
Vol.:(0123456789)

Computational Optimization and Applications (2021) 78:377–410
https://doi.org/10.1007/s10589-020-00243-6

1 3

Globalized inexact proximal Newton‑type methods
for nonconvex composite functions

Christian Kanzow1  · Theresa Lechner1

Received: 27 February 2020 / Accepted: 26 October 2020 / Published online: 16 November 2020
© The Author(s) 2020, corrected publication 2021

Abstract
Optimization problems with composite functions consist of an objective function
which is the sum of a smooth and a (convex) nonsmooth term. This particular struc-
ture is exploited by the class of proximal gradient methods and some of their gener-
alizations like proximal Newton and quasi-Newton methods. The current literature
on these classes of methods almost exclusively considers the case where also the
smooth term is convex. Here we present a globalized proximal Newton-type method
which allows the smooth term to be nonconvex. The method is shown to have nice
global and local convergence properties, and some numerical results indicate that
this method is very promising also from a practical point of view.

1  Introduction

In this paper, we deal with the composite problem

where f ∶ ℝ
n
→ ℝ is (twice) continuously differentiable and � ∶ ℝ

n
→ ℝ ∪ {+∞}

is convex, proper, and lower semicontinuous (lsc). In this formulation, the objective
function � is neither convex nor smooth, so it covers a wide class of applications as
described below. Since � is allowed to take the value +∞ , (1) also comprises con-
strained problems on convex sets.

(1)min
x∈ℝn

�(x) ∶= f (x) + �(x),

 *	 Christian Kanzow
	 kanzow@mathematik.uni‑wuerzburg.de

	 Theresa Lechner
	 theresa.lechner2@mathematik.uni‑wuerzburg.de

1	 University of Würzburg, Institute of Mathematics, Emil‑Fischer‑Str. 30, 97074 Würzburg,
Germany

http://orcid.org/0000-0003-2897-2509
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00243-6&domain=pdf

	 C. Kanzow, T. Lechner

1 3

378

1.1 � Background

Optimization problems in the form (1) arise in many applications in statistics,
machine learning, compressed sensing, and signal processing.

Common applications are the lasso [42] and related problems, where the func-
tion f represents a smooth loss function such as the quadratic loss f (x) ∶= ‖Ax − b‖2

2

or the logistic loss f (x) ∶=
1

m

∑m

i=1
log

�
1 + exp(aT

i
x)
�
 for some given data

A ∈ ℝ
m×n, b ∈ ℝ

m , and ai ∈ ℝ
n for i = 1,… ,m . A convex regularizer � is added to

involve some additional constraints or to control some sparsity. Typical regularizers
are the �1 - and �2-norm, a weighted �1-norm �(x) ∶=

∑n

i=1
�i�xi� for some weights

𝜔i > 0 , or the total variation �(x) = ‖∇x‖ ∶=
∑n−1

i=1
�xi+1 − xi� . Loss problems are

typically used to reconstruct blurred or incomplete data or to classify data.
Another type of application are inverse covariance estimation problems [3, 46].

The aim of this problem class is to find the (sparse) inverse covariance matrix of
a probability distribution of identically and independently distributed samples. For
further applications, where the function f is assumed to be convex, we refer to the
list given by Combettes and Ways [17] and references therein. Further problems in
the form (1) are constrained problems [10] arising in the above mentioned fields.

Nonconvex applications occur, e.g., in inverse problems, where given data are not
related linearly or are perturbed with non Gaussian errors as student’s t-regression
[1], see also Sects. 5.2 and 5.4; cf. the list by Bonettini et al. [9] for more examples
of problems of this type.

1.2 � Description of the Method

In every step of the proximal Newton-type method, we (inexactly) solve the problem

for some x ∈ ℝ
n and a given matrix H which is either equal to the Hessian ∇2f (x)

or represents a suitable approximation of the exact Hessian. The advantage of using
proximal Newton-type steps that take into account second order information of f is
that, similar to smooth Newton-type methods, one can prove fast local convergence.
However, they are only well-defined for convex f and the convergence theorems typ-
ically require some strong convexity assumption.

In contrast, proximal gradient methods perform a backward step using only
first order information of f. This means that (2) is solved for some positive definite
H ∈ ℝ

n×n , which is usually a fixed multiple of the identity matrix. The method can
therefore be shown to converge globally in the sense that every accumulation point
of a sequence generated by this method is a stationary point of � , but it is not pos-
sible to achieve fast local convergence results.

In this paper, we take into account the advantages of both methods and combine
them to get a globalized proximal Newton-type method. Since the proximal New-
ton-type update is preferable, we try to solve the corresponding subproblem and use

(2)argmin
y

{
f (x) + ∇f (x)T (y − x) +

1

2
(y − x)TH(y − x) + �(y)

}

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 379

a novel descent condition to control whether the current iterate is updated with its
solution or a proximal gradient step is performed. To achieve global convergence,
we further add an Armijo-type line search.

As the computation of the Newton-type step defined in (2) can be expensive, our
convergence theory allows some freedom in the choice of the matrices H, in particu-
lar, one can use quasi-Newton or limited memory quasi-Newton matrices.

1.3 � Related work

The original proximal gradient method was introduced by Fukushima and Mine
[22]. It may be viewed as a special instance of the method described in Tseng and
Yun [44], which utilizes a block separable structure of � and performs block wise
descent. Numerous authors [24, 35, 45] deal with acceleration techniques whereby
all of them require the Lipschitz continuity of the gradient ∇f  . Further methods [6,
39] also assume that f is convex.

In an intermediate approach between proximal Newton and proximal gradient
methods, referred to as variable metric proximal gradient methods, the matrix H in
(2) does not need to be a multiple of the identity matrix, but is still positive defi-
nite, uniformly bounded, and does not necessarily contain second order information
of f. Various line search techniques and inexactness conditions on the subproblem
solution can be applied [7–9, 13, 21, 23, 26, 27, 40, 41] to prove global conver-
gence. These references include fast local convergence results for the case that H
is replaced by the Hessian of f or some approximation and a suitable boundedness
condition holds.

In Lee, Sun, and Saunders [27] a generic version of the proximal Newton method
is presented and several convergence results based on the exactness of the subprob-
lem solutions and the Hessian approximation are stated. For the local convergence
theory, they need strong convexity of f. In Yue, Zhou, and So [47], an inexact proxi-
mal Newton method with regularized Hessian is presented which assumes f to be
convex, but not strongly convex, and an error bound condition. Their inexactness
criterion is similar to ours. The authors in [28, 43] assume that f is convex and self-
concordant and apply a damped proximal Newton method.

Bonettini et al. [8, 9] consider an inexact proximal gradient method with variable
metric and an Armijo-type line search to solve problem (1). The structure of the
method in [9] is similar to ours, but they use a different inexactness criterion, have
no globalization and add an overrelaxation step to ensure convergence. The conver-
gence theory covers global convergence and local convergence under the assumption
that ∇f is Lipschitz continuous and � satisfies the Kurdyka-Łojasiewicz property.

A similar method with various line search criteria is introduced by Lee and
Wright [26]. Their inexactness criterion is related to the one from Bonettini et al.
Furthermore, they use a line search technique to update the matrix H in (2), if suit-
able descent is not achieved. Here, convergence rates are proven for nonconvex as
well as for convex problems.

Further methods exist for the case where we can write 𝜑 = 𝜑̃◦B for a linear
mapping B ∶ ℝ

n
→ ℝ

p and a convex function 𝜑̃ ∶ ℝ
p
→ ℝ . This formulation is

	 C. Kanzow, T. Lechner

1 3

380

used if the proximity operator of 𝜑̃ is easy to compute whereas the one of � is not.
In [15, 16, 29] fixed point methods are used to solve the problems under different
assumptions, the reformulation into a constrained problem is applied in [2, 48].

Another class of methods to solve (1) are semismooth Newton methods. Patri-
nos, Stella, and Bemporad assume in [37] that f is convex and apply a semismooth
Newton method combined with a line search strategy. The method MINFBE of
Stella, Themelis, and Patrinos [41] is based on the same idea, but uses a different
line search strategy, for which they can prove convergence under the assumption
that ∇f is Lipschitz continuous. Furthermore, they state linear convergence for
convex problems.

For strongly convex f with Lipschitz continuous gradient, Patrinos and Bem-
porad [36] state a semismooth Newton method that uses a globalization strategy
similar to our method and applies a proximal gradient step if the given descent
criterion does not hold. A semismooth Newton method with filter globalization
is introduced by Milzarek and Ulbrich [32] for �(x) = �‖x‖1 with some 𝜆 > 0 and
adapted for arbitrary convex � by Milzarek [31]. For the semismooth Newton
update, they check a filter condition and, if it does not hold, a proximal gradient
step with Armijo-type line search is performed.

1.4 � Outline of the paper

This paper is organized as follows. First, we introduce the proximity operator
with some properties, formulate the proximal gradient method, and state a con-
vergence result in Sect. 2. The globalization of the proximal Newton-type method
and its inexact variant is deduced in Sect. 3, where we also state some prelimi-
nary observations. In Sect. 4, we first prove global convergence under fairly mild
assumptions, and then provide a fast local convergence result. We then consider
the numerical behaviour of our method(s) on different classes of problems in
Sect. 5, also including a comparison with several state-of-the-art solvers. We con-
clude with some final remarks in Sect. 6.

1.5 � Notation

For x = (x1,… , xn)
T ∈ ℝ

n and J ⊂ {1,… , n} , the subvector xJ ∈ ℝ
|J| consists of

all elements xi of x with i ∈ J . Furthermore, ℝ ∶= ℝ ∪ {∞} is the set of extended
real numbers. The set of all symmetric matrices in ℝn×n is denoted by �n , and the
set of all symmetric positive definite matrices is abbreviated by �n

++
 . We write

H ≻ 0 or H ⪰ 0 for H ∈ ℝ
n×n if H is positive definite or positive semidefinite,

respectively. Analogously, we write H ≻ G or H ⪰ G for G,H ∈ ℝ
n×n if H − G

is positive (semi)definite. The standard inner product of x, y ∈ ℝ
n is denoted by

⟨x, y⟩ ∶= xTy . Finally, we write ‖x‖H ∶=
√
xTHx for the norm induced by a given

matrix H ≻ 0.

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 381

2 � The proximal gradient method

This section first recalls the definition and some elementary properties of the prox-
imity operator, and then describes a version of the proximal gradient method which
is applicable to possibly nonconvex composite optimization problems. Throughout
this section, we assume that f is continuously differentiable and � is proper, lsc, and
convex.

2.1 � The proximity operator

The proximity operator was introduced by Moreau [34] and turned out to be a very
useful tool both from a theoretical and an algorithmic point of view. Here we restate
only some of its properties, and refer to the monograph [4] by Bauschke and Com-
bettes for more details.

For a positive definite matrix H ∈ ℝ
n×n and a convex, proper, and lsc function

� ∶ ℝ
n
→ ℝ , the mapping

is called the proximity operator of � with respect to H. Here, the minimizer proxH
�
(x)

is uniquely defined for all x ∈ ℝ
n since the expression inside the argmin is a strongly

convex function. If H is the identity matrix, we simply write prox�(x) instead of
proxI

�
(x).

Using Fermat’s rule and the sum rule for subdifferentials, the definition of the
proximity operator gives p = proxH

�
(x) if and only if 0 ∈ ��(p) + H(p − x) , or

equivalently

We next restate a result on the continuity of the proximity operator due to Milzarek
[31, Corollary 3.1.4], which states that the proximity operator is continuous not only
with respect to the argument, but also with respect to the positive definite matrix.

Lemma 2.1  The proximity operator (x,H) ↦ proxH
�
(x) is Lipschitz continuous on

every compact subset of ℝn × 𝕊
n
++

 , and continuous on ℝn × 𝕊
n
++

.

We call x∗ ∈ dom� a stationary point of the program (1) if 0 ∈ ∇f (x∗) + ��(x∗) .
Using [4, Proposition 17.14] and (3), we obtain the characterizations

where the last reformulation turns out to be independent of the particular matrix H.

x ↦ proxH
�
(x) ∶= argmin

y

�
�(y) +

1

2
‖y − x‖2

H

�

(3)p ∈ x − H−1��(p).

(4)

x∗ stationary point of (1) ⟺ −∇f (x∗) ∈ ��(x∗)

⟺ � �(x∗;d) ≥ 0 for all d ∈ ℝ
n

⟺ x∗ = proxH
�

(
x∗ − H−1∇f (x∗)

)
,

	 C. Kanzow, T. Lechner

1 3

382

2.2 � Proximal gradient method

The proximal gradient method was introduced by Fukushima and Mine [22] as a gen-
eralization of the proximal point algorithm, which, in turn, was established by Rock-
afellar [38]. Note that the existing literature on the proximal gradient method usually
assumes f to be smooth with a (globally) Lipschitz continuous gradient. In order to
obtain complexity and rate of convergence results, additional assumptions, e.g. the con-
vexity of f, are required, cf. Beck [5] for more details.

Here we present a version of the proximal gradient method which still has nice
global convergence properties also in the case where f is only continuously differen-
tiable (not necessarily convex and without assuming any Lipschitz continuity of the
corresponding gradient mapping). The method itself is essentially known and may be
viewed as a special instance of the method described in Tseng and Yun [44], see also
the PhD Thesis by Milzarek [31]. This version differs from the original one in [22] and
its variants considered for convex problems by using a different line search globaliza-
tion strategy. The proximal gradient method described here plays a central role in the
globalization of our proximal Newton-type method.

To motivate the proximal gradient method, let us first recall that the classical
(weighted) gradient method for the minimization of a smooth objective function f first
computes a minimizer dk of the quadratic subproblem

for some Hk ≻ 0 , and then takes xk+1 = xk + tkd
k for some suitable stepsize tk > 0 .

Usually, Hk is chosen as a positive multiple of the identity matrix. For Hk = I , we
get the method of steepest descent, hence dk is given by −∇f (xk) in this case.

Next consider the composite optimization problem from (1). To solve this non-
smooth problem, we simply add the nonsmooth function to the argument of (5) and
obtain the subproblem

Let dk = dHk
(xk) be a solution of this subproblem. The next iterate is then defined by

xk+1 ∶= xk + tkd
k for a suitable stepsize tk > 0 . A simple calculation shows that the

solution dk of (6) is given by

We now state our proximal gradient method explicitly. The stepsize rule uses the
expression

for k ∈ ℕ0 , which is an upper bound of the directional derivative � �(xk, dk) , see
Lemma 2.3. Occasionally, we write Δ instead of Δk , if it is computed in some vari-
ables x and d instead of xk and dk , respectively.

(5)min
d

f (xk) + ∇f (xk)Td +
1

2
dTHkd

(6)min
d

f (xk) + ∇f (xk)Td +
1

2
dTHkd + �(xk + d).

(7)dk = prox
Hk

�

(
xk − H−1

k
∇f (xk)

)
− xk.

(8)Δk ∶= ∇f (xk)Tdk + �(xk + dk) − �(xk)

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 383

Algorithm 2.2  (Proximal Gradient Method)

	(S.0)	 Choose x0 ∈ dom� , �, � ∈ (0, 1) , and set k ∶= 0.
	(S.1)	 Choose Hk ≻ 0 and determine dk as the solution of

	(S.2)	 If dk = 0 : STOP.
	(S.3)	 Compute tk = max{� l ∶ l = 0, 1, 2,…} such that �(xk + tkd

k) ≤ �(xk) + tk�Δk.

	(S.4)	 Set xk+1 ∶= xk + tkd
k , k ← k + 1 , and go to (S.1).

The algorithm allows Hk to be any positive definite matrix. In general, it is
chosen independently of the iteration and as a positive multiple of the identity
matrix, because in that case the computation of the proximity operator is less
costly, in some cases (depending on the mapping � ) even an explicit expression
is known.

We now want to prove that Algorithm 2.2 is well-defined and justify the termina-
tion criterion. The analysis is mainly based on [31, 44]. Note that we assume implic-
itly that the algorithm does not terminate after finitely many steps.

We first give an estimate for the value of Δ , which is essentially [32, Lemma 3.5].

Lemma 2.3  Let x ∈ dom� , H ∈ �
n
++

 be given, and set
d ∶= proxH

�

(
x − H−1∇f (x)

)
− x , cf. (7). Then the inequalities � �(x;d) ≤ Δ ≤ −dTHd

hold.

Note that this result implies that Δk is always a negative number as long as dk is
nonzero.

The termination criterion in (S.2) is justified by (4). Thus, it ensures that the algo-
rithm terminates in a stationary point of � . Together with the next result, it follows
that Algorithm 2.2 is well-defined, which means, in particular, that the line search
procedure in (S.3) always terminates after finitely many steps.

Corollary 2.4  Algorithm 2.2 is well-defined, and we have 𝜓(xk+1) < 𝜓(xk) for all k.

Proof  Consider a fixed iteration index k. Since, by assumption, the algorithm gener-
ates an infinite sequence, (S.2) yields dk ≠ 0 for all k. Thus, by Lemma 2.3, we have
Δk < 0 . Using the first inequality in Lemma 2.3, we therefore obtain

for all sufficiently small t > 0 . Rearranging this inequality, we see that the step size
rule (S.3) and, consequently, the whole algorithm is well-defined. Furthermore,
using Δk < 0 in (S.3) yields 𝜓(xk+1) = 𝜓(xk + tkd

k) ≤ 𝜓(xk) + tk𝜎Δk < 𝜓(xk) , and
this completes the proof. 	� ◻

min
d

∇f (xk)Td +
1

2
dTHkd + �(xk + d).

�(xk + tdk) − �(xk)

t
≤ �Δk

	 C. Kanzow, T. Lechner

1 3

384

The following convergence result is a special case of [44, Theorem 1(e)].

Theorem 2.5  Let {Hk}k ⊂ �
n
++

 be a sequence such that there exist 0 < m < M with
mI ⪯ Hk ⪯ MI for all k ∈ ℕ0 . Then any accumulation point of a sequence generated
by Algorithm 2.2 is a stationary point of �.

Theorem 2.5 cannot be applied directly in order to verify global convergence
of our inexact proximal Newton-type method since only some of the search direc-
tions dk are computed by a proximal gradient method, whereas other directions cor-
respond to an inexact proximal Newton-type step. However, a closer inspection of
the proof of [44, Theorem 1] yields that the following slightly stronger convergence
result holds.

Remark 2.6  An easy consequence of the proof of Theorem 2.5, cf. [44], is the fol-
lowing more general result: Let {xk} be a sequence such that xk+1 = xk + tkd

k holds
for all k with some search directions dk ∈ ℝ

n (not necessarily generated by a proxi-
mal gradient step) and a stepsize tk > 0 . Assume further that �(xk+1) ≤ �(xk) holds
for all k. Let {xk}K be a convergent subsequence of the given sequence such that
the search directions dk = dHk

(xk) are obtained by proximal gradient steps for all
k ∈ K , where mI ⪯ Hk ⪯ MI (0 < m ≤ M) , and the corresponding step sizes tk > 0
are determined by the Armijo-type rule from (S.3). Then the limit point of the sub-
sequence {xk}K is still a stationary point of � . � ◊

3 � Globalized inexact proximal Newton‑type method

Let us start with the derivation of our globalized inexact proximal Newton-type
method. To this end, let us first assume that Hk stands for the exact Hessian ∇2f (xk)
(later Hk will be allowed to be an approximation of the Hessian only).

In smooth optimization, one step of the classical version of Newton’s
method for minimizing a function f ∶ ℝ

n
→ ℝ consists in finding a solution of

Hk(x − xk) = −∇f (xk) . This is equivalent (assuming Hk being positive definite for
the moment) to solve the problem minx fk(x) , where

is a quadratic approximation of f at the current iterate xk . To solve this problem inex-
actly, one often uses the criterion

for some �k ∈ (0, 1).
Now we adapt this strategy to the nonsmooth problem (1). In this case, the objec-

tive function is f + � , and the corresponding approximation we use is

(9)fk(x) ∶= f (xk) + ∇f (xk)T (x − xk) +
1

2
(x − xk)THk(x − xk)

(10)‖∇fk(x)‖ ≤ �k‖∇f (xk)‖

(11)
�k(x) ∶= fk(x) + �(x) = f (xk) + ∇f (xk)T (x − xk) +

1

2
(x − xk)THk(x − xk) + �(x).

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 385

In view of (4), we may view

as a replacement for the derivative of the objective function since F(x) = 0 if and
only if x is a stationary point of �.

Since �k is another function of the form (1), one can use the same idea to
replace the derivative of �k by

This observation motivates to replace the inexactness criterion (10) by a condition
like ‖Fk(x)‖ ≤ �k‖F(xk)‖ for some 𝜏 > 0 and �k ≥ 0 , see [13, 27].

Note that the methods of Bonettini et al. [9] and Lee and Wright [26] use a dif-
ferent inexactness criterion considering the value of the difference �k(x) − �k(x

∗,k)
of the function values of �k , where x∗,k is an exact minimizer of �k . In contrast,
our criterion originates directly from the smooth Newton method and considers a
different optimality criterion based on the distance of the point x itself from being
a solution of the subproblem, not the distance of the function values.

The main idea of our globalized proximal Newton-type method is now similar
to a standard globalization of the classical Newton method for smooth uncon-
strained optimization problems: Whenever the proximal Newton-type direction
exists and satisfies a suitable sufficient decrease condition, the proximal Newton-
type direction is accepted and followed by a line search. Otherwise, a proximal
gradient step is taken which always exists and guarantees suitable global conver-
gence properties. The descent criterion used here is motivated by the condition
in [18, 36]. The line search is based on the Armijo-type condition already used
in the proximal gradient method and makes use of the same Δk that was already
defined in (8). The exact statement of our method is as follows, where, now, we
allow Hk to be an approximation of the Hessian of f at xk.

Algorithm 3.1  (Globalized Inexact Proximal Newton-type Method (GIPN))

	(S.0)	 Choose initial parameters: x0 ∈ dom� , 𝜌 > 0 , p > 2 , �, � ∈ (0, 1) , � ∈ (0,
1

2
) ,

� ∈ (�,
1

2
) , 0 < cmin ≤ cmax , and set k ∶= 0.

	(S.1)	 Choose Hk ∈ ℝ
n×n symmetric, �k ∈ [0, �) and compute an inexact solution x̂k

of the subproblem minx �k(x) satisfying

and set dk ∶= x̂k − xk . If this is not possible or the condition

is not satisfied, choose ck ∈ [cmin, cmax] and determine dk as the (unique) solu-
tion of

(12)F(x) ∶= x − prox�(x − ∇f (x))

Fk(x) ∶= x − prox�
(
x − ∇fk(x)

)
= x − prox�

(
x − (∇f (xk) + Hk(x − xk))

)
.

(13)‖Fk(x̂k)‖ ≤ 𝜂k‖F(xk)‖ and 𝜓k(x̂
k) − 𝜓k(x

k) ≤ 𝜁Δk,

(14)Δk ≤ −�‖dk‖p

	 C. Kanzow, T. Lechner

1 3

386

	(S.2)	 If dk = 0 : STOP.
	(S.3)	 Compute tk = max{� l ∣ l = 0, 1, 2,…} such that �(xk + tkd

k) ≤ �(xk) + �tkΔk.

	(S.4)	 Set xk+1 ∶= xk + tkd
k , k ← k + 1 and go to (S.1).

Before we start to analyse the convergence properties of Algorithm 3.1, let us
add a few comments regarding the proximal subproblems that we try to solve
inexactly in (S.1). Since Hk is not necessarily positive definite, these subproblems
are not guaranteed to have a solution. The same difficulty arises within the clas-
sical Newton method since, in the indefinite case, the quadratic subproblem (9)
certainly has no minimizer. Nevertheless, the classical Newton method is often
quite successful even if Hk is indefinite (at least during some intermediate itera-
tions), and the Newton direction is usually well-defined because it just computes
a stationary point of the subproblem (9) which exists also for indefinite matrices
Hk . Here, the situation is similar since the conditions (13) only check whether we
have an (inexact) stationary point (note that these conditions certainly hold for
the exact solution of the corresponding subproblem, cf. [27, Proposition 2.4] for
the second condition and note that 𝜁 <

1

2
 ). Moreover, the situation here is even

better than in the classical case since the additional function � may guarantee the
existence of a minimum even for indefinite Hk (e.g. if � has compact support as
this occurs when � is the indicator function of a bounded feasible set). We there-
fore believe that our proximal Newton-type direction does exist in many situa-
tions (otherwise we switch to the proximal gradient direction).

The properties of Algorithm 3.1 obviously depend on the choice of the matri-
ces Hk and the degree of inexactness that is used to compute the inexact proxi-
mal Newton-type direction in (S.1). This degree is specified by the test in (13).
The local convergence analysis requires some additional conditions regarding the
choice of the sequence �k , whereas the global convergence analysis depends only
on the choice �k ∈ [0, �) for some given � ∈ (0, 1) and does not need the second
condition in (13). The condition in (14) is a sufficient decrease condition, with
𝜌 > 0 typically being a small constant.

For our subsequent analysis, we set

The following result shows that the step size rule in (S.3) is well-defined and Algo-
rithm 3.1 is a descent method.

Proposition 3.2  Consider a fixed iteration k and suppose that dk ≠ 0 . Then
the line search in (S.3) is well-defined and yields a new iterate xk+1 satisfying
𝜓(xk+1) < 𝜓(xk).

(15)min
d

∇f (xk)Td +
1

2
ck‖d‖2 + �(xk + d).

KG ∶ = {k ∶ xk+1 was generated by the proximal gradient method},

KN ∶ = {k ∶ xk+1 was generated by the inexact proximal Newton-type method}.

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 387

Proof  Since the proximal gradient method is well-defined by Corollary 2.4, the
claim holds for k ∈ KG . Now, assume k ∈ KN , in which case (14) holds. Then
Δk < 0 and, therefore, the remaining part of the proof is identical to the one of Cor-
ollary 2.4. 	� ◻

Proposition 3.2 requires dk ≠ 0 . In view of the following result, this assumption
can be stated without loss of generality. In particular, this result justifies our termi-
nation criterion in (S.2).

Lemma 3.3  An iterate xk generated by GIPN is a stationary point of � if and only if
dk = 0.

Proof  For k ∈ KG , the result follows from (4). Hence assume k ∈ KN , and
let dk = 0 . This yields x̂k = xk . Since Fk(xk) = F(xk) , condition (13) yields
‖F(xk)‖ ≤ �k ⋅ ‖F(xk)‖ . As �k ∈ [0, 1) , we get F(xk) = 0 and xk is a stationary point
of � , using again (4). Conversely, assume that dk ≠ 0 for k ∈ KN . Then, analogous
to Lemma 2.3, we get 𝜓 �(xk;dk) ≤ Δk ≤ −𝜌‖dk‖p < 0. Hence xk is not a stationary
point of � . 	� ◻

Altogether, the previous results show that Algorithm 3.1 is well-defined.

4 � Convergence theory

In the following, we will prove global and local convergence results for algo-
rithm GIPN. For this purpose, we assume that GIPN generates an infinite sequence
and dk ≠ 0 holds for all k ∈ ℕ . The latter is motivated by Lemma 3.3.

4.1 � Global convergence

The following is the main global convergence result for Algorithm 3.1. It guarantees
stationarity of any accumulation point. Hence, if f is also convex, this implies that
any accumulation point is a solution of the composite optimization problem from
(1).

Theorem 4.1  Consider Algorithm GIPN with a bounded sequence of matrices {Hk} .
Then every accumulation point of a sequence generated by this method is a station-
ary point of �.

Proof  Let {xk} be a sequence generated by GIPN and {xk}K a subsequence of {xk}
converging to some x∗ . If there are infinitely many indices k ∈ K with k ∈ KG , i.e.
the subsequence contains infinitely many iterates xk such that xk+1 is generated by
the proximal gradient method, Proposition 3.2 and the statement of Remark 2.6
yield that x∗ is a stationary point of �.

	 C. Kanzow, T. Lechner

1 3

388

Hence consider the case where all elements of the subsequence {xk+1}K are gen-
erated by inexact Newton-type steps. Since {�(xk)} is monotonically decreasing by
Proposition 3.2, {xk}K converges to x∗ , and since � is lsc, we get the convergence of
the entire sequence {�(xk)} to some finite number �∗ . The line search rule therefore
yields

and, hence, tkΔk → 0 for k → ∞ . We claim that this implies {‖dk‖}K → 0 (possi-
bly after taking another subsequence). To verify this statement, we distinguish two
cases:

Case 1: lim infk∈K tk > 0 . Then {Δk}K → 0 , and we therefore obtain {‖dk‖}K → 0
in view of (14).

Case 2: lim infk∈K tk = 0 . Without loss of generality, assume limk∈K tk = 0 .
Then, for all k ∈ K sufficiently large, the line search test is violated for the stepsize
�k ∶= tk∕� . Using the monotonicity of the difference quotient of convex functions,
cf. [4, Proposition 9.27], and the definition of Δk , we therefore obtain

for all k ∈ K sufficiently large, where the last expression uses the mean value theo-
rem with some �k ∈ (xk, xk + �kd

k) . Reordering these expressions, we obtain

Using (14) we get

for all k ∈ K . Since {tkΔk}K → 0 , it follows that tk‖dk‖p →K 0 in view of (14).
Using p > 1 , this implies �k‖dk‖ →K 0 . Hence the right hand side of (16) converges
to zero due to the uniform continuity of ∇f on compact sets. Consequently, (16)
shows that ‖dk‖ →K 0.

Therefore, dk →K 0 holds in both cases. Since xk →K x∗ , the definition of dk also
implies x̂k →K x∗ . Using the continuity of the proximity operator, we therefore get

and, since {Hk} is bounded by assumption,

Since ‖Fk(x̂k)‖ ≤ 𝜂‖F(xk)‖ for all k ∈ K in view of (13) and � ∈ (0, 1) , taking the
limit k →K ∞ therefore implies x∗ = prox�(x

∗ − ∇f (x∗)) , which is equivalent to x∗
being a stationary point of � . 	� ◻

0 ← 𝜓(xk+1) − 𝜓(xk) ≤ 𝜎tkΔk < 0

𝜎Δk <
𝜓(xk + 𝜏kd

k) − 𝜓(xk)

𝜏k
≤

f (xk + 𝜏kd
k) − f (xk)

𝜏k
+ 𝜑(xk + dk) − 𝜑(xk)

=
f (xk + 𝜏kd

k) − f (xk)

𝜏k
− ∇f (xk)Tdk + Δk =

(
∇f (𝜉k) − ∇f (xk)

)T
dk + Δk

0 < −(1 − 𝜎)Δk <
(
∇f (𝜉k) − ∇f (xk)

)T
dk.

(16)(1 − �)�‖dk‖p−1 ≤ ‖∇f (�k) − ∇f (xk)‖

F(xk) →K x∗ − prox�(x
∗ − ∇f (x∗))

Fk(x̂k) →K x∗ − prox𝜑(x
∗ − ∇f (x∗)).

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 389

Remark 4.2  Note that the proof of Theorem 4.1 only requires p > 1 and the first con-
dition from (13). The second condition from (13) is only needed in the local conver-
gence theory.� ◊

4.2 � Local convergence

We now turn to the local convergence properties of Algorithm 3.1. To this end,
we assume that � is locally strongly convex in a neighbourhood of an accumula-
tion point of a sequence of iterates and the sequence {Hk} is bounded. Under these
assumptions, we first prove the convergence of the complete sequence.

Theorem 4.3  Consider Algorithm 3.1 with {Hk} satisfying MI ⪰ Hk ⪰ mI for all
k ∈ ℕ0 with suitable M ≥ m > 0 . Let x∗ be an accumulation point of the generated
sequence {xk} such that � is locally strongly convex in a neighbourhood of x∗ . Then
the whole sequence {xk} converges to x∗ , and x∗ is a strict local minimum of �.

Proof  In view of Theorem 4.1, every accumulation point of the sequence {xk} is a
stationary point of � . Since � is locally strongly convex, x∗ is the only stationary
point in a suitable neighbourhood. Hence x∗ is necessarily the only accumulation
point of the sequence {xk} in this neighbourhood, and a strict local minimum of � .
In order to verify the convergence of {xk} , we therefore have to verify only the con-
dition {‖xk+1 − xk‖}K → 0 for any subsequence {xk}K → x∗ , cf. [33, Lemma 4.10].

Hence let {xk}K denote an arbitrary subsequence converging to x∗ . Since
‖xk+1 − xk‖ = tk‖dk‖ for all k ∈ ℕ , it suffices to show {tk‖dk‖}K → 0 for K ⊂ KG
and K ⊂ KN . First, let K ⊂ KN . Then the statement is already shown in the proof of
Theorem 4.1. On the other hand, if K ⊂ KG , the continuity of the solution operator
in the proximal gradient method, see Lemma 2.1, yields {‖dk‖}K → 0 . The claim
follows from 0 ≤ tk‖dk‖ ≤ ‖dk‖ . 	� ◻

Note that the assumption regarding the local strong convexity of � in a neigh-
bourhood of x∗ certainly holds if the Hessian ∇2f (x∗) is positive definite.

For the following analysis, we assume, in addition, that f is twice continuously
differentiable and the sequence {Hk} satisfies the Dennis-Moré condition [19]

Under suitable assumptions, we expect the method to be locally superlinearly or
quadratically convergent. The main steps into this direction are summarized in the
following observations, which are partly taken from [47].

Proposition 4.4  Consider Algorithm 3.1 with {Hk} satisfying the Dennis-Moré con-
dition and MI ⪰ Hk ⪰ mI for all k ∈ ℕ0 with suitable M ≥ m > 0 . Let x∗ be a sta-
tionary point of � such that � is locally strongly convex in a neighbourhood of x∗ .
Then there exist constants 𝜀 > 0 as well as C1,C2, 𝜅1, 𝜅2,𝜇 > 0 such that, for any

lim
k→∞

���
�
Hk − ∇2f (x∗)

�
(x̂k − xk)

���
‖x̂k − xk‖

= 0.

	 C. Kanzow, T. Lechner

1 3

390

iterate xk ∈ B�(x
∗) , the following statements hold, where x̂k

ex
 is the exact solution of

the corresponding subproblem in (S.1) of Algorithm 3.1:

(a)	 ��x̂k − x̂k
ex
�� ≤ C1𝜂k‖F(xk)‖.

(b)	 ��x̂kex − xk�� ≤ 𝜅1‖xk − x∗‖.
(c)	 𝜇��x̂kex − x∗�� ≤ C2𝜂k‖F(xk)‖ +

‖‖‖
(
Hk − ∇2f (x∗)

)
(x̂k − xk)

‖‖‖
+‖‖∇f (xk) − ∇f (x∗) − ∇2f (x∗)(xk − x∗)‖‖.

Proof  We verify each of the three statements separately, using possibly different val-
ues of �.

(a) First, note that the function �k is strongly convex and, therefore, has a unique
minimizer. Thus, the exact solution x̂k

ex
= prox

Hk

𝜑

(
xk − H−1

k
∇f (xk)

)
 of the subprob-

lem exists and hence guarantees that there is an inexact solution x̂k.
Since Fk(x̂k) = x̂k − prox𝜑

(
x̂k − ∇fk(x̂

k)
)
 , we obtain from (3) that

The definition of �k together with the subdifferential sum rule therefore implies

which is equivalent to

Since �k is strongly convex with modulus m > 0 , its subdifferential is strongly
monotone in this neighbourhood with the same modulus. Hence, using (17) together
with 0 ∈ 𝜕𝜓k(x̂

k
ex
) , we get

Applying the Cauchy-Schwarz inequality, this implies

Using the inexactness criterion (13), we finally get, with C1 ∶= (1 +M + m)∕m,

(b) Let G(x,H) ∶= x − proxH
�

(
x − H−1∇f (x)

)
 . By Lemma 2.1, G is Lipschitz

continuous for x ∈ B�(x
∗) for some 𝜀 > 0 and H ∈ �

n
++

 with mI ⪯ H ⪯ MI and
G(x∗,H) = 0 for all such H by (4). Thus, there exists 𝜅1 > 0 (not depending on Hk )
such that

Fk(x̂k) − ∇fk(x̂
k) ∈ 𝜕𝜑(x̂k − Fk(x̂k)).

Fk(x̂k) + ∇fk
(
x̂k − Fk(x̂k)

)
− ∇fk(x̂

k) ∈ 𝜕𝜓k

(
x̂k − Fk(x̂k)

)
,

(17)(I − Hk)F
k(x̂k) ∈ 𝜕𝜓k

(
x̂k − Fk(x̂k)

)
.

⟨
(I − Hk)F

k(x̂k), x̂k − Fk(x̂k) − x̂k
ex

⟩
≥ m

‖‖‖x̂
k − Fk(x̂k) − x̂k

ex

‖‖‖
2

.

���x̂
k − Fk(x̂k) − x̂k

ex

��� ≤
1

m

���(I − Hk)F
k(x̂k)

��� ≤
1

m
(1 +M)‖Fk(x̂k)‖.

‖x̂k − x̂k
ex
‖ ≤ ‖x̂k − Fk(x̂k) − x̂k

ex
‖ + ‖Fk(x̂k)‖

≤
1

m
(1 +M)‖Fk(x̂k)‖ + ‖Fk(x̂k)‖ ≤ C1𝜂k‖F(xk)‖.

‖x̂k
ex
− xk‖ = ‖G(xk,Hk)‖ = ‖G(xk,Hk) − G(x∗,Hk)‖ ≤ 𝜅1‖xk − x∗‖.

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 391

(c) The inequality holds trivially for x̂k
ex
= x∗ . Thus, assume x̂k

ex
≠ x∗ . First, note that

(a) implies

Since � is locally strongly convex in a neighbourhood of x∗ , the subdifferential is
strongly monotone, i.e. there exist 𝜀 > 0 and 𝜇 > 0 such that

holds for all x, y ∈ B�(x
∗) and s(x) ∈ ��(x), s(y) ∈ ��(y) . Using the stationarity of

x∗ and x̂k
ex

 , we have 0 ∈ ∇f (x∗) + ��(x∗) and 0 ∈ ∇f (xk) + Hk(x̂
k
ex
− xk) + 𝜕𝜑(x̂k

ex
) .

Thus, also noting that x̂k
ex

 eventually belongs to B�(x
∗) in view of part (b), we get

From (b) we get {x̂k
ex
} → x∗ . Thus, by reducing 𝜀 > 0 , if necessary, we get

from the twice differentiability of f. The assertion follows from dividing by
‖x∗ − x̂k

ex
‖ and using (18). 	� ◻

A suitable combination of the previous results leads to the following (global
and) local convergence result for Algorithm 3.1.

Theorem 4.5  Consider Algorithm 3.1 and assume that the sequence {Hk} satisfies
the assumptions from Proposition 4.4. Let x∗ be an accumulation point of a sequence
{xk} generated by Algorithm 3.1 such that � is locally strongly convex in a neigh-
bourhood of x∗ . Then the following statements hold:

(a)	 For all sufficiently large k, the search direction is attained by the inexact proxi-
mal Newton-type direction.

(b)	 For all sufficiently large k, the full step size tk = 1 is accepted.
(c)	 I f 𝜂 < 𝜂  , the sequence {xk} converges l inearly to x∗ , where

� = 1∕((C1 +
1

�
C2)(L + 2)) with C1,C2,� from Proposition 4.4 and a local Lip-

schitz constant L > 0 of ∇f in a neighbourhood of x∗.

(18)

‖(Hk − ∇2f (x∗))(x̂k
ex
− xk)‖

≤ (M + ‖∇2f (x∗)‖)‖x̂k
ex
− x̂k‖ + ‖(Hk − ∇2f (x∗))(x̂k − xk)‖

≤ C1(M + ‖∇2f (x∗)‖)𝜂k‖F(xk)‖ + ‖(Hk − ∇2f (x∗))(x̂k − xk)‖.

⟨x − y,∇f (x) + s(x) − ∇f (y) − s(y)⟩ ≥ 2�‖x − y‖2

2𝜇‖x̂k
ex
− x∗‖2 ≤ ⟨∇f (x̂k

ex
) − ∇f (xk) − Hk(x̂

k
ex
− xk), x̂k

ex
− x∗⟩

= ⟨
�
∇2f (x∗) − Hk

�
(xk − x̂k

ex
), x∗ − x̂k

ex
⟩

+ ⟨∇f (xk) − ∇f (x̂k
ex
) − ∇2f (x∗)(xk − x̂k

ex
), x∗ − x̂k

ex
⟩

≤
���
�
∇2f (x∗) − Hk

�
(xk − x̂k

ex
)
��� ⋅

���x
∗ − x̂k

ex

���
+ ‖∇f (xk) − ∇f (x∗) − ∇2f (x∗)(xk − x∗)‖ ⋅ ‖x∗ − x̂k

ex
‖

+ ‖∇f (x∗) − ∇f (x̂k
ex
) − ∇2f (x∗)(x∗ − x̂k

ex
)‖ ⋅ ‖x∗ − x̂k

ex
‖.

‖∇f (x∗) − ∇f (x̂k
ex
) − ∇2f (x∗)(x∗ − x̂k

ex
)‖ ≤ 𝜇‖x∗ − x̂k

ex
‖

	 C. Kanzow, T. Lechner

1 3

392

(d)	 If {�k} → 0 , the sequence {xk} converges superlinearly to x∗.

Proof  Note that we know from Theorem 4.3 that x∗ is both a stationary point and a
strict local minimum of � , and that the whole sequence {xk} converges to x∗.

(a) Similar to the proof of Proposition 4.4, there exists a solution x̂k of the sub-
problem minx �k(x) for all k ∈ ℕ . Let Δk,N be the Δ-function corresponding to the
search direction dk

N
∶= x̂k − xk , i.e. Δk,N ∶= ∇f (xk)Tdk

N
+ �(xk + dk

N
) − �(xk) . Then

the second condition in (13) is equivalent to

which yields

Since x∗ is a stationary point of � , hence F(x∗) = 0 , it follows from the continuity of
F and the results in Proposition 4.4 (a) and (b) that

holds for all sufficiently large k ∈ ℕ . Combining these inequalities yields
‖dk

N
‖ = ‖x̂k − xk‖ ≤ (𝜌∕c̃)1∕(2−p). We therefore get

Thus, the sufficient descent condition (14) is fulfilled and the search direction
dk = dk

N
 is obtained by the inexact proximal Newton-type method.

(b) Taylor expansion yields

for some 𝜉k ∈ (xk, x̂k) . Hence, we get

By the Dennis-Moré criterion, this is o(‖x̂k − xk‖2) for xk → x∗ . As before, it fol-
lows from the continuity of F and the results in Proposition 4.4 (a) and (b) that
‖x̂k − xk‖ → 0 . Thus, using (13), we obtain

(1 − �)Δk,N ≤ −
1

2
(dk

N
)THkd

k
N
,

(19)Δk,N ≤ −c̃‖dk
N
‖2 for c̃ ∶= m∕(2(1 − 𝜁)).

‖x̂k − x̂k
ex
‖ ≤

1

2

�
𝜌

c̃

�1∕(2−p)

, ‖x̂k
ex
− xk‖ ≤

1

2

�
𝜌

c̃

�1∕(2−p)

Δk,N ≤ −c̃‖dk
N
‖2 = −c̃‖dk

N
‖p‖dk

N
‖2−p ≤ −𝜌‖dk

N
‖p.

f (x̂k) − f (xk) = ∇f (xk)T (x̂k − xk) +
1

2
(x̂k − xk)T∇2f (xk)(x̂k − xk)

+
1

2
(x̂k − xk)T

(
∇2f (𝜉k) − ∇2f (xk)

)
(x̂k − xk)

𝜓(x̂k) − 𝜓(xk) + 𝜓k(x
k) − 𝜓k(x̂

k)

= f (x̂k) − f (xk) − ∇f (xk)T (x̂k − xk) −
1

2
(x̂k − xk)THk(x̂

k − xk)

≤
1

2

���∇
2f (𝜉k) − ∇2f (xk)

��� ⋅ ‖x̂
k − xk‖2 + 1

2

���∇
2f (xk) − ∇2f (x∗)

��� ⋅ ‖x̂
k − xk‖2

+
1

2

���
�
Hk − ∇2f (x∗)

�
(x̂k − xk)

��� ⋅ ‖x̂
k − xk‖.

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 393

for all sufficiently large k, where the last inequality follows from (19) (note that
Δk = Δk,N in the current situation). This proves that in this case the full step length
is attained.

For the remaining part choose 𝜀 > 0 such that Proposition 4.4 holds for
xk ∈ B�(x

∗) and ∇f is Lipschitz continuous with constant L > 0 in B�(x
∗) . Let k0 be

sufficiently large such that all iterates xk for k ≥ k0 are in this neighbourhood. Note
that

where the inequality uses the nonexpansivity of the proximity operator, cf. [17,
Lemma 2.4]. Using parts (a) and (b) yields xk+1 = x̂k . Thus, by Proposition 4.4 (a)
and (c), we get

The twice continuous differentiability of f yields that the second term is o(‖xk − x∗‖) .
The Dennis-Moré condition implies that the third term is o(‖xk − x∗‖) . Thus, the
above yields part (c) for � = 1∕((C1 +

1

�
C2)(L + 2)) . Finally, under the assumptions

of part (d), also the first term is o(‖xk − x∗‖) , which completes the proof. 	� ◻

Note that one can also verify local quadratic convergence under slightly stronger
assumption as in Theorem 4.5 (d), in particular, using a stronger version of the Dennis-
Moré condition. The details are left to the reader.

5 � Numerical results

In this section, we report some numerical results for solving problem (1) and
show the competitiveness compared to several state-of-the-art methods. All
numerical results have been obtained in MATLAB R2018b using a machine run-
ning Open SuSE Leap 15.1 with an Intel Core i5 processor 3.2 GHz and 16 GB
RAM.

𝜓(x̂k) − 𝜓(xk) =
�
𝜓(x̂k) − 𝜓(xk) + 𝜓k(x

k) − 𝜓k(x̂
k)
�
+ 𝜓k(x̂

k) − 𝜓k(x
k)

≤ (𝜁 − 𝜎)c̃‖x̂k − xk‖2 + 𝜁Δk

= (𝜁 − 𝜎)c̃‖x̂k − xk‖2 + 𝜎Δk + (𝜁 − 𝜎)Δk

≤ (𝜁 − 𝜎)c̃‖x̂k − xk‖2 + 𝜎Δk − (𝜁 − 𝜎)c̃‖x̂k − xk‖2 = 𝜎Δk,

‖F(xk)‖ = ‖xk − prox�(x
k − ∇f (xk))‖

= ‖xk − prox�(x
k − ∇f (xk)) − x∗ + prox�(x

∗ − ∇f (x∗))‖
≤ 2‖xk − x∗‖ + ‖∇f (xk) − ∇f (x∗)‖ ≤ (2 + L)‖xk − x∗‖,

‖xk+1 − x∗‖ = ‖x̂k − x∗‖ ≤ ‖x̂k − x̂k
ex
‖ + ‖x̂k

ex
− x∗‖

≤

�
C1 +

1

𝜇
C2

�
𝜂k‖F(xk)‖ +

1

𝜇
‖∇f (xk) − ∇f (x∗) − ∇2f (x∗)(x∗ − xk)‖

+
1

𝜇

���
�
Hk − ∇2f (x∗)

�
(x̂k − xk)

���.

	 C. Kanzow, T. Lechner

1 3

394

In the following, GPN denotes the globalized (inexact) proximal Newton method,
whereas QGPN denotes a globalized (inexact) proximal quasi-Newton method,
where the exact Hessian is replaced by a limited memory BFGS-update.

5.1 � logistic regression with �
1
‑Penalty

In this example, we consider the logistic regression problem

where ai ∈ ℝ
n (i = 1,… ,m) are given feature vectors and bi ∈ {±1} the correspond-

ing labels, 𝜆 > 0 , y ∈ ℝ
n, v ∈ ℝ . Usually, we have m ≫ n . Logistic regression is

used to separate data by a hyperplane, see [25] for further information.
With � ∶ ℝ → ℝ , �(u) ∶= log (1 + exp(−u)) , x ∶= (yT , v)T and A ∈ ℝ

m×(n+1) ,
where the i-th row of A is (biaTi , bi) for i = 1,… ,m , we can write (20) equivalently
as

The function � is convex, but not strictly convex, and its derivative is globally Lip-
schitz continuous. Thus, this holds also for the smooth part of �.

5.1.1 � Algorithmic details

Subproblem solvers The crucial part of the implementation is the solution of the
subproblem (13). We use two methods for this aim, which are described below: The
fast iterative shrinkage thresholding algorithm (FISTA) [6] and the globalized semi-
smooth Newton method (SNF) [32].

FISTA by Beck and Teboulle [6] is an accelerated first order method for the solu-
tion of problems of type (1), where f is convex and has a Lipschitz continuous gra-
dient. In every step a problem of type (6) is solved for Hk = LkI , where Lk is an
approximation to the Lipschitz constant of ∇f  , which is updated by backtracking.
After that, a step size is computed and the next iterate is a convex combination of
the old iterate and the computed solution. For the approximation of the Lipschitz
constant of fk , we start with L0 ∶= 1 and use the increasing factor � ∶= 2 . The glo-
balized proximal Newton-type method with this subproblem solver is denoted by
GPN-F.

SNF by Milzarek and Ulbrich [32] is a semismooth Newton method with f﻿ilter
globalization. Since the subproblems in this example are convex, we use the convex
variant of the method. The semismooth Newton method is essentially applied to the
equation F(x) = 0 with F(x) defined in (12). After computing a search direction, a
filter decides if the update is applied or a proximal gradient step is performed. All

(20)min
y,v

1

m

m�

i=1

log
�
1 + exp

�
−bi(a

T
i
y + v)

��
+ �‖y‖1,

(21)min
x

�(x) ∶=
1

m

m�

i=1

�
�
(Ax)i

�
+ �‖x{1,…,n}‖1.

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 395

constants are chosen as in [32]. We denote the globalized proximal Newton method
with SNF subproblem solver by GPN-S.

In both cases, the initial point for the subproblem solvers is the current iterate xk.
Choice of parameters We use the parameters p = 2.1 and � = 10−8 for the accept-

ance criterion (14). The line search is performed with � = 0.1 and � = 10−4 . The
constant ck for the proximal gradient step is initialized with c0 = 1∕6 , and in each
step adapted to reach the Lipschitz constant of the gradient of f.

Variant with quasi-Newton-update Assuming that � is locally strongly convex in
a neighbourhood of an accumulation point of a sequence generated by GPN, the
sequence of matrices {Hk} is generated using BFGS-updates and the subproblems
in (13) are solved exactly, i.e. � = 0 . Then, similar to [49] one can prove that the
sequence {Hk} satisfies the Dennis-Moré-condition.

Motivated by this idea, we implemented a variant of the algorithm, where the
exact Hessian in the quadratic approximation (11) is replaced by a limited memory
BFGS-update with a memory of 10. The implementation follows [14]. We skip the
update, if (sk)Tyk < 10−9 for sk = xk − xk−1 and yk = ∇f (xk) − ∇f (xk−1) . Like before,
we denote these methods by QGPN-F and QGPN-S, respectively.

5.1.2 � State‑of‑the‑art methods

We check the above described variants of GPN against each other, but also compare
them with several state-of-the-art methods, which are listed below.

PG The proximal gradient method is described in Algorithm 2.2. It is a first order
method to solve problem (1). We set � = 0.1 , � = 10−4 and Hk = ckI , where ck is
updated as before.

FISTA [6] The fast iterative shrinkage thresholding algorithm is an accelerated
variant of the proximal gradient method. Details were already given in Sect. 5.1.1.

SpaRSA [45] SpaRSA (Sparse reconstruction by separable approximation) is
another accelerated first order method to solve problem (1). The main difference to
FISTA is the update of the factor ck , which is done by a Barzilai-Borwein approach.

SNF [32] The semismooth Newton method with filter globalization is described
in 5.1.1. Similar to the subproblem solver, we apply the convex version of the
method.

5.1.3 � Numerical comparison

We follow the example in [12] and generate test problems with n = 104 features
and m = 106 training sets. Each feature vector ai has approximately 10 nonzero
entries, which are generated independently from a standard normal distribution.
We choose ytrue ∈ ℝ

n with 100 nonzero entries and vtrue ∈ ℝ , which are inde-
pendently generated from standard normal distribution and define the labels as
bi = sign

(
aT
i
ytrue + vtrue + vi

)
, where the vi (i = 1,… ,m) are also chosen indepen-

dently from a normal distribution with variance 0.1. The regularization parameter
� is set to 0.1�max , where �max is the smallest value such that y∗ = 0 is a solution
of (20). The derivation of this value can be found in [25]. For all methods, we start
with the initial value x0 = 0.

	 C. Kanzow, T. Lechner

1 3

396

Due to the differences of the methods, the standard termination criteria of them
are not a suitable choice to compare the performance. Thus, we compute the approx-
imate minimizer �∗ of (20) using GPN-F with very high accuracy. We terminate
each of the algorithms above when the value �(xk) in the current iterate xk satisfies

for ��� = 10−6.
Termination of the subproblems We start with an investigation of the termina-

tion of the subproblems (13). As a consequence of Theorem 4.5, we can choose the
sequence {�k} to be constant (const.). For our experiments, we computed an upper
bound for � using the constants in the convergence theorem and set �k = 0.9� . A
second possibility is to use a diminishing (dim.) sequence {�k} . Here we investigated
the sequence �k = 1∕(k + 1) . Since the inexact termination criterion (13) is not prac-
ticable without significant additional computation costs, we also use a third variant:
We minimize (11) using the standard termination criterion for the used solvers with
a low maximal number of iterations, more precisely, 80 iterations for FISTA and 10
iterations for SNF, which resulted in the best performance. The tolerance is adapted
in each step such that the subproblems are solved more exactly when the current
iterate is near the solution.

The averaged results of 100 runs for the described variants of our method are
listed in Table 1. It can be seen that for the variants with subproblem solver SNF, the
computation costs using the diminishing or constant sequence {�k} are much higher
than the costs using a maximum of 10 iterations, although, as expected, the number
of total iterations is lower. Especially the number of evaluations of the proximity
operator illustrates the difference in computation costs using the inexactness crite-
rion in (13) and the approximation of the criterion by limiting the inner iterations.
This is reasonable since there is one extra computation of the proximity operator in
every inner iteration to check the inexactness condition. In contrast, the numbers of
iterations are within the same range. For the variants using FISTA to solve the sub-
problems, we observe a similar behaviour, although it is less marked here.

To draw a conclusion from these observations, in the following we restrict the
experiments and only investigate solving the subproblems with a maximum of 10
iterations (SNF) and 80 iterations (FISTA), which have the lowest computation
costs. To accomplish comparability for these experiments, we look at the runtime
of 100 test examples and document the results using the performance profiles intro-
duced by Dolan and Moré [20]. The results are shown in Fig. 1, the averaged values
for some counters are given in Table 2.

Comparison of GPN-variants We start with a comparison of the variants of
the globalized proximal Newton-type methods, namely GPN-F, GPN-S, QGPN-
F, and QGPN-S. At first, it can be observed that the iterations obtained by the
inexact proximal Newton step are almost always accepted. We see that the semi-
smooth Newton subproblem solver performs much better than the FISTA solver.
One reason for this is that we can terminate the subproblem solvers in (Q)GPN-S
after only 10 iterations to get reasonable results, whereas test runs show that (Q)

(22)
�(xk) − �∗

|�∗| ≤ ���

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 397

GPN-F performs best with a maximum of 80 iterations in each subproblem. Nev-
ertheless, note that every iteration of SNF itself needs to solve a linear system by
the CG method, but both, FISTA and SNF, need to evaluate the product ∇2f (xk)z
for some z ∈ ℝ

n in every iteration, which is the most expensive part of the algo-
rithm since it involves two multiplications with A or AT.

Table 1   Averaged values of 100 runs for the example in Sect. 5.1 with tolerance 10−6

Abbreviations: term.-crit. (method to terminate the solver for subproblems), iter (total number of (outer)
iterations), Newton-iter (number of Newton-iterations—only for GPN-variants and SNF), sub-iter (num-
ber of inner iterations), function eval (number of evaluations of the function f or its gradient), proximity
eval (number of evaluations of the proximity operator), matrix-vector-products (number of evaluations of
products A ⋅ x or AT ⋅ x)

Method Term.-crit. Iter Newton-iter Sub-iter Function eval Proximity eval Matrix-
vector
products

GPN-F max. 11.7 11.7 994 12.7 1 016 3 923
dim. 16.6 12.6 631 14.2 1 305 2 636
const. 9.4 9.4 935 10.4 1 965 3 948

GPN-S max. 16.9 16.9 33.4 118.0 50.8 296
dim. 10.8 10.6 821 12.5 2 040 3.21⋅106

const. 8.9 7.5 849 10.5 2 081 2.95 ⋅106

QGPN-F max. 29.1 29.1 2 015 30.2 2 471 58.3
dim. 27.5 27.5 1 522 28.6 3 369 55.1
const. 28.8 28.8 2 778 30.0 6 234 57.8

QGPN-S max. 21.6 21.6 36.2 22.7 58.9 43.3
dim. 24.6 24.6 115 25.7 278.8 49.2
const. 28.6 28.6 1684 29.8 4049 57.4

1 10 20 30 40
0

0.2

0.4

0.6

0.8

1
GPN-F
GPN-S
QGPN-F
QGPN-S
FISTA
PG
SpaRSA
SNF

(a)
1 2 3 4 5

0

0.2

0.4

0.6

0.8

1
GPN-S
QGPN-F
QGPN-S
SpaRSA
SNF

(b)

Fig. 1   Performance profiles showing the runtime for 100 random test examples as described in
Sect. 5.1.3. Figure a shows a range from 1 to 40 times the best method, whereas Figure b is scaled from
1 to 5 times the best method

	 C. Kanzow, T. Lechner

1 3

398

Furthermore, the performance of the variants with limited memory BFGS-
update for the Hessian of the smooth part is significantly better than the use of
the exact Hessian, although we need more outer and inner iterations to reach the
termination accuracy. Again, this is due to the number of Hessian-vector-multi-
plications, which appear in QGPN only once in every iteration to compute the
function value and the BFGS-update, whereas in GPN they are needed in every
inner iteration.

Both arguments together verify why QGPN-S is the best variant tested, whereas
the performance of GPN-F is not competitive.

We see in Table 2 that almost all solutions of the subproblems satisfy the descent
condition (14) and, since the number of function evaluations is approximately the
number of outer iterations, almost all search directions are applied with full step
length. Thus, for this example, the globalization is not necessary in practice. Since
problem (21) is globally strongly convex if A has full range, a slight adaption of our
local convergence theory shows that one can prove convergence also without glo-
balization. The details are left to the reader.

Comparison to other methods Since FISTA and the proximal gradient method are
first order methods, it is not surprising that they need considerable more iterations
to reach the termination tolerance. Thus, with the same arguments as above, they
are not competitive due to the huge number of matrix-vector-products involving the
matrices A or AT , although they do not need to evaluate the Hessians. The third first
order method, SpaRSA, is far better, because the number of iterations and therefore
the number of matrix-vector-products is much smaller, but it is still not able to com-
pete with the second order methods.

The semismooth Newton method with filter globalization is the only sec-
ond order method we compare our method to. As before, we see a correlation
between the runtime and the number of matrix-vector-products with one of the
matrices A or AT . As this number is higher than the one of QGPN, the runtime
is still larger than the one of QGPN-S for most of the examples.

Table 2   Averaged values of 100 runs for the example in Sect. 5.1 with tolerance 10−6

The columns have the same meaning as in Table 1

Method Iter Newton-iter Sub-iter Function eval Proximity eval Matrix-
vector
products

GPN-F 11.7 11.7 994 12.7 1 016 3 923
GPN-S 16.9 16.9 33.4 18.0 50.8 296.0
QGPN-F 29.1 29.1 2 015 30.2 2 471 58.3
QGPN-S 21.6 21.6 36.2 22.7 58.9 43.3
FISTA 1 269 – 1 466 4 005 1 466 6 544
SpaRSA 133 – 221 223 222 446
PG 1 520 – – 3 131 1 520 4 642
SNF 15.2 14.0 31.2 15.7 15.4 90.5

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 399

In contrast to our method, we did not implement SNF with a limited memory
BFGS-update. The low number of matrix-vector-products given in Table 2 rec-
ommends that this would not yield a significantly better performance.

Comparing FISTA with GPN-F and QGPN-F, where FISTA is used to solve
the subproblems, we see that GPN-F is not competitive for the mentioned rea-
sons, whereas QGPN-F is far better than FISTA on its own. A similar obser-
vation is true for the comparison of SNF with GPN-S and QGPN-S, where
the GPN method is still the slowest method but not significantly. Thus, the glo-
balized proximal Newton-type method with limited memory BFGS-update for
the Hessian accelerates the performance of the underlying subproblem solver.

5.2 � Student’s t‑regression with �
1
‑Penalty

In many applications of inverse problems, the aim is to find a sparse solution
x∗ ∈ ℝ

n of the problem Ax = b with A ∈ ℝ
m×n and b ∈ ℝ

m . Often, b is not known
exactly but only a perturbed vector b̂ . A widespread solution is to consider the
penalized problem

for some 𝜆 > 0 . This works well if we have Gaussian errors in the entries of b̂ . Par-
ticularly, the influence of large errors is large. In problems, where the influence of
large errors should be weighted less, but the influence of errors in a specific domain
should be weighted more, it is reasonable to replace the quadratic loss by the student
loss. We obtain the problem

with � ∶ ℝ → ℝ,�(u) = log
(
1 +

u2

�

)
 for some 𝜈 > 0 . For more information on stu-

dent’s t-distribution, we refer to [1, 32] and references therein. It is easy to see that
the derivative of � is still Lipschitz continuous and � is coercive, but not convex.
Thus, many state-of-the-art methods are not applicable to this problem.

We expect a solution of (23) to solve the linear system Ax = b , at least
approximately. Since � is locally strongly convex in B√

�
(0) , we expect that in a

solution of (23) the local convergence theory is applicable.

5.2.1 � Algorithmic details

Subproblem solvers As seen in Sect. 5.1, the SNF subproblem solver performed
much better than the FISTA subproblem solver. Thus, we use again the semismooth
Newton method with filter globalization [32] for the solution of the subproblems,
apply at most 10 inner iterations per outer iteration and adapt the tolerance to get

min
x

1

2
‖Ax − b̂‖2

2
+ 𝜆‖x‖1

(23)

min
x

�(x) ∶=

m�

i=1

�
�
(Ax − b)i

�
+ �‖x‖1 =

m�

i=1

log

�
1 +

(Ax − b)2
i

�

�
+ �‖x‖1,

	 C. Kanzow, T. Lechner

1 3

400

more exact solutions, if the current iterate is close to the solution of the main prob-
lem. We denote this method by GPN.

Since the problem in this section is nonconvex, the subproblems might be not
bounded from below. To circumvent this problem, we also implemented a variant
with regularized Hessians. As the second derivative of � is easy to compute and
the Hessian of the objective function is of the form ATDA for some diagonal matrix
D ∈ ℝ

m×m , we replace all diagonal entries di of D by the maximum of di and a small
positive constant. The subproblem solver remains unchanged and we denote this
regularized method by GPN+.

Choice of parameters As above, we set p = 2.1 , � = 10−8 , � = 0.1 , and � = 10−4 .
In this case, we start with c0 = 100 and again adapt ck to approximate the Lipschitz
constant of the gradient of the smooth part in (23).

Quasi-Newton-update In the second of the following test examples we use again
a variant of the globalized proximal Newton method, where the Hessian of f is
replaced by a limited memory BFGS-update with a memory of 10. We denote the
method by QGPN. As before, we skip the update and use the previous approxima-
tion, if (sk)Tyk < 10−9 for sk = xk − xk−1 and yk = ∇f (xk) − ∇f (xk−1) . Since this prob-
lem is not convex, one could expect that skipping of updates happens occasionally.
However, our experiments show that this happens in less than 10% and, if so, espe-
cially in the first iterations. Thus, the limited memory BFGS-updates are reasonably
practicable.

5.2.2 � State‑of‑the‑art methods

Since problem (23) is nonconvex, most of the methods in Sect. 5.1 do not apply in
this case. We therefore compare our algorithm to the following methods.

PG The proximal gradient method as described in Algorithm 2.2 has no convex-
ity requirement. Again, we set � = 0.1 , � = 10−4 , and Hk = ckI , where ck is initial-
ized with c0 = 100 and adapted to reach a Lipschitz constant of ∇f .

SNF [32] The semismooth Newton method with filter globalization, as described
in 5.1.1, has also a nonconvex variant with additional descent conditions, which are
checked for the semismooth Newton update. We choose all constants as described in
[32].

5.2.3 � Numerical comparison

As mentioned above, we test two sets of examples. We start with the test setting
described in [32]. Let n = 5122 and m = n∕8 = 32768 . The matrix A ∈ ℝ

m×n takes
m random cosine measurements, i.e. for a random subset I ⊂ {1,… , n} with m ele-
ments, we set Ax = (dct(c))I , where dct is the discrete cosine transform.

We generate a true sparse vector xtrue ∈ ℝ
n with k = ⌊n∕40⌋ = 6553 nonzero

entries, whose indices are chosen randomly. The nonzero components are computed
via xtrue

i
= �1(i)10

�2(i) with �1(i) ∈ {±1} is a random sign and �2(i) is chosen inde-
pendently from a uniform distribution in [0, 1]. The image b ∈ ℝ

m is generated by
adding Student’s t-noise with degree of freedom 4 and rescaled by 0.1 to Axtrue . We
set � = 0.25 and set � = 0.1�max , where �max is the critical value, for which the zero

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 401

vector is already a critical point of (23). Using Fermat’s rule for the generalized Jac-
obian of (23), we obtain by a short calculation �max = 2

���
∑m

i=1
bi∕(� + b2

i
) ⋅ ai

���∞ ,
where aT

i
 is the i-th row of A.

We start with the initial point x0 = ATb and, again, terminate each of the algo-
rithms above, when the value �(xk) in the current iterate xk satisfies (22) for
��� = 10−6 , where �∗ is computed by GPN with a very high accuracy. It is impor-
tant to mention that all stationary points of problem (23), if there is more than one,
have the same function value. Thus, this termination criterion makes sense although
the problem is nonconvex.

For this example, we do not use QGPN since test runs have shown that QGPN is
significantly slower than GPN here. The reason is that, in contrast to the example in
5.1.3, the computation of matrix-vector-products involving the matrix A are cheaper
than the product with the BFGS-matrix, as the discrete cosine transform is a prede-
fined Matlab-function.

To accomplish comparability, we look at the runtime of 100 test examples and
document the performance using the performance profiles introduced by Dolan and
Moré [20]. The results are shown in Fig. 2a, the averaged values for some counters
are given in Table 3.

The first observation is that there is no significant difference between the glo-
balized proximal Newton method GPN and the regularized version GPN+. In both
methods, almost all updates are performed by proximal Newton steps. Thus, in the
following we refer only to GPN.

The proximal gradient method is in all examples significantly slower than the sec-
ond order methods. As mentioned above, this is not due to the number of matrix-
vector-products, which has the same magnitude as the one for GPN. In contrast, the
numbers of function evaluations and evaluations of the proximity operator are much
higher.

To demonstrate the performance of the limited memory BFGS proximal Newton-
type method QGPN, we construct a second test example with higher computation
costs for the matrix-vector-products with the matrices A or AT . In the above test

1 1.5 2
0

0.2

0.4

0.6

0.8

1
GPN
GPN+
PG
SNF

(a) Example 1

1 2 3
0

0.2

0.4

0.6

0.8

1
GPN
QGPN
PG

(b) Example 2

Fig. 2   Performance profiles showing the runtime for 100 random test examples described in Sect. 5.2.
Figures a and b correspond to Examples 1 and 2, respectively

	 C. Kanzow, T. Lechner

1 3

402

setting, we change n, m and use A as defined in Sect. 5.1, this is n = 104 , m = 106 ,
and A ∈ ℝ

m×n with approximately 10 nonzero entries in every row. Everything else
remains unchanged.

As there was no significant difference in the performance of GPN and GPN+, we
apply GPN, QGPN, SNF and the proximal gradient method PG to this setting. The
results are shown in Fig. 2b and Table 4.

First, we observe that SNF did not converge at all within 1 000 iterations for this
problem class. A look at the function value shows that it increases in every step.
Since SNF is not a descent method regarding the function value and there is no
result guaranteeing the convergence in the nonconvex case, this is not unreasonable.

Comparing the remaining methods, we find that the results confirm the observa-
tions of the example in Sect. 5.1. The performance of QGPN is far the best, whereas
GPN is not competitive, though it is not as bad as for the �1-regularized logistic
regression.

5.3 � Logistic regression with overlapping group penalty

The main advantage of the globalized proximal Newton method over semis-
mooth Newton methods is that it is also able to solve problems of type (1), where
the nonsmooth function � is not the �1-norm and there is no known formula to

Table 3   Averaged values of 100 runs for the first example in Sect. 5.2 with tolerance 10−6

The columns have the same meaning as in Table 1

Method Iter Newton-iter Sub-iter Function eval Proximity eval Matrix-
vector
products

GPN 11.5 11.4 57.4 13.6 76.2 1 475
GPN+ 11.6 11.5 58.0 13.7 77.2 1 530
PG 460 – – 956 460 1 417
SNF 51.0 21.0 231 96.4 66.0 532

Table 4   Averaged values of 100 runs for the second example in Sect. 5.2

The columns have the same meaning as in Table 1. The abbreviation DNC stands for: did not converge
within 1 000 iterations

Method iter Newton-iter Sub-iter Function eval Proximity eval Matrix-
vector
products

GPN 49.2 49.2 246 83.3 330 2 169
GPN+ 29.6 29.6 148 68.1 184 3 547
QGPN 125 125 837 211 994 336
PG 156 – – 572 156 728
SNF DNC DNC DNC DNC DNC DNC

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 403

compute the proximity operator to this function. An example is the group penalty
function

where 𝜇j > 0 are positive weights, 𝜆 > 0 and Gj ⊂ {1,… , n} are nonempty sets.
When the sets Gj ( j = 1,… , s ) form a partition of {1,… , n} or are at least pairwise
disjoint, the proximity operator can be computed explicitly. Here we are interested in
the case of overlapping groups, i.e. the sets Gj are not pairwise disjoint. In this case,
no explicit formula for the proximity operator is known.

Like in Sect. 5.1 we consider a logistic regression problem

where A ∈ ℝ
m×n contains the information on feature vectors and corresponding

labels and � ∶ ℝ → ℝ is defined by �(u) ∶= log (1 + exp(−u)) . A group penalty
makes sense in many applications here, since some features are related to others. For
more information on logistic regression with group penalty, we refer to [30].

5.3.1 � Algorithmic details

Subproblem solver As there is no formula to compute the proximity operator of
� , the subproblem solvers of the previous sections are not directly applicable. We
can write � as 𝜑̃◦B , where B is a linear mapping and 𝜑̃ is a group penalty without
overlapping. Thus, we can compute the proximity operator of 𝜑̃ . Both, the proximal
Newton subproblem as well as the proximity operator, can be written as

with a positive definite matrix Q ∈ ℝ
n×n and c ∈ ℝ

n . We solve both problems with
fixed point methods described by Chen et al. in [16]. For the computation of the
proximity operator, we use the f﻿ixed point algorithm based on the proximity operator
(FP2 O) and for solving the proximal Newton subproblem the primal-dual f﻿ixed point
algorithm based on the proximity operator (PDFP2O).

For both methods, we use a stopping tolerance of 10−9 and apply at most 10 itera-
tions for each problem. For the method we also need the largest eigenvalue of BBT ,
which can be shown to be equal to the largest integer k such that there exists an
index i ∈ {1,… , n} that is contained in k groups Gj.

Choice of parameters As before, we set the parameters to p = 2.1 , � = 10−8 ,
� = 0.1 , and � = 10−4 . Here, we start with c0 = 1 and again adapt ck to approximate
the Lipschitz constant of the gradient of the smooth part in (24).

Other methods We make a comparison between our method with the above
mentioned subproblem-solvers, FISTA [6] with the parameters as in 5.1.1. For the

�(x) = �

s�

j=1

�j‖xGj
‖2,

(24)min
x

1

m

m�

i=1

�
�
(Ax)i

�
+ �

s�

j=1

�j‖xGj
‖2,

min
x

1

2
xTQx + cTx + 𝜑̃(Bx)

	 C. Kanzow, T. Lechner

1 3

404

computation of the proximity operators, we also use FP2 O. Furthermore, we apply
PDFP2 O directly to problem (24).

5.3.2 � Numerical comparison

We follow an example in [2] and generate A ∈ ℝ
n×m with n = 1000 , m = 700 from a

uniform distribution and normalize the columns of A. The groups Gj are

The first five groups contain five consecutive numbers and the last element of one
group is, at the same time, the first element of the next group. Each of the next five
groups contain one element of one of the first groups. The remaining groups have no
overlap and contain always 10 elements. The coefficients �j are chosen to be
1∕

√
|Gj| , where |Gj| is the number of indices in that group.

The parameter � is again chosen as 0.1�max , where �max is the critical value such
that 0 is a solution of (24) for all � ≥ �max . Let aT

i
 be the rows of A. Then a short

computation shows �max =
√
5∕(2m)��

∑m

i=1
ai
��2 . As before, we start with the initial

value x0 = 0.
We terminate each of the algorithm as soon as the current iterate satisfies (22)

for ��� = 10−6 , where �∗ is the function value computed by GPN using a very high
accuracy. Again, we document the results using the performance profiles on the
runtime of 100 test examples. The results are shown in Fig. 3, the averaged values
for some counters are given in Table 5.

We see that there are about 15% of the examples, where FISTA performs bet-
ter than GPN, but in most examples GPN shows by far the best performance. This
can be seen by looking at the number of inner iterations of both methods. In this

{1,… , 5}, {5,… , 9}, {9… , 13}, {13,… , 17}, {17,… , 21},

{4, 22,… , 30}, {8, 31,… , 40}, {12, 41,… , 50}, {16, 51,… , 60}, {20, 61,… , 70},

{71,… , 80}, {81,… , 90}, … , {991,… 1000}.

Fig. 3   Performance profile
showing the runtime for 100
random test examples from
Sect. 5.3 with tolerance 10−6

1 1.5 2
0

0.2

0.4

0.6

0.8

1

GPN
FISTA
PDFP2O

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 405

case, the costs of inner iterations is almost equal for both methods. Since the average
number of inner iterations in FISTA is more then twice as big as the one of GPN,
this illustrates the difference in performance.

5.4 � Nonconvex image restoration

We demonstrate the performance of our method for nonconvex image restoration.
Given a noisy blurred image b ∈ ℝ

n and a blur operator A ∈ ℝ
n×n , the aim is to find

an approximation x to the original image satisfying Ax = b . Note that, for simplicity,
we assume that the images x, b are vectors in ℝn . For this purpose, we use again the
student loss from Sect. 5.2 and get the problem

where � ∶ ℝ → ℝ,�(u) = log
(
1 +

u2

�

)
 for some 𝜈 > 0 , and B ∶ ℝ

n
→ ℝ

n is a two-
dimensional discrete Haar wavelet transform, which guarantees antialiasing.

Since B is orthogonal, we get

Thus, the proximity operator can be computed exactly.
Similar to Sect. 5.2, we expect that � is strongly convex in a neighbourhood of a

solution such that our local convergence theory applies here.

5.4.1 � Algorithmic details

We solve the subproblems using FISTA with a maximum of 50 iterations and a tol-
erance of 10−6 . We do not use the SNF-solver here since the occurring linear sys-
tems of equations are not separable and we would need to solve a full dimensional
system of equations several times, see below for details. The parameters are chosen
as in Sect. 5.3.1.

We compare our methods GPN and the limited memory BFGS variant QGPN,
where the updating of the BFGS-matrix follows the description in Sect. 5.2.1, to
the proximal gradient method PG and the semismooth Newton method with filter
globalization SNF [32] with the parameters mentioned in that paper. In this case, the
matrix M(xk) occurring in the linear systems M(xk) = −F(xk) has the form

min
x

�(x) ∶=

n�

i=1

�
�
(Ax − b)i

�
+ �‖Bx‖1,

prox�
�‖B⋅‖1

(u) = BTprox�
�‖⋅‖1

(Bu).

Table 5   Averaged values of 100
runs for the example in Sect. 5.3
using the tolerance 10−6 and
three different methods

Method Iter Newton-iter Sub-iter Matrix-
vector
products

GPN 9.5 9.5 95.1 221
PDFP2O 76.9 – – 156
FISTA 23.4 – 234 119

	 C. Kanzow, T. Lechner

1 3

406

where Hk is an approximation to the Hessian of the smooth part of � and Dk is a
diagonal matrix depending on the iterate xk . This matrix does not have a block struc-
ture or is separable, so this is a full dimensional linear system of equations, which
impairs the performance of this method. We solve each of these systems using
GMRES(m) with 100 iterations and restart every m = 10 iterations.

5.4.2 � Numerical comparison

We follow the example in [41], see also [11]. In detail, A is a Gaussian blur opera-
tor with standard deviation 4 and a filter size of 9, � = 1 and B is the discrete Haar
wavelet transform of level four. Furthermore, we choose � = 10−4 . The blurred noisy
image b is created by applying A to the test image cameraman of size 256 × 256
and adding Student’s t-noise with degree of freedom 1 and rescaled by 10−3 . For all
methods, the initial point is x0 = b.

Since the most expensive computations are the applications of A, B and their
transposes, we stop each of the algorithms if, after an outer iteration, the sum of
these applications exceeds 2 ⋅ 104 . The results are shown in Fig. 4 and Table 6.

The reason why the restored images are minimal lighter than the original is that
we used the Hair wavelet transform with four levels and not the maximal possible
level log2(256) = 8 . Furthermore, we mention that for GPN and QGPN almost all

M(xk) = (BTDkB − I)Hk − BTDkB,

(a) Original image (b) Noisy blurred image (c) GPN

(d) QGPN (e) SNF (f) PG

Fig. 4   Nonconvex image restoration: Original and blurred image and recovered images using the stated
algorithms and terminating after 2 ⋅ 104 calls of A and B 

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 407

iterations are Newton steps, whereas for SNF only half of the iterations are Newton
steps. As expected, the performance of the semismooth Newton method with filter
globalization is not satisfying here, since the solution of the linear systems is expen-
sive. In contrast, the proximal methods show good restorations. The difference in the
corresponding images in Fig. 4 are hard to see, so we study the values in Table 6.

The relative error (�(x) − �∗)∕�∗ , where x is the image provided by the algo-
rithm and �∗ is the value of � in the original image, is best for GPN, so the corre-
sponding image best approximates the original one. Comparing the inner iterations
of GPN and QGPN with the iterations of the proximal gradient method, the ones of
GPN and PG are within the same range, whereas the ones of QGPN have almost
the double value. This and the number of calls of B and BT explain why the CPU-
time used by QGPN is approximately twice as much as the one of GPN. In this
case, the avoidence of calls of A and AT does not yield a better performance, since
the price to pay is the higher number of calls of the Haar transform.

Comparing GPN and PG, the numbers of (inner) iterations and applications of A,
B and their transposes are almost the same, but the superiority of the second order
method GPN over PG can be seen in the values of the CPU-time and the relative
error of the function value.

6 � Conclusion

We introduced a globalization of the proximal Newton-type method to solve struc-
tured optimization problems consisting of a smooth and a convex function. For this
purpose the proximal Newton-type method was combined with a proximal gradient
method using a novel descent criterion. We also gave an inexactness approach and
the possibility to replace the Hessian of the smooth part by quasi-Newton matrices.
We proved global convergence in the convex and nonconvex case and, under suit-
able conditions, local superlinear convergence.

The numerical part shows that the proposed method is competitive for convex and
nonconvex problems, especially when the computation of the Hessian is expensive
and we can use limited memory quasi-Newton updates. Furthermore, when there is

Table 6   Values of the example
in Sect. 5.3 for the four tested
algorithms

Abbreviations: time (CPU-time in seconds), iter (total number of
(outer) iterations), optim (optimality criterion �(x)−�∗

�∗
 ), subiter (num-

ber of inner iterations), A-calls, B-calls (applications of the mapping
A and B and transposed mapping, resp.)

Method Time Iter Optim Subiter A-calls B-calls

GPN 25.7 99 0.27 4 950 10 149 10 049
QGPN 62.2 194 0.99 9 650 413 19 655
PG 98.7 4 839 0.58 – 10 324 9 679
SNF 23.6 52 3.17 5 200 9 868 10 246

	 C. Kanzow, T. Lechner

1 3

408

no efficient way to compute the proximity operator for the nonsmooth function, the
globalized proximal Newton-type method outperforms the methods compared to.

Acknowledgements  The authors would like to thank the two referees for the very detailed comments
which helped a lot to improve the paper significantly.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Aravkin, A., Friedlander, M.P., Herrmann, F.J., Van Leeuwen, T.: Robust inversion, dimensionality
reduction, and randomized sampling. Math. Program 134, 101–125 (2012)

	 2.	 Argyriou, A., Micchelli, C.A., Pontil, M., Shen, L., Xu, Y.: Efficient first order methods for linear
composite regularizers, arXiv preprint arXiv​:1104.1436, (2011)

	 3.	 Banerjee, O., Ghaoui, L.E., d’Aspremont, A., Natsoulis, G.: Convex optimization techniques for
fitting sparse gaussian graphical models. In: Proceedings of the 23rd international conference on
Machine learning, pp. 89–96 (2006)

	 4.	 Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
CMS Books in Mathematics, 2nd edn. Springer, Berlin (2017)

	 5.	 Beck, A.: First-Order Methods in Optimization. MOS-SIAM Series on Optimization. Society for
Industrial and Applied Mathematics, Philadelphia (2017)

	 6.	 Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imag. Sci. 2, 183–202 (2009)

	 7.	 Becker, S., Fadili, J., Ochs, P.: On quasi-newton forward-backward splitting: Proximal calculus and
convergence. SIAM J. Optim. 29, 2445–2481 (2019)

	 8.	 Bonettini, S., Loris, I., Porta, F., Prato, M.: Variable metric inexact line-search-based methods for
nonsmooth optimization. SIAM J. Optim. 26, 891–921 (2016)

	 9.	 Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based
proximal-gradient method for nonconvex optimization. Inv. Prob. 33, 055005 (2017)

	10.	 Bonettini, S., Prato, M.: New convergence results for the scaled gradient projection method. Inv.
Prob. 31, 095008 (2015)

	11.	 Boţ, R.I., Csetnek, E.R., László, S.C.: An inertial forward-backward algorithm for the minimization
of the sum of two nonconvex functions. EURO J. Comput. Optim. 4, 3–25 (2016)

	12.	 Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122
(2011)

	13.	 Byrd, R.H., Nocedal, J., Oztoprak, F.: An inexact successive quadratic approximation method for l-1
regularized optimization. Math. Program. 157, 375–396 (2016)

	14.	 Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in
limited memory methods. Math. Program. 63, 129–156 (1994)

	15.	 Chen, D.-Q., Zhou, Y., Song, L.-J.: Fixed point algorithm based on adapted metric method for con-
vex minimization problem with application to image deblurring. Adv. Comput. Math. 42, 1287–
1310 (2016)

	16.	 Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimiza-
tion with applications to image restoration. Inv. Prob. 29, 025011 (2013)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1104.1436

1 3

Globalized inexact proximal Newton-type methods for nonconvex… 409

	17.	 Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4, 1168–1200 (2005)

	18.	 De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlin-
ear complementarity problems. Math. Program. 75, 407–439 (1996)

	19.	 Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-
Newton methods. Math. Comput. 28, 549–560 (1974)

	20.	 Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. pro-
gram. 91, 201–213 (2002)

	21.	 Fountoulakis, K., Tappenden, R.: A flexible coordinate descent method. Comput. Optim. Appl. 70,
351–394 (2018)

	22.	 Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimi-
zation problems. Int. J. Syst. Sci. 12, 989–1000 (1981)

	23.	 Ghanbari, H., Scheinberg, K.: Proximal quasi-Newton methods for regularized convex optimization
with linear and accelerated sublinear convergence rates. Comput. Optim. Appl. 69, 597–627 (2018)

	24.	 Gu, B., Huo, Z., Huang, H.: Inexact proximal gradient methods for non-convex and non-smooth
optimization, arXiv preprint arXiv​:1612.06003​, (2016)

	25.	 Koh, K., Kim, S.-J., Boyd, S.: An interior-point method for large-scale l1-regularized logistic
regression. J. Mach. Learn. Res. 8, 1519–1555 (2007)

	26.	 Lee, C.-P., Wright, S.J.: Inexact successive quadratic approximation for regularized optimization.
Comput. Optim. Appl. 72, 641–674 (2019)

	27.	 Lee, J.D., Sun, Y., Saunders, M.A.: Proximal Newton-type methods for minimizing composite func-
tions. SIAM J. Optim. 24, 1420–1443 (2014)

	28.	 Li, J., Andersen, M.S., Vandenberghe, L.: Inexact proximal Newton methods for self-concordant
functions. Math. Methods Oper. Res. 85, 1–23 (2016)

	29.	 Li, Q., Shen, L., Xu, Y., Zhang, N.: Multi-step fixed-point proximity algorithms for solving a class
of optimization problems arising from image processing. Adv. Comput. Math. 41, 387–422 (2015)

	30.	 Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc.
Ser. B (Stat. Methodol.) 70, 53–71 (2008)

	31.	 Milzarek, A.: Numerical methods and second order theory for nonsmooth problems. PhD thesis,
Technische Universität München (2016)

	32.	 Milzarek, A., Ulbrich, M.: A semismooth Newton method with multidimensional filter globalization
for l

1
-optimization. SIAM J. Optim. 24, 298–333 (2014)

	33.	 Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572
(1983)

	34.	 Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de
France 93, 273–299 (1965)

	35.	 Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140, 125–161
(2013)

	36.	 Patrinos, P., Bemporad, A.: Proximal Newton methods for convex composite optimization. In: 52nd
IEEE Conference on Decision and Control, IEEE, pp. 2358–2363 (2013)

	37.	 Patrinos, P., Stella, L., Bemporad, A.: Forward-backward truncated Newton methods for convex
composite optimization, arXiv preprint arXiv​:1402.6655, (2014)

	38.	 Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14, 877–898 (1976)

	39.	 Scheinberg, K., Goldfarb, D., Bai, X.: Fast first-order methods for composite convex optimization
with backtracking. Found. Comput. Math. 14, 389–417 (2014)

	40.	 Scheinberg, K., Tang, X.: Practical inexact proximal quasi-Newton method with global complexity
analysis. Math. Program. 160, 495–529 (2016)

	41.	 Stella, L., Themelis, A., Patrinos, P.: Forward-backward quasi-Newton methods for nonsmooth opti-
mization problems. Comput. Optim. Appl. 67, 443–487 (2017)

	42.	 Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)
58, 267–288 (1996)

	43.	 Tran-Dinh, Q., Kyrillidis, A., Cevher, V.: A proximal Newton framework for composite minimiza-
tion: Graph learning without Cholesky decompositions and matrix inversions. In: International Con-
ference on Machine Learning, pp. 271–279 (2013)

	44.	 Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization.
Math. Program. 117, 387–423 (2009)

http://arxiv.org/abs/1612.06003
http://arxiv.org/abs/1402.6655

	 C. Kanzow, T. Lechner

1 3

410

	45.	 Wright, S.J., Nowak, R.D., Figueiredo, M.A.: Sparse reconstruction by separable approximation.
IEEE Trans. Sig. Process. 57, 2479–2493 (2009)

	46.	 Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat.
Soc. Ser. B (Stat. Methodol.) 68, 49–67 (2006)

	47.	 Yue, M.-C., Zhou, Z., So, A.M.-C.: A family of inexact SQA methods for non-smooth convex mini-
mization with provable convergence guarantees based on the Luo-Tseng error bound property. Math.
Program. 174, 327–358 (2019)

	48.	 Zhang, S., Qian, H., Gong, X.: An alternating proximal splitting method with global convergence
for nonconvex structured sparsity optimization. In: 30. AAAI Conference on Artificial Intelligence,
pp. 2330–2336 (2016)

	49.	 Zhong, K., Yen, I.E.-H., Dhillon, I.S., Ravikumar, P.K.: Proximal quasi-Newton for computationally
intensive l1-regularized M-estimators. In: Advances in Neural Information Processing Systems 27,
pp. 2375–2383 (2014)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Globalized inexact proximal Newton-type methods for nonconvex composite functions
	Abstract
	1 Introduction
	1.1 Background
	1.2 Description of the Method
	1.3 Related work
	1.4 Outline of the paper
	1.5 Notation

	2 The proximal gradient method
	2.1 The proximity operator
	2.2 Proximal gradient method

	3 Globalized inexact proximal Newton-type method
	4 Convergence theory
	4.1 Global convergence
	4.2 Local convergence

	5 Numerical results
	5.1 logistic regression with -Penalty
	5.1.1 Algorithmic details
	5.1.2 State-of-the-art methods
	5.1.3 Numerical comparison

	5.2 Student’s t-regression with -Penalty
	5.2.1 Algorithmic details
	5.2.2 State-of-the-art methods
	5.2.3 Numerical comparison

	5.3 Logistic regression with overlapping group penalty
	5.3.1 Algorithmic details
	5.3.2 Numerical comparison

	5.4 Nonconvex image restoration
	5.4.1 Algorithmic details
	5.4.2 Numerical comparison

	6 Conclusion
	Acknowledgements
	References

