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Abstract Euclidean embedding from noisy observations containing outlier errors is an important and challenging
problem in statistics and machine learning. Many existing methods would struggle with outliers due to a lack of
detection ability. In this paper, we propose a matrix optimization based embedding model that can produce reliable
embeddings and identify the outliers jointly. We show that the estimators obtained by the proposed method satisfy
a non-asymptotic risk bound, implying that the model provides a high accuracy estimator with high probability
when the order of the sample size is roughly the degree of freedom up to a logarithmic factor. Moreover, we show
that under some mild conditions, the proposed model also can identify the outliers without any prior information
with high probability. Finally, numerical experiments demonstrate that the matrix optimization-based model can
produce configurations of high quality and successfully identify outliers even for large networks.
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1 Introduction

Finding a complete set in a low-dimensional Euclidean space from partial noisy Euclidean distance observa-
tions, so-called embedding, is an important distance geometric problem in data science applications. In particular,
when the distances are assumed to be measured in higher dimensional spaces, this leads to a typical nonlinear
dimensional reduction which is widely used in statistics and machine learning. One of the biggest challenges in
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embedding is that some noisy distance observations are usually contaminated with positive outlier errors. Due
to the nature of applications, the outlier errors are usually much larger than the commonly assumed zero-mean
measurement noises. Moreover, in many applications, the outlier errors are even larger than the true distance (e.g.,
the Non-Line-Of-Sight (NLOS) errors from wireless sensor network localization [32,37,16]), which is the main
reason for the distance based methods often fail in practical embedding applications.

Needless to say, it is important to mitigate outlier errors from the observation distances for embedding. In liter-
ature, for some applications (e.g., wireless communication), one way to mitigate outlier propagation is to develop
some methods to identify outlier errors through prior information, such as the outlier distribution and physical
characteristics of networks [41,35]. For the overview of various outlier identification techniques and optimization
methods in wireless communication applications, see the nice survey [16]. However, in most applications, the
prior information of outliers is either technically non-available or costly to obtain due to hardware limitations.
Therefore, it is even more crucial to identify and mitigate the outlier propagation from the observed distance data
without prior information. To this end, different matrix optimization models are proposed and become popular
in applications. For instance, in wireless sensor localization, different semidefinite programming (SDP) based
methods are proposed by [7,40,48], and numerical experiments demonstrate that SDP based models can provide
descent estimations even without prior information on outliers for some small-scale applications. More recently,
based on the concept of the Euclidean distance matrix (EDM), a new matrix optimization model for the outlier mit-
igation has been proposed in [10] (see Section 2 for details). Numerical tests on both simulations and real-world
applications show that the EDM based method proposed in [10] can produce high quality embeddings without
prior information even for large-scale networks. Numerical experiments show that one of the main advantages
of the EDM model [10] comparing with the existing SDP approaches is that the EDM model usually is able to
identify outlier errors index sets (i.e., the index sets of observation distances which contain outlier errors). How-
ever, there is no theoretical guarantee on the outlier detection ability provided in [10]. The main purpose of this
paper is to study the statistical performance analysis of the EDM based embedding with outliers by establishing
the recovery error bounds and the embedding dimension and outlier detection guarantee.

In general, the EDM based embedding model proposed in [10] belongs the category of low-rank matrix ap-
proximation problems [27,14], which had many exciting developments recently and attracted much attention from
optimization and machine learning communities. More precisely, in principle, the proposed EDM model is in line
with the general framework of robust principal component analysis (Robust PCA) [6,3], i.e., estimating an un-
known low-rank matrix X ∈ Rm×n from a collection of partially noisy observed elements X̃i j = X i j + Si j +ki j,
(i, j) ∈ Ω ⊆ {1, . . . ,m}×{1, . . . ,n}, where S is a sparse matrix consisting of outliers, k represents the random
noise and Ω is the observation index subset.

Enlightened by the previous tremendous success of the convex matrix optimization approaches in low-rank
matrix completion [5,4], Chandrasekaran et al. [6] first study the Robust PCA for the case that the elements X̃
are fully observed and without noise. In particular, Chandrasekaran et al. [6] showed that under the rank-sparsity
incoherent property, the unknown true low-rank matrix X and sparse outlier matrix S can be recovered exactly
based on the convex “nuclear norm plus l1-norm” approach. For the general setting with missing observations,
by employing the previous developed probability analysis techniques for exact matrix completion problems [5,
34,15], Candès et al. [3] provided the probabilistic guarantees for exact recovery of the convex “nuclear norm
plus l1-norm” approach for Robust PCA. Later a sharper probabilistic exact recovery guarantee was established
by Chen et al. [9] focused on high-dimensional statistical settings (i.e., the sample size is smaller than mn).

For the more realistic noisy setting, Zhou et al. [49] proposed a convex “nuclear norm plus l1-norm” con-
strained matrix optimization model and studied its statistical performance guarantees, and later the nuclear norm
plus l1-norm penalized formulation was studied by Hsu et al. [19]. Based on the unified restricted strong con-
vexity (RSC) framework introduced by [31,30], Agarwal et al. [1] obtain a sharper statistical error bound for
the nuclear norm plus l1-norm penalized model. However, in prior studies [49,19,1] on the noisy robust PCA,
the performance guarantee results are all based on the full observation assumption, which may not be practical
in applications. In [45], Wong and Lee established an estimation error bound for the noisy robust PCA, with an
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assumption that the number of observed entries is in the order of mn. However, this also may not be useful for
high-dimensional applications, since the sample sizes there are usually much smaller. For high-dimensional set-
tings, under the boundedness assumptions on the true low-rank matrix X and sparse outlier matrix S, Klopp, et
al. [22] derived a statistical estimation error bounds for the l∞ constrained convex program based estimators, in
which the minimal sample size required for a faithful estimation is roughly on the order of max{m,n}r log(n).
Recently, Chen, et al. [8], improved and derived a near-optimal statistical guarantee of the convex nuclear norm
plus l1-norm penalized model for the Robust PCA by building up the connection between the convex estimations
and an auxiliary nonconvex optimization algorithm.

The results mentioned above are all about the “classical” robust PCA, in the sense that for the proposed mod-
els there is no “hard-constraints”, e.g., the noisy correlation matrix recovery (i.e., a positive semidefinite matrix
whose diagonal elements are all ones) and the EDM estimation considered in this paper. However, these “hard-
constraints” are usually crucial and must be satisfied in the convex estimation models in many applications e.g., the
EDM embedding. Consequently, the results obtained in [45,22,8] have become inadequate in these applications.
For the correlation matrix estimation problem, Wu [46] first studied the probabilistic guarantees of the Robust
PCA with “hard-constraints” for both noiseless and noisy cases. The main techniques employed in [46] are the
unified restricted strong convexity (RSC) framework introduced by [31,30] and a matrix Bernstein inequality (cf.
e.g., [42]), which are wildly used in the study of statistical performance guarantees of convex models in matrix
completion problem (e.g., [15,34,22,30,21,29,28]) and the EDM embedding problem without outliers [11].

In order to establish the theoretical performance analysis of the convex matrix optimization model for EDM
embedding with outliers, we first adopt the error bound analysis approach introduced in [46] to EDM embed-
ding with outliers and obtain the statistical guarantee of the convex estimation model. Furthermore, based on
the resulting error bound results, we show that under some wild conditions, with high probability, the convex
EDM estimator will recover the true unknown embedding dimension. Simultaneously, we also show that the out-
lier estimator obtained by the convex matrix optimization model will recover the index set of the support set of
the unknown outliers with the same probability. Finally, we verify the proposed theoretical results by numerical
experiments.

The remaining parts of this paper are organized as follows. We briefly introduce the matrix optimization based
EDM embedding with outliers model originally proposed in [10]. Section 3 contains the statistical recovery error
bounds for the EDM embedding EDM model. In Section 4, we establish the probability recovery guarantee of
the embedding dimensionality and outlier detection. We verify the theoretical results obtained in Sections 3 and 4
through numerical examples in Section 5. We conclude the paper in Section 6.

Below are some common notations to be used in this paper:

– For any Z ∈ Rm×n, we denote by Zi j the (i, j)-th entry of Z.
– We use “◦” to denote the Hadamard product between matrices, i.e., for any two matrices X and Y in Rm×n the

(i, j)-th entry of Z := X ◦Y ∈ Rm×n is Zi j = Xi jYi j.
– For any Z ∈ Rm×n, we use Z1/2 ∈ Rm×n to denote the m×n matrix whose (i, j)-th entry is Z1/2

i j .
– Let 1 ∈ Rn be the vector whose elements are all ones. Denote the n×n identity matrix by I and the centering

matrix by
J := I−11T/n. (1)

– For a given Z ∈ Sn, we use λ1(Z) ≥ . . . ≥ λn(Z) to denote the eigenvalues of Z (all real and counting multi-
plicity) arranging in non-increasing order and use λ (Z) to denote the vector of the ordered eigenvalues of Z.
Let On be the set of all n×n orthogonal matrices.

– Let sgn(·) : Rm×n → Rm×n be the (component-wise) sign function, i.e., for any Z ∈ Rm×n, sgn(Z)i j = 1 if
Zi j > 0 and sgn(Z)i j = 0 otherwise.

– For any z ∈ Rn, we use Diag(z) to denote an n×n diagonal matrix with z on the main diagonal. Meanwhile,
for any Z ∈Rn×n, diag(Z) denotes the column vector consisting of all the diagonal entries of Z being arranged
from the first to the last.
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2 The EDM based embedding with outliers

Let pi, i = 1, . . . ,n be n points in a r-dimensional subspace. For each i, j ∈ {1, . . . ,n}, denote d̄i j ≥ 0 the distance
between the i-th and j-th points on the r-dimensional subspace. A n×n matrix D is called Euclidean distance ma-
trix (EDM) if Di j = (d̄i j)

2 for i, j = 1, . . . ,n. An alternative definition of EDM that does not involve any embedding
points {pi} can be described as follows. Let Sn

h be the hollow subspace of Sn, i.e., Sn
h := {X ∈ Sn | diag(X) = 0}.

Define the almost positive semidefinite cone Kn
+ by

Kn
+ :=

{
A ∈ Sn | xT Ax≥ 0 ∀x ∈ 1⊥

}
= {A ∈ Sn | JAJ � 0} , (2)

where 1⊥ := {x ∈ Rn | 1T x = 0}. It is well-known [36,47] that D ∈ Sn is EDM if and only if −D ∈ Sn
h ∩Kn

+.
Moreover, the embedding dimension is determined by the rank of the doubly centered matrix JDJ, i.e., r =
rank(JDJ). Given a true EDM D, since −JDJ is positive semidefinite, its spectral decomposition can be written
as

−1
2

JDJ = PDiag(λ1, . . . ,λn)PT ,

where P ∈ On and λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 are the eigenvalues in nonincreasing order. Let P1 be the submatrix
consisting of the first r columns (eigenvectors) in P. One set of the embedding points are pT

1
...
pT

n

= P1Diag(
√

λ1, . . . ,
√

λr). (3)

In order to find a set of relative embedding points {pi}, we are interesting in estimating the ture EDM D from the
partial noisy observation distances d̃i j. The basic noisy model takes the following form

d̃i j = d̄i j +ηξi j, i, j ∈ {1, . . . ,n}. (4)

where ξi j are i.i.d. noise errors with E(ξi j) = 0 and E(ξ 2
i j) = 1, η > 0 is a noise magnitude control factor.

Unlike the standard zero-mean noise assumption, we are attractive to the case where the distance measure-
ments d̃i j are also contaminated with the errors arising from outliers, which usually have significant positive biases
and cause the measured distances d̃i j significantly diverging from actual values d̄i j. The errors from outliers fre-
quently appear in many applications such as the Non-Line-Of-Sight (NLOS) errors from wireless sensor network
localization [32,37,16], the errors arising from outliers in manifold learning and others [18,23].

We use s̄∈ Sn to represent the outlier errors, whose elements are either zero or positive accordingly. Therefore,
the basic noisy model (4) then takes the following form

0≤ d̃i j = d̄i j + s̄i j +ηξi j, i, j ∈ {1, . . . ,n}. (5)

For notational simplicity, we define the outlier matrix S ∈ Sn as follows

Si j := s̄i j(s̄i j +2d̄i j)≥ 0, i, j ∈ {1, . . . ,n}. (6)

Then, by (5), we know that

D̃i j = d̃2
i j = (d̄i j + s̄i j +ηξi j)

2 = Di j +Si j +ki j, i, j ∈ {1, . . . ,n}, (7)

where D̃ and D∈ Sn are the observation and unknown true EDMs, whose (i, j)-element are d̃2
i j and d̄2

i j, respectively,
and k ∈ Sn is defined by

ki j := 2(d̄i j + s̄i j)ηξi j +η
2
ξ

2
i j, i, j ∈ {1, . . . ,n}. (8)
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Without loss of generality, we always assume that the magnitude of measurement error |ηξi j| is strictly smaller
than the true distance di j for each i, j ∈ {1, . . . ,n}. Thus, since d̃i j ≥ 0, we know that for any i, j ∈ {1, . . . ,n},

s̄i j = 0 ⇐⇒ Si j = 0.

For each i ∈ {1, . . . ,n}, we use ei ∈ Rn to denote the i-th canonical basis of Rn. Let Sn
h ⊆ Sn be the hollow

space, i.e.,
Sn

h := {Z ∈ Sn | Zii = 0, i = 1, . . . ,n} ,

whose dimension equals to dSn
h
≡ n(n−1)/2. Let

{
1
2 (eieT

j + e jeT
i )
}

1≤i< j≤n
be the standard basis matrices of Sn

h.

For the given observation set Ω , let {X1, . . . ,Xm} with m := |Ω | be the numbered sampled basis matrices
from the standard basis matrices set

{
1
2 (eieT

j + e jeT
i )
}

1≤i< j≤n
. Therefore, the corresponding observation operator

OΩ : Sn→ Rm can be written as

OΩ (A) := (〈X1,A〉, . . . ,〈Xm,A〉)T ∈ Rm, A ∈ Sn. (9)

That is, OΩ (A) samples all the elements Ai j specified by (i, j)∈Ω . Let O∗
Ω

: Rm→ Sn be its adjoint, i.e., O∗
Ω
(z) =

∑
m
l=1 zlXl , z ∈ Rm. Then, we further define the observation vector

y := OΩ (D̃) ∈ Rm. (10)

Finally, under the assumption that S is sparse (i.e., the cardinality of nonzero elements of S is small), we may
estimate the unknown matrices D and S by solving the following nonconvex optimization model:

min
1

2m
‖y−OΩ (D+S)‖2 +ρ‖S‖0

s.t. D ∈ Sn
h, −D ∈Kn

+, rank(−JDJ)≤ r,

S ∈ Sn, S≥ 0.

(11)

Since the rank constraint and the zero norm ‖ · ‖0 are computational intractable, we may consider the following
convex relaxated matrix optimization problem

min ΦρD,ρS(D,S) :=
1

2m
‖y−OΩ (D+S)‖2 +ρD〈I− F̃ ,−JDJ〉+ρS〈E− G̃,S〉

s.t. D ∈ Sn
h, −D ∈Kn

+, S≥ 0,
(12)

where ρD and ρS are two given positive parameters, E ∈ Sn is the matrix whose elements are all ones, and F̃
and G̃ are two given symmetric matrices. In particular, when both F̃ and G̃ vanish, the model (12) reduces to the
following convex nuclear norm l1-minimization EDM matrix optimization problem:

min
1

2m
‖y−OΩ (D+S)‖2 +ρD〈I,−JDJ〉+ρS〈E,S〉

s.t. D ∈ Sn
h, −D ∈Kn

+, S≥ 0.
(13)

We use (D̂m, Ŝm) to denote an optimal solution of the above convex model (12), and in later discussions, we often
drop the subscript “m”, when the dependence of (D̂, Ŝ) on the sample size m is clear from the context. Furthermore,
we use (D,S) to denote the unknown true EDM and outlier matrix.

In this paper, we choose the symmetric matrices F̃ ∈ Sn and G̃ ∈ Sn in the objective function of (12) by
following the suggestions [29, (25) and (26)] (see also [46, Chapter 5.3]). Suppose that the EDM D̃ and the
non-negative matrix S̃ are the given initial estimators (e.g., the estimators obtained by (13)). Define F̃ ∈ Sn by

F̃ = F(−JD̃J), (14)
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where F : Sn→ Sn is the spectral operator [12,13] associated with the symmetric function (cf. [12, Definition 1])
f : Rn→ Rn defined by

fi(x) =

{
φ (xi/maxl{xl}) if x 6= 0,

0 otherwise,
x ∈ Rn (15)

with the scalar function φ : R→ R takes the form

φ(t) = (1+ ε
τ)

tτ

tτ + ετ
, t ∈ R (16)

for some ε > 0 and τ > 0. Meanwhile, we define the symmetric matrix G̃ ∈ Sn with respect to S̃ by

G̃i j =

{
φ
(
S̃i j/maxk,l{S̃kl}

)
if S̃ 6= 0,

0 otherwise,
(i, j) ∈ {1, . . . ,n}, (17)

where φ : R→ R is the scalar function defined by (16).
Throughout this paper, the following condition is assumed to hold, which ensures the existent of the optimal

solution of (12).

Assumption 1 There exists constant ρD > 0 and ρS > 0 such that for any α , the level set

LρD,ρS
(α) :=

{
(D,S) ∈ Sn |ΦρD,ρS

(D,S)≤ α, D ∈ Sn
h, −D ∈Kn

+, S≥ 0
}

of (12) is closed and bounded.

It is worth to note that for any 0 ≤ t ≤ 1, φ(t) ∈ [0,1]. Thus, it is easy to check that for any given initial
EDM estimator D̃ and outlier matrix estimator S̃, the symmetric matrices F̃ and G̃ satisfy 〈I− F̃ ,−JDJ〉 ≥ 0 and
〈E− G̃,S〉 ≥ 0. Therefore, we know that for any ρD ≥ ρD > 0 and ρS ≥ ρS > 0, LρD,ρS(α)⊆ LρD,ρS

(α) for any α .
This yields that under Assumption 1, for any ρD ≥ ρD > 0 and ρS ≥ ρS > 0, the optimal solution of (12) exists.
Moreover, under Assumption 1, we know that there exist two positive constants bD and bS such that the optimal
solution (D̂, Ŝ) of (12) for any ρD ≥ ρD and ρS ≥ ρS and the unkown true EDM and outlier matrix (D,S) satisfy

‖D̂‖∞ ≤ bD, ‖D‖∞ ≤ bD, ‖Ŝ‖∞ ≤ bS and ‖S‖∞ ≤ bS.

3 Recovery error bounds

In this section, we aim to derive a recovery error bound for the proposed matrix optimization based EDM em-
bedding model with outliers (12). Here we adopt the approach introduced by Wu [46] for studying recovery error
bounds of the noisy low-rank and sparse matrix decomposition with fixed basis. Essentially, the proofs are in
line with the well-studied unified framework introduced by Negahban et al. [31] for high-dimensional analysis of
M-estimators with decomposable regularizers, which is used frequently in the study of noisy matrix completion
[30,21,28,29,46,11]. For the sake of completion, we include the detailed proofs in Appendix.

Recall that D is the unknown true EDM matrix. Suppose that the positive semidefinite matrix −JDJ has the
eigenvalue decomposition

− JDJ = PΛ PT
, (18)

where Λ ∈ Sn is a diagonal matrix whose diagonal elements are the eigenvalues of −JDJ arranged in the non-
increasing order, and P =

[
P1 P2

]
∈On with P1 ∈ Rn×r and P2 ∈ Rn×(n−r). We define the generalized geometric
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center subspace in Sn with respect to P1 by T :=
{

Y ∈ Sn | Y P1 = 0
}

. Let T⊥ be its orthogonal subspace. Then,
the orthogonal projectors to the two subspaces can hence be calculated respectively by

PT(A) := P2PT
2 AP2PT

2 and PT⊥(A) := P1PT
1 A+AP1PT

1 −P1PT
1 AP1PT

1 , A ∈ Sn. (19)

Moreover, we have the following orthogonal decomposition

A = PT(A)+PT⊥(A) and 〈PT(A),PT⊥(B)〉= 0 ∀A,B ∈ Sn. (20)

It then follows from the definition of PT that for any A ∈ Sn, PT⊥(A) = P1PT
1 A+P2PT

2 AP1PT
1 , which implies

that rank(PT⊥(A))≤ 2r. This yields that for any A ∈ Sn,

‖PT⊥(A)‖∗ ≤
√

2r‖A‖. (21)

For any given S ∈ Sn, we use suppS to denote the index set of the support of S, i.e.,

supp(S) :=
{
(i, j) | Si j 6= 0, i, j ∈ {1, . . . ,n}

}
.

Suppose that the unknown matrix S has k nonzero entries, i.e., ‖S‖0 = |supp(S)|= k. The tangent subspace L with
respect to the k-sparse subset {S ∈ Sn | ‖S‖0 ≤ k} at S then takes the form

L := {S ∈ Sn | supp(S)⊆ supp(S)}.

Denote the orthogonal complement of L by L⊥. Let PL and PL⊥ be the corresponding orthogonal projections
onto L and L⊥. Then, we have the following decomposition

B = PL(B)+PL⊥(B) and 〈PL(A),PL⊥(B)〉= 0 ∀A,B ∈ Sn. (22)

Moreover, for any B ∈ Sn, since ‖PL(B)‖0 ≤ k, we have that

‖PL(B)‖1 ≤
√

k‖B‖. (23)

Define

aD :=
1√
r
‖P1PT

1 − F̃‖ and aS :=
1√
k
‖sgn(S)− G̃‖. (24)

It is also easy to verify the following result.

Lemma 1 For any D ∈ Sn
h, we have D− JDJ = 1

2 (diag(−JDJ)1T +1diag(−JDJ)T ).

The following result represents the first important step to derive our error bounds of the convex model (12).

Proposition 1 Let (D̂, Ŝ) and (D,S) be an optimal solution of (12) and the underground true EDM and outlier
matrices, respectively. Let κD > 1 and κS > 1 be given. Suppose that the parameters ρD and ρS satisfy

ρD ≥
κD

m

∥∥O∗Ω (ζ )
∥∥

2 and ρS ≥
κS

m

∥∥O∗Ω (ζ )
∥∥

∞
, (25)

where ζ := OΩ (k) ∈ Rm and k ∈ Sn is given by (8), then we have

1
2m
‖OΩ (D̂−D)+OΩ (Ŝ−S)‖2 ≤ ρD

√
r(aD +

2
√

2
κD

)‖D̂−D‖+ρS
√

k(aS +
1
κS

)‖Ŝ−S‖ (26)

and 
‖D̂−D‖∗ ≤

κD

κD−1

(
(aD +2

√
2)
√

r‖D̂−D‖+ ρS

ρD

(
aS +

1
κS

)√
k‖Ŝ−S‖

)
,

‖Ŝ−S‖1 ≤
κS

κS−1

(
ρD

ρS

(
aD +

2
√

2
κD

)√
r‖D̂−D‖+(aS +1)

√
k‖Ŝ−S‖

)
,

(27)

where aD and aS are given by (24).
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Proof By (10) and (7), we know that for any D and S ∈ Sn,

1
2m
‖y−OΩ (D+S)‖2 =

1
2m

∥∥OΩ (D+S)+ζ −OΩ (D+S)
∥∥2

=
1

2m
‖OΩ (D−D)+OΩ (S−S)‖2− 1

m
〈D−D+S−S,O∗Ω (ζ )〉+ 1

2m
‖ζ‖2. (28)

Since (D,S) is a feasible solution of (12), we know from the optimality of (D̂, Ŝ) that

1
2m
‖OΩ (D̂−D)+OΩ (Ŝ−S)‖2 ≤ 1

m

〈
O∗Ω (ζ ), D̂−D+ Ŝ−S

〉
−ρD

(
〈I,−J(D̂−D)J〉−〈F̃ ,−J(D̂−D)J〉

)
−ρS

(
‖Ŝ‖1−‖S‖1−〈G̃, Ŝ−S〉

)
. (29)

By the Hölder inequality, we know that the first term of the right hand side of (29) satisfies

1
m

〈
O∗Ω (ζ ), D̂−D+ Ŝ−S

〉
≤ 1

m
‖O∗Ω (ζ )‖2 ‖D̂−D‖∗+

1
m
‖O∗Ω (ζ )‖

∞
‖Ŝ−S‖1.

Since ‖D̂−D‖∗ = ‖D̂−D− J(D̂−D)J+ J(D̂−D)J‖∗, we know from Lemma 1 that

‖D̂−D‖∗ ≤ ‖D̂−D− J(D̂−D)J‖∗+‖J(D̂−D)J‖∗ ≤
√

2‖D̂−D− J(D̂−D)J‖+‖J(D̂−D)J‖∗.

Moreover, since
〈

J(D̂−D)J, D̂−D− J(D̂−D)J
〉
= 0, we have ‖D̂−D‖2 = ‖D̂−D− J(D̂−D)J‖2 + ‖J(D̂−

D)J‖2, which implies that ‖D̂−D‖∗ ≤
√

2‖D̂−D‖+‖− J(D̂−D)J‖∗. Thus, since ‖J(D̂−D)J‖ ≤ ‖D̂−D‖, by
(25) and (21), we know that

1
m
‖O∗Ω (ζ )‖2 ‖D̂−D‖∗ ≤

1
m
‖O∗Ω (ζ )‖2

(√
2‖D̂−D‖+‖− J(D̂−D)J‖∗

)
≤ 1

m
‖O∗Ω (ζ )‖2

(√
2‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗+‖PT⊥(−J(D̂−D)J)‖∗

)
≤ ρD

κD

(√
2‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗+‖PT⊥(−J(D̂−D)J)‖∗

)
≤ ρD

κD

(√
2‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗+

√
2r‖J(D̂−D)J‖

)
≤ ρD

κD

(
(
√

2+
√

2r)‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗
)
,

Similarly, we know from (23) and (25) that

1
m
‖O∗Ω (ζ )‖

∞
‖Ŝ−S‖1 ≤

ρS

κS

(
‖PL(Ŝ−S)‖1 +‖PL⊥(Ŝ−S)‖1

)
≤ ρS

κS

(√
k‖Ŝ−S‖+‖PL⊥(Ŝ−S)‖1

)
.

Therefore, we obtain that the first term of the right hand side of (29) satisfies

1
m

〈
O∗Ω (ζ ), D̂−D+ Ŝ−S

〉
≤ ρD

κD

(√
2‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗+‖PT⊥(−J(D̂−D)J)‖∗

)
+

ρS

κS

(√
k‖Ŝ−S‖+‖PL⊥(Ŝ−S)‖1

)
. (30)
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Meanwhile, since for any A ∈ Sn, ‖PT(A)‖∗ = ‖P
T
2 AP2‖∗ and both −JD̃J and −JDJ are positively semidef-

inite, we know from the directional derivative formula of the nuclear norm [43, Theorem 1] that

〈I,−J(D̂−D)J〉= ‖− JD̂J‖∗−‖− JDJ‖∗ ≥ 〈P1PT
1 ,−J(D̃−D)J〉+‖PT

2 (−J(D̃−D)J)P2‖∗
= 〈P1PT

1 ,−J(D̃−D)J〉+‖PT(−J(D̃−D)J)‖∗,

which implies that the second term of the right hand side of (29) satisfies

−ρD

(
〈I,−J(D̂−D)J〉−〈F̃ ,−J(D̂−D)J〉

)
≤ −ρD

(
〈P1PT

1 − F̃ ,−J(D̃−D)J〉+‖PT(−J(D̃−D)J)‖∗
)
.

By using the decomposition (20) and the notations defined in (24), we obtain that

−ρD

(
〈I,−J(D̂−D)J〉−〈F̃ ,−J(D̂−D)J〉

)
≤ ρD

(
‖P1PT

1 − F̃‖‖J(D̂−D)J‖−‖PT(−J(D̂−D)J)‖∗
)

≤ ρD

(
aD
√

r‖D̂−D‖−‖PT(−J(D̂−D)J)‖∗
)
. (31)

Similarly, we know from the directional derivative of the l1-norm at S that

‖Ŝ‖1−‖S‖1 ≥ 〈sign(S), Ŝ−S〉+‖PL⊥(Ŝ−S)‖1.

Therefore, by the decomposition (22) and the notations defined in (24), we know that the third term of the right
hand side of (29) satisfies

−ρS

(
‖Ŝ‖1−‖S‖1−〈G̃, Ŝ−S〉

)
≤ −ρS

(
〈sign(S), Ŝ−S〉+‖PL⊥(Ŝ−S)‖1−〈G̃, Ŝ−S〉

)
≤ ρS

(
‖sign(S)− G̃‖‖Ŝ−S‖−‖PL⊥(Ŝ−S)‖1

)
≤ ρS

(
aS
√

k‖Ŝ−S‖−‖PL⊥(Ŝ−S)‖1

)
. (32)

Finally, by substituting (30), (31) and (32) into (29), we obtain that

1
2m
‖OΩ (D̂−D)+OΩ (Ŝ−S)‖2

≤ ρD

κD

(
(
√

2+
√

2r)‖D̂−D‖+‖PT(−J(D̂−D)J)‖∗
)
+

ρS

κS

(√
k‖Ŝ−S‖+‖PL⊥(Ŝ−S)‖1

)
+ρD

(
aD
√

r‖D̂−D‖−‖PT(−J(D̂−D)J)‖∗
)
+ρS

(
aS
√

k‖Ŝ−S‖−‖PL⊥(Ŝ−S)‖1

)
= ρD

(
1

κD
(
√

2+
√

2r)+aD
√

r
)
‖D̂−D‖+ρS

(
1
κS

+aS

)√
k‖Ŝ−S‖

−ρD
κD−1

κD
‖PT(−J(D̂−D)J)‖∗−ρS

κS−1
κS
‖PL⊥(Ŝ−S)‖1. (33)

Since r ≥ 1, together with the assumptions that κD > 1 and κS > 1, we know that the inequality (26) holds.
Next, we shall show that the inequalities (27) also hold. By (33), we have

‖PT(−J(D̂−D)J)‖∗ ≤
κD

κD−1

(
√

r

(
aD +

2
√

2
κD

)
‖D̂−D‖+

√
k

ρS

ρD

(
aS +

1
κS

)
‖Ŝ−S‖

)
,

‖PL⊥(Ŝ−S)‖1 ≤
κS

κS−1

(
√

r
ρD

ρS

(
aD +

2
√

2
κD

)
‖D̂−D‖+

√
k
(

aS +
1
κS

)
‖Ŝ−S‖

)
.
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Therefore, we know from (20), (22), (21) and (23) that

‖D̂−D‖∗ ≤ ‖D̂−D− J(D̂−D)J‖∗+‖PT⊥(−J(D̂−D)J)‖∗+‖PT(−J(D̂−D)J)‖∗

≤ (
√

2+
√

2r)‖D̂−D‖+ κD

κD−1

(
√

r
(
aD +

2
√

2
κD

)
‖D̂−D‖+

√
k

ρS

ρD

(
aS +

1
κS

)
‖Ŝ−S‖

)

≤ κD

κD−1

(
(aD +2

√
2)
√

r‖D̂−D‖+ ρS

ρD

(
aS +

1
κS

)√
k‖Ŝ−S‖

)
and

‖Ŝ−S‖1 ≤ ‖PL(Ŝ−S)‖1 +‖PL⊥(Ŝ−S)‖1

≤
√

k‖Ŝ−S‖+ κS

κS−1

(
√

r
ρD

ρS

(
aD +

2
√

2
κD

)
‖D̂−D‖+

√
k
(

aS +
1
κS

)
‖Ŝ−S‖

)

≤ κS

κS−1

(
ρD

ρS

(
aD +

2
√

2
κD

)√
r‖D̂−D‖+(aS +1)

√
k‖Ŝ−S‖

)
.

This completes the proof. �

Since X1, . . . ,Xm are the i.i.d. random observations, i.e., for any 1≤ i < j ≤ n,

P
(

Xl =
1
2
(eieT

j + e jeT
i )

)
= πi j, l = 1, . . . ,m,

where 0 ≤ πi j ≤ 1 is the probability that the (i, j) and ( j, i)-th element be sampled in the observation model. We
propose the following assumption to control the sampling probability.

Assumption 2 There exist two absolution constants µ1,µ2 ≥ 1 such that

1
µ1dSn

h

≤ πi j ≤
µ2

dSn
h

∀ 1≤ i < j ≤ n,

where dSn
h
= n(n−1)/2.

It is easy to see from Assumption 2 that for any A ∈ Sn
h, we have

E
(
〈A,X〉2

)
≥ 1

2µ1dSn
h

‖A‖2. (34)

Furthermore, let mmax be the maximum number of repetitions of any (i, j) index in Ω . By noting the sample size
m is assumed much smaller than dSn

h
, we obtain from [46, Lemma 5.5] the following result on the upper bound of

mmax. For simplicity, we omit the detailed proof here.

Lemma 2 Let the observation index set Ω be generated by the uniform sampling with replacement. Then, there
exists a constant C > 0 such that

mmax ≤ ‖O∗Ω OΩ‖2 ≤C log(2n2)

with probability at least 1−1/(2n2).
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We further introduce the following two useful notations:

ϑD := E
∥∥∥∥ 1

m
O∗Ω (ε)

∥∥∥∥
2

and ϑS := E
∥∥∥∥ 1

m
O∗Ω (ε)

∥∥∥∥
∞

, (35)

where {ε1, . . . ,εm} is a Rademacher sequence, i.e., an i.i.d. copy of Bernoulli random variable taking the values 1
and −1 with probability 1/2.

For the given positive numbers p1, p2, q1, q2 and t, define the following subset K(p1, p2,q1,q2, t)⊆ Sn by

K(p,q, t) :=

A = AD +AS |
‖AD‖∗ ≤ p1‖AD‖+ p2‖AS‖, AD ∈ Sn

h,
‖AS‖1 ≤ q1‖AD‖+q2‖AS‖, AS ∈ Sn

h,
‖AD +AS‖∞ = 1, ‖AD‖2 +‖AS‖2 ≥ tµ1dSn

h

 , (36)

where p := (p1, p2) and q := (q1,q2). Denote ϑm := (ϑ 2
D p2

1 +ϑ 2
D p2

2 +ϑ 2
S p2

1 +ϑ 2
S p2

2).

Proposition 2 Suppose that Assumption 2 holds. Let p1, p2, q1, q2 and t be any given positive numbers. For any
τ1 and τ2 satisfying

0 < τ1 < 1 and 0 < τ2 <
τ1

2
,

it holds that for any A ∈ K(p,q, t),

1
m
‖OΩ (A)‖2 ≥ E

(
〈A,X〉2

)
− τ1

µ1dSn
h

(
‖AD‖2 +‖AS‖2)− 32

τ2
µ1dSn

h
ϑ

2
m (37)

with probability at least

1− exp(−(τ1−2τ2)
2mt2/8)

1− exp(−3(τ1−2τ2)2mt2/8)
.

Proof We will show that the event

E :=

{
∃A ∈ K(p,q, t) s.t.

∣∣∣∣ 1
m
‖OΩ (A)‖2−E

(
〈A,X〉2

)∣∣∣∣≥ τ1

µ1dSn
h

(
‖AD‖2 +‖AS‖2)+ 32

τ2
µ1dSn

h
ϑ

2
m

}

happens with probability less than
exp[−(τ1−2τ2)

2mt2/32]
1− exp[−3(τ1−2τ2)2mt2/32]

. First, we decompose K(p,q, t) by

K(p,q, t) =
∞⋃

j=1

{
A ∈ K(p,q, t) | 2 j−1t ≤ 1

µ1dSn
h

(
‖AD‖2 +‖AS‖2)≤ 2 jt

}
.

For any s≥ t, define the sunset K̃(p,q, t,s)⊆ K(p,q, t) by

K̃(p,q, t,s) :=

{
A ∈ K(p,q, t) | 1

µ1dSn
h

(
‖AD‖2 +‖AS‖2)≤ s

}
.

Furthermore, for j = 1,2, . . ., let E j be the set defined by

E j :=
{
∃A ∈ K̃(p,q, t,2 jt) such that

∣∣∣∣ 1
m
‖OΩ (A)‖2−E

(
〈A,X〉2

)∣∣∣∣≥ τ12 j−1t +
32
τ2

µ1dSn
h
ϑ

2
m

}
.
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Then, it is not difficult to see that E ⊆ ∪∞
j=1E j. Thus, it suffices to estimate the probability of each simpler event

E j and then obtain the estimated probability bound of the event E. Denote

Zs := sup
A∈K̃(p,q,t,s)

∣∣∣∣ 1
m
‖OΩ (A)‖2−E

(
〈A,X〉2

)∣∣∣∣ .
For any A ∈ Sn

h, the strong laws of large numbers yield that

1
m
‖OΩ (A)‖2 =

1
m

m

∑
l=1
〈Xl ,A〉2

a.s.−−→ E
(
〈A,X〉2

)
as m→ ∞.

Since ‖A‖∞ = 1 for all A ∈ K(p,q, t), we know that for any 1≤ l ≤ m and A ∈ K(p,q, t),∣∣〈Xl ,A〉2−E
(
〈Xl ,A〉2

)∣∣≤max
{
〈Xl ,A〉2, E

(
〈Xl ,A〉2

)}
≤ 1.

Then, according to Massart’s Hoeffding-type concentration inequality [2, Theorem 14.2] (see also [26, Theorem
9]), we know that

P(Zs ≤ E(Zs)+η)≤ exp
(
−mη2

8

)
∀ η ≥ 0. (38)

Next, we estimate an upper bound of E(Zs) by using the standard Rademacher symmetrization in the theory of
empirical processes. Recall that {ε1, . . . ,εm} is a Rademacher sequence. Then, we have

E(Zs) = E

(
sup

A∈K̃(p,q,t,s)

∣∣∣∣∣ 1
m

m

∑
l=1
〈Xl ,A〉2−E

[
〈Xl ,A〉2

]∣∣∣∣∣
)
≤ 2E

(
sup

A∈K̃(p,q,t,s)

∣∣∣∣∣ 1
m

m

∑
l=1

εl〈Xl ,A〉2
∣∣∣∣∣
)

≤ 8E

(
sup

A∈K̃(p,q,t,s)

∣∣∣∣∣ 1
m

m

∑
l=1

εl〈Xl ,A〉

∣∣∣∣∣
)

= 8E

(
sup

A∈K̃(p,q,t,s)

∣∣∣∣〈 1
m

O∗(ε),A
〉∣∣∣∣
)

≤ 8E

(
sup

A∈K̃(p,q,t,s)

(∥∥∥∥ 1
m

O∗(ε)

∥∥∥∥
2
‖AD‖∗+

∥∥∥∥ 1
m

O∗(ε)

∥∥∥∥
∞

‖AS‖1

))

≤ 8E

(
sup

A∈K̃(p,q,t,s)

∥∥∥∥ 1
m

O∗(ε)

∥∥∥∥
2
‖AD‖∗+ sup

A∈K̃(p,q,t,s)

∥∥∥∥ 1
m

O∗(ε)

∥∥∥∥
∞

‖AS‖1

)

≤ 8E
∥∥∥∥ 1

m
O∗(ε)

∥∥∥∥
2

(
sup

A∈K̃(p,q,t,s)
‖AD‖∗

)
+8E

∥∥∥∥ 1
m

O∗(ε)

∥∥∥∥
∞

(
sup

A∈K̃(p,q,t,s)
‖AS‖1

)
,

where the first inequality is due to the symmetrization theorem [39, Lemma 2.3.1] or [2, Theorem 14.3], and the
second inequality follows from the contraction theorem (e.g., [24, Theorem 4.12] and [2, Theorem 14.4], ). Notice
that for any u≥ 0, v≥ 0 and A ∈ K̃(p,q, t,s),

u‖AD‖+ v‖AS‖ ≤
16m
τ1

(u2 + v2)+
τ1

64m
‖A‖2 ≤ 16m

τ1
(u2 + v2)+

1
64

τ1s,

where the first inequality is due to the inequality of arithmetic and geometric means. We derive that

E(Zs) ≤ 8

(
sup

A∈K̃(p,q,t,s)
ϑD(p1‖AD‖+ p2‖AS‖)+ sup

A∈K̃(p,q,t,s)
ϑS(q1‖AD‖+q2‖AS‖)

)

≤ 16
τ1

m(ϑ 2
D p2

1 +ϑ
2
D p2

2 +ϑ
2
S p2

1 +ϑ
2
S p2

2)+
τ1

32
s =

16
τ1

mϑ
2
m +

τ1

32
s.
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According to (38), it follows that

P
(

Zs ≥
16
τ1

mϑ
2
m +

τ1

32
s
)
≤ P

(
Zs ≥ E(Zs)+(

τ1

2
− τ2)s

)
≤ exp

(
−
(

τ1

2
− τ2

)2 ms2

8

)
.

This, together with the choice of s = 2 jt, implies that P(E j)≤ exp
(
− 1

8 22( j−1)(τ1−2τ2)
2mt2

)
. By using the fact

that 2 j ≥ 1+ j(2−1) for any j ≥ 1, we obtain that

P(E) ≤
∞

∑
j=1

P(E j)≤
∞

∑
j=1

exp
(
−1

8
22( j−1)(τ1−2τ2)

2mt2
)

≤ exp
(
−1

8
(τ1−2τ2)

2mt2
)

∞

∑
j=1

exp
(
−1

8
(22( j−1)−1)(τ1−2τ2)

2mt2
)

≤ exp
(
−1

8
(τ1−2τ2)

2mt2
)

∞

∑
j=1

exp
(
−3

8
( j−1)(τ1−2τ2)

2mt2
)
.

=
exp(−(τ1−2τ2)

2mt2/8)
1− exp(−3(τ1−2τ2)2mt2/8)

.

The proof is then completed. �

Proposition 3 Let (D̂, Ŝ) and (D,S) be an optimal solution of (12) and the underground true EDM and outlier
matrices, respectively. Let κD > 1 and κS > 1 be given arbitrarily. Suppose that the parameters ρD > 0 and ρS > 0
are given by (25). Under Assumption 2, there exist some positive absolute constants C0, C1 and C2 such that either

‖D̂−D‖2 +‖Ŝ−S‖2

dSn
h

≤C0µ1(bD +bS)
2

√
log(2n)

m
(39)

or

‖D̂−D‖2 +‖Ŝ−S‖2

dSn
h

≤ C1µ
2
1 dSn

h

C2
2

ρ
2
Dr

(
aD +

2
√

2
κD

)2

+ρ
2
S k
(

aS +
1
κS

)2


+ϑ
2
D(bD +bS)

2(
κD

κD−1
)2

[
r
(

aD +2
√

2
)2

+ k
ρ2

S

ρ2
D

(
aS +

1
κS

)2
]

+max

{
ϑ

2
S (bD +bS)

2,
b2

D

µ2
1 d2

Sn
h

}
(

κS

κS−1
)2

r
ρ2

D

ρ2
S

(
aD +

2
√

2
κD

)2

+ k (aS +1)2

 ,(40)

with probability at least 1− (4/7)n−1, where aD and aS are given by (24) and ϑD, and ϑS are defined by (35).

Proof Denote A := AD +AS with AD := D̂−D and AS := Ŝ−S. Let b := ‖A‖∞ and t :=
√

32log(2n)
(τ1−2τ2)2m , where c > 0

and τ1, τ2 satisfying 0 < τ2 <
τ1
2 < 1/2 are arbitrarily fixed constants. Consider the following two cases.

Case 1.
(
‖AD‖2 +‖AS‖2

)
< b2µ1dSn

h
t. Since b = ‖A‖∞ ≤ ‖AD‖∞ +‖AS‖∞ ≤ 2(bD +bS), we know that there

exists a positive constant C0 such that (39) holds.
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Case 2.
(
‖AD‖2 +‖AS‖2

)
≥ b2µ1dSn

h
t. By (27) in Proposition 1, we know that A/b∈K(p,q, t), where K(p,q, t)

is the subset defined by (36) with p = (p1, p2) and q = (q1,q2) are given by


p1 =

κD

κD−1

(
aD +2

√
2
)√

r, p2 =
κD

κD−1
ρS

ρD

(
aS +

1
κS

)√
k,

q1 =
κS

κS−1
ρD

ρS

(
aD +

2
√

2
κD

)
√

r, q2 =
κS

κS−1
(aS +1)

√
k.

(41)

Therefore, it follows from Proposition 2 and (34) that with probability at least 1− (4/7)n−1,

1
dSn

h

‖A‖2 ≤ 2µ1E
(
〈A,X〉2

)
≤ 2µ1

m
‖OΩ (A)‖2 +

2τ1

dSn
h

(
‖AD‖2 +‖AS‖2)+ 64

τ2
µ

2
1 dSn

h
ϑ

2
mb2.

By (26) in Proposition 1, we obtain that for any 0 < τ3 < (1−2τ1)/2,

1
dSn

h

‖A‖2 ≤ 4µ1ρD
√

r(aD +
2
√

2
κD

)‖AD‖+4µ1ρS
√

k(aS +
1
κS

)‖AS‖

+
2τ1

dSn
h

(
‖AD‖2 +‖AS‖2)+ 64

τ2
µ

2
1 dSn

h
ϑ

2
mb2

≤
4µ2

1 ρ2
DrdSn

h

τ3

(
aD +

2
√

2
κD

)2
+

τ3

dSn
h

‖AD‖2 +
4µ2

1 ρ2
S kdSn

h

τ3

(
aS +

1
κS

)2
+

τ3

dSn
h

‖AS‖2

+
2τ1

dSn
h

(
‖AD‖2 +‖AS‖2)+ 64

τ2
µ

2
1 dSn

h
ϑ

2
mb2

=
4µ2

1 ρ2
DrdSn

h

τ3

(
aD +

2
√

2
κD

)2
+

4µ2
1 ρ2

S kdSn
h

τ3

(
aS +

1
κS

)2
+

2τ1 + τ3

dSn
h

(
‖AD‖2 +‖AS‖2)

+
64
τ2

µ
2
1 dSn

h
ϑ

2
mb2. (42)

In addition, since ‖AD‖ ≤ 2bD, we then derive from that

‖A‖2 ≥ ‖AD‖2 +‖AS‖2−2‖AD‖∞‖AS‖1 ≥ ‖AD‖2 +‖AS‖2−4bD(q1‖AD‖+q2‖AS‖)

≥ ‖AD‖2 +‖AS‖2− 4
τ3

b2
D(q

2
1 +q2

2)− τ3(‖AD‖2 +‖AS‖2).
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This, together with (42), yields that

1− τ3

dSn
h

(
‖AD‖2 +‖AS‖2) ≤ 1

dSn
h

‖A‖2 +
4

dSn
h
τ3

b2
D(q

2
1 +q2

2)

≤
4µ2

1 ρ2
DrdSn

h

τ3

(
aD +

2
√

2
κD

)2
+

4µ2
1 ρ2

S kdSn
h

τ3

(
aS +

1
κS

)2
+

2τ1 + τ3

dSn
h

(
‖AD‖2 +‖AS‖2)

+
64
τ2

µ
2
1 dSn

h
ϑ

2
mb2 +

4
dSn

h
τ3

b2
D(q

2
1 +q2

2)

=
4µ2

1 dSn
h

τ3

(
ρ

2
Dr
(

aD +
2
√

2
κD

)2
+ρ

2
S k
(

aS +
1
κS

)2
)
+

2τ1 + τ3

dSn
h

(
‖AD‖2 +‖AS‖2)

+
64
τ2

µ
2
1 dSn

h
ϑ

2
mb2 +

4
dSn

h
τ3

b2
D(q

2
1 +q2

2).

Since 1−2(τ1 + τ3)> 0, we have

‖AD‖2 +‖AS‖2

dSn
h

≤
4µ2

1 dSn
h

1−2(τ1 + τ3)

(
1
τ3

(
ρ

2
Dr(aD +

2
√

2
κD

)2 +ρ
2
S k(aS +

1
κS

)2)+ 16
τ2

ϑ
2
mb2

+
1

d2
Sn

h
µ2

1 τ3
b2

D(q
2
1 +q2

2)

)
.

Recall that ϑ 2
m = ϑ 2

D p2
1 +ϑ 2

D p2
2 +ϑ 2

S q2
1 +ϑ 2

S q2
2. By plugging this together with (41) into the above inequality and

choosing τ1, τ2 and τ3 to be constants, we complete the proof. �

In order to obtain the explicit formulas of the penalized parameters ρD and ρS based on (25), we shall derive
the probabilistic upper bounds on the terms 1

m‖O
∗
Ω
(ζ )‖2 and 1

m‖O
∗
Ω
(ζ )‖∞. To this end, similar with [11], from

now on, we always assume that the i.i.d. random noises ξl , l = 1, . . . ,m in the sampling model (5) satisfy the
following sub-Gaussian tail condition.

Assumption 3 There exist positive constants K1 and K2 such that for all t > 0,

P(|ξl | ≥ t)≤ K1exp
(
−t2/K2

)
.

The following proposition on the upper bounds on the terms 1
m‖O

∗
Ω
(ζ )‖2 is taken from [11, Proposition 4].

Proposition 4 Let ζ = OΩ (k) ∈ Rm and k ∈ Sn be given by (8). Suppose that there exists C1 > 1 such that
m >C1n log(n). Then, there exists a constant C2 > 0 such that with probability at least 1−1/n,

1
m
‖O∗Ω (ζ )‖2 ≤C2(2ωη +η

2)

√
log(2n)

nm
, (43)

where ω = ‖OΩ (d̄ + s̄)‖∞.

The following result on the upper bound of 1
m ‖O

∗(ξ )‖
∞

are a direct consequence of the large derivation
inequality for sums of independent sub-gaussian/sub-exponential random variables [42, Proposition 5.10 & 5.16].



16 Qian Zhang et al.

Proposition 5 Let ζ = OΩ (k) ∈ Rm and k ∈ Sn be given by (8). Then, there exists a positive constant C3 such
that with probability at least 1−2/n2,

1
m
‖O∗Ω (ζ )‖

∞
≤C3(2ωη +η

2)
log(2n2)

m
, (44)

where ω = ‖OΩ (d̄ + s̄)‖∞.

Proof From (8) and the definition of ζ , we know that

‖O∗Ω (ζ )‖
∞
≤ 2ωη ‖O∗Ω (ξ )‖

∞
+η

2 ‖O∗Ω (ξ ◦ξ )‖
∞
.

Therefore, for any given t1, t2 > 0, we have

P
(
‖O∗Ω (ζ )‖

∞
≥ 2ωηt1 +η

2t2
)
≤ P(‖O∗Ω (ξ )‖

∞
≥ t1)+P(‖O∗Ω (ξ ◦ξ )‖

∞
≥ t2) . (45)

Denote the random matrix Y := O∗
Ω
(ξ ) = ∑

m
l=1 ξlXl and Z := O∗

Ω
(ξ ◦ ξ − 1) = ∑

m
l=1(ξ

2
l − 1)Xl . Then, for each

i, j ∈ {1, . . . ,n}, the (i, j)-th elements of Y and Z can be written as Yi j = ∑
m
l=1 a(i j)

l ξl and Zi j = ∑
m
l=1 ai j(ξ 2

l − 1),
where a(i j) := ((X1)i j, · · · ,(Xm)i j)

T ∈ Rm. Since ξl is an i.i.d. copy of sub-Gaussian random variables, we know
that there exist positive constants M1 such that ‖ξl‖ψ1

≤M1 [42, Section 5.2.3]. Due to E(ξl) = 0, we know from
[42, Proposition 5.10] that there exist positive constant C4 such that for each i, j ∈ {1, . . . ,n} and any given t1 > 0,

P(|Yi j| ≥ t1)≤ exp
(

1− C4t2
1

M2
1‖a(i j)‖2

)
,

which implies that

P(‖Y‖
∞
≥ t1)≤ dSn

h
exp
(

1− C4t2
1

M2
1 max‖a(i j)‖2

)
. (46)

Meanwhile, since ξl is sub-Gaussian, we know that ξ 2
l is an i.i.d. copy of sub-exponential random variables, which

implies that there exists positive constant M2 such that
∥∥ξ 2

l

∥∥
ψ1
≤M2, l = 1, . . . ,m (see e.g., [42, Section 5.2.4]).

Moreover, since E(ξ 2
l ) = 1, we know from [42, Proposition 5.16] that there exist positive constants C5 such that

for each i, j ∈ {1, . . . ,n} and any given t3 > 0,

P(|Zi j| ≥ t3)≤ 2exp
(
−C5 min

{
t2
3

M2
2‖a(i j)‖2

,
t3

M2‖a(i j)‖∞

})
,

which implies that

P(‖Z‖
∞
≥ t3)≤ 2dSn

h
exp
(
−C5 min

{
t2
3

M2
2 max‖a(i j)‖2

,
t3

M2 max‖a(i j)‖∞

})
. (47)

Moreover, for each i, j ∈ {1, . . . ,n}, it is clear that ‖a(i j)‖2 ≤ mmax/4 and ‖a(i j)‖∞ ≤ 1/2, where mmax is the
maximum number of repetition of (i, j)-th index in Ω . Thus, it follows from (46) and (47) that for any given t1,
t3 > 0,

P(‖Y‖
∞
≥ t1)≤ dSn

h
exp
(

1− 4C4t2
1

M2
1 mmax

)
(48)

and

P(‖Z‖
∞
≥ t3)≤ 2dSn

h
exp
(
−C5 min

{
4t2

3

M2
2 mmax

,
2t3
M2

})
. (49)
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Therefore, it follows from Lemma 2 that with probability at least 1−1/(2n2), there exists a constant C6 > 0 such
that mmax ≤C6 log(2n2). Thus, by (48), we know that for any t1 > 0,

P(‖O∗Ω (ξ )‖
∞
≥ t1)≤ dSn

h
exp
(

1− 4C4t2
1

M2
1C6 log(2n2)

)
+

1
2n2 . (50)

On the other hand, since ‖Z‖
∞
≥ ‖O∗

Ω
(ξ ◦ ξ )‖∞ −‖O∗Ω (1)‖∞ ≥ ‖O∗Ω (ξ ◦ ξ )‖∞ −mmax/2 ≥ ‖O∗

Ω
(ξ ◦ ξ )‖∞ −

C6 log(2n2)/2 if mmax ≤C6 log(2n2), we know from Lemma 2 that for any t2 >C6 log(2n2)/2,

P(‖O∗Ω (ξ ◦ξ )‖∞ ≥ t2) ≤ P
(
‖Z‖∞ ≥ t2−

C6 log(2n2)

2

)
+

1
2n2

≤ 2dSn
h
exp
(
−C5 min

{
(2t2−C6 log(2n2))2

4M2
2C6 log(2n2)

,
2t2−C6 log(2n2)

M2

})
+

1
2n2 . (51)

Therefore, by setting t1 := M1

√
C6
2C4

log(2n2), we obtain from (50) that

P

(
‖O∗Ω (ξ )‖

∞
≥M1

√
C6

2C4
log(2n2)

)
≤ 1

2n2 +
1

2n2 =
1
n2 .

Meanwhile, by setting t2 := 4M2+1
2 C6 log(2n2)>C6 log(2n2)/2, we conclude from (51) that

P
(
‖O∗Ω (ξ ◦ξ )‖∞ ≥

4M2 +1
2

C6 log(2n2)

)
≤ 1

2n2 +
1

2n2 =
1
n2 .

Finally, it follows from (45) that there exists a constant C3 > 0 such that

P
(
‖O∗Ω (ζ )‖

∞
≥C3(2ωη +η

2) log(2n2)
)
≤ 2

n2 ,

which implies (44) holds with probability at least 1−2/n2. This completes the proof. �

Next, we shall present our statistical error bound results on the proposed convex model (12). Proposition 4
and 5 suggest that the penalized parameters ρD and ρS based on (25) can take the following particular values:

ρD = O

(
(2ωη +η

2)

√
log(2n)

mn

)
and ρS = O

(
(2ωη +η

2)
log(2n2)

m

)
, (52)

where ω = ‖OΩ (d̄ + s̄)‖∞. Moreover, it follows from [11, (31)] and [46, Lemma 5.6] that if there exists C1 > 1
such that m >C1n log(n), then there exist positive constants C4 and C5 such that ϑD and ϑS defined by (35) satisfy

ϑD = E
∥∥∥∥ 1

m
O∗Ω (ε)

∥∥∥∥
2
≤C4

√
log(2n)

mn
and ϑS = E

∥∥∥∥ 1
m

O∗Ω (ε)

∥∥∥∥
∞

≤C5
log(2n2)

m
. (53)

Finally, by combining Proposition 3, 4 and 5, we obtain the following error bound, immediately. We omit the
detail proof for the sake of brevity.
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Theorem 1 Let (D̂, Ŝ) and (D,S) be an optimal solution of (12) and the underground true EDM and outlier
matrices, respectively. Assume the sample size m satisfies m>C1n log(2n) for some constant C1 > 0. For any given
κD > 1 and κS > 1, suppose that the parameters ρD > 0 and ρS > 0 in the objective function (12) satisfy (52). Under
Assumption 2, there exist some positive constants C2, C3, C′1, C′2 and C′3 such that either ‖D̂−D‖2+‖Ŝ−S‖2 ≤Γ1
or

‖D̂−D‖2 +‖Ŝ−S‖2 ≤ Γ2

with probability at least 1−2/n−2/n2, where Γ1 and Γ2 are defined by

Γ1 :=C2µ1(bD +bS)
2dSn

h

√
log(2n)

m
(54)

and

Γ2 := C3µ
2
1 dSn

h

{
C′1η

2(2ω +η)2

[
(κDaD +2

√
2)2 rdSn

h
log(2n)

nm
+
(
aS +

1
κS

)2 kdSn
h

log2(2n2)

m2

]

+C′2(bD +bS)
2( κD

κD−1
)2

[
(aD +2

√
2)2 rdSn

h
log(2n)

nm
+
(κSaS +1

κD

)2 kdSn
h

log2(2n2)

m2

]

+C′3(bD +bS)
2( κS

κS−1
)2

[(κDaD +2
√

2
κS

)2 rdSn
h

log(2n)

nm
+(aS +1)2 kdSn

h
log2(2n2)

m2

]}
, (55)

with aD and aS are given by (24).

We know from Theorem 1 that since the unknown true EDM D and outlier matrix S are bounded, in order
to control the estimation error, we only need samples with the size m of the order max{r,k}(n− 1) log(2n)/2,
since dSn

h
= n(n− 1)/2. Note that, it is reasonable to assume the embedding dimension r = rank(JDJ) and the

outliers number k are small. Therefore, the sample size m is much smaller than n(n−1)/2, the total number of the
off-diagonal entries. However, we shall mention that one cannot obtain exact recovery from the bound obtained in
Theorem 1 even without noise, i.e., η = 0. Furthermore, as mentioned in [30], even for the outlier-free case (i.e.,
S ≡ 0), this phenomenon is unavoidable due to lack of identifiability. For instance, consider the EDM D and the
perturbed EDM D̃ = D+ εe1eT

1 . Thus, with high probability, O(D∗) = O(D̃), which implies that it is impossible
to distinguish two EDMs even if they are noiseless. If one is interested only in exact recovery in the noiseless
setting, some addition assumptions such as the matrix incoherence condition (see e.g., [5, A0]) are necessary.
In fact, recently, under matrix incoherence, random signs of outliers (i.e., the signs of the nonzero entries of S
are i.i.d. symmetric Bernoulli random variables) and other assumptions, Chen et al. [8] obtained a near-optimal
statistical guarantee of the convex nuclear norm plus l1-norm penalized model for the (unconstrained) Robust PCA
by building up the connection between the convex estimations and an auxiliary nonconvex optimization algorithm.
For the Gaussian noise and squared matrices case, the estimation error bound achievable by their estimator [8]
reads as

‖D̂−D‖ ≤Cη

√
n
m

with high probability, where C > 0 is a constant. Clearly, the resulting bound is stronger than ours for the case
of the (unconstrained) Robust PCA. However, as we mentioned before, the results obtained in [8] have become
inadequate since the model studied in their paper has no “hard-constraints”, e.g., the noisy correlation matrix
recovery (i.e., a positive semidefinite matrix whose diagonal elements are all ones) and the EDM estimation
considered in this paper. Furthermore, neither matrix incoherence nor the random signs of outliers condition is
assumed in this paper.
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4 Recovery of the embedding dimensionality and outlier detection

In order to study the recovery guarantee of the dimensionality of embedding and outliers cardinality, we first
introduce some useful notations and results on the proposed convex model (12) in Section 2. First, it is clear that
the following generalized Slater condition for (12) always holds:

Definition 1 There exists D0 ∈ Sn and S0 ∈ Sn such that

diag(D0) = 0, −D0 ∈ int(Kn
+) and S0 > 0,

where Kn
+ is the almost positive semidefinite matrix cone defined by (2) and int(Kn

+) is its interior.

Let (Kn
+)
◦ ⊆ Sn be the polar cone of the almost positive semidefinite matrix cone Kn

+, i.e.,

(Kn
+)
◦ := {Z ∈ Sn | 〈Z,Y 〉 ≤ 0 ∀Y ∈Kn

+}. (56)

We use H ∈ Sn to denote the Householder matrix, i.e.,

H := I− 2
uT u

uuT with u := (1, . . . ,1,
√

n+1)T ∈ Rn. (57)

It is clear that the Householder matrix H is symmetric and orthogonal (i.e., H2 = I). Also, the centering matrix J
defined by (1) satisfies

J = H

[
In−1 0

0 0

]
H. (58)

For any X ∈ Sn, we rewrite the matrix HXH as the following block form:

HXH =

[
X̃11 x̃

x̃T x̃0

]
with X̃11 ∈ Sn−1, x̃ ∈ Rn−1 and x̃0 ∈ R. (59)

Moreover, by (58) and simple calculations, we obtain the following basic identity:

JXJ = H

[
X̃11 0

0 0

]
H, (60)

where X̃11 ∈ Sn−1 is the first block defined by (59) for HXH.
By [17, Theorem 2.1], we have the following characterizations on Kn

+ and its polar (Kn
+)
◦:

Kn
+ =

{
H

[
Z z

zT z0

]
H ∈ Sn | Z ∈ Sn−1

+ , z ∈ Rn−1, z0 ∈ R

}
(61)

and

(Kn
+)
◦ =

{
H

[
Z 0

0 0

]
H ∈ Sn | Z ∈ Sn−1

−

}
. (62)

Thus, for any given integer 1 ≤ r ≤ n, by (60) and (61), we know that X ∈ Kn
+ and rank(JXJ) ≤ r if and only if

X̃11 ∈ Sn−1
+ and rank(X̃11)≤ r, and Kn

+ 3 X ⊥ Y ∈ (Kn
+)
◦ if and only if

Sn−1
+ 3 X̃11 ⊥ Ỹ11 ∈ Sn−1

− and HY H =

[
Ỹ11 0

0 0

]
, (63)
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where X̃11 ∈ Sn−1 and Ỹ11 ∈ Sn−1 are the first blocks defined by (59) for HXH and HY H, respectively (see also
[33, Lemma 2.1] for details).

Let D̃∈ Sn and S̃∈ Sn be the given initial estimators. Recall that F̃ ∈ Sn and G̃∈ Sn are the symmetric matrices
defined in (14) and (17) with respect to (D̃, S̃). For the given (D̃, S̃), denote t̃D ∈ R and t̃S ∈ R by

t̃D =

{
λr+1(−D̃11)

λ1(−D̃11)
if D̃ 6= 0,

0 otherwise
and t̃S =


S̃i′ j′

maxk,l{S̃kl}
if S̃ 6= 0,

0 otherwise,
(64)

where (i′, j′) ∈ {1, . . . ,n}× {1, . . . ,n} be the index such that S̃i′ j′ = max
{

S̃i j | (i, j) /∈ supp(S)
}

. Now, we are
ready to present the results on the guarantee of recovery of the embedding dimensionality and outlier detection.

Theorem 2 Let (D̂, Ŝ) and (D,S) be an optimal solution of (12) and the underground true EDM and outlier
matrices, respectively. Assume the sample size satisfies m > C0n log(2n) for some constant C0 > 0. Suppose that
the initial estimators D̃ and S̃ satisfy t̃D ∈ [0,1) and t̃S ∈ [0,1), where t̃D and t̃S are defined by (64). Let F̃ and G̃
be the symmetric matrices defined by (14) and (17) with respect to (D̃, S̃). Suppose that the parameters ρD > 0

and ρS > 0 in the objective function (12) defined by (52) satisfying ρD >
ετ+t̃τ

D
ετ (1−t̃τ

D)
C(2ωη + η2)

√
log(2n)

mn and

ρS >
ετ+t̃τ

S
ετ (1−t̃τ

S )
C(2ωη +η2) log(2n2)

m for some large constant C > 0. Then, we have

rank(−JD̂J)≤ rank(−JDJ) and supp(Ŝ)⊆ supp(S)

with probability at least 1− 1/n− 3/n2. Furthermore, in addition, if ‖D̂−D‖ < λr(−JDJ) and ‖Ŝ− S‖ <
min

{
Si j | (i, j) ∈ supp(S)

}
, then with the same probability, we have

rank(−JD̂J) = rank(−JDJ) and supp(Ŝ) = supp(S).

Proof Since (12) is convex and the generalized Slater condition (Definition 1) always holds, we know that there
exist Lagrangian multipliers (z,Γ ,U) ∈Rn×Sn×Sn such that (D̂, Ŝ) satisfies the following Karush-Kuhn-Tucker
(KKT) condition: 

− 1
mO∗

Ω

(
y−OΩ (D̂+ Ŝ)

)
−ρDJ(I− F̃)J−Diag(z)−Γ = 0,

− 1
mO∗

Ω

(
y−OΩ (D̂+ Ŝ)

)
+ρS(E− G̃)+U = 0,

diag(D̂) = 0,

Kn
+ 3 −D̂⊥ Γ ∈ (Kn

+)
◦, 0≤ Ŝi j ⊥Ui j ≤ 0, i, j ∈ {1, . . . ,n}.

(65)

Consider the first equation of (65). By denoting ϒ :=− 1
mO∗

Ω

(
y−OΩ (D̂+ Ŝ)

)
, we obtain that

HDiag(z)H = Hϒ H−ρDH(J(I− F̃)J)H−HΓ H, (66)

where H is the Householder matrix defined by (57). Since Γ ∈ (Kn
+)
◦, we know from (60) and (62) that the last

columns of the symmetric matrices H(J(I− F̃)J)H and HΓ H are all zero. Moreover, for any z ∈ Rn, we know
that the last column of HDiag(z)H can be calculated as follows

(HDiag(z)H)(:,n) =−
1√
n

Hz ∈ Rn.
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Consequently, we know from (66) that the multiplier z can be characterized by

z =−
√

nH

[
υ̃

υ̃0

]
,

where (υ̃ , υ̃0)
T ∈ Rn is the last column of Hϒ H in the form (59). Thus, since ϒ ∈ Sn

h, we know from Lemma 1
that

‖Diag(z)‖2 ≤ ‖Diag(z)‖ ≤ 2
√

n
1√
n
‖ϒ − Jϒ J‖ ≤ 2

√
2‖ϒ − Jϒ J‖2 ≤ 4

√
2‖ϒ‖2.

Meanwhile, by (10) and (7), we have

ϒ =
1
m

O∗Ω

(
OΩ (D̂+ Ŝ)−y

)
=

1
m

O∗Ω (OΩ (AD +AS)−ζ ) ,

where ζ = OΩ (k), AD = D̂−D and AS = Ŝ−S. Thus, we know that

‖ϒ‖2 ≤
1
m
‖O∗Ω OΩ‖2 ‖AD +AS‖+

1
m
‖O∗Ω (ζ )‖2.

Under Assumption 1, we know that there exists a constant C1 > 0 such that ‖AD +AS‖ ≤ C1. Moreover, by
combining with Lemma 2, Proposition 4 and m >C0n log(2n), we obtain that there exist positive constants C2 > 0
and C3 > 0 such that

‖ϒ‖2 ≤C1C2
log(2n2)

m
+C3(2ωη +η

2)

√
log(2n)

nm
≤C4(2ωη +η

2)

√
log(2n)

nm
,

with probability at least 1−1/(2n2)−1/n, where C4 :=C1C2 +C3 > 0. Thus, by the assumption, we know that

ρD > (1+4
√

2)
ετ + t̃τ

D
ετ(1− t̃τ

D)
‖ϒ‖2 (67)

with probability at least 1−1/(2n2)−1/n.
Denote r = rank(−JDJ). It is clear that r ≤ n−1. By (14), we know that F̃ satisfies

JF̃J = H

[
Λ̃ 0

0 0

]
H with Λ̃ = QDiag( f (λ (−D̃11))QT ∈ Sn−1,

where f : Rn−1→ Rn−1 is the symmetric function defined by (15), and Q is a given (n−1)× (n−1) orthogonal
matrix. It then follows from the well-known Weyl eigenvalue inequality [44] (see also [20, Theorem 4.3.7]) that

λr+1(Γ̃11) ≤ λ1(H(ϒ −Diag(z))H)+λr+1(−ρD(In−1− Λ̃))

≤ ‖ϒ −Diag(z)‖2 +ρDλr+1(Λ̃)−ρD

≤ (1+4
√

2)‖ϒ‖2 +ρD (φ(t̃D)−1) , (68)

where φ : R→ R is the scalar function given by (16), which implies that

λr+1(Γ̃11)≤ (1+4
√

2)‖ϒ‖2 +ρD
ετ(t̃τ

D−1)
t̃τ
D + ετ

.

Thus, we know from (67) that with probability at least 1−1/(2n2)−1/n, λr+1(Γ̃11)< 0. Since Kn
+ 3 −D̂⊥ Γ ∈

(Kn
+)
◦, we know from (63) that

rank(−JD̂J)≤ rank(−JDJ) (69)
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with probability at least 1−1/(2n2)−1/n.
Meanwhile, we know from the second equation of (65) that the multiplier U ∈ Sn is given by

U =−ϒ −ρS(E− G̃).

Again, under Assumption 1, we know that there exists a constant C1 > 0 such that ‖AD +AS‖ ≤C1. Moreover, by
combining with Lemma 2 and Proposition 5, we obtain that there exist positive constants C2 and C3 such that

‖ϒ‖∞ ≤C1C2
log(2n2)

m
+C3

log(2n2)

m
≤C4

log(2n2)

m
,

with probability at least 1−5/(2n2), where C4 :=C1C2 +C3 > 0. Therefore, by the assumption, we have

ρS >
ετ + t̃τ

S
ετ(1− t̃τ

S )
‖ϒ‖∞ (70)

with probability at least 1−5/(2n2).

Let (î, ĵ) ∈ {1, . . . ,n}×{1, . . . ,n} be the index such that Ŝî ĵ = max
{

Ŝi j | (i, j) /∈ supp(S)
}

. By (17), we know
that

Uî ĵ =−ϒî ĵ +ρS

(
φ(S̃î ĵ/max

k,l
{S̃kl})−1

)
,

where φ : R→ R is the scalar function given by (16). It is clear from (64) that S̃î ĵ/maxk,l{S̃kl} ≤ t̃S. Therefore,
since φ is non-decreasing, we have

Uî ĵ =−ϒî ĵ +ρS

(
φ(S̃î ĵ/max

k,l
{S̃kl})−1

)
≤−ϒî ĵ +ρS (φ(t̃S)−1) . (71)

Thus, we know from (71) and (16) that

Uî ĵ ≤ ‖ϒ‖∞ +ρS(φ(t̃S)−1) = ‖ϒ‖∞ +ρS
ετ(t̃τ

S −1)
t̃τ
S + ετ

.

This, together with (70), yields Uî ĵ < 0 with probability at least 1− 5/(2n2). Moreover, since 0 ≤ Ŝi j ⊥Ui j ≤ 0

for any i, j ∈ {1, . . . ,n}, we know that with probability at least 1− 5/(2n2), Ŝî ĵ = 0. By noting that for any

(i, j) /∈ supp(S), 0≤ Ŝi j ≤ Ŝî ĵ = 0, we conclude that

supp(Ŝ)⊆ supp(S) (72)

with probability at least 1−5/(2n2).
By combining (69) and (72), we obtain that with probability at least 1−1/n−3/(n2), rank(−JD̂J)≤ rank(−JDJ)

and supp(Ŝ)⊆ supp(S). This completes the proof of the first part.
Next, we proceed with the proof of the second part. We know from the assumption ‖D̂−D‖< λr(−JDJ) that

|λr(−JD̂J)−λr(−JDJ)| ≤ ‖JD̂J− JDJ‖ ≤ ‖D̂−D‖< λr(−JDJ),

which implies that λr(−JD̂J)> 0. This yields

rank(−JD̂J)≥ rank(−JDJ). (73)
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Meanwhile, let (ī, j̄) ∈ {1, . . . ,n}×{1, . . . ,n} be the index such that Sī j̄ = min
{

Si j | (i, j) ∈ supp(S)
}

. Again, we
know from the assumption ‖Ŝ−S‖< Sī j̄ that

|Ŝi j−Si j| ≤ ‖Ŝ−S‖< Sī j̄ ∀(i, j) ∈ supp(S).

This yields that for any (i, j) ∈ supp(S), Ŝi j > Si j−Sī j̄ ≥ 0, which implies that

supp(Ŝ)⊇ supp(S). (74)

Therefore, by combining (73) and (74), we know from the first part of this theorem that with probability at least
1−1/n−3/(n2), rank(−JD̂J) = rank(−JDJ) and supp(Ŝ) = supp(S). The proof is completed. �

Remark 1 In our implementations, we may choose the initial estimators D̃ and S̃ obtained by the nuclear norm
l1-minimization EDM problem (13) to generate F̃ and G̃ by (14) and (17), since the corresponding t̃D and t̃S satisfy
t̃D ∈ [0,1) and t̃S ∈ [0,1) with high probability. Moreover, by combining Theorem 1 and Theorem 2, we know that
if in addition λr(−JDJ)> max{Γ 1/2

1 ,Γ
1/2

2 } ≥ 0 and

min
{

Si j | (i, j) ∈ supp(S)
}
> max{Γ 1/2

1 ,Γ
1/2

2 } ≥ 0, (75)

where Γ1 and Γ2 are defined by (54) and (55), respectively, then

rank(−JD̂J) = rank(−JDJ) and supp(Ŝ) = supp(S)

with probability at least 1−3/n−5/n2.

5 Numerical experiments

In this section, we shall demonstrate and verify the theoretical results obtained in Section 3 and 4 for the proposed
matrix optimization model (12) by numerical experiments. In this paper, we directly employ the symmetric Gauss-
Seidel decomposition based proximal alternating direction method of multipliers (sGS-ADMM) (cf. [38,25]) to
solve the proposed matrix optimization model (12). The detail algorithm for solving (12) can be found in [10].
The numerical examples were tested on Matlab (2019b) under a Windows 10 64-bit Desktop (4 core, Intel Core
i7-4790K @ 4.00 GHZ, 16 GB RAM). We terminate sGS-ADMM if the KKT condition [10, (27)] are met, i.e.,

max{Rp, Rd , rel gap} ≤ 10−4, (76)

where Rp, Rd and rel gap are the relative infeasibilities of the primal problem (12) and its dual problem, and the
relative primal-dual gap, respectively, which are given by [10, (28)].

In order to demonstrate and verify the theoretical results, we only focus on the examples coming from a
simulated network. For numerical performance results of the proposed model on real-world applications such
as the no-line-sight mitigation in collaborative position localization, one may refer [10] for more details. Con-
sider a randomly generated network in Rr with r = 2, where n points {pi} ∈ Rr located randomly in the square
area [0,100]× [0,100]. We construct the observation operator OΩ defined in (9) by picking {X1, . . . ,Xm} uni-
formly at random from the standard basis matrices of the hellos space Sn

h with the sample size m = O(rn log(2n)).
Meanwhile, we randomly add k outliers which are modeled as the i.i.d. random variables to the true pairwise
distances. The i.i.d. noise errors ξi j in (5) follow a zero-mean Gaussian distribution with standard deviation and
the noise magnitude control factor η = 0.5. In all numerical experiments conducted in this paper, the parame-
ters ρD > 0 and ρS > 0 in the convex model (12) are chosen exactly based on the rules suggested in (52), i.e.,
ρD = O

(√
log(2n)/mn

)
and ρS = O

(
log(2n2)/m

)
. Meanwhile, the symmetric matrices F̃ and G̃ are defined by
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(a) Relative error and dimension recovery error (b) Relative error and outlier detection error

Fig. 1: Performance comparison for different ρD and ρS

(14) and (17) with respect to the initial estimators D̃ and S̃. In particular, we adopt the recommendation provided
in [29, (25) and (26)] and [46, Chapter 5.3] with ε ≈ 0.05 (within 0.01∼ 0.1), τ = 2 (within 1∼ 3) for the scalar
function φ defined by (16). Also, the initial estimators D̃ and S̃ are generated from the nuclear norm and l1 penal-
ized least squares problem (i.e., the convex problem defined in (12) with F̃ = 0 and G̃ = 0). It seems that these
particular settings for F̃ , G̃ and initial estimators work quite well based on our numerical experiments.

Example 1. In this example, we use a simulation network with n = 1000 random points to demonstrate the quality
of the proposed estimators for different parameters ρD and ρS. Here, k = 457 outliers are modeled as the i.i.d.
exponential random variables with the rate parameter λ = 100. The sample size m of the random observation
operator OΩ equals to 15202, which is in the order of O(rn log(2n)). The numerical performance for different
parameters ρD and ρS are illustrated in Figure 1. The blue lines in both Figure 1a and 1b indicate the relative
errors of both estimated EDM and outlier matrices, i.e., ‖D̂−D‖+ ‖Ŝ− S‖, with respect to log(ρD) and ρS,
respectively. It can be seen clearly when ρD and ρS are increasing, the relative errors are decreasing. The red line
in Figure 1a stands for the estimated embedding dimension, i.e., rank(−JD̂J), which indicates that the estimated
embedding dimension is always less or equal to the true r = 2 when ρD and ρS are large enough. In fact, it
actually equals r = 2 for large ρD and ρS. It is worth to note that in this example the r-th eigenvalue λr(−JDJ)
of −JDJ is in the order of O(105), which is much larger than max{Γ 1/2

1 ,Γ
1/2

2 } ≈ 103, where Γ1 and Γ2 are the
error bounds defined in (54) and (55), respectively. Meanwhile, the red line in Figure 1b represents the number of
outlier detection errors obtained by the proposed convex model, which includes both false-negative errors denoted
by FN (i.e., Ŝi j = 0 but the true Si j > 0) and false-positive errors denoted by FP (i.e., Ŝi j > 0 but the true Si j = 0).
We know from Figure 1b and Table 1 that the detected outlier number nz S= 456, #FN= 1 and #FP= 0, when ρD
and ρS are large enough. This implies that supp(Ŝ)⊆ supp(S), which is consistent with Theorem 2. Interestingly,
in this example, we find that min

{
Si j | (i, j) ∈ supp(S)

}
≈ 25.2695 is much smaller that ‖Ŝ−S‖ ≈ 103. The detail

numerical performance can be found in Table 1.

Example 2. We use this example to illustrate the quality of the proposed estimators for problems with different
dimensions. Ten simulation networks with n = {200,400, . . . ,2000} random points in the square area [0,100]×
[0,100] are generated in a similar manner as Example 1. The sample sizes of the corresponding observation
operators and the numbers of outliers for different networks are reported in Table 2. The black lines in both Figure
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(ρD, ρS) (Rp, Rd , rel gap) (rel err,r dim,nz S,mis O) cpu(s)

(0.0035, 0.0194) (4.25e-06, 7.18e-06, 8.83e-05) (0.0064, 31, 2265, 1808) 360.84

(0.0040, 0.0389) (6.35e-06, 1.03e-05, 8.09e-05) (0.0062, 31, 2323, 2780) 319.67

(0.0034, 0.0865) (1.61e-06, 2.35e-06, 9.55e-05) (0.0060, 30, 797, 342) 321.04

(0.0052, 0.0778) (1.28e-06, 2.27e-06, 9.71e-05) (0.0058, 29, 655, 200) 336.43

(0.0058, 0.0972) (5.27e-07, 5.07e-07, 9.91e-05) (0.0056, 29, 468, 13) 430.75

(0.0288, 0.1264) (3.72e-07, 5.56e-07, 9.96e-05) (0.0043, 2, 456, 1) 363.16

(0.0576, 0.1361) (3.17e-07, 4.35e-07, 9.94e-05) (0.0042, 2, 456, 1) 304.29

(0.5762, 0.1458) (9.41e-07, 9.97e-07, 6.69e-05) (0.0034, 2, 475, 20) 142.06

(2.8520, 0.1555) (4.73e-06, 8.29e-06, 2.50e-06) (0.0022, 2, 529, 74) 328.50

(2.8808, 0.1653) (5.91e-06, 1.00e-05, 3.18e-06) (0.0022, 2, 533, 78) 325.34

(5.7616, 0.1750) (4.71e-07, 3.85e-07, 9.59e-05) (0.0017, 2, 456, 1) 795.77

(11.5233, 0.1847) (1.12e-07, 2.15e-08, 9.73e-05) (0.0013, 2, 456, 1) 1357.65

(17.2849, 0.1944) (2.52e-08, 5.78e-09, 9.93e-05) (0.0011, 2, 456, 1) 1890.97

(23.0465, 0.2041) (1.57e-09, 4.22e-09, 9.98e-05) (0.0011, 2, 456, 1) 2401.03

(28.8082, 0.2139) (6.43e-10, 1.41e-09, 1.00e-04) (0.0010, 2, 456, 1) 2783.24

(57.6164, 0.2333) (5.60e-11, 3.89e-11, 9.98e-05) (0.0009, 2, 456, 1) 4079.01

(86.4245, 0.2527) (1.76e-11, 3.07e-11, 9.98e-05) (0.0009, 2, 456, 1) 4581.41

(115.2327, 0.2722) (2.94e-11, 2.13e-11, 9.98e-05) (0.0009, 2, 456, 1) 4592.07

(144.0409, 0.2916) (1.73e-11, 2.46e-11, 9.99e-05) (0.0009, 2, 456, 1) 4633.12

(172.8491, 0.3111) (1.10e-11, 1.47e-11, 9.99e-05) (0.0009, 2, 456, 1) 4809.25

Table 1: Numerical performance of the network with (n,m,k) = (1000,15202,457) for different ρD and ρS: Rp,
Rd and rel gap stand for the relative primal feasibility, dual feasibility and relative duality gap obtained by

sGS-ADMM, respectively; we use rel err, r dim, nz S, mis O to denote the relative error, recovery embedding
dimension, detected outlier number and outlier detection error; cpu(s) is the total computational time (in

seconds) of sGS-ADMM.

2a and 2b represent the theoretical (relative) upper bounds in Theorem 1, i.e., max(Γ1,Γ2)/(1+ ‖D‖+ ‖S‖) and
Γ1 and Γ2 are defined in (54) and (55), respectively. The blue lines in both Figure 2a and 2b are the square sum
of relative errors with respect to D̂ and Ŝ, i.e., ‖D̂−D‖2 + ‖Ŝ− S‖2/(1+ ‖D‖+ ‖S‖). It can be seen clearly
from Figure 2a and 2b that the square sum of (relative) errors with respect to D̂ and Ŝ is smaller than theoretical
(relative) upper bounds defined by (54) and (55). It can be seen from Figure 2a that the proposed convex model (12)
provides the estimators D̂ with the true EDM dimension, i.e., rank(−JD̂J) = r = 2 in all ten networks. Similar with
Example 1, we note that for these ten cases, the r-th eigenvalues λr(−JDJ) of −JDJ are in the order of O(105),
and the upper bounds defined in (54) and (55) satisfy max{Γ 1/2

1 ,Γ
1/2

2 } ≈ 103. One the other hand, the red line in
Figure 2b indicates the number of outlier detection errors obtained by (12) for different networks. We know from
Figure 2b and Table 2 that for all networks with different dimension scales, the detected outlier numbers nz S≤ k
and nz S+mis O= k, which implies that for each case, the outlier detection errors if exist are the false-negative
errors (FN) and supp(Ŝ) ⊆ supp(S). Similarly with Example 1, this result is consistent with the outlier detection
guarantee results proposed in Theorem 2. Also, it is worth noting that 10 ≈ min

{
Si j | (i, j) ∈ supp(S)

}
� ‖Ŝ−

S‖ ≈ 103 for these cases. The numerical details are reported in Table 2.

Example 3. Finally, we conduct an experiment to verify the proposed sufficient condition for the outlier de-
tection in Theorem 2. Consider a simulation network with n = 200 points which are randomly located in the
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(a) Relative error and dimension recovery error (b) Relative error and outlier detection error

Fig. 2: Performance comparison for networks with different dimension scales

(n,m,k) (ρD,ρS) (Rp,Rd ,gap) (rel err,r dim,nz S,mis O) cpu(s)

(200, 2397, 72) (393.7605, 1.5738) (8.44e-11, 7.14e-11, 9.95e-05) (0.0018, 2, 72, 0) 17.30

(400, 5348, 161) (157.6384, 0.6341) (2.67e-11, 7.02e-11, 9.97e-05) (0.0015 , 2, 161 0) 193.20

(600, 8509, 256) (157.3630, 0.6350) (3.04e-11, 4.36e-11, 1.00e-04) (0.0010, 2, 255, 1) 688.16

(800, 11805, 355) (111.6860, 0.4516) (4.87e-11, 3.19e-11, 9.99e-05) (0.0010, 2, 354, 1) 1974.85

(1000, 15202, 457) (125.0299, 0.5063) (1.92e-11, 2.01e-11, 1.00e-04) (0.0008, 2, 457, 0) 4583.55

(1200, 18680, 561) (69.6896, 0.2825) (2.70e-11, 2.87e-11, 9.99e-05) (0.0010, 2, 561, 0) 7161.07

(1400, 22225, 667) (88.5303, 0.3592) (1.96e-11, 1.71e-11, 9.99e-05) (0.0008, 2, 665, 2) 12641.73

(1600, 25827, 775) (78.9857, 0.3207) (1.49e-11, 1.57e-11, 1.00e-04) (0.0008, 2, 774, 1) 21380.81

(1800, 29480, 885) (52.1488, 0.2119) (1.69e-11, 2.11e-11, 1.00e-04) (0.0008, 2, 883, 2) 33169.30

(2000, 33177, 996) (44.9024, 0.1825) (2.24e-11, 1.93e-11, 9.99e-05) (0.0008, 2, 993, 3) 48297.41

Table 2: Numerical performance for networks with different dimension scales: n,m,k indicate the number of
points in network, sample size of the observation operator and number of outliers; Rp, Rd and rel gap stand for
the relative primal feasibility, dual feasibility and relative duality gap obtained by sGS-ADMM, respectively; we
use rel err, r dim, nz S, mis O to denote the relative error, recovery embedding dimension, detected outlier

number and outlier detection error; cpu(s) is the total computational time (in seconds) of sGS-ADMM.

area [0,100]× [0,100]. The observation operator OΩ and i.i.d. noise errors ξi j are generated in the same man-
ner as those in Example 1 & 2. Moreover, we randomly add k = 24 outliers errors, which are the i.i.d. uniform
random variables with different magnitudes such that S satisfies one of the following conditions, respectively: (a)
min

{
Si j | (i, j) ∈ supp(S)

}
≈ 1×10 denoted by the “small magnitude” of S, (b) min

{
Si j | (i, j) ∈ supp(S)

}
≈ 102

denoted by the “middle magnitude” of S, and (c) min
{

Si j | (i, j) ∈ supp(S)
}
≈ 5× 103 denoted by the “large

magnitude” of S. Note that in this example, we have max{Γ 1/2
1 ,Γ

1/2
2 } ≈ 103. By (75), we know that the con-

dition ‖Ŝ− S‖ < min
{

Si j | (i, j) ∈ supp(S)
}

is satisfied in the “large magnitude” case. First, the estimators D̂
obtained by the convex model (12) in all cases satisfy rank(−JD̂J) = r = 2, since the r-th eigenvalues λr(−JDJ)
of −JDJ are in the order of O(105). For comparison, we report the relative errors and the outlier detection errors
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(a) The small magnitude S (b) The middle magnitude S

(c) The large magnitude S (d) Empirical CDF

Fig. 3: Relative error and outlier detection error for different magnitudes of S

after 100 Monte Carlo simulation runs in Figure 3. Note that for all cases, the outlier detection errors if exist
are the false-negative errors (FN) and supp(Ŝ) ⊆ supp(S), since the detected outlier numbers nz S ≤ k = and
nz S+ mis O = k. For the small and middle magnitude of S cases (Figure 3a and 3b), only a few estimators Ŝ
satisfy supp(Ŝ) = supp(S) exactly (13 out of 100 MC simulation runs for the small magnitude case; 77 out of 100
MC simulation runs for the middle magnitude case). However, it is worth noting that for the large magnitude of
S case (Figure 3c), with probability 1, the estimator Ŝ obtained by (12) satisfies supp(Ŝ) = supp(S) exactly (100
out of 100 MC simulation runs). Also the empirical cumulative distribution function1 (CDF) of different cases are
reported in Figure 3d.

1 Let x1, . . . ,xn be independent, identically distributed real random variables. The corresponding empirical distribution function Fn(t)
is defined as Fn(t) = 1

n ∑
n
i=1 δxi≤t , where δxi≤t is the indicator of event xi ≤ t.
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6 Conclusions

Euclidean embedding from noisy observations containing outliers is an important and challenging problem in
statistics and machine learning. Many existing methods would struggle with outliers due to a lack of detection
ability, while the matrix optimization based embedding model introduced in [10] usually can produce reliable
embeddings and identify the outliers jointly. This paper aimed to explain this mysterious situation by studying
the estimation error bounds and outliers detection ability of the proposed model. In particular, we show that
the estimators obtained by the proposed method satisfy a non-asymptotic risk bound, implying that the model
provides a high accuracy estimator with high probability when the order of the sample size is roughly the degree
of freedom up to a logarithmic factor. Moreover, we show that under some mild conditions, the proposed model
also can identify the outliers without any prior information with high probability. As we mentioned in the Section
3, Chen, et al. [8], derived a near-optimal statistical guarantee of the convex nuclear norm plus l1-norm penalized
model for the classical Robust PCA by building up the connection between the convex estimations and an auxiliary
nonconvex optimization algorithm. It seems their approach would lead to some interesting error bound results for
our EDM embedding model. However, it seems difficult to extend their results directly to the convex models
involving ”hard-constraints”, e.g., the noisy correlation matrix recovery and the EDM estimation studied in this
paper. We plan to investigate those issues in the future.
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