tensor of size 2ˆ2ˆ2, with the frontal

slices being:

p∇2

T
fpX qqp1q “

„
2 0
0 2


and p∇2

T
fpX qqp2q “

„
2 0
0 0


.

Hence, ∇2f and ∇2

T
f are not coincide in the sizes, but it should be noticed that the

entries of ∇2f and these of bcircp∇2

T
qf are the same regardless of the orders.

Remark 3.3. (i) ∇2

T
fpX q is different from the traditional one due to the participation

of the T-product. Traditionally, the second-order derivative of a multi-vector real-valued
function is a fourth-order tensor. However, ∇2

T
fpX q turns out to be a third-order tensor,

which is also reasonable. Its rationality lies in that the existence of ∇2

T
fpX q via the T-

product needs such a condition that Brunfoldp∇fpX qs
BrunfoldpX qs

is a block circular matrix, which implies
that just getting the information of its first block column vector is enough. In other words,
it is enough to express the information of ∇2

T
fpX q by a third-order tensor in such case.

(ii) The ∇T fpX q is consistent with the traditional one. This is natural because
∇T fpX q and ∇fpX q are based on the coincide definition of inner product. So, we
use ∇fpX q to represent ∇T fpX q in the rest of paper.

3.2 The semidefiniteness of ∇2
T
fpX q and the convexity of fpX q

In this subsection, we investigate the second-order condition for any twice continuously
T-differentiable function f : U Ď Rnˆ1ˆp Ñ R being (strictly) convex. The definition of
the convex matrix function is as follows.
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Definition 3.5. [48] A function f : U Ď Rnˆp Ñ R is convex (strictly convex) if U is
a convex set, and for all X,Y P U (X,Y P U and X ‰ Y) and any θ with 0 ď θ ď 1,
fpθX ` p1 ´ θqYq ď păqθfpXq ` p1 ´ θqfpYq.

Since the first-order T-derivative is consistent with the traditional one for a multi-
vector real-valued function, it is not difficult to find that for any continuously T-differentiable
function f : U Ď R

nˆ1ˆp Ñ R, it is convex (strictly convex) if and only if for any X ,Y P U
(X ,Y P U and X ‰ Y ),

fpY q ě pąqfpX q ` x∇fpX q,Y ´ X y.

Below, in order to establish the second-order condition for any twice continuously T-
differentiable function f : U Ď Rnˆ1ˆp Ñ R being (strictly) convex, we first extend the
second-order Taylor expansion of the function of one variable to the multi-vector real-
valued function via the tensor T-product.

Theorem 3.2. Suppose that f : U Ď R
nˆ1ˆp Ñ R is twice continuously T-differentiable

on U . Then

(i) there exists β P p0, 1q such that

fpX q “ fp ĂX q ` x∇fp ĂX q,X ´ ĂX y ` 1

2
x∇2

T fpZ q ˚ pX ´ ĂX q,X ´ ĂX y,

where Z “ βX ` p1 ´ βq ĂX ;

(ii) the second-order T-Taylor expansion of f at ĂX as follows:

fpX q “ fp ĂX q ` x∇fp ĂX q,X ´ ĂX y
`1

2
x∇2

T
fp ĂX q ˚ pX ´ ĂX q,X ´ ĂX y ` op}X ´ ĂX }2q

and op}X ´ ĂX }2q means a high-order infinitesimal of }X ´ ĂX }2 as X Ñ ĂX .

Proof. (i) Construct a function of one variable as: ϕptq :“ fp ĂX ` tpX ´ ĂX qq for any

t P R. Then, ϕp0q “ fp ĂX q and ϕp1q “ fpX q. It follows from the condition that f is
twice continuously T-differentiable that ϕ is twice continuously differentiable. For any

11



t P R, let U “ ĂX ` tpX ´ ĂX q, then we have

ϕ1ptq “ dϕptq
dt

“ dfpU q
dt

“ x∇fpU q, dU

dt
y “ x∇fpU q, pX ´ ĂX qy

“ x∇fp ĂX ` tpX ´ ĂX qq, pX ´ ĂX qy;
ϕ2ptq “ dϕ1ptq

dt
“ dx∇fpU q,pX ´ ĂX qy

dt
“ xdp∇fpU qq

dt
, pX ´ ĂX qy

“ x∇2

T
fpU q˚dU

dt
,X ´ ĂX y

“ x bcircp∇2

T
fpU qq¨unfoldpdU q

dt
, unfoldpX ´ ĂX qy

“ xbcircp∇2

T
fpU qq ¨ unfoldpX ´ ĂX q, unfoldpX ´ ĂX qy

“ xunfoldp∇2

T
fpU q ˚ pX ´ ĂX qq, unfoldpX ´ ĂX qy

“ x∇2

T
fp ĂX ` tpX ´ ĂX qq ˚ pX ´ ĂX q,X ´ ĂX y.

Thus, ϕ1p0q “ x∇fp ĂX q,X ´ ĂX y and ϕ2p0q “ x∇2

T
fp ĂX q ˚ pX ´ ĂX q,X ´ ĂX y. It

follows from the mean value theorem, that there exists some β P p0, 1q such that ϕp1q “
ϕp0q ` ϕ1p0q ` 1

2
ϕ2pβq, which implies that

fpX q “ fp ĂX q ` x∇fp ĂX q,X ´ ĂX y ` 1

2
x∇2

T
fpZ q ˚ pX ´ ĂX q,X ´ ĂX y,

where Z “ βX ` p1 ´ βq ĂX , i.e., the result in (i) holds.

(ii) Denote Y :“ X ´ ĂX
}X ´ ĂX }

and γ1 :“ }X ´ ĂX }. Let ψpγq :“ fp ĂX `γY q for any γ P R,

then by the same way as piq, we have ψp0q “ fp ĂX q, ψpγ1q “ fpX q,

ψ1p0qγ1 “ x∇fp ĂX q,X ´ ĂX y and ψ2p0qγ12 “ x∇2

T fp ĂX q ˚ pX ´ ĂX q,X ´ ĂX y,

which, together with ψpγ1q “ ψp0q ` ψ1p0qγ1 ` 1

2
ψ2p0qγ12 ` op}γ1}2q, imply that

fpX q “ fp ĂX q ` x∇fp ĂX q ˚ pX ´ ĂX q,X ´ ĂX y
`1

2
x∇2

T
fp ĂX q ˚ pX ´ ĂX q,X ´ ĂX y ` op}X ´ ĂX }2q,

i.e., the result in (ii) holds.

Theorem 3.3. Let f : U Ď Rnˆ1ˆp Ñ R be a twice continuously T-differentiable function
on an open convex set U . Then

(i) f is convex if and only if for any X P U , ∇2

T
fpX q satisfies

xY ,∇2

T fpX q ˚ Y y ě 0 for any Y P R
nˆ1ˆp; (3.3)

(ii) f is strictly convex if for any X P U , ∇2

T
fpX q satisfies

xY ,∇2

T fpX q ˚ Y y ą 0 for any Y P R
nˆ1ˆpztOu.

12



Proof. (i) pñq: For any X P U and Y P Rnˆ1ˆpztOu, it follows from U being an open
set that there exists ε ą 0 such that X ` θY P U when θ P p´ε, εq. Since f is convex,
we have that fpX ` θY q ě fpX q ` θx∇fpX q,Y y. In addition, it follows from Theorem
3.2 that

fpX ` θY q “ fpX q ` θx∇fpX q,Y y ` 1

2
θ2xY ,∇2

T fpX q ˚ Y y ` op}θY }2q.

Therefore, we can obtain that xY ,∇2

T
fpX q ˚ Y y ` op}θY }2q

θ2{2
ě 0. Let θ Ñ 0, we further

obtain that xY ,∇2

T
fpX q ˚ Y y ě 0.

pðq: For any X ,Y P U , it follows from Theorem 3.2 that

fpY q “ fpX q ` x∇fpX q,Y ´ X y ` 1

2
x∇2

T fpZ q ˚ pY ´ X q,Y ´ X y,

where Z “ X ` tpY ´ X q with t P p0, 1q. Since U is convex, it follows that Z P U ;
and hence, by (3.3) we have that 1

2
xY ,∇2

T
fpZ q ˚ Y y ě 0. Furthermore, we have that

fpY q ě fpX q ` x∇fpX q,Y ´ X y, which, together with U being convex, implies that f
is convex. The proof of (i) is complete.

By the same way as in the proof of the sufficiency of (i), we can obtain (ii).

Remark 3.4. Let f : U Ď Rnˆ1ˆp Ñ R be a twice continuously T-differentiable function
on an open convex set U . Since ∇2

T
f P Rnˆnˆp has similar properties as Hessian matrix,

we call ∇2

T
f the T-Hessian tensor.

4 Symmetric T-positive (semi)definite tensors

In this section, we first introduce a definition of the symmetric T-positive (semi)definite
tensor; and then, we investigate properties of symmetric T-positive (semi)definite tensors.

4.1 Definition

In Section 3, we obtained that the convexity of a twice continuously T-differentiable multi-
vector real-valued function on an open convex set can be characterized by some property
of the T-Hessian tensor. Now we name such a property as the symmetric T-positive
semidefiniteness.

Definition 4.6. Let A P R
nˆnˆp. We say A is a symmetric T-positive (semi)definite

tensor (T-P(S)D tensor for short), if and only if A is a symmetric tensor and

xX ,A ˚ X y ą pěq0

13



holds for any X P Rnˆ1ˆpztOu (for any X P Rnˆ1ˆp). We denote the set consisting of
all symmetric T-P(S)D tensors of size nˆ n ˆ p as SRnˆnˆp

`` pSRnˆnˆp
` q.

Remark 4.5. (i) When p “ 1, the T-product defined by Definition 2.1 reduces to the
product of two matrices. In addition, when p “ 1, X P Rnˆ1ˆp reduces to a column vector
and A P SRnˆnˆp reduces to a square symmetric matrix. Thus, when p “ 1, Definition
4.6 is exactly the definition of the symmetric P(S)D matrix. That is to say, the T-P(S)D
tensor defined by Definition 4.6 is a higher-order extension of the P(S)D matrix.

(ii) From Definition 4.6 and Theorem 3.3, we can say that a twice continuously T-
differentiable function f : U Ď Rnˆ1ˆp Ñ R is convex (strictly convex) if and only if (if)
the T-Hessian tensor ∇2

T
fpX q is symmetric T-PSD (T-PD) for any X P U .

(iii) It should be noticed that the positive semidefinite tensor defined by means of the
nonnegativity of the corresponding multi-variate homogeneous polynomial in [46] is differ-
ent with the one defined in Definition 4.6. Since the positive semidefinite tensor defined
by Qi [46] vanishes when the order is odd, while the symmetric T-positive (semi)definite
tensor in Definition 4.6 is introduced for third-order tensor.

4.2 Equivalent characterizations of symmetric T-P(S)D tensors

First, we give an equivalent description of Definition 4.6.

Theorem 4.4. Suppose that A P Rnˆnˆp can be block diagonalized as

bcircpA q “ pFH
p b InˆnqDiagpAi : i P rpsqpFp b Inˆnq, (4.4)

where Fp is the Fourier matrix of size pˆp, which is defined as (2.1). Then A is symmetric
T-P(S)D if and only if all the matrices Ai are Hermitian P(S)D.

Proof. By (4.4), bcircpA q is symmetric if and only if each Ai is Hermitian, and A is
symmetric if and only if bcircpA q is symmetric as shown in 4.5.

pðq: Suppose that all the matrices Ai in (4.4) are Hermitian P(S)D, then for any x
in Cnzt0u (x P Cn) and i P rps, xHAix ą pěq0. For any X P Rnˆ1ˆpztOu, there exists
xi P Cn for each i P rps, which cannot be 0 at the same time, such that bcircpX q “
pFH

p b InˆnqDiagpxi : i P rpsqFp. Since

xX ,A ˚ X y “ 1

p
xbcircpX q, bcircpA qbcircpX qy

“ 1

p
TrpbcircpX qHbcircpA qbcircpX qq

“ 1

p
TrpFH

p DiagpxH
i Aixi : i P rpsqFpq

“ 1

p
TrpDiagpxH

i Aixi : i P rpsqq “ 1

p

př
i“1

pxH
i Aixiq ě 0,
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where the fourth equality follows from the fact that similar matrices have the same traces,
then A is symmetric T-PSD if all the matrices Ai are Hermitian PSD.

Since xi P Cn cannot be 0 at the same time, there exists at least an index i P rps such
that xH

i Aixi ą 0 if all the matrices Ai are Hermitian PD. Hence A is symmetric T-PD
if all the matrices Ai are Hermitian PD.

pñq: Suppose that A P SR
nˆnˆp
`` (SRnˆnˆp

` ), then xX ,A ˚ X y ą pěq0 for any
X P Rnˆ1ˆpztOu. Below, we divide the discussion into two cases.

Case 1: n is even. By Lemma 2.2, we have A1 P Rnˆn, A p`2

2

P Rnˆn, Ai P Cnˆn

and Ai “ Ap`2´i for any i P rpszt1, p`2

2
u. Then, for any x P C

nzt0u, choose special
X 1

i in Rnˆ1ˆp and satisfies that bcircpX 1q “ pFH
p b InˆnqDiagpX1

i : i P rpsqFp, where

X1
k “ X1

p`2´k “ x and others X1
i “ 0 with k being any fixed number in rpszt1, p`2

2
u.

Then, from Remark 2.1 we have that X 1 P R
nˆ1ˆp. Thus, xX 1,A ˚ X 1q ą pě 0q by

A P SR
nˆnˆp
`` pA P SR

nˆnˆp
` q. Since A P SRnˆnˆp, Ak P HCnˆn and Ak “ Ap`2´k.

Thus, xHAkx is real, and

0 ă pďqxX 1,A ˚ X
1q “ 1

p

pÿ

i“1

pxH
i Aixiq “ 1

p
pxHAkx ` xHAn`2´kxq “ 2

p
xHAkx,

which implies Ak is Hermitian P(S)D for any k P rpszt1, p`2

2
u. In addition, for any x P Rn,

we can obtain that A1 (A p`2

2

) is symmetric P(S)D by choosing X1
1 “ x (X1

p`2

2

“ x) and

others X1
i “ 0.

Case 2: n is odd. By Lemma 2.2, we have A1 P R
nˆn, Ai P C

nˆn and Ai “ Ap`2´i

for any i P rpszt1u. Then by the same method as Case 1, we can obtain that Ak is
Hermitian P(S)D for any k P rps.

Thereby, combining Case 1 and Case 2, we can obtain that all the matrices Ai are
Hermitian P(S)D if A is symmetric T-P(S)D.

Remark 4.6. Theorem 4.4 shows that the judgement of the T-positive semidefiniteness
of a symmetric tensor of size nˆ nˆ p can be transformed into the judgement of positive
semidefiniteness of p Hermitian matrices of size nˆ n. Furthermore, Theorem 4.4 shows
that the symmetric T-P(S)D tensor in Definition 4.6 is equivalent to the one by [3, Defi-
nition 2.7] and the one by [34, Definition 15] in real case.

Next, we give another equivalent description of Definition 4.6.

Theorem 4.5. Let A P SRnˆnˆp. A is symmetric T-P(S)D if and only if bcircpA q is
symmetric P(S)D.

Proof. Since bcircpA Tq “ bcircpA Hq “ bcircpA qH “ bcircpA qT by Lemma 2.1pcq, then
A is symmetric if and only if bcircpA q is symmetric. For any X P Rnˆ1ˆp, it follows
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from Definition 2.1 and the definition of operator unfold that

unfoldpA ˚ X q “ bcircpA qunfoldpX q,

and hence,
xX ,A ˚ X y “ xunfoldpX q, unfoldpA ˚ X qy

“ xunfoldpX q, bcircpA qunfoldpX qy.
Thus, by combining Definition 4.6 and the criterion of P(S)D matrix, we can easily obtain
that A is symmetric T-P(S)D if and only if bcircpA q is symmetric P(S)D.

Remark 4.7. From Theorem 4.5, we can see that lots of results that P(S)D matrix with
block circular structure hold is true for T-P(S)D tensors by combining the properties of
tensor T-product such as those shown in Lemma 2.1. Thus for convenience, in Section
4.3 and Section 4.4 we just list some ones which play important roles in Section 4.5 and
Section 5 without proofs.

4.3 T-eigenvalue decomposition of the symmetric T-P(S)D ten-
sor

In this subsection, we aim to establish the T-eigenvalue decomposition for the symmetric
T-P(S)D tensor. To do this, we give the following definition first. It should be noticed
that the definition of T-eigenvalue for third-order F -square tensor was given in [34] and
here we redefine it in an equivalent way for convenience.

Definition 4.7. (T-eigenvalue and Trace) Let A P Rnˆnˆp, which can be block diago-
nalized as (4.4). Then a real number λ is said to be a T-eigenvalue of A if and only if
it is an eigenvalue of some Ai for i P rps, denoted by λpA q. The largest and smallest
T-eigenvalues of A are denoted by λmaxpA q and λminpA q, respectively. Moreover, the
trace of A , denoted by TrpA q, is defined as TrpA q :“ řp

i“1
TrpAiq.

Remark 4.8. By Definition 4.7, Theorem 4.4 and [44, Fact 6], it is not difficult to see
that a symmetric third-order tensor A is T-P(S)D if and only if each T-eigenvalue of A

is positive (nonnegative).

It is easy to establish the following properties for the T-eigenvalues and traces of tensors
from the above definition and some known results in [39].

Proposition 4.1. Let A and B be two tensors in Rnˆnˆp, C P Rnˆnˆp be nonsingular,
and specpA q be the set consisting of all the T-eigenvalues of A . Then

(a) specpA q “ specpbcircpA qq;

(b) TrpA q “ TrpbcircpA qq “ ř
i λipA q “ p

řn

i“1
pAp1qqii;
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(c) TrpA ˚ Bq “ TrpB ˚ A q;

(d) specpC ´1A C q “ specpA q and TrpC ´1A C q “ TrpA q.
Remark 4.9. (i) From Lemma 2.1paq and Proposition 4.1, it is easy to see that for any
A P SRnˆnˆp and B P SRnˆnˆp,

pxA ,By “ xbcircpA q, bcircpBqy “ TrpbcircpA qbcircpBqq “ TrpA ˚ Bq,
and A is T-P(S)D if and only if TrpV T ˚ A ˚ V q ą 0 for all nonzero V P Rnˆ1ˆp

pTrpV T ˚ A ˚ V q ě 0 for all V P R
nˆ1ˆpq.

(ii) Let A P SR
nˆnˆp
` and B P SR

nˆnˆp
` . Then, it follows from [43, Lemmas 1.2.3,

1.2.4] and Proposition 4.1 that xA ,By ě 0; xA ,By “ 0 iff A ˚ B “ O ; and

pxA ,By ě λminpA qλmaxpBq ď λminpA qTrpBq;
pxA ,By ď λmaxpA qTrpBq ď nλmaxpA qλmaxpBq.

It is known that the eigenvalue decomposition plays an important role in the study of
symmetric matrices. In the following, we establish a similar decomposition for symmetric
third-order tensors, especially for the T-P(S)D tensor.

Theorem 4.6. (T-eigenvalue decomposition) Every A P SRnˆnˆp can be factored as

A “ U
T ˚ S ˚ U ,

where U P Rnˆnˆp is an orthogonal tensor and S P Rnˆnˆp is an F-diagonal tensor(That
is, each frontal slice of S is a diagonal matrix) with all of the diagonal entries of pFp b
InˆnqbcircpS qpFH

p b Inˆnq being the T-eigenvalues of A . In particular, if A P SRnˆnˆp
`

(A P SRnˆnˆp
`` ), then all of the diagonal entries of pFp b InˆnqbcircpS qpFH

p b Inˆnq are
nonnegative (positive).

4.4 The T-roots of a symmetric T-PSD tensor

The following result about the roots of a symmetric T-PSD tensor also holds by Theorem
4.5, Lemma 2.1 and [39, Theorem 7.2.6].

Theorem 4.7. (The T-roots of a symmetric T-PSD tensor) Let A P SRnˆnˆp
` and k ě 1.

Then there exists a unique B P SRnˆnˆp
` with Bk “ A .

Corollary 4.1. Let A P SRnˆnˆp be T-PSD. Then there exists a unique positive semidef-
inite tensor B P SRnˆnˆp with B2 “ A . We write such B as A

1

2 .

Furthermore, the following conclusion is true.

Theorem 4.8. For any A P SRnˆnˆp with bcircpA q being block diagonalized as (4.4), (a)
A P SRnˆnˆp

` pA P SRnˆnˆp
`` q if and only if (b) A “ PT˚P for some tensor P P Rmˆnˆp

pA “ PT ˚ P for some nonsingular tensor P P Rmˆnˆp).
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4.5 The cone of T-PSD tensors

In this subsection, we investigate the set of T-PSD tensors. Recall that a subset C of a
vector space V is called a cone (or sometimes called a linear cone) if for each x in C and
any nonnegative scalar α, the product αx is in C; C is called a convex cone if for any
nonnegative scalars α, β and any x, y in C, it follows that αx ` βy belongs to C; and if
additionally C is a closed set, then we call C a closed, convex cone.

Proposition 4.2. SRnˆnˆp is isomorphic to R
pn2

`n

2 if p is odd; and SRnˆnˆp is isomorphic

to R
pn2

2
`n if p is even.

Proof. This proposition can be easily proved; and we omit the proof here.

Proposition 4.3. SRnˆnˆp
` is a nonempty, closed, convex, pointed cone.

Proof. From Theorem 4.5 and the fact that SRnˆn is nonempty and closed, it follows that
SRnˆnˆp is nonempty and closed. For any A ,B P SRnˆnˆp and any two nonnegative
scalars α and β, we have that bcircpαA ` βBq “ αbcircpA q ` βbcircpBq. Suppose that
A , B P SR

nˆnˆp
` , then bcircpA q and bcircpBq belong to SR

npˆnp
` from Theorem 4.5.

Therefore, from the fact that SRnpˆnp
` is a convex cone, it follows that bcircpαA `βBq “

αbcircpA q ` βbcircpBq P SRnpˆnp
` , which together with Theorem 4.5 implies that αA `

βB P SR
nˆnˆp
` . That is to say, SRnˆnˆp

` is a convex cone. Suppose that A P SR
nˆnˆp
`

and ´A P SRnˆnˆp
` , then bcircpA q P SRnpˆnp

` and bcircp´A q “ ´bcircpA q P SRnpˆnp
` .

From the fact that SRnpˆnp
` is pointed, it follows that bcircpA q “ O. Thus A “ O , which

implies that SRnˆnˆp
` is pointed.

Remark 4.10. By the proof of Theorem 4.3, it is easy to obtain that SRnˆnˆp
`` is a

nonempty, open, convex cone. It is also easy to show that SRnˆnˆp
`` is the interior of

SR
nˆnˆp
` . By the theory of conic optimization, it follows that SRnˆnˆp

` (SRnˆnˆp
`` ) can

induce a partial order on SRnˆnˆp, denoted by ľT pąT q. That is, for any A ,B P
SRnˆnˆp, A ľT pąT q B if and only if A ´ B P SRnˆnˆp

` pSRnˆnˆp
`` q.

In the following, we will use A ľT pąT qO if A P SR
nˆnˆp
` pSRnˆnˆp

`` q. Espe-
cially, we replace A ľT pąT qO with A ľ pąqO if A P SRnˆn

` pSRnˆn
`` q, as any A P

SR
nˆnˆp
` pSRnˆnˆp

`` q reduces to the A P SRnˆn
` pSRnˆn

`` q when p “ 1.

Recall that SRnˆn
` is a self-dual cone, which plays an important role in the widely stud-

ied semidefinite programming. In the following, we generalize this fact to T-semidefinite
cone SRnˆnˆp

` . For a cone C, the polar cone (or dual cone) [43] is the set C˚ :“ ty :
xx,yy ě 0, for any x P Cu.

Theorem 4.9. (Self-duality) SRnˆnˆp
` “ pSRnˆnˆp

` q˚.
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Proof. (i) SRnˆnˆp
` Ď pSRnˆnˆp

` q˚: To this end, we only need to show that A ‚ B ě 0 for

any A , B ľT O . Since A , B ľT O , it follows from Theorem 4.1 that there exists A
1

2

and B
1

2 such that A “ A
1

2 ˚ A
1

2 and B “ B
1

2 ˚ B
1

2 . Thus, we can obtain that

A ‚ B “ 1

p
TrpA ˚ Bq “ 1

p
TrpA 1

2 ˚ A
1

2 ˚ B
1

2 ˚ B
1

2 q
“ 1

p
TrpB 1

2 ˚ A
1

2 ˚ A
1

2 ˚ B
1

2 q “ pA 1

2 ˚ B
1

2 q ‚ pA 1

2 ˚ B
1

2 q ě 0.

(ii) pSRnˆnˆp
` q˚ Ď SR

nˆnˆp
` : We only need to show A ľT O if A P pSRnˆnˆp

` q˚.
Suppose A P pSRnˆnˆp

` q˚, then A ‚ B ě 0 for any B ľT O . Taken B “ D ˚ DT where
D P Rnˆ1ˆp is an arbitrary given tensor, then we have that B ľT O and A ‚pD ˚DTq ě 0,
i.e., TrpA ˚ pD ˚ DTqq ě 0. By Proposition 4.1pbq, we get

TrpDT ˚ A ˚ Dq “ TrpbcircpDTqbcircpA qbcircpDqq
“ TrpbcircpA qpbcircpDqbcircpDTqqq “ TrpA ˚ pD ˚ DTqq ě 0.

Hence, by Remark 4.9(i), we can obtain that A ľT O .

4.6 The T-schur complement of a symmetric T-PSD tensor

In this subsection, we give a characterization of the T-positive semidefiniteness of a third-
order tensor by the T-positive semidefiniteness of the T-schur complement [34].

Lemma 4.3. (Tensor block multiplication via T-product) [37] Suppose A1 P Cn1ˆm1ˆp,
B1 P Cn1ˆm2ˆp, C1 P Cn2ˆm1ˆp, D1 P Cn2ˆm2ˆp, A2 P Cm1ˆr1ˆp, B2 P Cm1ˆr2ˆp, C2 P
Cm2ˆr1ˆp and D2 P Cm2ˆr2ˆp are complex tensors, then

„
A1 B1

C1 D1


˚

„
A2 B2

C2 D2


“

„
A1 ˚ A2 ` B1 ˚ C2 A1 ˚ B2 ` B1 ˚ D2

C1 ˚ A2 ` D1 ˚ C2 C1 ˚ B2 ` D1 ˚ D2


.

Lemma 4.4. Suppose that Ai P SRniˆniˆp for any i P rms. Then the block diagonal tensor
A “ DiagpAi : i P rpsq is symmetric T-P(S)D if and only if all Ai are so.

Proof. For any nonzero V P Rnˆ1ˆp with n “ řm

i“1
ni, we divided it into a block tensor,

i.e., V “ vecpVi : i P rmsq where Vi P Rniˆ1ˆp for any i P rms. Then, by Lemma 4.3, we
can obtain that

V T ˚ A ˚ V “ vecpVi : i P rmsqT ˚DiagpAi : i P rpsq ˚ vecpVi : i P rmsq
“ řm

i“1
V T

i ˚ Ai ˚ Vi.

Hence, it is not difficult to get that A is symmetric T-P(S)D iff all Ai are so.

Besides, from [43, Proposition 1.1.7], Lemma 2.1 and Theorem 4.5, the following result
holds.
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Lemma 4.5. Suppose that B P Rnˆnˆp be nonsingular. Then A P SRnˆnˆp
` (SRnˆnˆp

`` )
if and only if pBT ˚ A ˚ Bq P SRnˆnˆp

` (SRnˆnˆp
`` ).

Now, we can establish a theorem about the T-Schur complement.

Theorem 4.10. (T-Schur complement) Suppose that A P SRmˆmˆp
`` , C P SRnˆnˆp, and

B P R
mˆnˆp. Then

„
A B

BT C


ąT pľT q O ðñ C ´ BT ˚ A ´1 ˚ B ąT pľT q O .

Proof. It follows from A P SRmˆmˆp
`` that A is nonsingular. Denote the block tensor

D :“
„
Immp ´A ´1 ˚ B

O Innp


,

then we have

DT ˚
„

A B

BT C


˚ D “

„
A O

O C ´ BT ˚ A ´1 ˚ B


.

Therefore, by Lemma 4.4 and Lemma 4.5, the theorem is proved.

5 Semidefinite programming over the third-order sym-

metric tensor space

In this section, we first introduce the TSDP and give its duality theory; and then, we
show the transformation of TSDPs into SDPs in the complex domain. After that, we
consider several problems and reformulate (or relax) them as TSDPs. Finally, we present
some preliminary numerical results for solving the unconstrained polynomial optimization
problem via the TSDP relaxation.

5.1 TSDP problems in primal-dual forms

In this subsection, we replace the matrix variables in the classic SDP by the tensor variables
to yield the TSDP. We consider the TSDP in primal form:

(PTSDP) min
X

xC ,X y s.t. A X “ rxAi,X ysiPrms “ b, X ľT O ,

where all Ai P SRnˆnˆp, b P Rm, C P SRnˆnˆp are given and X P SRnˆnˆp is the
variable. A is a linear operator from SRnˆnˆp into Rm.
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Just as the derivation of the dual problem of the SDP, in order to obtain the dual
problem of (PTSDP), we try to find the adjoint operator of A at first, which is a linear
operator from Rm into SRnˆnˆp satisfying xA X ,yy “ xX ,A ˚yy for any X in SRnˆnˆp

and y in Rm. Since

xA X ,yy “ 1

p

mÿ

i“1

yiTrpAi ˚ X q “ 1

p
TrpX ˚

mÿ

i“1

yiAiq “ xX ,A ˚yy,

we have A ˚y “ řm

i“1
yiAi. Now we can construct the dual of (PTSDP) by the La-

grange approach. By adding a Lagrange multiplier y P R
m, (PTSDP) can be turned into

infX ľT O supyPRmxC ,X y ` xb ´ A X ,yy, then the dual of (PTSDP) yields through in-
terchanging inf and sup. Note that

sup
yPRm

inf
X ľT O

xb,yy ` xC ´ A
˚y,X y “

"
xb,yy, if C ´ A ˚y P pSRnˆnˆp

` q˚,

´8, otherwise.

This, together with Theorem 4.9, implies that we can write the dual problem of (PTSDP)
by introducing a slack tensor S as:

(DTSDP) max
y,S

xb,yy s.t. A
˚y ` S “ C , S ľT O ,

where y P Rm and S P SRnˆnˆp are the variables. When p “ 1, the TSDP problems
(PTSDP) and (DTSDP) are corresponding to the classic SDP problems in primal-dual
forms. Denote

F pP q :“ tX P SRnˆnˆp : A X “ b, X ľT Ou,
F pDq :“ tpy,S q P Rm ˆ SRnˆnˆp : A ˚y ` S “ C , S ľT Ou,
p˚ :“ inftxC ,X y : X P F pP qu and d˚ :“ suptxb,yy : py,S q P F pDqu.

(5.5)

From properties of the T-semidefinite cone obtained in Section 4.5 and the theory of
conic optimization problems [49], it is not difficult to obtain the following results, and the
proofs are omitted here.

Theorem 5.11. Let F pP q, F pDq, p˚ and d˚ be defined as (5.5). Suppose that X P F pP q
and py,S q P F pDq. Then

• (weak duality) xb, yy ď xC ,X y.

• (strong duality) Suppose that (PTSDP) is bounded below and strictly feasible (respec-
tively, (DTSDP) is bounded above and strictly feasible), then p˚ “ d˚ and (DTSDP)
(respectively, (PTSDP)) is solvable.

• (complementarity slackness condition) If p˚ “ d˚, then X is optimal for (PTSDP)
and py,S q is optimal for (DTSDP) if and only if the complementarity slackness
condition holds, that is, xX ,S y “ 0.

• (optimality condition) If xC ,X y “ xb, yy, then X is optimal for (PTSDP), and
py,S q is optimal for (DTSDP).
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5.2 The transformation of TSDPs into SDPs in the complex
domain

In this subsection, we present a method to solve the TSDP problem by transforming it
into an SDP in the complex domain (CSDP for short).

For any Ai P SRnˆnˆp (i P rms) in (PTSDP), bcircpAiq can be block diagonalized as
bcircpAiq “ pFH

p bInˆnqAipFpbInˆnq with Ai “ DiagpAi
j : j P rpsq where all Ai

j P HCnˆn

(Ai
j P HC

nˆn
` if particularly A P SRnˆnˆp

` ). Note that

xC ,X ˚y “ minX xC ,X y
ô xbcircpC q, bcircpX ˚qy “ minbcircpX qxbcircpC q, bcircpX qy
ô xC,X˚y “ minXxC,Xy,

where bcircpC q “ pFH
p b InˆnqCpFp b Inˆnq, bcircpX q “ pFH

p b InˆnqXpFp b Inˆnq and
bcircpX ˚q “ pFH

p b InˆnqX˚pFp b Inˆnq with

C “ DiagpCi, i P rpsq,X “ DiagpXi, i P rpsq,X˚ “ DiagpX˚
i , i P rpsq (5.6)

with all Ci, Xi and X˚
i in HC

nˆn. In addition, X ľT O ô X ľ O and

A X “ rxAi,X ysiPrms “ r1
p
TrpbcircpAiq, bcircpX qqsiPrms “ r1

p
xAi,XysiPrms.

Therefore, let S denote the space of block diagonal Hermitian matrices as the form in (5.6),
then (PTSDP) and (DTSDP) are equivalent to the following SDP problems (PCSDP) and
(DCSDP) respectively:

(PCSDP) min
XPS

1

p
xC,Xy s.t. AX “ pb, X ľ O,

(DCSDP) max
py,SqPRmˆS

xb,yy s.t. A˚y ` S “ C, S ľ O,

where X, C and S are given as (5.6), and A is a linear operator from HC
npˆnp into R

m

denoted as AX “ rxAi,XysiPrms with A˚ being its adjoint operator.

It should be noted that both (DCSDP) and (PCSDP) are SDPs in the complex domain
and (DCSDP) is exactly the dual problem of (PCSDP). Noting that these diagonal blocks
of the complex matrices X, C and Ai for i P rms, obtained by block diagonalizing the real
tensors X , C and A i, satisfy the relationships described in Lemma 2.2. So, (PCSDP)
and (DCSDP) can be converted to SDPs of smaller size. For the cleanness of the paper,
we only take the transformation of (PCSDP) for example, which can be divided into the
following two cases.

Case 1: p is even. Let X, C and Ai for i P rms be the complex block diagonal
matrices in (PCSDP), which are obtained by block diagonalizing the real tensors X , C
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and A i for i P rms in (PTSDP), respectively. From Lemma 2.2, it follows that for any
j P rpszt1, p`2

2
u and i P rms,
$
’&
’%

X1 P Rnˆn, X p`2

2

P Rnˆn, Xj P Cnˆn, Xj “ Xp`2´j;

C1 P R
nˆn, C p`2

2

P R
nˆn, Cj P C

nˆn, Cj “ Cp`2´j;

Ai
1

P Rnˆn, A p`2

2

P Rnˆn, Ai
j P Cnˆn, Ai

j “ Ap`2´j.

Thus, for any i P rms,

Ai ‚ X “ Ai
1

‚ X1 ` Ai
2

‚ X2 ` ¨ ¨ ¨ ` Ai
p ‚ Xp

“ Ai
1

‚ X1 ` Ai
p`2

2

‚ X p`2

2

` řp

2

j“1
pAi

j ‚ Xj ` Ai
j ‚ Xjq

“ Ai
1

‚ X1 ` Ai
p`2

2

‚ X p`2

2

` 2
řp

2

j“1
Ai

j ‚ Xj,

where the last equality follows from the fact that the inner product between two Hermitian
matrices is real. Similarly, we can also obtain that

C ‚ X “ C1 ‚ X1 ` C p`2

2

‚ X p`2

2

` 2

p

2ÿ

j“1

Cj ‚ Xj.

Thus, by letting rX “ DiagpX1,X2, ¨ ¨ ¨ ,X p

2

,X p`2

2

q, ĂAi “ DiagpAi
1
, 2Ai

2
, ¨ ¨ ¨ , 2Ai

p

2

,Ai
p`2

2

q
for any i P rms, and rC “ DiagpC1, 2C2, ¨ ¨ ¨ , 2C p

2

, C p`2

2

q, it follows that (PCSDP) is

equivalent to

pP1CSDPq min
rXPS

1

p
x rC, rXy s.t. rArX “ pb, rX ľ O,

where rA is a linear operator with rArX “ rxĂAi, rXysiPrms.

Case 2: p is odd. By the same process as Case 1, it is not difficult to obtain that
(PCSDP) is equivalent to

pP2CSDPq min
rXPS

1

p
x rC, rXy s.t. rArX “ pb, rX ľ O,

where ĂAi “ DiagpAi
1
, 2Ai

2
, ¨ ¨ ¨ , 2Ai

p`1

2

q for any i P rms; rC “ DiagpC1, 2C2, ¨ ¨ ¨ , 2C p`1

2

q;
rX “ DiagpX1,X2, ¨ ¨ ¨ ,X p`1

2

q; and rA is a linear operator with rA rX “ rxĂAi, rXysiPrms.

As can be seen from the above discussion, we provide a way to deal with (PTSDP)
of size n ˆ n ˆ p by transforming it into a CSDP with block diagonal structure of size
npp`1

2
q ˆ npp`1

2
q as (P1CSDP) or npp`2

2
q ˆnpp`2

2
q as (P2TSDP), which are almost half the

size of (PCSDP) with block diagonal structure of size np ˆ np when p ą 2.
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5.3 Some applications of TSDPs

In this subsection, we show several applications which can be formulated as TSDP prob-
lems.

Application 1. Minimizing the maximum T-eigenvalue of a third-order sym-
metric tensor. The T-eigenvalue was first proposed for third-order symmetric tensors
in [34] by Miao, Qi and Wei. Suppose that M pzq P SRnˆnˆp is a third-order symmet-
ric tensor, which depends linearly on a vector z. Since λmaxpM pzqq ď η if and only if
λmaxpM pzq´ηInnpq ď 0, i.e., λminpηInnp´M pzqq ě 0, which and Remark 4.8 imply that
ηInnp ´ M pzq ľT O . Therefore, the problem of minimizing the maximum T-eigenvalue
of M pzq can be transformed as the following TSDP problem:

max
η,z

´η s.t. ηInnp ´ M pzq ľT O .

Application 2. Minimizing the spectral norm of a third-order tensor. Recall
that for any A P Rmˆnˆp, the tensor spectral norm }A }2 of A is defined as the largest
singular value of A (see [18, 30]). It is known that the tensor spectral norm plays an
important role in the proof of the optimal conditions for the relative problems in [18,30].

Suppose that Ppzq P Rmˆnˆp is a third-order real tensor, which depends linearly on
a vector z. Noting that η ě }Ppzq}2 if and only if η2 ě λmaxpPpzqT ˚ Ppzqq; and by
Theorem 4.10, the latter is equivalent to

„
ηImmp Ppzq
PpzqT ηInnp


ľT O .

Therefore, the problem of minimizing }Ppzq}2 can be transformed as the following TSDP
problem:

max
η,z

´η s.t.

„
ηImmp Ppzq
PpzqT ηInnp


ľT O .

Application 3. Minimizing the nuclear norm of a third-order tensor. Recall
that the tensor nuclear norm }A }˚ of any A P Rmˆnˆp is defined as the sum of singular
values of the first frontal slice and is shown to be the dual norm of the tensor spectral
norm }A }2 in [18]. In this part, we consider the following two cases.

Case 1. Minimizing the nuclear norm of a third-order tensor without con-
straint. Recall that for a given norm } ¨ } in the inner product space consisting of
three-order tensors, its dual norm } ¨ }d is defined as }X }d :“ suptxX ,Y y : }Y } ď 1u.
Since the nuclear norm }A }˚ of tensor A is the dual norm of the tensor spectral norm
}A }2, according to the relationship that for any Y P Rmˆnˆp,

}Y }2 ď 1 ðñ
„

Immp X

X T Innp


ľT O
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as shown in Application 2 by taking η “ 1, we can obtain that the problem of computing
the nuclear norm of A P Rmˆnˆp is equivalent to the following TSDP model:

(5.7)

max
X

xA ,X y “ 1

2
x
„

O A

A T O


,

„
Immp X

X T Innp


y s.t.

„
Immp X

X T Innp


ľT O .

Noting that for any W1 P Rmˆmˆp and W2 P Rnˆnˆp,

x
„

W1 O

OT W2


,

„
Immp X

X T Innp


y “ 1

p
rTrpW1q ` TrpW2qs,

thus, the dual problem of (5.7) can be formulated as

min
W1,W2

1

2p
rTrpW1q ` TrpW2qs s.t.

„
W1 A

A T W2


ľT O . (5.8)

It is not difficult to show that there is no duality gap between (5.7) and (5.8). We
omit the proof here.

Case 2. Minimizing the nuclear norm of a third-order tensor with an equality
constraint. In this part, we investigate the problem of minimizing the nuclear norm
of X P Rmˆnˆp over a given affine subspace. Usually, the subspace is described by a
linear equations of the form A X “ b as discussed in Section 5.1. This problem can be
formulated as a convex optimization in the following form:

min
X

}X }˚ s.t. A X “ b. (5.9)

Then, by using the TSDP characterization of the nuclear norm given in (5.8), we can
rewrite (5.9) as

min
X ,W1,W2

1

2p
rTrpW1q ` TrpW2qs s.t.

„
W1 X

X T W2


ľT O , A X “ b.

It was showed in [18] that the tensor robust principal component analysis problem
can be transformed into the nuclear norm minimization problem with such tensor nuclear
norm, which can be solved with the help of the theory of tensor decomposition. The above
discussion demonstrates that the minimization of the above tensor nuclear norm of a third-
order tensor can also be solved by dealing with the corresponding TSDP problem. As is
known to us, a lot of practical problems are usually turned out to be low-rank models with
third-order tensors, and most of them can be solved by the nuclear norm minimization
problem with another related tensor nuclear norm defined in [10], which has been shown to
be widely applied in some practical problems, such as image processing, tensor principal

25



component analysis, tensor completion, and so on. Then it is worthwhile to investigate
these forms of convex relaxation by replacing the nuclear norm defined in [10] by the
one given in [18], and the TSDP provides another path to achieve solutions of low-rank
recovery problems with third-order tensors appearing in the real-life applications.

Application 4. Integer quartic programming. Analogue to the classic SDP
relaxation of integer quadratic programming, we investigate the TSDP relaxation for the
following integer quartic programming:

max
X

xX ,A ˚ X y s.t. X “ xxT, xi P t`1,´1u, @ i P rns, (5.10)

where A P SRnˆnˆn is given, x :“ pxi : i P rnsqT P Rn, X P Rnˆn and X P Rnˆ1ˆn is the
corresponding tensor of the matrix X.

Noting that for any i P rns, xi P t`1,´1u if and only if x2i “ 1, if and only if
x2i px2

1
` x2

2
` ¨ ¨ ¨ ` x2nq “ n. Thus, problem (5.10) is equivalent to

max
X

xX ,A ˚ X y s.t. X “ xxT, x2i px2
1

` x2
2

` ¨ ¨ ¨ ` x2nq “ n, @ i P rns. (5.11)

Now, we try to arrive at the TSDP relaxation of (5.11) by using the Lagrangian
multiplier method. By adding Lagrangian multiplier yi P R to each equality constraint in
(5.11), we can obtain the Lagrangian function for (5.11):

LpX ,yq :“ xX ,A ˚ X y ´
nř

i“1

yipx2i px2
1

` x2
2

` ¨ ¨ ¨ ` x2nq ´ nq
“ xX ,A ˚ X y ´ xX ,Diagpyq ˚ X y ` neTy,

where Diagpyq represents the F -diagonal tensor induced by y :“ pyi : i P rnsqT with
Diagpyqp1q being the diagonal matrix Diagpyi : i P rnsq and other frontal slices being
zeroes, and e :“ p1, 1, . . . , 1qT P Rn. Since

max
X

LpX ,yq “ max
X

rxX ,A ˚ X y ´ xX ,Diagpyq ˚ X y ` neTys
“ ´min

X
rxX , pDiagpyq ´ A q ˚ X y ´ neTys

“
"
neTy, if Diagpyq ´ A ľT O ,

`8, otherwise,

the Lagrangian dual problem of (5.11) turns out to be

min
y

neTy s.t. Diagpyq ´ A ľT O ,

which is a TSDP model and its dual problem is

max
X

A ‚ X s.t. Xii1 “ n, i P rns, X ľT O .
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Previously, we have converted some optimization problems over tensor space and ma-
trix space into TSDP problems, respectively. Next, we show that some optimization prob-
lems over vector space can also be solved by TSDP problem models, such as polynomial
optimization problems.

Application 5. Calculating the global lower bound of a polynomial of even
degree. Consider the polynomial optimization problem:

fuc :“ min
xPRn

fpxq “ f0 `
ÿ

αPUn
2d

fαx
α, (5.12)

where Un
2d “ tα P Nn : 0 ă |α| ď 2du. As is well-known to us, problem (5.12) can be

solved by a relaxation into the following model through the sums of squares (SOS for
short) method [50]:

fuc
sos :“ max

px,γqPRnˆR

γ s.t. fpxq ´ γ is SOS. (5.13)

Actually, define rxsd “ p1, x1, . . . , xn, x21, x1x2, . . . , x1xn, x22, x2x3, . . . , x2n, . . . xd1, . . . , xdnqT,
which is a column vector of size Cd

n`d consisting of all monomials whose degrees are no

more than d “ degpfq
2

, then (5.13) can be transformed into a standard SDP as [51]:

fuc
sdp :“ max

X
C ‚ X s.t. AX “ b, X ľ O, (5.14)

where b “ pfαqαPUn
2d

whose dimension is C2d
n`2d ´ 1, and A is a linear operator denoted

as AX “ pAα ‚ XqαPUn
2d

with Aα and C being constant symmetric matrices such that

rxsdrxsTd “ C ` ř
αPUn

2d
Aαx

α. In addition, fuc
sos “ f0 ´ fuc

sdp.

As is known to us, in the process of solving the polynomial optimization problem with
the SDP relaxation, one of the challenges is that the size of the SDP model increases
significantly with the increasing of the number of variables or the degree of polynomial.
Next, we show that the minimization problem of f can be relaxed into a standard TSDP
problem by rearranging the above monomial vector rxsd into a third-order tensor form
and then exploiting the properties of T-PSD tensors, which can be dealt with by solving
an SDP problem of smaller size than the one in (5.14).

Suppose that Cd
n`d “ mp, then rxsd P Rmp. Let rX sd be a tensor in Rmˆ1ˆp with

rX sd “ foldprxsdq. Then by Theorem 4.8, a tensor A P SRmˆmˆp is T-PSD iff there
exists some tensor P P SRlˆmˆp such that A “ PT ˚ P. Thus, fpxq ´ γ must be SOS
(and then be nonnegative) if there exists X P SRmˆmˆp such that

fpxq ´ γ “ 1

p
TrprX sTd ˚ X ˚ rX sdq “ X ‚ prX sd ˚ rX sTd q, X ľT O . (5.15)

Therefore, finding the minimum value of f can be relaxed into the following problem:

fuc
sos´tsdp :“ max γ s.t. fpxq ´ γ “ X ‚ prX sd ˚ rX sTd q, X ľT O . (5.16)
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Define constant symmetric tensors C and Aα such that

rX sd ˚ rX sTd “ C `
ÿ

αPUn
2d

Aαx
α,

then (5.15) can be expressed as follows:

fpxq ´ γ “ C ‚ X `
ÿ

αPUn
2d

pAα ‚ X qxα, X ľT O .

Noting that fpxq “ f0 ` ř
αPUn

2d
fαx

α, hence γ is feasible for (5.16) if and only if there

exists X ľT O such that C ‚ X ` γ “ f0, and Aα ‚ X “ fα for any α P Un
2d. Define a

linear operator from SRmˆmˆp into R
pC2d

n`2d
´1q as A X “ rAα ‚ X sαPUn

2d
. Then up to a

constant, the problem (5.16) is equivalent to the TSDP problem:

fuc
tsdp :“ max

X
C ‚ X s.t. A X “ b, X ľT O , (5.17)

and fuc
sos´tsdp “ f0 ´ fuc

tsdp.

Besides, from the above discuss, it is easy to see that (5.16) is both relaxation of (5.12)
and (5.13) when p ‰ 1, i.e., fuc ě fuc

sos ě fuc
sos´tsdp, and (5.16) reduces to (5.13) when

p “ 1. Thereby, it should be noticed that (5.17) with p ‰ 1 is a further relaxation of
(5.14). Then whether or not is there a case where the relaxation of (5.17) with p ‰ 1 can
achieve the same effect as (5.14)? Below, we answer this question by giving a theorem
to show the necessary and sufficient condition of fuc

sdp “ fuc
tsdp under the assumption that

p ‰ 1.

Theorem 5.12. Suppose that fpxq : Rn Ñ R is a 2d-degree polynomial, whose global
lower bound can be solved by both an SDP relaxation as (5.14) and a TSDP relaxation as
(5.17) with p ‰ 1. Then fuc

sdp “ fuc
tsdp if and only if there exists an optimal solution X˚ of

(5.14) which is p-block circular.

Proof. Recall that (5.17) is equivalent to (5.16), that is

f0 ´ fuc
tsdp :“ max γ s.t. fpxq ´ γ “ X ‚ prX sd ˚ rX sTd q, X ľT O ; (5.18)

and (5.14) is equivalent to (5.13), which is further equivalent to the following problem:

f0 ´ fuc
sdp :“ max γ s.t. fpxq ´ γ “ X ‚ prxsd ¨ rxsTd q, X ľ O. (5.19)

From

X ‚ prX sd ˚ rX sTd q “ 1

p
TrprbcircprX sdqsT ¨ bcircpX q ¨ bcircprX sdqq

“ 1

p
bcircprX sdq ‚ rbcircpX q ¨ bcircprX sdqs

“ p1

p
¨ pqunfoldprX sdq ‚ rbcircpX q ¨ unfoldprX sdqs

“ rxsd ‚ rbcircpX q ¨ rxsds
“ bcircpX q ‚ prxsd ¨ rxsTd q,
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it is easy to see that if X ˚ is an optimal solution of (5.18), then bcircpX ˚q must be a
feasible solution of (5.19) and fuc

sdp ď fuc
tsdp.

On one hand, suppose that X ˚ is an optimal solution of (5.18), if fuc
sdp “ fuc

tsdp, then
bcircpX ˚q is exact an optimal solution of (5.19) and (5.14), which is a p-block circular
matrix. On the other hand, if there exists an optimal solutionX˚ of (5.14) which is p-block
circular, then by choosing X ˚ “ bcirc´1pX˚q we can find that X ˚ is a feasible solution
of (5.18) and the corresponding value of γ is f0 ´ fuc

sdp when X “ X ˚ in (5.18). Noting
that the optimal value of (5.18) is f0 ´ fuc

tsdp, then we have that f0 ´ fuc
sdp ď f0 ´ fuc

tsdp,
which together with fuc

sdp ď fuc
tsdp implies that fuc

sdp “ fuc
tsdp.

Theorem 5.12 states that if there exists an optimal solution X˚ of (5.14) is p-block
circular, then the relaxation problem (5.17) can achieve not worse effect than (5.14).
Below, we show that there are some benefits in computation costs and storage costs of
(5.17) compared with (5.14) for the cases where the unconstrained polynomial optimization
can be solved by both TSDP relaxation as (5.17) and SDP relaxation as (5.14):

• The number of entries of the variable X in (5.17) is less than the one of
X in (5.14). Since rX sd P Rmˆ1ˆp and rxsd P Rmp, it is easy to find that X in
(5.14) is a matrix with mpˆmp entries, while X in (5.14) turns out to be a tensor
in SRmˆmˆp which contains only mˆ m ˆ p entries.

• (5.17) can be solved by transformed into a CSDP problem with block
diagonal sparse structure, which is not available for (5.14) even if the
variable of (5.14) possess special structure since the constant matrice Aα is
fixed and do not possess the block diagonal structures. Specifically speaking,
if we adopt the method described in Section 5.2 to deal with (5.17), we only need to
solve a CSDP with p`1

2
or p`2

2
blocks of size mˆm under some equality constraints,

while (5.14) can be seen as dealing with an ordinary SDP with 1 block of sizempˆmp
under the same number of equality constraints. Hence, for the minimization problem
of a real polynomial of even degree, solving via the TSDP relaxation built the above
would lead to lower computation costs than the corresponding SDP relaxation, which
can also be seen from the numerical experiments in the next subsection.

• The constant symmetric tensors Aα for α P Un
2d in (5.17) spend no more

storage cost than those matrices Aα in (5.14). Since the number of entries in
the tensor rX sd ˚ rX sTd is 1

p
of those in the moment matrix rxsdrxsTd and each entry

of rX sd ˚ rX sTd is consisted of a linear combination of p monomials whose degrees
are no more than 2d. Thus it seems that we need to take as the same storage as
those for matrices Aα to store these tensors Aα. However, noting that some entries
of rX sd ˚ rX sTd may be consisted of a linear combination of p same monomials
whose degrees are no more than 2d, therefore the constant symmetric tensors Aα

for α P Un
2d in (5.17) could sometimes save some storage than those matrices Aα in
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(5.14). In addition, the storage capacity does not change in the transformation of
TSDPs into CSDPs as shown in Section 5.2.

5.4 Numerical computation

In this subsection, we report preliminary numerical results for solving TSDPs by the
method shown in Section 5.2. Taking Application 5 discussed in Section 5.3 for exam-
ple, we consider two polynomial optimization problems and implement these problems in
Matlab R2016a on our PC via SDPNAL` [42]. The computation is performed on a Dell
Laptop with CPU of 3.2 GHz and RAM of 4.0 GB. As pointed in Application 5 of Section
5.2, the TSDP relaxation of unconstrained polynomial optimization can achieve the same
optimal value as the SDP relaxation sometimes, thus here we confirm this conclusion by
two simple examples and illustrate the benefits of the TSDP relaxation furthermore.

Example 1. Minimize the following polynomial:

fpxq “ px1 ` x3
2

` x2
1
x2q2 ` px1 ` x2

1
` x3

2
q2 ` px1 ` x2

1
` x2

2
q2

`px2
1

` x2
2

` x2
1
x2q2 ` px2

2
` x2

1
x2 ` x3

2
q2.

It is obvious that the global minimum value f˚ “ 0, the number of variables n “ 2,
d “ degpfq

2
“ 3 and fpxq ´ f˚ can be expressed as

fpxq ´ f˚ “

»
——————————————–

1
x1
x2
x2
1

x1x2
x2
2

x3
1

x2
1
x2

x1x
2

2

x3
2

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

T »
——————————————–

0 0 0 0 0 0 0 0 0 0
0 3 0 2 0 1 0 1 0 2
0 0 0 0 0 0 0 0 0 0
0 2 0 3 0 2 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 1 0 2 0 3 0 2 0 1
0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 2 0 3 0 2
0 0 0 0 0 0 0 0 0 0
0 2 0 1 0 1 0 2 0 3

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

»
——————————————–

1
x1
x2
x2
1

x1x2
x2
2

x3
1

x2
1
x2

x1x
2

2

x3
2

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

,

where the square matrix is 5-block circular. Therefore, by Theorem 5.12, we know that
the TSDP relaxation with p “ 5 can achieve not worse effect than the SDP relaxation.
Specifically, to solve this problem via the TSDP relaxation as described from (5.12) to
(5.17), we first find the corresponding Aα, C and b in (5.17), then transform Aα and
C into the corresponding Aα and C as the procedure from (PTSDP) to (P2CSDP), and
finally, call the package SDPNAL` to solve the derived SDP. In addition, we also solve
this problem via the traditional SDP relaxation as described from (5.12) to (5.14) for
comparison.

Numerical results for Example 1 by SDP and TSDP via SDPNAL` are shown in 1,
where the size of the TSDP is replaced by the size of the corresponding CSDP with block
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structure and in each pair “(blk, N,m)”, blk, N and mmean the number of blocks, the
length of each block and the number of equality constraints, respectively; “opt” means
the computed optimal value of the corresponding relaxation; “cpu1” means the time
in seconds spent for finding the corresponding matrices Aα of the SDP or the CSDP;
“cpu2” means the time in seconds spent for solving corresponding SDP problem or
CSDP problem via SDPNAL`; and “cpu3” means the total time in seconds spent for
solving Example 1 by the SDP relaxation or the TSDP relaxation.

n d p (blk,N,m) opt cpu1(s) cpu2(s) cpu3(s)

SDP 2 3 1 (1,10,28) 2.1545e´09 0.021 0.969 1.008
TSDP 2 3 5 (5,2,28) ´1.1183e´15 0.037 0.426 0.483

Table 1: Numerical results for Example 1 by the SDP and the TSDP via SDPNAL`.

From 1, we can see that the TSDP relaxation performs well for Example 1. Especially,
for the TSDP relaxation, we obtain that the global minimum value f˚

tsdp “ ´1.1183e´15

by solving a CSDP problem with block diagonal structure, which only takes less than one-
twice of the time of the corresponding SDP relaxation. In addition, the TSDP relaxation
has higher accuracy than the SDP relaxation in this example.

Example 2. Minimize the following polynomial:

fpxq “ 1 ` x10
1
x4
2

` x8
1
x12
2

` x24
1
x2
2

` x24
1
x6
2

` x32
1
x2
2

` x8
1
x28
2

` x28
1
x12
2

` x10
1
x32
2

`x42
1
x4
2

` x30
1
x18
2

` x20
1
x30
2

` x12
1
x40
2

` x6
1
x48
2

` x2
1
x54
2

` x58
2
.

It is obvious that the global minimum value f˚ “ 1, the number of variables n “ 2, and
d “ degpfq

2
“ 29. We test p “ 3 and p “ 15 for the TSDP relaxation of this problem,

respectively. Especially, by the TSDP relaxation with p “ 15, we obtain that the global
minimum value f˚

tsdp “ 1 ` 6.1507e´08 by solving a CSDP problem with block diagonal
structure, which takes only 2.5 seconds; while the corresponding SDP relaxation takes 90.3
seconds. Meanwhile, the TSDP relaxation has higher accuracy than the SDP relaxation
in this example.

Numerical results for Example 2 by the SDP relaxation and the TSDP relaxation are
shown in 2, where “(blk, N,m)”, “opt” , “cpu1”,“cpu2” and “cpu3” are same as those in
1.

From Tables 1 and 2, we can see that the TSDP relaxation has better performances
both in time cost and precision than the traditional SDP relaxation for these test examples.
Especially in the time cost, solving the CSDP problem transformed from the corresponding
TSDP problem saves a lot of time compared with solving the corresponding SDP problem;
while the time for finding the corresponding complex matrices Aα in the CSDP problem is
almost the same as the time for finding the corresponding matricesAα in the SDP problem.

31



n d p (blk,N,m) opt cpu1(s) cpu2(s) cpu3(s)

SDP 2 29 1 (1,465,1769) 1 ´ 1.1897e´07 109.453 90.303 199.896
TSDP 2 29 3 (2,155,1769) 1 ´ 4.3220e´08 107.834 61.426 170.272
TSDP 2 29 15 (8,31,1769) 1 ` 6.1507e´08 103.302 2.515 110.483

Table 2: Numerical results for Example 2 by the SDP and the TSDP via SDPNAL`.

In fact, it should be noticed that the time for finding the corresponding matrices Aα can
be removed from the total time of solving above polynomial optimization problems via
the TSDP or the SDP relaxation because these Aα are fixed as long as n, d and p are
given, and we show them in Tables 1 and 2 just to make the time spent for the TSDP
relaxation and the SDP relaxation more clear.

6 Concluding remarks

In this paper, we aimed to generalize the SDP problem to the third-order tensor case. For
this purpose, we first introduced the T-positive semidefiniteness of third-order symmetric
tensors from the second-order discrimination condition of the convexity of the multi-vector
real-valued function, and then, extended some of useful characterizations and properties
of the symmetric PSD matrix to the third-order symmetric T-PSD tensor. After that, we
replaced the variable in the classic SDP by the third-order symmetric tensor to introduce
the TSDP, which was dealt with by converting it to a CSDP with the block structure.
Finally, several examples with respect to the TSDP problem were shown and some nu-
merical results of minimizing two polynomials via the TSDP relaxation were reported,
which demonstrated that our method by the TSDP relaxation performs better than the
traditional SDP relaxation for the test examples.

Some issues need to be studied in the future.

(i) In Section 5.4, we have just done some preliminary numerical experiments to test
the feasibility and effectiveness of solving TSDPs by dealing with the corresponding
CSDPs. Surprisingly, we find that for some unconstrained polynomial optimization,
the method of the TSDP relaxation has good performance sometimes. Then what
kind of polynomial optimization problems does the TSDP relaxation work well for?
It deserves further study.

(ii) It is known to us that the SDP has shown great power in a very wide range of
areas. In Section 5.3, we have just presented a few simple transformations from
some other models into TSDPs. We believe that more problems can be modeled
(or relaxed) as TSDPs. It is also known that the T-product between third-order
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tensors promotes the emergence of many algorithms with good performance in many
practical problems. It is possible that more efficient algorithms for TSDP problems
can be designed by making use of the characteristics of the T-product and special-
structures of practical problems. Furthermore, it deserves to study how to design
efficient algorithms for solving large-scale realistic problems.
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