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1 Introduction

The quadratic assignment problem (QAP) is a classical mathematical model for
location theory, which is used to model the location problem of allocating n fa-
cilities to n locations while minimizing the quadratic objective coming from the
distance between the locations and the flow between the facilities. The standard
form introduced by Koopmans and Beckmann [22] is as following:

min

#

ÿ

1ďi,jďn

AijBπpiq,πpjq `
ÿ

i

Ciπpiq | π P P
n

+

, (1)

where A, B and C are given n ˆ n real matrices and Pn is the the group of all
permutations of t1, . . . , nu. In this paper, we make the standard assumption that
A and B are symmetric.

Nowadays, QAP becomes one of the most important combinatorial optimiza-
tion problems due to its widely applications in many different areas, such as chip
design, manufacturing, computer graphics and vision, and so on (see [12, 14] for
more details). However, it is well known that QAP is NP-hard [34] and still quite
difficult to compute the problems of dimension n ě 30 in a reasonable compu-
tational time. Exact solution algorithms for QAP in practice are usually based
on the branch and bound technique which is used to reduce the domain and to
improve the bounds of relaxation problems [3]. Therefore, it is still an important
research topic to improve the lower or upper bounds for QAP efficiently.

Meanwhile, semidefinite programming (SDP) [36] has proven to be very suc-
cessful in this trend by providing tight relaxations for hard combinatorial prob-
lems [37]. To obtain lower bounds for QAP, various SDP relaxations are estab-
lished [24,42]. Although SDP relaxation is numerically successful, it does not sat-
isfy the Slater condition that may make the dual optimal solution unbounded [30].
That is an important reason why some interior-point methods become inefficient
for solving QAPs. To overcome this difficulty, by exploring the geometrical struc-
ture of SDP relaxations, Zhao et al. [42] considered a reduced SDP problem by
projecting the primal problem onto the minimal face of the semidefinite cone, and
constructed some Slater points for such SDP relaxations, which can be solved by
the interior-point method and the bundle method [31] efficiently for n ď 30.

In order to improve the quality of the SDP relaxation of QAP, Povh and
Rendl [29] showed that the optimal value of QAP was equal to the optimal value
of the convex completely positive programming (CPP), i.e., a linear program over
the cone of completely positive matrices. In fact, based on [11], many important
binary and nonconvex quadratic programs including QAP can be equivalent re-
formulated as the convex CPPs, under some mild conditions. However, these CPP
reformulations are known to be numerically intractable [27], and an efficient strat-
egy is replacing the completely positive cone with doubly nonnegative (DNN) cone
and solving the relaxation problems by SDP solvers [16,21,38,40,41,43]. The QAP
and the corresponding CPP relaxation proposed by Povh and Rendl [29] have the
same optimal value, but the optimal solution may be different except that the rank
of the optimal solution is one. Because it is well-known that the rank constrained
matrix optimization problems are computationally intractable and difficult in gen-
eral [13], the rank one constraints are usually dropped in both the CPP and its
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related DNN relaxations of QAP. However, by use of the strategy of the differ-
ence of two convex functions (DC), the rank constraint can be replaced by the
difference of the nuclear norm function and Ky-Fan k-norm function. Based on
this simple observation, a penalty approach are proposed by [17] for calibrating
rank constrained correlation matrix problems, which usually performances very
well in many applications (see also [23]). In fact, based on the DC reformulations
of the rank constraints, we shall reformulate the original QAP as a DC program-
ming [1, 2] and employ the DC algorithm (DCA) to solve the non-convex QAP
relaxation problems.

In this paper, we will propose a new rank constrained DNN model and show
that it is equivalent with the original QAP (in the sense of both optimal values and
optimal solutions). Also, we shall show the same techniques can be applied by other
important non-convex problems such as the standard quadratic programming and
the minimum-cut graph tri-partitioning problem. Although the equivalent rank
constrained DNN model is still numerically intractable, we will propose a semi-
proximal DC algorithm (DCA) framework for finding a feasible stationary point.
Furthermore, for the large-scaled DCA inner subproblems, we will apply an ef-
ficient majorized semismooth Newton-CG augmented Lagrangian method based
on the software package SDPNAL+ [35]. Finally, numerical experiments on the
QAPLIB [19] and ‘dre’ instances [15] demonstrate the proposed approach usually
performs well.

Below are some common notations to be used in this paper. We use Sq to denote
the linear subspace of all qˆq real symmetric matrices. Let N q

Ď Sq be the subset
of all qˆ q nonnegative symmetric matrices in Sq. Denote Sq`{S

q
´ (Sq``{S

q
´´) the

positive/negative semidefinite (definite) matrix cone in Sq. Moreover, let Cq be
the set of copositive matrices in Sq and pCqq˚ be the dual cone of Cq, i.e., the set

of all completely positive matrices in Sq. For a given matrix Z P Sq
2

with q ě 1,
we also use the following block notation for simplicity:

Z “

»

—

—

—

–

Z11
¨ ¨ ¨ Z1q

...
. . .

...

Zq1 ¨ ¨ ¨ Zqq

fi

ffi

ffi

ffi

fl

with Zij P Rqˆq for each i, j P t1, . . . , qu. Let ei be the i-th standard unit vector.
We denote the vector and square matrix of all ones by 1q and Eq respectively, and
denote the identity matrix by Iq. We will omit the superscript q if the dimension
is clear. For a given Z P Sq, we use λ1pZq ě . . . ě λqpZq to denote the eigenvalues
of Z (all real and counting multiplicity) arranging in non-increasing order.We use
“vecp¨q” to denote the vectorization of matrices and use “matp¨q” to denote its
inverse operator, i.e., the corresponding matricization of vectors. If z P Rq, then
Diagpzq is a q ˆ q diagonal matrix with z on the main diagonal. Finally, we use
“b” to denote the Kronecker product between matrices.

2 The rank constrained DNN reformulation of the QAP

It is well-known that each permutation π P Pn can be represented by a n ˆ n
permutation matrix X, i.e., a square binary matrix which has exactly one entry of
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1 in each row and each column and zeros elsewhere. Therefore, the QAP (1) can
be reformulate as the following trace form:

min
!

xX,AXB ` Cy | X P Πnˆn
)

, (2)

where x¨, ¨y stands for the standard trace inner product of matrices, i.e., xY,Zy “
trpXTY q for X,Y P Rmˆn, and Πnˆn is the set of all nˆn permutation matrices.
It is clear that Πnˆn be characterized by the interaction of the set of orthogonal
matrices and the set of nonnegative matrices, i.e.,

Πnˆn
“

!

X P Rnˆn
| XTX “ I, X ě 0

)

.

Without loss of generality, we may assume that the data matrices A,B,C in (1)
are nonnegative, i.e., A,B,C P N . Inspired by [4], Povh and Rendl [29] suggested
to consider the following convex completely positive conic relaxation of the QAP
(2):

min xB bA `Diagpcq, Y y

s.t.
n
ÿ

i“1

Y ii “ I, xI, Y ijy “ δij , i, j P t1, . . . , nu,

xE, Y y “ n2, Y P pCn
2

q
˚,

(3)

where c “ vecpCq and δij “ 1 if i “ j and δij “ 0 otherwise for i, j P t1, . . . , nu. It
is clear that for any n ˆ n permutation matrix X P Πnˆn,

Y “ vecpXqvecpXqT , X P Πnˆn. (4)

is a feasible solution of (3). Furthermore, Povh and Rendl [29] shown that the
optimal value of (3) is actually equal the optimal value of QAP (2). Unfortunately,

the completely positive cone constrain Y P pCn
2

q
˚ is computational intractable. A

useful strategy to handle this is to approximate the cone pCn
2

q
˚ from the outside,

e.g., the cone of symmetric doublely nonnegative matrices Sn
2

`

Ş

Nn2

. Thus, we
obtain the following relaxation of the QAP (2):

min xB bA `Diagpcq, Y y

s.t.
n
ÿ

i“1

Y ii “ I, xI, Y ijy “ δij , i, j P t1, . . . , nu,

xE, Y y “ n2, Y P Sn
2

`

Ş

Nn2

.

(5)

Clearly, the optimal value of problem (5) only provides a lower bound of the QAP
(2). In general, the relaxation (5) for the QAP is not tight.

On the other hand, from the equation (4), we may add the rank constraint
rankpY q ď 1 to (5) and obtain the following rank constrained doubly nonnegative
(DNN) problem:

min xB bA `Diagpcq, Y y

s.t.
n
ÿ

i“1

Y ii “ I, xI, Y ijy “ δij , i, j P t1, . . . , nu,

xE, Y y “ n2, Y P Sn
2

`

Ş

Nn2

, rankpY q ď 1.

(6)

The resulting problem (6) is non-convex. In fact, we shall show that (6) is an exact
reformulation of the original QAP (2). To this end, we need the following simple
observation on the rank one completely positive matrices.
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Lemma 1 Let q ě 1 be a given positive integer. Suppose that Y P Sq and
rankpY q ď 1. Then, the following statements are equivalent:

(i) Y P pCqq˚;
(ii) Y P Sq`

Ş

N q;

(iii) there exists x P Rq
` such that Y “ xxT .

Proof Since “(i) ùñ (ii)” and “(iii) ùñ (i)” are obvious, we only need to show
“(ii) ùñ (iii)”, i.e., if Y P Sq`

Ş

N q, then there exists x P Rq
` such that Y “ xxT .

Without loss of generality, we may assume rankpY q “ 1, since otherwise the result
holds trivially. It follows from Y P Sq` and rankpY q “ 1 that there exists u P Rq

such that Y “ λuuT . Since Y ě 0, we have Yij “ uiuj ě 0 for each i, j P t1, . . . , qu.
Thus, we can choose x “

?
λu P Rq

` such that Y “ xxT . [\

It is clear that the objective functions of (2) and (6) coincide. The equivalence
between (2) and (6) then follows if we show the feasible sets of these two problems
are the same. By employing the similar argument as that of [29, Theorem 3], we
have the following result on the equivalence of the feasible sets of (6) and (2).

Proposition 1 The matrix Y P Sn
2

` is a feasible solution of (6) if and only if
there exists a unique X P Πnˆn such that Y “ vecpXqvecpXqT . Moreover, since
}vecpXq}2 is the only nonzero eigenvalue of Y , the vector vecpXq{}vecpXq} is the
unit nonnegative eigenvector of Y .

Proof It is easy to see that if X P Πnˆn then Y “ vecpXqvecpXqT belongs the
feasible set of (6). Thus, we only need to show the converse direction holds. Suppose
that Y is a feasible set of (6). We know that rankpY q “ 1, since Y ‰ 0. It then

follows from Lemma 1 that there exists y P Rn2

` such that Y “ yyT . Denote
X “ matpxq P Rnˆn. Then, by employing the similar argument as that of [29,
Theorem 3], we are able to show that X P Πnˆn. Furthermore, it is easy to verify
that for any X,X 1 P Πnˆn, if X ‰ X 1, then Y ‰ Y 1 with Y “ vecpXqvecpXqT

and Y 1 “ vecpX 1qvecpX 1qT .

Let the nonzero unit vector v P Rn2

with v “ vecpXq{}vecpXq}, Obviously,

v P Rn2

` . From the definition of the characteristic polynomial for matrices, we
know that

Y v “ vecpXqvecpXqT ¨
vecpXq

}vecpXq}
“ }vecpXq}vecpXq “ }vecpXq}2v,

that is , }vecpXq}2 and v is the eigenvalue and eigenvector of Y respectively. The
proof is completed. [\

Remark 1 It follows from Proposition 1 that if Y P Sn
2

is a feasible solution of
(6), then we can find the permutation matrix X P Πnˆn by setting X “ matpxq
with x “ v ¨ }vecpXq} easily, where v is the unit corresponding eigenvector of Y
with respect to n.

The following result on the equivalence between the rank constrained DNN
problem (6) and the QAP (2) follows from Proposition 1 immediately.

Theorem 1 The rank constrained DNN problem (6) is equivalent to the QAP (2).
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Clearly, the non-convex rank constrained DNN representation (6) is at least
as hard as the original QAP, which means that finding a global solution of (6)
is computational intractable. However, it is still possible to design some efficient
algorithms, e.g., the DCA (see Section 4), to find a good feasible point of (6) and
obtain a good feasible solution of the original QAP.

3 Extensions

In this section, we shall demonstrate that the results obtained in Section 2 can
be applied to other important non-convex problems, which have the similar rank
constrained DNN representations.

Standard quadratic programming. The standard quadratic problem (StQP)
consists of finding an optimal of a quadratic form over the standard simplex, i.e.,

min
!

xx,Qxy |
n
ÿ

i“1

xi “ 1, x ě 0
)

, (7)

where Q is an arbitrary nˆn symmetric matrix. The StQP (7) includes many im-
portant combinatorial optimization problems as special cases, e.g., the maximum
clique problem [26]. It is clear that the StQP (7) can be rewritten as the following
matrix form:

min xQ,Y y

s.t. xE, Y y “ 1, Y “ xxT , x ě 0.

Thus, by employing Lemma 1, we obtain the following result on the rank con-
strained DNN representation of the StQP (7), immediately.

Theorem 2 The standard quadratic problem (7) is equivalent to the following
rank constrained DNN problem:

min xQ,Y y

s.t. xE, Y y “ 1, Y P Sn`
Ş

Nn, rankpY q ď 1.
(8)

The minimum-cut graph tri-partitioning problem. The minimum-cut
graph tri-partitioning problem [28] is to find a tri-partitioning the vertices of a
graph into sets S1, S2 and S3 of specified cardinalities, such that the total weight
of edges between S1 and S2 is minimal.

Let G “ pV,Eq be an undirected graph on n vertices, given by its (weighted)
symmetric nonnegative adjacency matrix A P Nn, the minimum-cut graph tri-
partitioning problem [28] can be described as: for given integers m1, m2 and m3

summing to n, find subsets S1, S2 and S3 of V pGq with cardinalities m1, m2 and
m3, respectively, such that the total weight of edges between S1 and S2 is minimal.
By presenting partitions S1, S2 and S3 by n ˆ 3 matrices X, the minimum-cut
graph tri-partitioning problem can be written as follows

min
1

2
xX,AXBy

s.t. XTX “M, X13 “ 1n,

X ě 0,

(9)
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where M :“ Diagpm1,m2,m3q and B “

»

–

0 1 0
1 0 0
0 0 0

fi

fl, the vector of all ones is 1k P Rk.

By introducing Y “ xxT with x “ vecpXq, Povh and Rendl [28] reformulate the
minimum-cut graph tri-partitioning problem (9) as follows:

min
1

2
xB bA, Y y

s.t. xLij b I, Y y “ miδij , 1 ď i ď j ď 3,

xE3 b J
ii, Y y “ 1, 1 ď i ď n,

xVi bW
T
j , Y y “ mi, 1 ď i ď 3, 1 ď j ď n

xLij b En, Y y “ mimj , 1 ď i ď j ď 3,

Y “ xxT , x P R3n
` ,

(10)

where Vi “ ei1
T
3 P R3ˆ3 for i “ 1, 2, 3, Wj “ ej1

T
n P Rnˆn for j “ 1, . . . , n,

J ij “ eie
T
j P Rnˆn and Lij “ 1

2 peie
T
j ` eje

T
i q P R3ˆ3 for i, j “ 1, 2, 3. Again,

similar with Section 2, by employing Lemma 1, we are able to obtain the following
rank constrained DNN representation of the minimum-cut graph tri-partitioning
problem (9).

Theorem 3 The minimum-cut graph tri-partitioning problem (9) is equivalent to
the following rank constrained DNN problem:

min
1

2
xB bA, Y y

s.t. xLij b I, Y y “ miδij , 1 ď i ď j ď 3,

xE3 b J
ii, Y y “ 1, 1 ď i ď n,

xVi bW
T
j , Y y “ mi, 1 ď i ď 3, 1 ď j ď n

xLij b En, Y y “ mimj , 1 ď i ď j ď 3,

Y P S3n
`

Ş

N 3n, rankpY q ď 1.

(11)

4 The DCA for the rank constrained DNN problem

In this section, we shall propose a DCA based algorithm for the rank constrained
DNN relaxations established in the previous section. For simplicity in notation,
all proposed rank constrained DNN representations (6), (8) and (11) can be cast
in the following abstract form:

min fpY q :“ xC, Y y

s.t. Y P Ω
Ş

R,
(12)

where the subsets Ω,R Ď Sq are defined by

Ω :“
!

Y P Sq`
č

N q
| ApY q “ b

)

(13)

and
R :“

 

Y P Sq | rankpY q ď 1
(

, (14)

C P Sq, A : Sq Ñ Rm is a given linear operator, and b P Rm is a given data.
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It is worth to note that for the rank constrained DNN relaxations proposed in
Section 2, the subsets Ω with respect to (6), (8) and (11) are satisfy the following
assumption.

Assumption 1 The subset Ω Ď Sq defined by (13) is nonempty and bounded.

Let ρ ą 0 be a given penalty parameter. The rank constrained DNN problem
(12) is closed related to the following rank penalized problem:

min fpY q ` ρ rankpY q

s.t. Y P Ω.
(15)

In fact, we shall verify that under Assumption 1, the rank penalized problem (15)
is an exact penalty version of the rank constrained DNN problem (12) in the sense
that there exists a constant ρ ą 0 such that the global optimal solution of (15)
associated to any ρ ě ρ coincides with that of (12).

Theorem 4 Suppose Assumption 1 holds. There exists a constant ρ ą 0 such
that for any ρ ě ρ, the global optimal solution set of (15) associated to any ρ ą ρ
coincides with the global optimal solution set of (12).

Proof Let Y ˚ be a global optimal solution of (12). Since Ω is assumed nonempty
and compact, we may assume that rY P Ω is an optimal solution of the convex
problem min tfpY q | Y P Ωu. It is clear that fpY ˚q ě fprY q. Let ρ ą fpY ˚q´fprY q ě
0 be fixed. Suppose that ρ ě ρ. Let Yρ be a global optimal solution of (15) chosen
arbitrarily with respect to ρ. We have

fpYρq ` ρ rankpYρq ď fpY ˚q ` ρ rankpY ˚q ď fpY ˚q ` ρ. (16)

By noting that rankpYρq ě 1 (since Yρ ‰ 0), we obtain from (16) that

fpYρq ď fpY ˚q. (17)

Since Yρ P Ω, we have fprY q ď fpYρq. Thus, we have

ρprankpYρq ´ 1q ď fpY ˚q ´ fprY q. (18)

We claim that rankpYρq ď 1. In fact, if rankpYρq ě 2, then it follows from (18) that

ρ ď fpY ˚q ´ fprY q,

which contradicts with the fact that ρ ě ρ ą fpY ˚q ´ fprY q. Thus, we know
that Yρ P Ω

Ş

R, i.e., Yρ is indeed a feasible solution of (12). Therefore, we have
fpYρq ě fpY ˚q since Y ˚ is a global solution of (12). This, together with (17),
implies that fpYρq “ fpY ˚q, which implies that Yρ is a global solution of (12).
On the other hand, by noting that Yρ ‰ 0 and rankpYρq ď 1, we conclude that
rankpYρq “ 1, which implies that

fpYρq ` ρ rankpYρq “ fpYρq ` ρ ě fpY ˚q ` ρ rankpY ˚q

It then follows from (16) that fpYρq ` ρ rankpYρq “ fpY ˚q ` ρ rankpY ˚q. Thus,
we know that Y ˚ is also a global solution of (15). Since Y ˚ and Yρ are chosen
arbitrarily, we know that the global solution sets of (12) and (15) coincide. [\
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Consider the following penalized problem:

min fρpY q :“ xC, Y y ` ρp}Y }˚ ´ }Y }2q

s.t. Y P Ω.
(19)

Let X and Z be two finite dimensional Euclidean space. Recall a set-valued
mapping Ψ : X Ñ Z is called calm at x̄ for z̄ P Ψpx̄q if there exist a constant α ą 0
and neighborhood U Ď X of x̄ and neighborhood V Ď Z of z̄ such that

Ψpxq X V Ď Ψpx̄q ` α}x ´ x̄}BX @x P U ,

where BX is the unit ball in X .

Proposition 2 Suppose that the set-valued mapping Γ : < Ñ Sq defined by

Γ pwq :“
 

Y P Sq | Y P Ω, }Y }˚ ´ }Y }2 “ w
(

, w P <,

is calm at 0 for each Y P Γ p0q. Then, there exists a constant ρ̄ ą 0 such that
for any ρ ą ρ̄, Y ˚ is an optimal of (12) if and only if Y ˚ is an optimal of the
penalized problem (19).

Proof First, we shall show that there exists ρ̄ ą 0 if Y ˚ is an optimal of (12),
then it is also an optimal solution of the penalized problem (19) for ρ ą ρ̄. By [6,
Theorem 2.1], we know from the calmness of Γ that there exists τ ą 0 such that
distpY ,Ω

Ş

Rq ď τdistpY ,Rq “ τ p}Y }˚ ´ }Y }2q. Let L :“ }C} ą 0. Suppose that
ρ ą ρ̄ :“ maxtLτ, Lu be arbitrarily given. Suppose there exists Y P Ω and ε ą 0
such that

xC, Y y ` ρp}Y }˚ ´ }Y }2q ă xC, Y
˚
y ´ ρε.

Let pZ P Ω
Ş

R be such that

} pZ ´ Y } ď distpY ,Ω
č

Rq ` ε.

Since distpY ,Ω
Ş

Rq ď τdistpY ,Rq “ τ p}Y }˚ ´ }Y }2q. we have

} pZ ´ Y } ď τ p}Y }˚ ´ }Y }2q ` ε.

Then,

xC, pZy ď xC, Y y ` L} pZ ´ Y } ď xC, Y y ` Lpτ p}Y }˚ ´ }Y }2q ` εq

ď xC, Y y ` ρp}Y }˚ ´ }Y }2 ` εq ă xC, Y
˚
y.

This contradicts with the fact that Y ˚ is an optimal of (12).
For the converse direction, it is sufficient to show that if Y ˚ is an optimal of

the penalized problem (19), then Y ˚ P Ω
Ş

R, i.e., Y ˚ is a feasible solution of
(12). In fact, if rY P Ω

Ş

R is an optimal of (12), then since Y ˚ is an optimal of
the problem (19), we know from the first part that

xC, Y ˚y ` ρp}Y ˚}˚ ´ }Y
˚
}2q “ xC, rY y

and

xC, Y ˚y `
1

2
pρ ` ρ̄qp}Y ˚}˚ ´ }Y

˚
}2q ě xC, rY y,

which implies that
1

2
pρ̄ ´ ρqp}Y ˚}˚ ´ }Y

˚
}2q ě 0.

Since ρ ą ρ̄ and }Y ˚}˚ ´ }Y
˚
}2 ě 0, we know that }Y ˚}˚ ´ }Y

˚
}2 “ 0, i.e.,

rankpY ˚q ď 1. Thus, we have Y ˚ P Ω
Ş

R. This completes the proof. [\
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The objective function of (19) can be rewritten as

fρpY q “ xC, Y y ` ρ}Y }˚ ´ ρppY q, Y P Sq,

where ppY q :“ }Y }2. Therefore, the non-convex objective function of the penalized
problem (19) is a DC (difference of convex) function. Thus, we introduce a DC
based algorithm to solve (19), which has the following template:

Algorithm 1 [Proximal DC Algorithm (ProxDCA)]

1: Let Y 0 P Ω be an initial point and σ ą 0. Set k “ 0.
2: Choose Wk P B ppY kq. Compute

Y k`1 “ argmin
!

pfρ,σpY q | Y P Ω
)

, (20)

where

pfρ,σpY q :“ xC, Y y ` ρ}Y }˚ ´ ρpppY
kq ` xWk, Y ´ Y kyq `

1

2σ
}Y ´ Y k}2 (21)

and the subset Ω Ď Sq is defined by (13).
3: If Y k`1 “ Y k stop; otherwise set k “ k ` 1 and go to Step.2.

Under Assumption 1, the strongly convex problem (20) has a unique solution
and can be solved efficiently by considering its dual problem, i.e.,

max ´xb, yy ´
σ

2

›

›

›
C ` ρpI `W k

q `A˚y ` S ` Z ´ σY k
›

›

›

2

s.t. S P Sq´, Z P ´N q.
(22)

Moreover, if pyk`1, Sk`1, Zk`1
q P Rm

ˆ Sq ˆ N q is an optimal solution of the
above dual problem (22), Y k`1 can be found as follows

Y k`1
“ Y k ´ σ

´

A˚yk`1
` Sk`1

` Zk`1
` C ` ρpI ´W k

q

¯

. (23)

It is clear that the dual problem (22) coincides with the inner problem [40, (8)]
involved in the augmented Lagrangian method of the dual problem of the semidef-
inite programming with an additional polyhedral cone constraint (SDP+) intro-
duced by [40]. Therefore, we can employ the majorized semismooth Newton-CG
method [40, Algorithm MSNCG] to solve (20), directly. Furthermore, in order for
the dual problem (22) to have a bounded solution set, we introduce the following
general Slater condition for the constraint set Ω defined in (13).

Assumption 2 There exists rY P Sq such that

ApTN q prY qq “ Rm and rY P Sq`` X int pN q
q,

where int pN q
q and TN q prY q denote the interior of N q and the tangent cone of N q

at rY , respectively.
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Under Assumption 2, the convergence of Algorithm MSNCG is established in [40,
Theorem 2.5]. For simplicity, we omit details here.

Next, we shall study the convergence of the proposed DC based algorithm for
the rank constrained DNN problem (12). A feasible point Y P Ω is said to be a
stationary point of the penalized problem (19) if

pC ` ρI `NΩpY qq
č

pρB ppY qq ‰ H,

where NΩpY q is the normal cone of the convex set Ω at Y in the sense of con-
vex analysis (cf. e.g., [32]). We have the following results on the convergence of
the proposed DC based algorithm (Algorithm 1) for the rank constrained DNN
problem (12). Note that the proof of the following proposition is similar with that
of [18, Theorem 3.4]. However, we include the proof here for completion.

Proposition 3 Suppose that Assumption 1 holds. Let ρ ą 0 be given. Let tY ku be
the sequence generated by Algorithm 1. Then tfρpY

k
qu is a monotonically decreas-

ing sequence. If Y k`1
“ Y k for some integer k ě 0, then Y k`1 is a stationary point

of the penalized problem (19). Otherwise, the infinite sequence tfρpY
k
qu satisfies

1

2σ
}Y k`1

´ Y k}2 ď fρpY
k
q ´ fρpY

k`1
q, k “ 0, 1, ... (24)

Moreover, any accumulation point of the bounded sequence tY ku is a stationary
point of problem (19).

Proof Since the function p is convex and W k
P B ppY kq, we know that

ppY k`1
q ě ppY kq ` xW k, Y k`1

´ Y ky.

Therefore, we have for each k ě 0,

fρpY
k`1

q “ xC, Y k`1
y ` ρ}Y k`1

}˚ ´ ρppY
k`1

q

ď xC, Y k`1
y ` ρ}Y k`1

}˚ ´ ρ
`

ppY kq ` xW k, Y k`1
´ Y ky

˘

`
1

2σ
}Y k`1

´ Y k}2 ď pfρ,σpY
k
q “ fρpY

k
q,

where the last inequality due to Y k P Ω and Y k`1 is the optimal solution of (20).
Thus, we know that the sequence tfρpY

k
qu is a monotonically decreasing sequence.

Assume that there exists some k ě 0 such that Y k`1
“ Y k. We shall show

that Y k`1 is a stationary point of (19). Since Y k`1 is the optimal solution of the
strongly convex problem (20), we know that

0 P
1

σ
pY k`1

´ Y kq ` C ´ ρW k
` ρI `NΩpY

k`1
q. (25)

It then follows from Y k`1
“ Y k that

ρW k
P C ` ρI `NΩpY

k`1
q,

which implies that

pC ` ρI `NΩpY
k`1

qq
č

ρB ppY k`1
q ‰ H,
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i.e. Y k`1 is a stationary point of (19).
Next, suppose that for all k ě 0, Y k`1

‰ Y k. It then follows from (25), there
exists Dk`1

P NΩpY
k`1

q such that

0 “
1

σ
pY k`1

´ Y kq ` C ´ ρpW k
´ Iq `Dk`1. (26)

Thus, since Y k P Ω and Dk`1
P NΩpY

k`1
q for each k ě 0, by (25), we have

fρpY
k`1

q ´ fρpY
k
q ď pfρ,σpY

k`1
q ´ fρpY

k
q

“
1

2σ
}Y k`1

´ Y k}2 ` xC, Y k`1
y ´ ρp}Y k}2 ` xW

k, Y k`1
´ Y ky ´ xI, Y k`1

yq

´pxC, Y ky ´ ρp}Y k}2 ´ xI, Y
k
yq

“
1

2σ
}Y k`1

´ Y k}2 ` xC, Y k`1
´ Y ky ´ xρpW k

´ Iq, Y k`1
´ Y ky

“
1

2σ
}Y k`1

´ Y k}2 ` xC ´ ρpW k
´ Iq, Y k`1

´ Y ky

“
1

2σ
}Y k`1

´ Y k}2 ` x´
1

σ
pY k`1

´ Y kq ´Dk`1, Y k`1
´ Y ky

“ ´
1

2σ
}Y k`1

´ Y k}2 ´ xDk`1, Y k`1
´ Y ky ď 0,

which implies that

1

2σ
}Y k`1

´ Y k}2 ď fρpY
k
q ´ fρpY

k`1
q.

Thus, the infinite sequence tfρpY
k
qu satisfies the inequality (24).

Moreover, suppose that Y is an accumulation point of tY ku. Let tY kj u be a
subsequence of tY ku such that

lim
jÑ`8

Y kj “ Y .

Then, by (24), we obtain that

lim
iÑ8

1

2σ

i
ÿ

k“0

}Y k`1
´ Y k}2 ď lim inf

iÑ8
pfρpY

0
q ´ fρpY

i`1
qq ď fρpY

0
q ă `8,

which implies that lim
kÑ8

}Y k`1
´ Y k} “ 0. Therefore, we obtain that

lim
jÑ8

Y kj`1
“ lim
jÑ8

Y kj “ Ȳ and lim
jÑ8

pY kj`1
´ Y kj q “ 0.

Furthermore, since tY kj u is bounded, it follows from [32, Theorem 24.7] that tW kj u

is also bounded. By taking a subsequence if necessary, we may assume that there
exists W P B ppY q such that lim

jÑ8
W kj “W . Therefore, we obtain from (26) that

D :“ lim
jÑ8

Dkj`1
“ lim
jÑ8

´p
1

σ
pY kj`1

´ Y kj q ` C ´ ρpW kj ´ Iqq “ ´C ´ ρI ` ρW.
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Now in order to show that Y is a stationary point of problem (19), we only need
to show that D P NΩpY q. Suppose that D R NΩpY q, i.e., there exists rY P Ω such
that xD, rY ´ Y y ą 0. Since for each kj , D

kj`1
P NΩpY

kj`1
q, we have

xDkj`1, rY ´ Y kj`1
y ď 0.

It follows from the convergence of the two subsequences tDkj`1
u and tY kj`1

u,
thus

xD, rY ´ Y y ď 0.

This is a contradiction. The proof is completed. [\

In order to show the infinity sequence tY ku generated by the proposed Al-
gorithm 1 actually converge, we recall the following definition of the Kurdyka-
ojaziewicz (KL) property of the lower semi-continuous function (see [5, 9, 10] for
more details). Let ι ą 0 and Ψι be the class of functions ψ : r0, ιq Ñ R` that
satisfy the following conditions:

(a) ψp0q “ 0;
(b) ψ is positive, concave and continuous;
(c) ψ is continuously differentiable on p0, ιq with ψ1pxq ą 0 for any x P p0, ιq.

Let g : Rn
Ñ p´8,8s be a given proper lower semicontinuous function. Sup-

pose that x P dom g :“ tx P <n | gpxq ă 8u. The Fréchet subdifferential of g at x
is defined as

pBgpxq :“

#

h P Rn
| lim sup
x‰yÑx

gpyq ´ gpxq ´ hT py ´ xq

}y ´ x}
ě 0

+

and the limiting subdifferential, or simply the subdifferential of g at x, is defined
by

Bgpxq :“
!

h P Rn
| D txku Ñ x and thku Ñ h satisfying hk P pBgpxkq @ k

)

.

Definition 1 (KL property) The given proper lower semicontinuous function
g : Rn

Ñ p´8,8s is said to have the KL property at x̄ P dom g if there exist ι ą 0,
a neighborhood U of x̄ and a concave function ψ P Ψι such that

ψ1pgpxq ´ gpx̄qqdistp0, Bgpxqq ě 1 @x P U and gpx̄q ă gpxq ă gpx̄q ` ι,

where distpx, Zq “ min
zPZ

}y ´ x} is the distance from a point x to a nonempty closed

set Z. The function g is said to be a KL function if it has the KL property at each
point of dom g.

One most frequently used functions which have the KL property are the semi-
algebraic functions.

Definition 2 (Semialgebraic sets and functions) A set in Rn is semialgebraic
if it is a finite union of sets of the form

 

x P Rn
| pipxq ą 0, qjpxq “ 0, i “ 1, . . . , a, j “ 1, . . . , b

(

,

where pi : Rn
Ñ R, i “ 1, . . . , a and qj : Rn

Ñ R, j “ 1, . . . , b are polynomials. A
mapping is semialgebraic if its graph is semialgebraic.
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For this class of function, we have the following useful result (cf. [7, 8]).

Proposition 4 Suppose a proper lower semicontinuous function g : Rn
Ñ p´8,8s

is semialgebraic, then g is a KL function.

Now, we are ready to establish the global convergence of Algorithm 1 by em-
ploying a refined global convergence result for the proximal DCA solving the DC
programming with the nonsmooth DC function, which is recently developed by
Liu et al. [25].

Theorem 5 Suppose that Assumption 1 holds. Let ρ ą 0 be given and σ ď 1{}C`
ρI}. Suppose that tY ku is the infinite sequence generated by Algorithm 1. Then
tY ku converges to a stationary point of problem (19).

Proof It is easy to verify that the set Ω Ď Sq defined in (13) is semialgebraic.
Moreover, since the conjugate function p˚pY q :“ sup

ZPSq

txY,Zy ´ }Z}2u coincides

with the indicator function of the unit ball of the nuclear norm } ¨}˚, i.e., tY P Sn |
}Y }˚ ď 1u (cf. [32, Theorems 13.5 & 13.2]), we know that for the given σ ą 0 the
corresponding auxiliary major function EpY,Z,W q :“ xC, Y y ` ρxI, Y y ` δΩpY q ´
xY,Zy` p˚pZq` 1

2σ }Y ´W }
2, Y,Z,W P Sn defined in [25, (7)] is semialgebraic. It

then follows from Proposition 4 that E is a KL function. Thus, the desired result
follows from [25, Theorem 3.1] directly. [\

Finally, we will show that if the parameter ρ ą 0 is large enough, then the
sequence tY ku obtained by Algorithm 1 will satisfy the the rank constraint of (12)
when k sufficiently large.

Proposition 5 Suppose that Assumptions 1 and 2 hold. For each k, choose W k
“

Uk1 pU
k
1 q
T
P B ppY kq, where Uk1 P Rq is the orthonormal eigenvector with respect

to the largest eigenvalue λ1pY
k
q of Y k. Let tY ku be the sequence generated by

Algorithm 1. Then, there exists pρ ą 0 such that for any ρ ą pρ and each k sufficiently
large,

rankpY k`1
q ď 1,

which implies that Y k`1 is a feasible solution of (12).

Proof For each k, since problem (20) is convex, we know that Y k`1 is the optimal
solution of (20) if and only if there exists pyk`1, Sk`1, Zk`1

q P Rm
ˆSqˆSq such

that pY k`1, yk`1, Sk`1, Zk`1
q satisfies the following KKT system:

$

’

’

&

’

’

%

C ` ρpI ´W k
q `A˚y ` S ` Z ` 1

σ
pY ´ Y kq “ 0,

ApY q “ b,

Sq` Q Y K S P S
q
´, N q

Q Y K Z P ´N q.

(27)

By the first equation of (27), we know that for each k,

Sk`1
“ ´ρpI ´W k

q `Mk`1,

where Mk`1 :“ ´C ´ A˚yk`1
´ Zk`1

´
1

σ
pY k`1

´ Y kq. By Weyl’s eigenvalue

inequality (see [39] or [20, Theorem 4.3.7]), we have for each k,

λ2pS
k`1

q ď λ2p´ρpI ´W
k
qq ` λ1pM

k`1
q “ ´ρ ` λ1pM

k`1
q, (28)
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where the equality holds due to the fact that the eigenvalues λp´ρpI ´W k
qq “

p0,´ρ, . . . ,´ρq P Rq. Moreover, since for each k, Y k P Ω is bounded, we know
that there exists a constant ζ ą 0 such that for each k, }Y k}2 ď ζ. It follows from
Assumption 2 that the level set of the dual problem (22) is a closed and bounded
convex set (cf. [33, Theorems 17 & 18]). Thus, we know that there exists a finite
constant η such that for k sufficiently large, λ1p´C ´ A˚yk`1

´ Zk`1
q ď η, we

have there exists a constant ζ ą 0 such that for k sufficiently large,

λ1pM
k`1

q ď λ1p´C ´A˚yk`1
´ Zk`1

q `
1

σ
λ1

´

Y k`1
´ Y k

¯

ď λ1p´C ´A˚yk`1
´ Zk`1

q `
1

σ

›

›

›
Y k`1

´ Y k
›

›

›

2
ď η `

ζ

σ
.

Therefore, we know from (28) that if ρ ą pρ :“ maxtη, 0u ` ζ
σ ą 0, then for k

sufficiently large,

λ2pS
k`1

q ď ´ρ ` λ1pM
k`1

q ď ´ρ ` η `
ζ

σ
ă 0. (29)

Finally, since Sq` Q Y
k`1

K Sk`1
P Sq´, by (29), we obtain that for k sufficiently

large,
rankpSk`1

q ě q ´ 1 and rankpY k`1
q ` rankpSk`1

q ď q,

which implies that rankpY k`1
q ď q ´ rankpSk`1

q ď 1. [\

5 Numerical results

In this section, we present numerical results for the relaxation problem (6) solving
by Algorithm 1. All the data from QAPLIB [19] and ‘dre’ instances [15] are tested
on a Window 10 workstation (6 core, Intel Xeon E5-2650 v3 @ 2.30 GHZ, 128 GB
RAM). The size of most QAPs ranges from 12 to 60. During our experiments,
SDPNAL+ version 1.0 [35] is used as doubly nonnegative solver for solving the
subproblems (20). Algorithm 1 is implemented in the MATLAB 2015a platform.
We measure the performance of Algorithm 1 by

gap :“
PDCA ´ opt

opt
ˆ 100%,

where ‘opt’ denotes the optimal value (or best-known feasible solution) of the
instance from QAPLIB, ‘PDCA’ denotes the optimal value of the subproblem
(20).

5.1 Penalty parameter

The penalty parameter ρ is an important factor for the whole procedure of Algo-
rithm 1. Figure 1 shows the effect of the paramenter ρ on the gaps and the ranks
of the sequences generated by Algorithm 1 for chr18a, els19, had20 and lipa30a.
In each subfigure, x-axis is the range of the parameter ρ, the left and right y-axis
denote the ranks of the generated solutions and the gaps of the optimality for the
different ρ respectively. As shown in Fig. 1 (a) and (b), if ρ increases from 0, chr18



16 Zhuoxuan Jiang et al.

(a) chr18a. (b) els19.

(c) had20. (d) lipa30a.

Fig. 1: Effects of paramenters ρ on gaps and ranks of solutions

and els19 problems can obtain the optimal solutions of the problem (12) since the
gaps are zeroes.

Although larger ρ can help the solutions satisfying the rank-one constraint in
the problem (12) (Proposition 5), the parameter ρ should not be too large. In fact,
as demonstrated by (c) had20 and (d) lipa30a in Fig. 1, when ρ increases larger
than certain value, the gaps of these two problems oscillate up and down which
imply the penalty problem (19) may move away from the target problem (12). In
our implementation, a bisection strategy is used for finding a suitable parameter
ρ for Algorithm 1.

5.2 Numerical performance

Table 1 summarizes the quality of the solutions obtained by our proposed DCA
approach for solving the problems from QAPLIB [19] and ‘dre’ instances [15] (107
instances). It can be seen from Table 1 that for 69 instances we are able to solve
the problems exactly; for 32 instances we are able to obtain a feasible solution
whose gap is less than or equal 4%; for 6 instances we obtain a feasible solution
whose gap is larger than 4%.
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Table 1: Summary of numerical performance of Algorithm 1

Problem set (No.)
gap

Problem
0 ď 4% ą 4%

drexxx(6) 6 0 0 dre15, dre18, dre21,
dre24, dre30, dre42

bur26x(8) 0 8 0 bur26a-h
chrxxx(14) 14 0 0 chr12x, chr15x, chr18x,

chr20x, chr22x, chr25a
els19(1) 1 0 0 els19
escxxx(14) 11 1 2 esc16a-j, esc32a-g
hadxx(5) 5 0 0 had12, had14-had20
kra32x(3) 1 2 0 kra30a-b, kra32
lipaxxx(10) 10 0 0 lipa20x, lipa30x, lipa40x,

lipa50x, lipa60x
nugxx(13) 8 5 0 nug12, nug14-nug22,

nug25, nug27, nug28
rouxx(3) 3 0 0 rou12, rou15, rou20
scrxx(3) 3 0 0 scr12, scr15, scr20
skoxx(5) 0 2 3 sko42, sko56, sko64,

sko72, sko81
ste36x(3) 0 3 0 ste36a-c
taixxx(17) 7 9 1 tai12x, tai15x, tai17x, tai20x,

tai25x, tai30x, tai35x,
tai40x, tai50a, tai60b

thoxx(2) 0 2 0 tho30, tho40

Total(107) 69 32 6

The detail numerical results of Algorithm 1 for solving the ‘dre’ instances
from [15] and QAPLIB [19] are reported in Tables 2 and 3. In the these tables,
‘time’ column (in hours:minutes:seconds) reports the CPU time of Algorithm 1
and ‘permutaion/bound’ column reports the feasible solution generated by solving
the relaxation problem (20) of the rank-1 constrained DNN problem (19).

The ‘dre’ problem instances [15] are based on a rectangular grid where all
nonadjacent nodes have zero weight, making the value of the objective function
increase steeply with just a slight change from the optimal permutation. The ‘dre’
instances are difficult to solve, especially for many metaheuristic-based methods,
since they are ill-conditioned and hard to break out the ‘basin’ of the local mini-
mal. The best known solutions for the ‘dre’ problems have been found by branch
and bound in [15]. Notably, by employing our proposed DCA based approach
Algorithm 1, we are able to obtain the global optimal solutions of the ‘dre’ prob-
lems quite efficiently. For instance, we are able to solve the instance ‘dre42’ by
Algorithm 1 exactly in 13 minutes.

Table 2: Numerical performance of the ‘dre’ problem instances [15]

Problem opt PDCA gap (%) time permutation{bound

dre15 306 306 0 11 1 13 4 6 7 9 11 5 12 14 1 15 10 2 3 8
dre18 332 332 0 16 4 14 18 9 10 12 2 15 7 3 5 8 6 11 13 17

1 16
dre21 356 356 0 33 5 8 17 18 12 13 1 11 3 9 16 4 6 20 7 19

14 10 15 2 21

Continued on next page
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Table 2 – continued from previous page

Problem opt PDCA gap(%) time permutation{bound

dre24 396 396 0 15 3 23 14 21 22 10 16 9 7 5 8 18 13 4 2 17

1 19 12 11 15 24 6 20
dre30 508 508 0 1:22 28 2 1 17 6 3 11 21 19 22 24 8 26 20 23 13

4 29 18 25 10 30 16 15 14 12 7 5 27 9
dre42 764 764 0 13:00 3 36 41 28 30 14 34 32 42 37 33 10 27 12 35 9

7 21 5 29 18 11 8 38 24 2 15 22 6 1 13 19

40 23 25 39 31 16 17 26 4 20

In Table 3, the upper bounds generated by Algorithm 1 are compared with the
state of the art optimal values (or the best known upper bounds) in QAPLIB.
Except burxxx and skoxx cases, we find that most instances can either be solved
exactly or achieve an upper bound which is accurate up to a relative error of
5% through the penalized DC relaxation. Because the subproblems of the corre-
sponding penalized DC problems are failed to achieve the stopping criteria 10´6

of SDPNAL+, Algorithm 1 only provides the feasible solutions for burxxx cases.
We note that the QAPLIB bounds were typically achieved using a rather large
collection of different algorithms, which generally involve a branch and bound
procedure requiring multiple convex relaxations, while our results are achieved by
using a single relaxation.

Table 3: Numerical performance of the QAPLIB instances

Problem opt PDCA gap (%) time permutation{bound

bur26a 5426670 5566175 2.57 2:33 11 26 15 7 4 13 12 6 2 18 1 9 5 21 8 14

3 19 20 17 10 25 24 16 23 22
bur26b 3817852 3956961 3.64 1:55 15 16 10 7 4 12 2 23 22 18 5 9 1 21 8 14

3 20 19 25 11 26 24 17 6 13
bur26c 5426795 5523812 1.79 7:03 13 3 12 7 16 11 25 10 15 9 8 19 18 20 4 21

1 14 5 6 22 24 2 23 26 17
bur26d 3821225 3902248 2.12 3:59 22 23 3 2 16 11 17 21 15 9 8 18 19 20 12 25

14 1 5 13 24 6 4 7 26 10
bur26e 5386879 5470899 1.56 6:26 22 3 6 7 12 26 1 16 11 9 18 19 20 14 13 8

5 15 21 2 17 24 4 10 25 23
bur26f 3782044 3847551 1.73 6:16 6 22 4 3 12 25 7 1 23 15 20 18 19 14 16 10

5 21 9 24 2 17 26 13 11 8
bur26g 10117172 10332466 2.13 7:32 2 11 22 23 13 10 25 8 1 21 20 4 7 18 12 15

9 19 5 26 16 6 14 3 24 17
bur26h 7098658 7257159 2.23 4:06 22 16 13 26 14 10 21 1 8 15 4 20 18 7 12 17

19 5 9 2 11 3 23 6 24 25
chr12a 9552 9552 0 04 7 5 12 2 1 3 9 11 10 6 8 4
chr12b 9742 9742 0 04 5 7 1 10 11 3 4 2 9 6 12 8
chr12c 11156 11156 0 04 7 5 1 3 10 4 8 6 9 11 2 12
chr15a 9896 9896 0 07 5 10 8 13 12 11 14 2 4 6 7 15 3 1 9
chr15b 7990 7990 0 07 4 13 15 1 9 2 5 12 6 14 7 3 10 11 8
chr15c 9504 9504 0 07 13 2 5 7 8 1 14 6 4 3 15 9 12 11 10
chr18a 11098 11098 0 13 3 13 6 4 18 12 10 5 1 11 8 7 17 14 9 16

15 2

Continued on next page
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Table 3 – continued from previous page

Problem opt PDCA gap(%) time permutation{bound

chr18b 1534 1534 0 1:52 10 7 11 8 12 9 15 6 14 5 13 4 16 1 17 2

18 3
chr20a 2192 2192 0 27 3 20 7 18 9 12 19 4 10 11 1 6 15 8 2 5

14 16 13 17
chr20b 2298 2298 0 28 20 3 9 7 1 12 16 6 8 14 10 4 5 13 17 2

18 11 19 15
chr20c 14142 14142 0 28 12 6 9 2 10 11 3 4 15 18 7 13 16 5 14 17

19 1 8 20
chr22a 6156 6156 0 39 15 2 21 8 16 1 7 18 14 13 5 17 6 11 3 4

20 19 9 22 10 12
chr22b 6194 6194 0 28 10 19 3 1 20 2 6 4 7 8 17 13 11 15 21 12

9 5 22 14 18 16
chr25a 3796 3796 0 2:00 25 12 5 3 18 4 16 8 20 10 14 6 23 15 24 19

13 1 21 11 17 2 22 7 9
els19 17212548 17212548 0 31 9 10 7 19 14 18 13 17 6 11 4 5 12 8 16 15

1 2 3
esc16a 68 68 0 18 12 15 7 11 14 6 10 8 4 16 13 3 5 9 2 1
esc16b 292 292 0 40 7 6 8 14 16 10 13 2 15 4 12 5 1 11 9 3
esc16c 160 160 0 1:00 15 10 9 2 1 14 11 3 4 13 8 16 12 6 7 5
esc16d 16 16 0 8 14 6 7 10 13 5 16 2 4 1 3 12 15 11 8 9
esc16e 28 30 7.14 15 15 10 7 14 4 8 6 16 12 2 1 5 9 13 11 3
esc16g 26 26 0 13 7 12 10 16 4 8 6 14 11 3 2 1 15 13 5 9
esc16h 996 996 0 18 6 5 13 7 12 11 15 4 8 3 16 9 2 1 10 14
esc16i 14 14 0 19 7 5 3 1 9 10 12 2 4 6 11 13 15 8 14 16
esc16j 8 8 0 11 11 4 5 8 14 16 13 9 7 1 10 12 15 3 6 2
esc32a 130 150 15.38 13:11 28 12 27 19 4 18 16 21 11 32 14 8 26 10 25 23

6 9 13 17 15 22 7 31 30 24 29 5 3 1 20 2
esc32b 168 168 0 12:18 1 3 9 25 11 27 5 7 6 2 8 4 13 29 14 10

30 26 15 31 16 12 32 28 21 19 23 20 18 17 22 24
esc32c 642 646 0.62 2:26:27 11 30 14 15 17 24 32 1 23 4 2 18 22 6 21 5

8 7 20 19 29 9 3 13 26 12 16 31 25 27 10 28
esc32e 2 2 0 12:36 19 2 17 9 3 7 12 30 16 10 14 13 31 15 21 18

22 28 4 26 6 25 24 11 20 8 27 5 1 32 23 29
esc32g 6 6 0 12:23 2 13 5 6 14 22 20 15 16 26 28 8 32 23 31 1

11 17 12 24 3 7 19 4 30 25 21 10 27 29 18 9
had12 1652 1652 0 4 3 10 11 2 12 5 7 6 8 1 4 9
had14 2724 2724 0 5 8 13 10 5 12 11 2 14 3 6 7 1 9 4
had16 3720 3720 0 8 9 4 16 1 7 8 6 14 15 11 12 10 5 3 2 13
had18 5358 5358 0 11 8 15 16 14 7 18 6 11 1 10 12 5 3 13 2 17

9 4
had20 6922 6922 0 42 8 15 1 14 19 6 7 17 16 12 10 11 5 20 2 3

4 9 18 13
kra30a 88900 88900 0 23:16 9 13 28 27 8 7 10 30 20 21 23 19 24 29 14 1

11 12 18 16 17 22 26 2 5 3 25 6 4 15
kra30b 91420 92010 0.65 14:45 24 15 22 6 4 3 5 2 17 1 16 11 25 26 30 19

10 28 29 21 23 20 8 12 9 7 13 27 18 14
kra32 88900 89100 0.22 2:11:24 8 10 5 9 6 14 27 23 24 31 12 16 28 4 13 7

11 3 29 22 26 15 30 21 1 2 20 32 25 18 19 17
lipa20a 3683 3683 0 18 19 17 7 1 5 9 10 12 4 16 20 6 3 14 11 15

13 8 2 18
lipa20b 27076 27076 0 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20
lipa30a 13178 13178 0 4:43 9 13 22 17 25 23 29 12 11 6 5 28 20 27 14 4

Continued on next page
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Table 3 – continued from previous page

Problem opt PDCA gap(%) time permutation{bound

18 8 19 30 21 7 15 24 26 3 16 1 10 2
lipa30b 151426 151426 0 4:51 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30
lipa40a 31538 31538 0 34:01 7 6 14 27 19 37 21 2 16 1 40 24 30 23 5 28

22 8 20 35 32 26 29 3 4 11 36 10 13 38 9 17

31 18 33 15 25 34 39 12
lipa40b 476581 476581 0 40:58 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40
lipa50a 62093 62093 0 20:30 28 32 37 39 49 23 19 44 33 7 14 30 15 5 36 6

17 26 48 25 40 3 45 27 18 31 29 16 9 12 1 8

4 2 50 21 43 35 24 38 34 46 42 13 20 22 41 47

10 11
lipa50b 1210244 1210244 0 23:04 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50
lipa60a 107218 107218 0 2:44:09 25 48 17 4 50 13 16 41 1 37 22 27 46 34 38 12

9 3 8 33 47 54 31 43 40 10 35 23 29 57 2 6

51 56 49 21 30 36 15 39 59 18 52 28 26 44 14 60

32 5 20 11 55 45 53 24 42 7 58 19
lipa60b 2520135 2520135 0 36:07 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60
nug12 578 578 0 12 3 9 7 12 1 11 8 4 2 10 6 5
nug14 1014 1014 0 4:40 9 8 13 2 1 11 7 14 3 4 12 5 6 10
nug15 1150 1150 0 5:19 12 5 6 15 10 11 7 14 3 4 9 8 13 2 1
nug16a 1610 1610 0 32 9 14 2 15 16 3 10 12 8 11 6 5 7 1 4 13
nug16b 1240 1240 0 9:27 8 11 3 5 13 9 7 1 12 2 10 6 16 4 15 14
nug17 1732 1732 0 10:17 16 15 2 14 9 11 8 12 10 3 4 1 7 6 13 17

5
nug18 1930 1936 0.31 29 17 1 7 5 6 11 8 12 10 13 4 15 2 3 9 16

18 14
nug20 2570 2570 0 2:40 18 14 10 3 9 4 2 12 11 16 19 15 20 8 13 17

5 7 1 6
nug21 2438 2442 0.16 17:25 4 18 11 16 13 6 15 14 19 8 7 1 12 17 20 21

3 9 10 2 5
nug22 3596 3642 1.28 4:02 20 4 16 8 19 7 10 9 13 21 17 14 15 11 3 18

22 1 12 6 2 5
nug25 3744 3750 0.16 35:06 12 4 14 23 13 24 21 7 10 20 17 16 6 19 1 11

25 8 9 15 18 2 3 22 5
nug27 5234 5236 0.04 30:21 23 18 3 1 27 17 5 13 7 15 12 26 8 19 20 2

24 21 4 10 9 14 22 25 6 16 11
nug28 5166 5166 0 35:33 11 8 20 28 1 9 18 26 16 17 19 10 15 7 14 27

4 13 25 6 22 12 5 3 24 2 21 23
rou12 235528 235528 0 04 6 5 11 9 2 8 3 1 12 7 4 10
rou15 354210 354210 0 5:46 12 6 8 13 5 3 15 2 7 1 9 10 4 14 11
rou20 725522 725582 0 4:54 12 11 9 17 7 14 8 13 6 10 19 18 5 2 16 3

4 1 20 15
scr12 31410 31410 0 04 8 6 11 10 2 9 5 1 12 7 4 3
scr15 51140 51140 0 06 12 10 11 14 1 13 9 5 15 6 4 2 8 7 3

Continued on next page
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Table 3 – continued from previous page

Problem opt PDCA gap(%) time permutation{bound

scr20 110030 110030 0 13:42 20 7 12 6 4 8 3 2 14 11 18 9 19 15 16 17

13 5 10 1
sko42 15812 15952 0.89 3:58:53 23 16 30 36 3 21 8 22 39 37 24 1 38 6 28 2

14 18 32 40 25 33 4 35 26 9 15 29 27 10 19 20

34 42 11 13 31 5 12 7 17 41
sko56 34458 36490 5.90 3:18:03 21 42 2 11 30 51 49 3 25 6 56 33 9 23 13 54

38 24 8 50 32 36 44 10 31 45 53 37 27 12 14 41

43 55 22 5 29 20 52 35 26 46 4 28 34 48 18 40

19 15 16 1 47 17 7 39
sko64 48498 50948 5.05 3:48:56 31 57 56 53 51 3 43 15 2 54 17 52 23 32 11 27

63 26 59 49 13 6 40 46 33 7 44 16 64 39 38 61

10 42 45 24 4 62 30 41 35 37 1 21 55 5 28 34

9 25 58 22 19 8 48 12 18 50 14 20 29 47 60 36
sko72 66256 70318 6.13 14:42:49 45 11 51 71 29 14 60 31 12 53 41 50 57 44 28 21

10 64 25 52 68 1 6 13 47 67 35 43 20 16 59 49

7 22 23 27 32 4 63 55 33 46 65 17 30 24 69 66

36 9 38 37 2 34 3 72 42 19 39 61 26 62 56 54

5 58 15 40 48 70 8 18
sko81 90998 93356 2.59 25:47:17 47 67 80 65 34 39 69 74 30 40 23 63 38 20 33 26

81 25 54 4 79 35 51 2 12 14 3 77 24 73 58 32

70 21 78 61 10 19 75 37 18 15 49 42 72 22 43 59

13 44 7 41 6 28 71 55 62 1 11 31 5 36 9 53

29 46 52 27 45 56 17 50 8 60 64 76 16 68 57 48

66
ste36a 9526 9640 1.20 1:12:45 35 16 1 15 14 28 29 30 31 17 18 10 7 11 20 19

32 34 2 8 4 13 12 23 22 21 33 36 3 9 5 6

27 26 25 24
ste36b 15852 15932 0.50 25:14 35 31 30 29 28 1 15 9 16 33 34 32 19 20 7 10

18 17 26 25 23 14 11 13 4 8 2 24 22 21 27 12

6 5 3 36
ste36c 8239110 8254628 0.19 2:19:21 24 25 26 27 11 6 5 3 35 22 21 23 14 12 13 4

8 2 33 32 19 28 20 7 10 18 17 34 31 30 29 15

1 9 16 36
tai12a 224416 224416 0 05 8 1 6 2 11 10 3 5 9 7 12 4
tai12b 39464925 39464925 0 4 9 4 6 3 11 7 12 2 8 10 1 5
tai15a 388214 388870 0.17 31 6 10 4 7 2 9 1 11 3 14 13 15 5 12 8
tai15b 51765268 51765268 0 15 1 9 4 6 8 15 7 11 3 5 2 14 13 12 10
tai17a 491812 491812 0 6:18 12 2 6 7 4 8 14 5 11 3 16 13 17 9 1 10

15
tai20a 703482 703482 0 14:48 10 9 12 20 19 3 14 6 17 11 5 7 15 16 18 2

4 8 13 1
tai20b 122455319 122455319 0 48 8 16 14 17 4 11 3 19 7 9 1 15 6 13 10 2

5 20 18 12
tai25a 1167256 1217842 4.33 31:47 20 1 10 7 9 13 4 19 3 2 11 15 8 21 12 14

18 25 23 17 5 22 24 6 16
tai25b 344355646 344855160 0.15 16:03 4 25 16 9 13 5 6 19 7 17 10 3 15 20 18 2

22 23 8 11 21 24 14 12 1
tai30a 1818146 1818146 0 33:33 19 18 4 24 30 25 5 7 1 22 28 20 11 13 9 16

8 10 17 21 12 29 2 15 3 14 26 27 23 6
tai30b 637117113 644555585 1.17 4:52 4 15 5 8 21 11 30 14 17 20 6 13 18 7 23 10

24 27 29 9 19 28 2 26 12 22 25 16 1 3
tai35a 2422002 2431214 0.38 37:01 35 9 21 7 23 2 12 8 20 26 33 16 18 24 22 15

Continued on next page
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Table 3 – continued from previous page

Problem opt PDCA gap(%) time permutation{bound

30 3 14 11 1 5 17 4 10 13 27 29 34 32 25 31

28 6 19
tai35b 283315445 284614706 0.46 1:14:45 1 17 5 30 11 2 22 3 14 10 9 20 18 12 19 33

8 32 13 27 15 21 34 35 7 24 6 23 31 28 16 4

29 26 25
tai40a 3139370 3154106 0.47 1:54:41 6 14 15 12 9 3 19 20 28 27 5 2 7 31 36 4

37 13 29 35 38 32 11 1 22 39 18 30 23 33 25 24

21 8 10 17 34 16 40 26
tai40b 637250948 640933239 0.46 2:01:44 19 1 25 11 37 31 36 15 39 13 22 7 40 27 4 33

14 34 9 10 38 23 5 32 35 12 16 3 24 2 21 28

20 17 26 6 30 29 18 8
tai50a 4938796 5086610 2.99 11:54:27 5 42 35 34 36 37 4 7 21 10 8 25 48 27 41 11

18 32 6 44 12 33 15 2 29 50 20 3 43 14 46 38

26 40 47 39 19 28 45 49 13 30 23 1 16 22 17 31

9 24
tai60b 7205962 7417848 2.94 5:41:01 18 41 38 7 20 26 30 36 16 31 59 57 21 54 19 48

23 47 27 4 10 14 5 43 58 3 6 50 12 49 8 44

17 29 15 22 33 46 35 32 25 52 34 39 45 55 60 11

1 13 53 37 51 9 40 28 24 2 42 56
tho30 149936 151156 0.81 26:26 29 14 1 2 8 28 22 25 12 20 19 11 24 27 17 26

30 10 6 15 3 7 5 4 16 23 21 13 9 18
tho40 240516 242282 0.73 5:38:41 38 37 5 13 26 27 35 31 4 28 9 32 21 8 29 25

18 33 22 16 30 6 12 34 39 14 20 15 1 10 11 17

19 2 40 23 24 7 36 3

6 Conclusion

This paper established an exact rank constrained DNN formulation of QAP. Under
the framework of DC programming, we are able to solve the penalized DC problem
efficiently by the semi-proximal augmented Lagrangian method. If the subproblems
can be solved successfully, our algorithm usually reaches the optimal solutions of
QAP exactly. Even if the subproblem is difficult to solve, our proposed algorithm
still can provide a good feasible solution close to the optimal upper bound in
QAPLIB. As a future work, we will investigate the structure of the constraints of
the penalized DC problem and try to reduce the number of constraints for solving
the rank constrained DNN formulation of QAPs more efficiently.

Acknowledgements We would like to thank Dr. Xudong Li and Dr. Ying Cui for many
helpful discussions on this work.
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