Skip to main content
Log in

Nonconvex robust programming via value-function optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Convex programming based robust optimization is an active research topic in the past two decades, partially because of its computational tractability for many classes of optimization problems and uncertainty sets. However, many problems arising from modern operations research and statistical learning applications are nonconvex even in the nominal case, let alone their robust counterpart. In this paper, we introduce a systematic approach for tackling the nonconvexity of the robust optimization problems that is usually coupled with the nonsmoothness of the objective function brought by the worst-case value function. A majorization-minimization algorithm is presented to solve the penalized min-max formulation of the robustified problem that deterministically generates a “better” solution compared with the starting point (that is usually chosen as an unrobustfied optimal solution). A generalized saddle-point theorem regarding the directional stationarity is established and a game-theoretic interpretation of the computed solutions is provided. Numerical experiments show that the computed solutions of the nonconvex robust optimization problems are less sensitive to the data perturbation compared with the unrobustfied ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ang, M., Sun, J., Yao, Q.: On the dual representation of coherent risk measures. Ann. Oper. Res. 262(1), 29–46 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ba, Q., Pang, J.S.: Exact penalization of generalized Nash equilibrium problems. Oper. Res. (2020). https://doi.org/10.1287/opre.2019.1942

    Article  Google Scholar 

  3. Ben-Tal, A., El-Ghoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  4. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464–501 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bertsimas, D., Nohadani, O., Teo, K.M.: Robust optimization for unconstrained simulation-based problems. Oper. Res. 58(1), 161–178 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bertsimas, D., Nohadani, O., Teo, K.M.: Nonconvex robust optimization for problems with constraints. INFORMS J. Comput. 22(1), 44–58 (2010)

    Article  MathSciNet  Google Scholar 

  7. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30(4), 1022–1038 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Progr. 117, 51–80 (2009)

    Article  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  Google Scholar 

  10. Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in Applied Mathematics, Volume 5, Society for Industrial and Applied Mathematics (1990) (Reprint from John Wiley Publishers, New York 1983)

  11. Cui, Y., He, Z., Pang, J.S.: Multi-composite nonconvex optimization for training deep neural networks. SIAM J. Optim. 30(2), 1693–1723 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cui, Y., Pang, J.S., Sen, B.: Composite difference-max programs for modern statistical estimation problems. SIAM J. Optim. 28(4), 3344–3374 (2018)

    Article  MathSciNet  Google Scholar 

  13. Danskin Jr., J.M.: The theory of max-min with applications. SIAM J. Appl. Math. 14(4), 641–664 (1966)

    Article  MathSciNet  Google Scholar 

  14. Demyanov, V.F., Di Pillo, G., Facchinei, F.: Exact penalization via Dini and Hadamard conditional derivatives. Optim. Methods Softw. 9(1–3), 19–36 (1998)

    Article  MathSciNet  Google Scholar 

  15. Di Pillo, G., Facchinei, F.: Exact penalty functions for nondifferentiable programming problems. In: Clarke, F.H., Demyanov, V.F., Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics. Ettore Majorana International Science Serie, vol. 43, pp. 89–107. Springer, New York (1989)

    Chapter  Google Scholar 

  16. Di Pillo, G., Facchinei, F.: Regularity conditions and exact penalty functions in Lipschitz programming problems. In: Giannessi, F. (ed.) Nonsmooth Optimization Methods and Applications, pp. 107–120. Gordon and Breach, New York (1992)

    MATH  Google Scholar 

  17. Di Pillo, G., Grippo, L.: Exact penalty functions in constrained optimization. SIAM J. Control Optim. 27(6), 1333–1360 (1988)

    Article  MathSciNet  Google Scholar 

  18. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  19. Facchinei, F., Pang, J.S., Scutari, G.: Non-cooperative games with minmax objectives. Comput. Optim. Appl. 59(1–2), 85–112 (2014)

    Article  MathSciNet  Google Scholar 

  20. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)

    Article  MathSciNet  Google Scholar 

  21. Goodfellow, I., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: International Conference on Learning Representations (2015)

  22. Gorissen, B., Yanıkoǧlu, I., den Hertog, D.: A practical guide to robust optimization. Omega 53, 124–137 (2015)

    Article  Google Scholar 

  23. Hu, J., Mitchell, J., Pang, J.S., Yu, B.: On linear programs with linear complementarity constraints. J. Glob. Optim. 53(1), 29–51 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lange, K.: MM Optimization Algorithms. Society for Industrial and Applied Mathematics, Philadelphia (2016)

    Book  Google Scholar 

  25. Leyffer, S., Menickelly, M., Munson, T., Vanaret, C., Wild, S.M.: Nonlinear robust optimization. Preprint ANL/MCS-P9040-0218, Mathematics and Computer Science Division, Argonne National Laboratory (2018)

  26. Li, W., Singer, I.: Global error bounds for convex multifunctions and applications. Math. Oper. Res. 23(2), 443–462 (1998)

    Article  MathSciNet  Google Scholar 

  27. Lu, Z., Sun, Z., Zhou, Z.: Enhanced proximal DC algorithms with extrapolation for a class of structured nonsmooth DC minimization. Math. Progr., Ser. B 176(1–2), 369–401 (2019)

    Article  MathSciNet  Google Scholar 

  28. Luo, Z.Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  29. Luo, Z.Q., Tseng, P.: Perturbation analysis of a condition number for linear systems. SIAM J. Matrix Anal. Appl. 15(2), 636–660 (1994)

    Article  MathSciNet  Google Scholar 

  30. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (2018)

  31. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \(O(1/k^2)\). Sov. Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  32. Ng, K.F., Zheng, X.Y.: Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12(1), 1–17 (2001)

    Article  MathSciNet  Google Scholar 

  33. Pang, J.S.: Error bounds in mathematical programming. Math. Progr., Ser. B 79(1–3), 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Pang, J.S., Razaviyayn, M., Alvarado, A.: Computing B-stationary points of nonsmooth dc programs. Math. Oper. Res. 42(1), 95–118 (2016)

    Article  MathSciNet  Google Scholar 

  35. Pang, J.S., Scutari, G.: Nonconvex games with side constraints. SIAM J. Optim. 21(4), 1491–1522 (2011)

    Article  MathSciNet  Google Scholar 

  36. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Z. B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 372–387 (2016)

  37. Qi, Z., Cui, Y., Liu, Y., Pang, J.S.: Asymptotic analysis of stationary solutions of coupled nonconvex nonsmooth empirical risk minimization. arXiv:1910.02488 (October 2019)

  38. Rockafellar, R.T.: Coherent approaches to risk in optimization under uncertainty. In: Tutorials in Operations Research, pp. 38–61. INFORMS (2007)

  39. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer Briefs in Optimization (2002)

  40. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

    Article  MathSciNet  Google Scholar 

  41. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)

  42. Tütüncü, R., Koenig, M.: Robust asset allocation. Ann. Oper. Res. 132, 157–187 (2004)

    Article  MathSciNet  Google Scholar 

  43. Xie, Y., Shanbhag, U.: On robust solutions to uncertain linear complementarity problems and their variants. SIAM J. Optim. 26(4), 2120–2159 (2016)

    Article  MathSciNet  Google Scholar 

  44. Xu, H., Caramanis, C., Mannor, S.: Robust regression and lasso. Trans. Inf. Theory 56(7), 3561–3574 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of our manuscript and for the comments that have helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.-S. Pang and Z. He was based on research supported by the National Science Foundation under Grant IIS-1632971 and by the Air Force Office of Scientific Research under Grant Number FA9550-18-1-0382.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., He, Z. & Pang, JS. Nonconvex robust programming via value-function optimization. Comput Optim Appl 78, 411–450 (2021). https://doi.org/10.1007/s10589-020-00245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00245-4

Keywords

Navigation