Skip to main content
Log in

An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the minimax optimization problem that is nonconvex in one variable and linear in the other variable, which is a special case of nonconvex-concave minimax problem, which has attracted significant attention lately due to their applications in modern machine learning tasks, signal processing and many other fields. We propose a new alternating gradient projection algorithm and prove that it can find an \(\varepsilon\)-first-order stationary solution within \({\mathcal {O}}\left( \varepsilon ^{-3}\right)\) projected gradient step evaluations. Moreover, we apply it to solve the weighted maximin dispersion problem and the numerical results show that the proposed algorithm outperforms the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Chen, Y., Ye, X.: Projection onto a simplex. arXiv preprint arXiv:1101.6081, (2011)

  3. Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J., Sbeed, L. S.: Convergent reinforcement learning with nonlinear function approximation. arXiv preprint arXiv:1712.10285, (2017)

  4. Daskalakis, C., Ilyas, A., Syrgkanis, V., Zeng, H.: Training gans with optimism. arXiv preprint arXiv:1711.00141, (2017)

  5. Daskalakis, C., Panageas, I.: The limit points of (optimistic) gradient descent in min-max optimization. In Advances in neural information processing systems, pp. 9236–9246, (2018)

  6. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  7. Drezner, Z., Wesolowsky, G.O.: A maximin location problem with maximum distance constraints. AIIE Trans. 12(3), 249–252 (1980)

    Article  MathSciNet  Google Scholar 

  8. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680, (2014)

  10. Haines, S., Loeppky, J., Tseng, P., Wang, X.: Convex relaxations of the weighted maxmin dispersion problem. SIAM J. Optim. 23(4), 2264–2294 (2013)

    Article  MathSciNet  Google Scholar 

  11. Hamedani, E. Y., Jalilzadeh, A., Aybat, N.S., Shanbhag, U.V.: Iteration complexity of randomized primal-dual methods for convex-concave saddle point problems. arXiv preprint arXiv:1806.04118, (2018)

  12. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  13. Lu, S., Tsaknakis, I., Hong, M., Chen, Y.: Hybrid block successive approximation for one-sided non-convex min-max problems: algorithms and applications. arXiv preprint arXiv:1902.08294, (2019)

  14. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, (2017)

  15. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755–2787 (2010)

    Article  MathSciNet  Google Scholar 

  16. Nouiehed, M., Sanjabi, M., Huang, T., Lee, J.D., Razaviyayn, M.: Solving a class of non-convex min-max games using iterative first order methods. In Advances in Neural Information Processing Systems, pp. 14905–14916, (2019)

  17. Qian, Qi, Zhu, Shenghuo, Tang, Jiasheng, Jin, Rong, Sun, Baigui, Li, Hao: Robust optimization over multiple domains. Proceedings of the AAAI Conference on Artificial Intelligence Vol 33, pp 4739–4746 (2019)

  18. Rafique, H., Liu, M., Lin, Q., Yang, T.: Non-convex min-max optimization: Provable algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060, (2018)

  19. Sanjabi, M., Ba, J., Razaviyayn, M., Lee, J.D.: On the convergence and robustness of training gans with regularized optimal transport. In Advances in Neural Information Processing Systems, pp. 7091–7101, (2018)

  20. Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. Ser. Approx. Decompos. 6, 491–514 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Sinha, A., Namkoong, H., Duchi, J.: Certifiable distributional robustness with principled adversarial training. Statistics 29, 1050 (2017)

    Google Scholar 

  22. Wang, S., Xia, Y.: On the ball-constrained weighted maximin dispersion problem. SIAM J. Optim. 26(3), 1565–1588 (2016)

    Article  MathSciNet  Google Scholar 

  23. White, D.J.: A heuristic approach to a weighted maxmin dispersion problem. IMA J. Manag. Math. 7(3), 219–231 (1996)

    Article  MathSciNet  Google Scholar 

  24. Wu, Z., Xia, Y., Wang, S.: Approximating the weighted maximin dispersion problem over an \(\ell _p\)-ball: SDP relaxation is misleading. Optim. Lett. 12(4), 875–883 (2018)

    Article  MathSciNet  Google Scholar 

  25. Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vector machines. J. Mach. Learn. Res. 10(Jul), 1485–1510 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Xu, Z., Wang, S., Huang, J.: An efficient low complexity algorithm for box-constrained weighted maximin disperision problem. J. Ind. Manag. Optim. (2020). https://doi.org/10.3934/jimo.2020007

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for their helpful comments and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China under the Grant 12071279 and 11771208 and by General Project of Shanghai Natural Science Foundation (No. 20ZR1420600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Shen, J. & Xu, Z. An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem. Comput Optim Appl 78, 287–306 (2021). https://doi.org/10.1007/s10589-020-00237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00237-4

Keywords

Navigation