Skip to main content
Log in

Local saddle points for unconstrained polynomial optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper gives an algorithm for computing local saddle points for unconstrained polynomial optimization. It is based on optimality conditions and Lasserre’s hierarchy of semidefinite relaxations. It can determine the existence of local saddle points. When there are several different local saddle point values, the algorithm can get them from the smallest one to the largest one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets are generated or analyzed during the study of this article.

References

  1. Adolphs, L., Daneshmand, H., Lucchi, A., Hofmann, T.: Local saddle point optimization: A curvature exploitation approach. Presented at the (2019)

  2. Bai, Z., Golub, G.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27(1), 1–23 (2007)

    Article  MathSciNet  Google Scholar 

  3. Tal, A., Ghaoui, L., Nemirovski, A.: Robust optimization, vol. 28. Princeton University Press (2009)

  4. Benzi, M., Gander, M., Golub, G.: Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT Numer. Math. 43(5), 881–900 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bertsekas, D., Nedic, A., Ozdaglar, A.: Convex Analysis and Optimization. Athena Scientific (2003)

  6. Bochnak, J., Coste, M., Roy, M.: Real algebraic geometry, vol. 36. Springer (1998)

  7. Botchev, M., Golub, G.: A class of nonsymmetric preconditioners for saddle point problems. SIAM J. Matrix Anal. Appl. 27(4), 1125–1149 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems. SIAM J. Optim. 24(4), 1779–1814 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cox, B., Juditsky, A., Nemirovski, A.: Decomposition techniques for bilinear saddle point problems and variational inequalities with affine monotone operators. J. Optim. Theory Appl. 172(2), 402–435 (2017)

    Article  MathSciNet  Google Scholar 

  10. Curto, R., Fialkow, L.: Truncated k-moment problems in several variables. J. Oper. Theory, pp 189–226 (2005)

  11. Dauphin, Y., Pascanu, R., Gulcehre, C., et al.: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In: Advances in Neural Information Processing Systems, pp. 2933–2941 (2014)

  12. Dollar, H., Wathen, A.: Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci. Comput. 27(5), 1555–1572 (2006)

    Article  MathSciNet  Google Scholar 

  13. Elman, H., Golub, G.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    Article  MathSciNet  Google Scholar 

  14. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J. Funct. Anal. 263(6), 1682–1700 (2012)

    Article  MathSciNet  Google Scholar 

  15. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  16. Greif, C., Schötzau, D.: Preconditioners for saddle point linear systems with highly singular \((1,1)\) blocks. ETNA, Special Volume on Saddle Point Problems 22, 114–121 (2006)

    MathSciNet  MATH  Google Scholar 

  17. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  Google Scholar 

  18. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in gloptipoly. In: Positive Polynomials in Control, pp. 293–310. Springer (2005)

  19. Henrion, D., Lasserre, J., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kallio, M., Ruszczynski, A.: Perturbation methods for saddle point computation. (1994)

  21. Klep, I., Schweighofer, M.: Pure states, positive matrix polynomials and sums of Hermitian squares. Indiana Univ. Math. J. 59(3), 857–874 (2010)

    Article  MathSciNet  Google Scholar 

  22. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lasserre, J.: Moments, positive polynomials and their applications, vol. 1. World Scientific (2010)

  24. Lasserre, J., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of zero-dimensional real radical ideals. Found. Comput. Math. 8(5), 607–647 (2008)

    Article  MathSciNet  Google Scholar 

  25. Brown, K., Shoham, Y.: Essentials of game theory: a concise multidisciplinary introduction. Synth. Lect. Artificial Intell. Mach. Learn. 2(1), 1–88 (2008)

    MATH  Google Scholar 

  26. Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matlab. Presented at the (2004)

  27. Mamer, J., Schilling, K.: Finite approximations to a zero-sum game with incomplete information. Int. J. Game Theory 19(1), 101–106 (1990)

    Article  MathSciNet  Google Scholar 

  28. Megahed, A.: A differential game related to terrorism: min-max zero-sum two persons differential game. Neural Comput. Appl. 30(3), 865–870 (2018)

    Article  Google Scholar 

  29. Murty, K., Kabadi, S.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  MathSciNet  Google Scholar 

  30. Nedić, A., Ozdaglar, A.: Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 142(1), 205–228 (2009)

    Article  MathSciNet  Google Scholar 

  31. Nemirovski, A.: Prox-method with rate of convergence \(o(1/t)\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15(1), 229–251 (2004)

    Article  MathSciNet  Google Scholar 

  32. Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Program. 106(3), 587–606 (2006)

    Article  MathSciNet  Google Scholar 

  33. Nie, J.: Certifying convergence of Lasserre’s hierarchy via flat truncation. Math. Program. 142(1–2), 485–510 (2013)

    Article  MathSciNet  Google Scholar 

  34. Nie, J.: An exact Jacobian SDP relaxation for polynomial optimization. Math. Program. 137(1–2), 225–255 (2013)

    Article  MathSciNet  Google Scholar 

  35. Nie, J.: Polynomial optimization with real varieties. SIAM J. Optim. 23(3), 1634–1646 (2013)

    Article  MathSciNet  Google Scholar 

  36. Nie, J.: The hierarchy of local minimums in polynomial optimization. Math. Program. 151(2), 555–583 (2015)

    Article  MathSciNet  Google Scholar 

  37. Nie, J.: Linear optimization with cones of moments and nonnegative polynomials. Math. Program. 153(2), 247–274 (2015)

    Article  MathSciNet  Google Scholar 

  38. Nie, J., Yang, Z., Zhou, G.: The saddle point problem of polynomials. arXiv preprint, p. 1809.01218 (2018)

  39. Pascanu, R., Dauphin, Y., Ganguli, S., Bengio, Y.: On the saddle point problem for non-convex optimization. Presented at the (2014)

  40. Rozlozník, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24(2), 368–391 (2002)

    Article  MathSciNet  Google Scholar 

  41. Singh, S., Kearns, M., Mansour, Y.: Nash convergence of gradient dynamics in general-sum games. In UAI, pp. 541–548 (2000)

  42. Sturm, J.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11(1–4), 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  43. Toh, K., Todd, M., Tütüncü, R.: On the implementation and usage of SDPT3–a matlab software package for semidefinite-quadratic-linear programming, Version 4.0, pp. 715–754, Springer (2012)

  44. Vasilyev, F., Khoroshilova, E., Antipin, A.: An extragradient method for finding the saddle point in an optimal control problem. Mosc. Univ. Comput. Math. Cybern. 34(3), 113–118 (2010)

    Article  Google Scholar 

  45. Zhou, G., Wang, Q., Zhao, W.: Saddle points of rational functions. Comput. Optim. Appl. 75, 817–832 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and anonymous referees for the valuable advice. Wenjie Zhao was supported by Postgraduate Scientific Research Innovation Project of Hunan Province (CX20210605). Guangming Zhou was supported by Natural Science Foundation of China (12071399) and Key Projects of Hunan Provincial Education Department (18A048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhou, G. Local saddle points for unconstrained polynomial optimization. Comput Optim Appl 82, 89–106 (2022). https://doi.org/10.1007/s10589-022-00361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00361-3

Keywords

Mathematics Subject Classification

Navigation