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Abstract
We consider a stochastic version of the proximal point algorithm for convex opti-
mization problems posed on a Hilbert space. A typical application of this is super-
vised learning. While the method is not new, it has not been extensively analyzed 
in this form. Indeed, most related results are confined to the finite-dimensional set-
ting, where error bounds could depend on the dimension of the space. On the other 
hand, the few existing results in the infinite-dimensional setting only prove very 
weak types of convergence, owing to weak assumptions on the problem. In particu-
lar, there are no results that show strong convergence with a rate. In this article, we 
bridge these two worlds by assuming more regularity of the optimization problem, 
which allows us to prove convergence with an (optimal) sub-linear rate also in an 
infinite-dimensional setting. In particular, we assume that the objective function is 
the expected value of a family of convex differentiable functions. While we require 
that the full objective function is strongly convex, we do not assume that its constitu-
ent parts are so. Further, we require that the gradient satisfies a weak local Lipschitz 
continuity property, where the Lipschitz constant may grow polynomially given cer-
tain guarantees on the variance and higher moments near the minimum. We illus-
trate these results by discretizing a concrete infinite-dimensional classification prob-
lem with varying degrees of accuracy.
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1 Introduction

We consider convex optimization problems of the form

where H is a real Hilbert space and

The main applications we have in mind are supervised learning tasks. In such a 
problem, a set of data samples {xj}nj=1 with corresponding labels {yj}nj=1 is given, as 
well as a classifier h depending on the parameters w. The goal is to find w such that 
h(w, xj) ≈ yj for all j ∈ {1,… , n} . This is done by minimizing

where � is a given loss function. We refer to, e.g., Bottou et al. [9] for an overview. 
In order to reduce the computational costs, it has been proved to be useful to split F 
into a collection of functions f of the type

where B� is a random subset of {1,… , n} , referred to as a batch. In particular, the 
case of |B�| = 1 is interesting for applications, as it corresponds to a separation of 
the data into single samples.

A commonly used method for such problems is the stochastic gradient method 
(SGD), given by the iteration

where 𝛼k > 0 denotes a step size, {�k}k∈ℕ is a family of jointly independent random 
variables and ∇ denotes the Gâteaux derivative with respect to the first variable. The 
idea is that in each step we choose a random part f (⋅, �) of F and go in the direction 
of the negative gradient of this function. SGD corresponds to a stochastic version of 
the explicit (forward) Euler scheme applied to the gradient flow

This differential equation is frequently stiff, which means that the method often suf-
fers from stability issues.

The restatement of the problem as a gradient flow suggests that we could avoid such 
stability problems by instead considering a stochastic version of implicit (backward) 
Euler, given by

(1)w∗ = argminw∈HF(w),

F(w) = ��[f (w, �)].

(2)F(w) =
1

n

n∑
j=1

�(h(w, xj), yj),

f (w, �) =
1

|B�|
∑
j∈B�

�(h(w, xj), yj),

wk+1 = wk − �k∇f (w
k, �k),

ẇ = −∇F(w).

wk+1 = wk − �k∇f (w
k+1, �k).
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In the deterministic setting, this method has a long history under the name proximal 
point method, because it is equivalent to

where

The proximal point method has been studied extensively in the infinite dimensional 
but deterministic case, beginning with the work of Rockafellar [28]. Several conver-
gence results and connections to other methods such as the Douglas–Rachford split-
ting are collected in Eckstein and Bertsekas [13], see also Güler [17]. In the strongly 
convex case, the main convergence analysis idea is to observe that the gradient is 
strongly monotone. Then the resolvent (I + �∇F)−1 is a strict contraction, and the 
Banach fixed point theorem shows that {wk}k∈ℕ converges to w∗ in norm.

Following Ryu and Boyd [32], we will refer to the stochastic version as stochastic 
proximal iteration (SPI). We note that the computational cost of one SPI step is in 
general much higher than for SGD, and indeed often infeasible. However, in many 
special cases a clever reformulation can result in very similar costs. If so, then SPI 
should be preferred over SGD, as it will converge more reliably. We provide such an 
example in Sect. 5.

The main goal of this paper is to prove sub-linear convergence of the type

in an infinite-dimensional setting, i.e. where {wk}k∈ℕ and w∗ are elements in a Hil-
bert space H. As shown in e.g. [1, 26], this is optimal in the sense that we cannot 
expect a better asymptotic rate even in the finite-dimensional case.

Most previous convergence results in this setting only provide guarantees for 
convergence, without an explicit error bound. The convergence is usually also in 
a rather weak norm. This is mainly due to weak assumptions on the involved func-
tions and operators. Overall, little work has been done to consider SPI in an infi-
nite dimensional space. A few exceptions are given by Bianchi [7], where maximal 
monotone operators ∇F ∶ H → 2H are considered and weak ergodic convergence 
and norm convergence is proved. In Rosasco et al. [30], the authors work with an 
infinite dimensional setting and an implicit-explicit splitting where ∇F is decom-
posed in a regular and an irregular part. The regular part is considered explicitly but 
with a stochastic approximation while the irregular part is used in a deterministic 
proximal step. They prove both ∇F(wk) → ∇F(w∗) and wk

→ w∗ in H as k → ∞ . 
Without further assumptions, neither of these approaches yield convergence rates.

In the finite-dimensional case, stronger assumptions are typically made, with bet-
ter convergence guarantees as a result. Nevertheless, for the SPI scheme in particu-
lar, we are only aware of the unpublished manuscript [32], which suggests 1∕k con-
vergence in ℝd . Based on [32], the implicit method has also been considered in a few 
other works: In Patrascu and Necoara [24], a SPI method with additional constraints 

wk+1 = argminw∈H

�
�F(w) +

1

2
‖w − wk‖2

�
= prox�F(w

k),

prox�F(w
k) = (I + �∇F)−1wk.

�
�‖wk − w∗‖2� ≤ C

k
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on the domain was studied. A slightly more general setting that includes the SPI has 
been considered in Davis and Drusvyatskiy [12]. Toulis and Airoldi and Toulis et al. 
studied such an implicit scheme in [35–37]. Finally, very recently and during the 
preparation of this work, [20] was published, wherein both SGD and proximal meth-
ods for composite problems are analyzed in a common framework based on bounded 
gradients. This is a generalization of the basic setting in a different direction than 
our work.

Whenever using an implicit scheme, it is essential to solve the appearing implicit 
equation effectively. This can be impeded by large batches for the stochastic approx-
imation of F. On the other hand, a larger batch improves the accuracy of the approx-
imation of the function. In Toulis et al. [39, 40] and Ryu and Yin [33], a compro-
mise was found by solving several implicit problems on small batches and taking the 
average of these results. This corresponds to a sum splitting. Furthermore, implicit-
explicit splittings can be found in Patrascu and Irofti [23], Ryu and Yin [33], Salim 
et al. [34], Bianchi and Hachem [8] and Bertsekas [6]. A few more related schemes 
have been considered in Asi and Duchi [2, 3] and Toulis et al. [38]. More informa-
tion about the complexity of solving these kinds of implicit equations and the cor-
responding implementation can be found in Fagan and Iyengar [16] and Tran et al. 
in [40].

Our aim is to bridge the gap between the “strong finite-dimensional” and “weak 
infinite-dimensional” settings, by extending the approach of  [32] to the infinite-
dimensional case. We also further extend the results by allowing for more general 
Lipschitz conditions on ∇f (⋅, �) , provided that sufficient guarantees can be made on 
the integrability near the minimum w∗ . In particular, we make the less restrictive 
assumption that for every function f (⋅, �) and every ball of radius R > 0 around the 
origin there is a Lipschitz constant L�(R) that grows polynomially with R. We also 
weaken the standard assumption of strong convexity and only demand that the func-
tions are strongly convex for some realizations.

We note that if F is only convex then there might be multiple local minima, and 
proving convergence in norm is in general not possible. On the other hand, if every 
f (⋅, �) is strongly convex then parts of the analysis can be simplified. The assump-
tions made in this article are thus situated between these two extremes, where it is 
still possible to prove convergence results similar to the strongly convex case but 
under milder assumptions.

These strong convergence results can then be applied to, e.g., the setting where 
there is an original infinite-dimensional optimization problem which is subsequently 
discretized into a series of finite-dimensional problems. Given a reasonable discre-
tization, each of those problems will then satisfy the same convergence guarantees.

Our analysis closely follows the finite-dimensional approach [32]. However, sev-
eral arguments no longer work in the infinite-dimensional case (such as the unit ball 
being compact, or a linear operator having a minimal eigenvalue) and we fix those. 
Additionally, we simplify several of the remaining arguments, provide many omit-
ted, but critical, details and extend the results to more general operators.

A brief outline of the paper is as follows. The main assumptions that we make are 
stated in Sect. 2, as well as the main theorem. Then we prove a number of prelimi-
nary results in Sect. 3, before we can tackle the main proof in Sect. 4. In Sect. 5 we 
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describe a numerical experiment that illustrates our results, and then we summarize 
our findings in Sect. 6.

2  Assumptions and main theorem

Let (Ω,F,�) be a complete probability space and let {�k}k∈ℕ be a family of jointly 
independent random variables on Ω . Each realization of �k corresponds to a differ-
ent batch. Let (H, (⋅, ⋅), ‖ ⋅ ‖) be a real Hilbert space and (H∗, (⋅, ⋅)H∗ , ‖ ⋅ ‖H∗ ) its dual. 
Since H is a Hilbert space, there exists an isometric isomorphism � ∶ H∗

→ H such 
that �−1 ∶ H → H∗ with �−1 ∶ u ↦ (u, ⋅) . Furthermore, the dual pairing is denoted by 
⟨u�, u⟩ = u�(u) for u� ∈ H∗ and u ∈ H . It satisfies

We denote the space of linear bounded operators mapping H into H by L(H) . For 
a symmetric operator S, we say that it is positive if (Su, u) ≥ 0 for all u ∈ H . It is 
called strictly positive if (Su, u) > 0 for all u ∈ H such that u ≠ 0.

For the function f (⋅, �) ∶ H × Ω → (−∞,∞] , we use ∇ , as in ∇f (u, �) , to denote 
differentiation with respect to the first variable. When we present an argument that 
holds almost surely, we will frequently omit � from the notation and simply write 
f(u) rather than f (u, �) . Given a random variable X on Ω , we denote the expectation 
with respect to � by �[X] . We use sub-indices, such as in ��[⋅] , to denote expecta-
tions with respect to the probability distribution of the random variable �.

We consider the stochastic proximal iteration (SPI) scheme given by

for minimizing

where f and F fulfill the following assumption.
For the family of jointly independent random variables {�k}k∈ℕ , we are interested 

in the total expectation

Since the random variables {�k}k∈ℕ are jointly independent, and wk only depends on 
�j , j ≤ k − 1 , this expectation coincides with the expectation with respect to the joint 
probability distribution of �1,… , �k−1 . In the rest of the paper, it often occurs that 
a statement does not involve an expectation but contains a random variable. Where 
it does not cause any confusion, such a statement is assumed to hold almost surely 
even if this is not explicitly stated.

Assumption 1 For a random variable � on Ω , let the function 
f (⋅, �) ∶ Ω × H → (−∞,∞] be given such that � ↦ f (v, �(�)) is measurable for 

⟨�−1u, v⟩ = (u, v) and ⟨u�, v⟩ = (�u�, v), u, v ∈ H, u� ∈ H∗.

(3)wk+1 = wk − �k�∇f (w
k+1, �k) in H, w1 = w1 in H,

F(w) = ��[f (w, �)],

�k

�‖X‖2� ∶= ��1

�
��2

�
⋯��k

�‖X‖2�⋯��
.
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every v ∈ H and such that f (⋅, �) is convex, lower semi-continuous and proper 
almost surely. Additionally, f (⋅, �) fulfills the following conditions:

• The expectation ��

[
f (⋅, �)

]
=∶ F(⋅) is lower semi-continuous and proper.

• The function f (⋅, �) is Gâteaux differentiable almost surely on a non-empty 
common domain D(∇f ) ⊆ H , i.e. for all for all v,w ∈ D(∇f ) the inequality 
⟨�∇f (v, �),w⟩ = limh→0

f (v+hw,�)−f (v,�)

h
 is fulfilled almost surely.

• There exists m ∈ ℕ such that 
�
�𝜉

�‖∇f (w∗, 𝜉)‖2m
H∗

��2−m
=∶ 𝜎 < ∞.

• For every R > 0 there exists L�(R) ∶ Ω → ℝ such that 

almost surely for all u, v ∈ D(∇f ) with ‖u‖, ‖v‖ ≤ R . Furthermore, there exists a 
polynomial P ∶ ℝ → ℝ of degree 2m − 2 such that L�(R) ≤ P(R) almost surely.

• There exist a random variable M� ∶ Ω → L(H) such that the image is symmetric 
and a random variable �� ∶ Ω → [0,∞) such that �𝜉[𝜇𝜉] = 𝜇 > 0 and 
�𝜉[𝜇

2

𝜉
] = 𝜈2 < ∞ . Moreover, 

 is fulfilled almost surely for all u, v ∈ D(∇f ).

An immediate result of Assumption  1, is that the gradient ∇f (⋅, �) is maximal 
monotone almost surely, see  [27, Theorem  A]. As a consequence, the resolvent 
(proximal operator)

is well-defined almost surely, see Lemma 1 for more details. Further, each resolvent 
maps into D(∇f ) , and as a consequence every iterate wk ∈ D(∇f ) . Finally, we may 
interchange expectation and differentiation so that ∇F(w) = ��[∇f (�,w)] . Note that 
this means that the approximation ∇f (⋅, �) is an unbiased estimate of the full gra-
dient ∇F . In our case, this property can be shown via a straightforward argument 
based on dominated convergence similar to [32, Lemma 6], but we note that it also 
holds in more general settings [21, 29].

Remark 1 The idea behind the operators M� is that each f (⋅, �) is is allowed to be 
only convex rather than strongly convex. However, they should be strongly convex 
for some realizations, such that f (⋅, �) is strongly convex in expectation. By assump-
tion, F is lower semi-continuous, proper and strongly convex, so there is a minimum 
w∗ of (1) (c.f. [4, Proposition 1.4]) which is unique due to the strong convexity.

Remark 2 Note that the local Lipschitz constant of Assumption 1 is a generalization 
compared to [32] and other existing literature. Instead of asking for one Lipschitz 
constant L� that is valid on the entire domain, we only ask for a Lipschitz constant 
L�(R) that depends on the norm of the input elements u, v ∈ D(∇f ) . This means in 

‖∇f (u, �) − ∇f (v, �)‖H∗ ≤ L�(R)‖u − v‖

⟨∇f (u, �) − ∇f (v, �), u − v⟩ ≥ (M�(u − v), u − v) ≥ ��‖u − v‖2

Tf ,� = (I + ∇f (⋅, �))−1
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particular that L�(R) may tend to infinity as R → ∞ . In the coming analysis we han-
dle this by applying an a priori bound (Lemma  2) that shows that the solution is 
bounded and thus R is bounded too.

While the properness of F needs to be verified by application-specific means, the 
lower semi-continuity can be guaranteed on a more general level in different ways. If, 
e.g., it is additionally known that �𝜉

[
infu∈H f (u, 𝜉)

]
> −∞ then one can employ Fatou’s 

lemma ([22, Theorem 2.3.6]) as in [32, Lemma 5], or slightly modify [5, Corollary 9.4].
We note that from a function analytic point of view, we are dealing with bounded 

rather than unbounded operators ∇F . However, also operators that are traditionally 
seen as unbounded fit into the framework, given that the space H is chosen prop-
erly. For example, the functional F(w) = 1

2
∫ ‖∇w‖2 corresponding to ∇F = −Δ , the 

negative Laplacian, is unbounded on H = L2 . But if we instead choose H = H1
0
 , then 

H∗ = H−1 and ∇F is bounded and Lipschitz continuous. In this case, the splitting of 
F(w) into f (w, �k) is less obvious than in our main application, but e.g. (randomized) 
domain decomposition as in  [25] is a natural idea. In each step, an elliptic problem 
then has to be solved (to apply � ), but this can often be done very efficiently.

Our main theorem states that we have sub-linear convergence of the iterates wk to 
w∗ in expectation:

Theorem 1 Let Assumption 1 be fulfilled and let {�k}k∈ℕ be a family of jointly inde-
pendent random variables on Ω . Then the scheme (3) converges sub-linearly if the 
step sizes fulfill �k =

�

k
 with 𝜂 >

1

𝜇
 . In particular, the error bound

is fulfilled, where C depends on ‖w1 − w∗‖ , � , � , � , � and m.

When m = 1 , there is a L such that L�(R) ≤ L almost surely for all R and we have 
the explicit bound

For details on the error constant when m > 1 , we refer the reader to the proof, which 
is given in Sect. 4. We note that there is no upper bound on the step size �k , as would 
be the case for an explicit method like SGD. There is still a lower bound, but this is 
not as critical. Similarly to the finite-dimensional case (see e.g. [32, Theorem 15]), 
the method still converges if the assumption 𝜂 >

1

𝜇
 is not fulfilled, albeit at a slower 

rate O(1∕k� ) with 𝛾 < 1 . This follows from a straightforward extension of Lemma 10 
and the above theorem, but we omit these details for brevity. Moreover, we note that 
the exponential terms in the error constant are an artifact of the proof. They are not 
observed in practice and could likely be removed by the use of more refined alge-
braic inequalities.

�k−1

�‖wk − w∗‖2� ≤ C

k

C =

⎛⎜⎜⎝
‖w1 − w∗‖2 + 2���2

�� − 1

⎛⎜⎜⎝
�2 + 2L�

�
‖w1 − w∗‖2 + �2

k−1�
j=1

�2
j

� 1

2 ⎞⎟⎟⎠

⎞⎟⎟⎠
exp

�
�2�2�2

4

�
.
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The main idea of the proof is to acquire a contraction property of the form

where Ck < 1 and D are certain constants depending on the data. Inevitably, Ck → 1 
as k → ∞ , but because of the chosen step size sequence this happens slowly enough 
to still guarantee the optimal rate. To reach this point, we first show two things: 
First, an a priori bound of the form �k−1

�‖wk − w∗‖2� ≤ C , i.e. unlike the SGD, the 
SPI is always stable regardless of how large the step size is. Secondly, that the resol-
vents Tf ,� are contractive with

Similarly to [32], we do the latter by approximating the functions f (⋅, �) by convex 
quadratic functions f̃ (⋅, 𝜉) for which the property is easier to verify, and then estab-
lishing a relation between the approximated and the true contraction factors. The 
series of lemmas in the next section is devoted to this preparatory work.

3  Preliminaries

First, let us show that the scheme is in fact well-defined, in the sense that every iter-
ate is measurable if the random variables {�k}k∈ℕ are.

Lemma 1 Let Assumption 1 be fulfilled. Further, let {�k}k∈ℕ be a family of jointly 
independent random variables. Then for every k ∈ ℕ there exists a unique mapping 
wk+1 ∶ Ω → D(∇f ) that fulfills (3) and is measurable with respect to the �-algebra 
generated by �1,… , �k.

Proof We define the mapping

For almost all � ∈ Ω , the mapping f (⋅, �k(�)) is lower semi-continuous, proper and 
convex. Thus, by [27, Theorem A] ∇f (⋅, �k(�)) is maximal monotone. By [4, Theo-
rem 2.2], this shows that the operator �−1 + �k∇f (⋅, �

k(�)) ∶ D(∇f ) → H∗ is surjec-
tive. Note that the two previously cited results are stated for multi-valued operators. 
As we are in a more regular setting, the sub-differential of f (⋅, �k(�)) only consists 
of a single element at each point. Therefore, it is possible to apply these multi-val-
ued results also in our setting and interpret the appearing operators as single-valued. 
Furthermore, due to the monotonicity of ∇f (⋅, �k(�)) it follows that for u, v ∈ D(∇f )

�k−1

�‖wk − w∗‖2� ≤ Ck�k−2

�‖wk−1 − w∗‖2� + �2
k
D,

��

�‖Tf ,�u − Tf ,�v‖2
�
≤ Ck‖u − v‖2.

h ∶ D(∇f ) × Ω → H, (u,�) ↦ wk − (I + �k�∇f (⋅, �
k(�)))u.
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which implies

This verifies that I + �k�∇f (⋅, �
k(�)) is injective. As we have proved that the operator 

is both injective and surjective, it is, in particular, bijective. Therefore, there exists a 
unique element wk+1(�) such that

We can now apply [14, Lemma  2.1.4] or [15, Lemma   4.3] and obtain that 
� ↦ wk+1(�) is measurable.   ◻

Proving that the scheme is always stable is relatively straightforward, as 
shown in the next lemma. With some extra effort, we also get stability in stronger 
norms, i.e. we can bound not only �k

�‖wk+1 − w∗‖2� but also higher moments 
�k

�‖wk+1 − w∗‖2m� , m ∈ ℕ . This will be important since we only have the weaker 
local Lipschitz continuity stated in Assumption 1 rather than global Lipschitz con-
tinuity. The idea of the proof stems from a standard technique mostly applied in 
the field of evolution equations in a variational framework, compare for example 
[31, Lemma 8.6]. The main difficulty is to incorporate the stochastic gradient in the 
presentation.

Lemma 2 Let Assumption 1 be fulfilled, and suppose that 
∑∞

k=1
𝛼2

k
< ∞ . Then there 

exists a constant D ≥ 0 depending only on ‖w1 − w∗‖ , ∑∞

k=1
�2
k
 and � , such that

for all k ∈ ℕ.

Proof Within the proof, we abbreviate the function f (⋅, �k) by fk , k ∈ ℕ . First, we 
consider the case m = 1 . Recall the identity (a − b, a) =

1

2

�‖a‖2 − ‖b‖2 + ‖a − b‖2� , 
a, b ∈ H . We write the scheme as

subtract �k�∇fk(w∗) from both sides, multiply by two and test it with wk+1 − w∗ to 
obtain

⟨��−1 + �k∇f (⋅, �
k(�))

�
u −

�
�−1 + �k∇f (⋅, �

k(�))
�
v, u − v⟩ ≥ ‖u − v‖2

���
�
�−1 + �k∇f (⋅, �

k(�))
�
u −

�
�−1 + �k∇f (⋅, �

k(�))
�
v
��� ≥ ‖u − v‖.

h(wk+1(�),�) = wk − (I + �k�∇f (⋅, �
k(�)))wk+1(�) = 0.

�k

�‖wk+1 − w∗‖2m� ≤ D

wk+1 − wk + �k�∇fk(w
k+1) = 0,
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For the right-hand side, we have by Young’s inequality that

Together with the monotonicity condition, it then follows that

Since wk − w∗ is independent of �k and ��k [∇fk(w
∗)] = ∇F(w∗) = 0 , taking the 

expectation ��k thus leads to the following bound:

Repeating this argument, we obtain that

In order to find the higher moment bound, we recall (4). We then follow a similar 
idea as in [10, Lemma 3.1], where we multiply this inequality with ‖wk+1 − w∗‖2 
and use the identity (a − b)a =

1

2

(|a|2 − |b|2 + |a − b|2) for a, b ∈ ℝ . It then follows 
that

Applying Young’s inequality to the first and fourth term of the previous row then 
implies that

‖wk+1 − w∗‖2 − ‖wk − w∗‖2 + ‖wk+1 − wk‖2
+ 2�k(�∇fk(w

k+1) − �∇fk(w
∗),wk+1 − w∗)

= −2�k(�∇fk(w
∗),wk+1 − w∗).

− 2�k(�∇fk(w
∗),wk+1 − w∗)

= −2�k⟨∇fk(w∗),wk+1 − wk⟩ − 2�k⟨∇fk(w∗),wk − w∗⟩
≤ 2�k‖∇fk(w∗)‖H∗‖wk+1 − wk‖ − 2�k⟨∇fk(w∗),wk − w∗⟩
≤ �2

k
‖∇fk(w∗)‖2

H∗ + ‖wk+1 − wk‖2 − 2�k⟨∇fk(w∗),wk − w∗⟩.

(4)‖wk+1 − w∗‖2 − ‖wk − w∗‖2 ≤ �2
k
‖∇fk(w∗)‖2

H∗ − 2�k⟨∇fk(w∗),wk − w∗⟩.

��k

�‖wk+1 − w∗‖2� ≤ ‖wk − w∗‖2 + �2
k
�2.

(5)�k

�‖wk+1 − w∗‖2� ≤ ‖w1 − w∗‖2 + �2

k�
j=1

�2
j
.

‖wk+1 − w∗‖4 − ‖wk − w∗‖4 + ���‖w
k+1 − w∗‖2 − ‖wk − w∗‖2���

2

≤
�
�2
k
‖∇fk(w∗)‖2

H∗ − 2�k⟨∇fk(w∗),wk − w∗⟩�‖wk+1 − w∗‖2
≤
�
�2
k
‖∇fk(w∗)‖2

H∗ − 2�k⟨∇fk(w∗),wk − w∗⟩�

×
�‖wk − w∗‖2 + �2

k
‖∇fk(w∗)‖2

H∗ − 2�k⟨∇fk(w∗),wk − w∗⟩�

≤ �2
k
‖wk − w∗‖2‖∇fk(w∗)‖2

H∗ − 2�k‖wk − w∗‖2⟨∇fk(w∗),wk − w∗⟩
+ �4

k
‖∇fk(w∗)‖4

H∗ − 4�3
k
‖∇fk(w∗)‖2

H∗⟨∇fk(w∗),wk − w∗⟩
+ 4�2

k

�⟨∇fk(w∗),wk − w∗⟩�2.
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Summing up from j = 1 to k and taking the expectation �k , yields

We then apply the discrete Grönwall inequality for sums (see, e.g., [11]) which 
shows that

For the next higher bound �k

�‖wk+1 − w∗‖8� , we recall that

which we can multiply with ‖wk+1 − w∗‖4 in order to follow the same strategy as 
before. Following this approach, we find bounds for �k

�‖wk+1 − w∗‖2m� recursively 
for all m ∈ ℕ .   ◻

Remark 3 In particular, Lemma 2 implies that there exists a constant D depending 
on ‖w1 − w∗‖ , ∑∞

k=1
�2
k
 and � such that

‖wk+1 − w∗‖4 − ‖wk − w∗‖4

≤
�2
k

2
‖wk − w∗‖4 − 2�k‖wk − w∗‖2⟨∇fk(w∗),wk − w∗⟩

+

�
3�4

k
+

�2
k

2

�
‖∇fk(w∗)‖4

H∗ + 6�2
k
‖∇fk(w∗)‖2

H∗‖wk − w∗‖2

≤
�2
k

2
‖wk − w∗‖4 − 2�k‖wk − w∗‖2⟨∇fk(w∗),wk − w∗⟩

+

�
3�4

k
+

�2
k

2

�
‖∇fk(w∗)‖4

H∗ + 3�2
k
‖∇fk(w∗)‖4

H∗ + 3�2
k
‖wk − w∗‖4

≤
7�2

k

2
‖wk − w∗‖4 − 2�k‖wk − w∗‖2⟨∇fk(w∗),wk − w∗⟩

+

�
3�4

k
+

7�2
k

2

�
‖∇fk(w∗)‖4

H∗ .

�k

�‖wk+1 − w∗‖4�

≤ ‖w1 − w∗‖4 +
k�

j=1

7�2
j

2
�j−1

�‖wj − w∗‖4� + �4

k�
j=1

�
3�4

j
+

7�2
j

2

�
.

�k

�‖wk+1 − w∗‖4� ≤
�
‖w1 − w∗‖4 + �4

k�
j=1

�
3�4

j
+

7�2
j

2

��
exp

�
7

2

k�
j=1

�2
j

�
.

‖wk+1 − w∗‖4 − ‖wk − w∗‖4

≤
7�2

k

2
‖wk − w∗‖4 − 2�k‖wk − w∗‖2⟨∇fk(w∗),wk − w∗⟩

+

�
3�4

k
+

7�2
k

2

�
‖∇fk(w∗)‖4

H∗ ,
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for all p ≤ 2m and k ∈ ℕ . Further, comparing (5)

to the corresponding bound for the SGD

indicates that the SPI has a smaller a priori bound than the SGD. This bound plays a 
crucial part in the error constant in the convergence proof of Theorem 1. In practice 
one would expect the terms ��i

�‖∇f (w∗, �i)‖2� to be significantly smaller than 
�i

�‖∇fi(wi, �i)‖2� if the variance of ∇f (⋅, �i) is small. Note that since we assume that 
we have an unbiased estimate, the variance is given by 
��i

�
‖∇f (w, �i)‖2

�
− ‖��i

�
∇f (w, �i)

�‖2 = ��i

�
‖∇f (w, �i)‖2

�
.

Following Ryu and Boyd [32], we now introduce the function 
f̃ (⋅, 𝜉) ∶ H × Ω → (−∞,∞] given by

where u0 ∈ D(∇f ) is a fixed parameter. This mapping is a convex approximation of 
f. Furthermore, we define the function r̃(⋅, 𝜉) ∶ H × Ω → (−∞,∞] given by

Their gradients ∇f̃ (⋅, 𝜉) ∶ H × Ω → H∗ and ∇r̃(⋅, 𝜉) ∶ D(∇f ) × Ω → H∗ can be 
stated as

almost surely. In the following lemma, we collect some standard properties of these 
operators.

Lemma 3 The function r̃(⋅, 𝜉) defined in (7) is convex almost surely, i.e., it fulfills 
r̃(u, 𝜉) ≥ r̃(v, 𝜉) + ⟨∇r̃(v, 𝜉), u − v⟩ for all u, v ∈ D(∇f ) almost surely. As a conse-
quence, the gradient ∇r̃(⋅, 𝜉) is monotone almost surely.

Proof In the following proof, let us omit � for simplicity and let u, v ∈ D(∇f ) be 
given. Due to the monotonicity property of ∇f  stated in Assumption 1, it follows 
that

�k

�‖wk+1 − w∗‖p� ≤ D

�k

�‖wk+1 − w∗‖2� ≤ ‖w1 − w∗‖ +

k�
i=1

�2

i
��i

�‖∇f (w∗, �i)‖2�,

�k

�‖wk+1 − w∗‖2� ≤ ‖w1 − w∗‖ +

k�
i=1

�2
i
�i

�‖∇f (wi, �i)‖2�,

(6)f̃ (u, 𝜉) = f (u0, 𝜉) + ⟨∇f (u0, 𝜉), u − u0⟩ + 1

2
(M𝜉(u − u0), u − u0),

(7)r̃(u, 𝜉) = f (u, 𝜉) − f̃ (u, 𝜉).

∇f̃ (u, 𝜉) = ∇f (u0, 𝜉) + (M𝜉(u − u0), ⋅), u ∈ H,

∇r̃(u, 𝜉) = ∇f (u, 𝜉) − ∇f (u0, 𝜉) − (M𝜉(u − u0), ⋅), u ∈ D(∇f )
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For the function f̃  we can write

All further derivatives are zero. Thus, we can use a Taylor expansion around v to 
write

It then follows that

By [41, Proposition 25.10], it follows that ∇r̃ is monotone.   ◻

The following lemma demonstrates that the resolvents Tf̃ ,𝜉 and certain pertur-
bations of them are well-defined. Furthermore, we will provide a more explicit 
formula for such resolvents. A comparable result is mentioned in [32, page 10], 
we include a proof for the sake of completeness.

Lemma 4 Let Assumption 1 be fulfilled and let f̃ (⋅, 𝜉) be defined as in (6). Then the 
operator

is well-defined. If a function r(⋅, �) ∶ H × Ω → (−∞,∞] is Gâteaux differentiable 
with the common domain D(∇r) = D(∇f ) , lower semi-continuous, convex and 
proper almost surely, then

is well-defined.

If there exist Q� ∶ D(∇f ) × Ω → H∗ and z� ∶ Ω → H∗ such that 
∇r(u, �) = Q�u + z� then the resolvent can be represented by

f (u) ≥ f (v) + ⟨∇f (v), u − v⟩ + 1

2
(M(u − v), u − v).

f̃ (u) = f (u0) + ⟨∇f (u0), u − u0⟩ + 1

2
(M(u − u0), u − u0),

∇f̃ (u) = ∇f (u0) + (M(u − u0), ⋅) and ∇2 f̃ (u) = M.

f̃ (u) = f̃ (v) + ⟨∇f̃ (v), u − v⟩ + 1

2
(M(u − v), u − v).

r̃(u) ≥ f (v) + ⟨∇f (v), u − v⟩ + 1

2
(M(u − v), u − v)

−
�
f̃ (v) + ⟨∇f̃ (v), u − v⟩ + 1

2
(M(u − v), u − v)

�

= r̃(v) + ⟨∇r̃(v), u − v⟩.

Tf̃ ,𝜉 = (I + 𝜄∇f̃ (⋅, 𝜉))−1 ∶ H × Ω → H

Tf̃+r,𝜉 = (I + 𝜄∇f̃ (⋅, 𝜉) + 𝜄∇r(⋅, 𝜉))−1 ∶ H × Ω → D(∇f )

Tf̃+r,𝜉u = (I +M𝜉 + 𝜄Q𝜉)
−1
(
u − 𝜄∇f (u0, 𝜉) +M𝜉u0 − 𝜄z𝜉

)
.
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Proof For simplicity, let us omit � again. In order to prove that Tf̃  and Tf̃+r are well-
defined, we can apply [27, Theorem  A] and [4, Theorem  2.2] analogously to the 
argumentation in the proof of Lemma 1.

Assuming that ∇r(u) = Qu + z , we find an explicit representation for Tf̃+r . To this 
end, for v ∈ H , consider

Then it follows that

Rearranging the terms, yields

  ◻

Next, we will show that the contraction factors of Tf ,� and Tf̃ ,𝜉 are related. For 
this, we need the following basic identities and some stronger inequalities that 
hold for symmetric positive operators on H. These results are fairly standard and 
similar statements can be found in [32, Lemma 9 and Lemma 10]. For the sake 
of completeness, we provide an alternative proof that is better adapted to our 
notation.

Lemma 5 Let Assumption 1 be satisfied and let f̃ (⋅, 𝜉) and r̃(⋅, 𝜉) be given as in (6) 
and (7), respectively. Then the identities

are fulfilled almost surely.

Proof By the definition of Tf ,� , we have that

from which the first claim follows immediately. The second identity then follows 
from

  ◻

As a consequence of Lemma 5 we have the following basic inequalities:

Lemma 6 Let Assumption 1 be satisfied. It then follows that

(I + 𝜄∇f̃ + 𝜄∇r)−1v = Tf̃+rv =∶ u ∈ D(∇f ).

v = (I + 𝜄∇f̃ + 𝜄∇r)u = (I +M + 𝜄Q)u + 𝜄∇f (u0) −Mu0 + 𝜄z.

Tf̃+rv = (I +M + 𝜄Q)−1
(
v − 𝜄∇f (u0) +Mu0 − 𝜄z

)
.

𝜄∇f (Tf ,𝜉 , 𝜉) = I − Tf ,𝜉 and 𝜄∇f̃ (Tf ,𝜉 , 𝜉) + Tf ,𝜉 − I = −𝜄∇r̃(Tf ,𝜉 , 𝜉)

Tf ,� + �∇f (Tf ,� , �) = (I + �∇f (⋅, �))Tf ,� = I,

𝜄∇f̃ (Tf ,𝜉 , 𝜉) + Tf ,𝜉 − I = 𝜄∇f̃ (Tf ,𝜉 , 𝜉) − 𝜄∇f (Tf ,𝜉 , 𝜉) = −𝜄∇r̃(Tf ,𝜉 , 𝜉).

‖Tf ,�u − u‖ ≤ ‖∇f (u, �)‖H∗
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almost surely for every u ∈ D(∇f ) . Additionally, if for R > 0 the bound 
‖u‖ + ‖∇f (u, �)‖ ≤ R holds true almost surely, then

is fulfilled almost surely.

Proof In order to shorten the notation, we omit the � in the following proof and let 
u be in D(∇f ) . For the first inequality, we note that since ∇f  is monotone, we have

Thus, by the first identity in Lemma 5, it follows that

But by the Cauchy-Schwarz inequality, we also have

which in combination with the previous inequality proves the first claim.
The second inequality follows from the first part of this lemma. Because

both u and Tf u are in a ball of radius R. Thus, we obtain

Lemma 7 Let Q, S ∈ L(H) be symmetric operators. Then the following holds:

• If Q is invertible and S and Q−1 are strictly positive, then (Q + S)−1 < Q−1 . If S 
is only positive, then (Q + S)−1 ≤ Q−1.

• If Q is a positive and contractive operator, i.e. ‖Qu‖ ≤ ‖u‖ for all u ∈ H , then 
it follows that ‖Qu‖2 ≤ (Qu, u) for all u ∈ H.

• If Q is a strongly positive invertible operator, such that there exists 𝛽 > 0 with 
(Qu, u) ≥ �‖u‖2 for all u ∈ H , then ‖Qu‖ ≥ �‖u‖ for all u ∈ H and ‖Q−1‖L(H) ≤

1

�
.

Proof We start by expressing (Q + S)−1 in terms of Q−1 and S, similar to the Sher-
man-Morrison-Woodbury formula for matrices [18]. First observe that the operator 
(I + Q−1S)−1 ∈ L(H) by e.g. [19, Lemma 2A.1]. Then, since

‖�−1(Tf ,�u − u) + ∇f (u, �)‖H∗ ≤ L�(R)‖∇f (u, �)‖H∗

⟨∇f (Tf u) − ∇f (u), Tf u − u⟩ ≥ 0.

⟨−∇f (u), Tf u − u⟩ = ⟨∇f (Tf u) − ∇f (u), Tf u − u⟩ − ⟨∇f (Tf u), Tf u − u⟩
≥ ⟨�−1(Tf u − u), Tf u − u⟩
= (Tf u − u, Tf u − u) = ‖Tf u − u‖2.

⟨−∇f (u), Tf u − u⟩ ≤ ‖∇f (u)‖H∗‖Tf u − u‖,

‖Tf u‖ ≤ ‖Tf u − u‖ + ‖u‖ ≤ ‖∇f (u)‖H∗ + ‖u‖,

‖�−1(Tf u − u) + ∇f (u)‖H∗ = ‖∇f (u) − ∇f (Tf u)‖H∗

≤ L(R)‖u − Tf u‖ ≤ L(R)‖∇f (u)‖H∗ .
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and

we find that

Since Q−1 is symmetric, we see that (Q + S)−1 < Q−1 if and only if S
(
I + Q−1S

)−1 
is strictly positive. But this is true, as we see from the change of variables 
z = (I + Q−1S)−1u . Because then

for any u ∈ H , u ≠ 0 , since S and Q−1 are strictly positive. If S is only positive, it fol-
lows analogously that 

(
S
(
I + Q−1S

)−1
u, u

)
≥ 0.

In order to prove the second statement, we use the fact that there exists a unique 
symmetric and positive square root Q1∕2 ∈ L(H) such that Q = Q

1∕2Q
1∕2 . Since 

‖Q‖ = supx∈H(Qx, x) = supx∈H(Q
1

2 x,Q
1

2 x) = ‖Q1∕2‖2 , also Q1∕2 is contractive. Thus, 
it follows that

Now, we prove the third statement. First we notice that (Qu, u) ≥ �‖u‖2 and 
(Qu, u) ≤ ‖Qu‖‖u‖ imply that ‖Qu‖ ≥ �‖u‖ for all u ∈ H . Substituting v = Q−1u , 
then shows ‖v‖ ≥ �‖Q−1v‖ , which proves the final claim.   ◻

The previous lemma now allows us to extend [32, Theorem 10], which we have 
reformulated and restructured to match our setting. It relates the contraction fac-
tors of the true and approximated operators.

Lemma 8 Let Assumption 1 be fulfilled and let f̃ (⋅, 𝜉) be given as in (6). Then

holds for every u, v ∈ H.

(
Q−1 − Q−1S

(
I + Q−1S

)−1
Q−1

)
(Q + S)

= I + Q−1S − Q−1S
(
I + Q−1S

)−1(
I + Q−1S

)
= I

(Q + S)
(
Q−1 − Q−1S

(
I + Q−1S

)−1
Q−1

)

= I + SQ−1 − S
(
I + Q−1S

)(
I + Q−1S

)−1
Q−1 = I,

(Q + S)−1 = Q−1 − Q−1S
(
I + Q−1S

)−1
Q−1.

(
S
(
I + Q−1S

)−1
u, u

)
=
(
Sz, z + Q−1Sz

)
= (Sz, z) +

(
Q−1Sz, Sz

)
> 0

‖Qu‖2 = ‖Q1∕2Q
1∕2u‖2 ≤ ‖Q1∕2u‖2 = (Q

1∕2u,Q
1∕2u) = (Qu, u).

�𝜉

�‖Tf ,𝜉u − Tf ,𝜉v‖2
‖u − v‖2

�
≤

�
�𝜉

�‖Tf̃ ,𝜉u − Tf̃ ,𝜉v‖2
‖u − v‖2

��1∕2
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Proof For better readability, we once again omit � where there is no risk of con-
fusion. For u, v ∈ D(∇f ) with u ≠ v and 𝜀 > 0 , we approximate the function r̃(⋅, 𝜉) 
defined in (7) by

where

As we can write

r̃𝜀 is well-defined. The derivative is given by ∇r̃𝜀(⋅, 𝜉) ∶ H × Ω → H∗,

This function ∇r̃𝜀 is an interpolation between the points

Furthermore, since Tf̃+r̃𝜀 = (I + 𝜄∇f̃ + 𝜄∇r̃𝜀)
−1 , it follows that

and therefore

Applying Lemma 5, we find that

r̃𝜀(⋅, 𝜉) ∶ H × Ω → (−∞,∞], r̃𝜀(z, 𝜉) = ⟨∇r̃(Tf u, 𝜉), z⟩ +
�⟨v𝜀, z − Tf u⟩

�2
2a𝜀

,

v𝜀 = −∇r̃(Tf u) + ∇r̃(Tf v) + 𝜀𝜄−1(Tf v − Tf u) ∈ H and a𝜀 = ⟨v𝜀, Tf v − Tf u⟩.

a𝜀 = ⟨−∇r̃(Tf u) + ∇r̃(Tf v) + 𝜀𝜄−1(Tf v − Tf u), Tf v − Tf u⟩
= ⟨∇r̃(Tf u) − ∇r̃(Tf v),Tf u − Tf v⟩ + 𝜀(Tf v − Tf u, Tf v − Tf u)

≥ 𝜀‖Tf v − Tf u‖2 > 0,

∇r̃𝜀(z) = ∇r̃(Tf u) +
⟨v𝜀, z − Tf u⟩

a𝜀
v𝜀 =

⟨v𝜀, z⟩
a𝜀

v𝜀 + ∇r̃(Tf u) −
⟨v𝜀, Tf u⟩

a𝜀
v𝜀.

∇r̃𝜀(Tf u) = ∇r̃(Tf u) and

∇r̃𝜀(Tf v) = ∇r̃(Tf u) +
⟨v𝜀, Tf v − Tf u⟩

a𝜀
v𝜀

= ∇r̃(Tf u) +
⟨v𝜀, Tf v − Tf u⟩
⟨v𝜀, Tf v − Tf u⟩ v𝜀

= ∇r̃(Tf u) − ∇r̃(Tf u) + ∇r̃(Tf v) + 𝜀𝜄−1(Tf v − Tf u)

= ∇r̃(Tf v) + 𝜀𝜄−1(Tf v − Tf u).

(I + 𝜄∇f̃ + 𝜄∇r̃𝜀)Tf u = Tf u + 𝜄∇f̃ (Tf u) + 𝜄∇r̃(Tf u)

= Tf u + 𝜄∇f (Tf u) = (I + 𝜄∇f )Tf u = u,

Tf u = (I + 𝜄∇f̃ + 𝜄∇r̃𝜀)
−1u = Tf̃+r̃𝜀u.
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This shows that

Using the explicit representation of Tf̃+r̃𝜀 from Lemma 4, it follows that

Therefore, we have

since

means that we can apply Lemma  7. Thus, this shows that Tf u = Tf+r̃𝜀u and 
Tf v = lim𝜀→0 Tf̃+r̃𝜀v . Further, we can state an explicit representation for Tf̃  using 
Lemma 4 given by

For n =
u−v

‖u−v‖ with ‖n‖ = 1 , we obtain using Lemma 7

(I + 𝜄∇f̃ + 𝜄∇r̃𝜀)Tf v

= Tf v + 𝜄∇f̃ (Tf v) + 𝜄∇r̃(Tf v) + 𝜀(Tf v − Tf u)

= Tf v + 𝜄∇f (Tf v) + 𝜀(Tf v − Tf u) = v + 𝜀(Tf v − Tf u).

(8)Tf v = (I + 𝜄∇f̃ + 𝜄∇r̃𝜀)
−1(v + 𝜀(Tf v − Tf u)) = Tf̃+r̃𝜀(v + 𝜀(Tf v − Tf u)).

Tf̃+r̃𝜀z =

�
I +M + 𝜄

�⟨v𝜀, ⋅⟩
a𝜀

v𝜀

��−1�
z − 𝜄∇f (u0) +Mu0 − 𝜄

�
∇r̃(Tf u) −

⟨v𝜀, Tf u⟩
a𝜀

v𝜀

��
.

‖Tf̃+r̃𝜀v − Tf̃+r̃𝜀 (v + 𝜀(Tf v − Tf u))‖

≤
�����

�
I +M + 𝜄

�⟨v𝜀, ⋅⟩
a𝜀

v𝜀

��−1�����L(H)

‖v − v − 𝜀(Tf v − Tf u)‖

≤ 𝜀‖Tf v − Tf u‖ → 0 as 𝜀 → 0,

��
I +M + �

�⟨v�, ⋅⟩
a�

v�

��
u, u

�
≥ ‖u‖2

Tf̃ z = (I + 𝜄∇f̃ )−1z = (I +M)−1
(
z − 𝜄∇f (u0) +Mu0

)
.

‖Tf̃ u − Tf̃ v‖
‖u − v‖ = ‖(I +M)−1n‖

≥ ((I +M)−1n, n)

≥

��
I +M + 𝜄

�⟨v𝜀, ⋅⟩
a𝜀

v𝜀

��−1

n, n

�

≥
�����

�
I +M + 𝜄

�⟨v𝜀, ⋅⟩
a𝜀

v𝜀

��−1

n
�����

2

=
‖Tf̃+r̃𝜀u − Tf̃+r̃𝜀v‖2

‖u − v‖2 →

‖Tf u − Tf v‖2
‖u − v‖2 as 𝜀 → 0.
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Finally, as �𝜉

�‖Tf̃ u−Tf̃ v‖
‖u−v‖

�
 is finite, we can apply the dominated convergence theorem 

to obtain that

  ◻

After having established a connection between the contraction properties of 
Tf ,� and Tf̃ ,𝜉 , the next step is to provide a concrete result for the contraction factor 
of Tf̃ ,𝜉 . Applying Lemma 4, we can express this resolvent in terms of M� , which 
is easier to handle due to its linearity. The following lemma extends [32, Theo-
rem  11]. As we are in an infinite dimensional setting, we can no longer argue 
using the smallest eigenvalue of an operator. This proof instead uses the convex-
ity parameters directly. Moreover, we provide an explicit, non-asymptotic, bound 
for the contraction constant.

Lemma 9 Let Assumption 1 be satisfied and let f̃ (⋅, 𝜉) be given as in (6). Then for 
u, v ∈ H and 𝛼 > 0,

is fulfilled. Furthermore, it follows that

Proof Due to the explicit representation of T𝛼f̃ ,𝜉 stated in Lemma 4, we find that

for u, v ∈ H . As u − v does not depend on Ω , it follows that

Thus, we have reduced the problem to a question about “how contractive” the resol-
vent of M� is in expectation. We note that for any u ∈ H , we have

Due to Lemma 7 it follows that

�𝜉

�‖Tf u − Tf v‖2
‖u − v‖2

�
≤ �𝜉

�‖Tf̃ u − Tf̃ v‖
‖u − v‖

�
≤

�
�𝜉

�‖Tf̃ u − Tf̃ v‖2
‖u − v‖2

�� 1

2

.

�𝜉

�‖T𝛼f̃ ,𝜉u − T𝛼f̃ ,𝜉v‖2
�
< �𝜉

�
‖(I + 𝛼M𝜉)

−1‖2
L(H)

�
‖u − v‖2

�𝜉

�
‖(I + 𝛼M𝜉)

−1‖2
L(H)

�
< 1 − 2𝜇𝛼 + 3𝜈2𝛼2.

T𝛼f̃ ,𝜉u − T𝛼f̃ ,𝜉v = (I + 𝛼M𝜉)
−1(u − v)

��

�‖(I + �M�)
−1(u − v)‖2� ≤ ��

�
‖(I + �M�)

−1‖2
L(H)

�
‖u − v‖2.

((I + �M�)u, u) ≥ (1 + ���)‖u‖2.

‖(I + �M�)
−1‖2

L(H)
≤ (1 + ���)

−2.
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The right-hand-side bound is a C2(−
1

��

,∞)-function with respect to � or even a 
C2(ℝ)-function if �� = 0 . By a second-order expansion in a Taylor series we can 
therefore conclude that

Combining these results, we obtain

  ◻

Finally, the proof of the main theorem relies on iterating the step-wise bounds aris-
ing from the contraction properties of the resolvents which we just established. This 
leads to certain products of the contraction factors. The following algebraic inequalities 
show that these are bounded in the desired way. While this type of result has been stated 
previously for first-order polynomials in 1/j (see e.g. [24, Theorem 14]), we prove here 
a particular version for second-order polynomials that matches the approximation of 
the contraction factor stated in Lemma 9.

Lemma 10 Let C1,C2 > 0 , p > 0 and r ≥ 0 satisfy C1p > r and 4C2 ≥ C2
1
 . Then the 

following inequalities are satisfied: 

 (i) 
∏k

j=1

�
1 −

C1

j
+

C2

j2

�p

≤ exp
�

C2p�
2

6

�
(k + 1)−C1p,

 (ii) 
∑k

j=1

1

j1+r

∏k

i=j+1

�
1 −

C1

i
+

C2

i2

�p

≤ 2C1pexp
�

C2p�
2

6

�
1

C1p−r
(k + 1)−r.

Proof The proof relies on the trivial inequality 1 + u ≤ eu for u ≥ −1 and the follow-
ing two basic inequalities involving (generalized) harmonic numbers

The first one follows quickly by treating the sum as a lower Riemann sum approxi-
mating the integral ∫ k+1

m
u−1 du . The second one can be proved analogously by 

approximating the integral ∫ k+1

0
uC−1 du with an upper ( C < 1 ) or lower ( C > 1 ) Rie-

mann sum.
The condition 4C2 ≥ C2

1
 implies that all the factors in the product (i) are positive. 

We therefore have that 0 ≤ 1 −
C1

j
+

C2

j2
≤ exp

(
−

C1

j

)
exp

(C2

j2

)
 . Thus, it follows that

‖(I + �M�)
−1‖2

L(H)
≤ 1 − 2��� + 3�2

�
�2.

��

�
‖(I + �M�)

−1‖2
L(H)

�
≤ ��

�
1 − 2��� + 3�2

�
�2
�
= 1 − 2�� + 3�2�2.

ln (k + 1) − ln (m) ≤
k∑

i=m

1

i
and

k∑
i=1

iC−1 ≤
1

C
(k + 1)C.
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from which the first claim follows directly. For the second claim, we similarly have

where the latter sum can be bounded by

The final inequality is where we needed C1p > r , in order to have something better 
than j−1 in the sum.   ◻

4  Proof of main theorem

Using the lemmas presented in the previous section, we are now in a position to 
prove Theorem 1. Compared to the earlier results in the literature, we can provide 
a more general result with respect to the Lipschitz condition. More precisely, with 
the help of our a priori bound from Lemma 2, we can exchange the global Lip-
schitz condition by a local Lipschitz condition.

Proof of Theorem 1 Given the sequence of mutually independent random variables 
�k , we abbreviate the random functions fk = f (⋅, �k) and Tk = T�kf ,�k , k ∈ ℕ . Then the 
scheme can be written as wk+1 = Tkw

k . If Tkw∗ = w∗ , we would essentially only have 
to invoke Lemmas 8 and 9 to finish the proof. But due to the stochasticity, this does 
not hold, so we need to be more careful.

We begin by adding and subtracting the term Tkw∗ and find that

k∏
j=1

(
1 −

C1

j
+

C2

j2

)p

≤ exp

(
−C1p

k∑
j=1

1

j

)
exp

(
C2p

k∑
j=1

1

j2

)

≤ exp
(
−C1p ln (k + 1)

)
exp

(
C2p�

2

6

)
,

k∑
j=1

1

j1+r

k∏
i=j+1

(
1 −

C1

i
+

C2

i2

)p

≤ exp

(
C2p�

2

6

) k∑
j=1

1

j1+r
exp

(
−C1p

k∑
i=j+1

1

i

)
,

k∑
j=1

1

j1+r
exp

(
−C1p

k∑
i=j+1

1

i

)
≤

k∑
j=1

1

j1+r
exp

(
−C1p ln

(
k + 1

j + 1

))

≤
k∑

j=1

1

j1+r

(
k + 1

j + 1

)−C1p

= (k + 1)−C1p

k∑
j=1

jC1p−r−1 ⋅

(
j + 1

j

)C1p

≤
2C1p

C1p − r
(k + 1)−r.
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By Lemmas 8 and 9 the expectation ��k of the first term on the right-hand side is 
bounded by (1 − 2��k + 3�2�2

k
)
1∕2‖wk − w∗‖2 while by Lemma  6 the last term is 

bounded in expectation by �2
k
�2 . The second term is the problematic one. We add 

and subtract both wk and w∗ in order to find terms that we can control:

In order to bound I1 and I2 , we first need to apply the a priori bound from Lemma 2. 
This will also enable us to utilize the local Lipschitz condition. First, we notice that 
due to Lemma 6, we find that

is bounded for j ≤ 2m . As Tk is a contraction, we also obtain

Thus, there exists a random variable R1 such that

and �k[R
j

1
] is bounded for j ≤ 2m . For I1 , we then obtain that

where we used the fact that Tk is contractive in the last step. Taking the expectation, 
we then have by Hölder’s inequality that

where

‖wk+1 − w∗‖2 = ‖Tkwk − Tkw
∗‖2 + 2(Tkw

k − Tkw
∗, Tkw

∗ − w∗)

+ ‖Tkw∗ − w∗‖2.

(Tkw
k − Tkw

∗, Tkw
∗ − w∗)

=
(
(Tk − I)wk − (Tk − I)w∗, (Tk − I)w∗

)
+
(
wk − w∗, (Tk − I)w∗

)

=∶ I1 + I2.

�
��k

�‖Tkw∗‖j�� 1

j ≤ ‖w∗‖ +
�
��k

�
‖∇fk(w∗)‖j

H∗

�� 1

j

≤ ‖w∗‖ + �

�
�k

�‖Tkwk‖j�� 1

j ≤
�
�k

�‖Tkwk − Tkw
∗‖j�� 1

j +
�
��k

�‖Tkw∗‖j�� 1

j

≤
�
�k

�‖wk − w∗‖j�� 1

j + ‖w∗‖ + �.

max
�‖Tkwk‖, ‖Tkw∗‖� ≤ R1,

I1 ≤
�
(Tk − I)wk − (Tk − I)w∗, (Tk − I)w∗

�

≤ ‖�k∇fk(Tkwk) − �k∇fk(Tkw
∗)‖H∗‖�k∇fk(w∗)‖H∗

≤ �2
k
L�k (R1)‖Tkwk − Tkw

∗‖‖∇fk(w∗)‖H∗

≤ �2
k
L�k (R1)‖wk − w∗‖‖∇fk(w∗)‖H∗ ,

�k[I1] ≤ 𝛼2

k
�k

�
L𝜉k (R1)‖wk − w∗‖‖∇fk(w∗)‖H∗

�

≤ 𝛼2

k
L̃1
�
�k−1

�‖wk − w∗‖2m��2−m��𝜉k

�‖∇fk(w∗)‖2m
H∗

��2−m
,
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As P is a polynomial of at most order 2m − 2 , the expression only contains terms Rj

1
 

where the exponent j is at most 
(

2m

2m−2

)
(2m − 2) = 2m . Hence L̃1 is bounded, and in 

view of Lemma 2 we get that

where D1 ≥ 0 is a constant depending only on ‖w∗‖ , ‖w1 − w∗‖ , � and � . For I2 , we 
add and subtract �k�∇fk(w∗) to get

Since wk − w∗ is independent of �k∇fk(w∗) , it follows that

Using the Cauchy-Schwarz inequality and Lemma 6, we find that

where R2 = max(‖w∗‖, ‖∇fk(w∗)‖H∗ ) and

Just as for I1 , we therefore get by Lemma 2 that

where D2 ≥ 0 is a constant depending only on ‖w∗‖ , ‖w1 − w∗‖ , � and �.
Summarising, we now have

L̃1 =

⎧
⎪⎨⎪⎩

�
�
k

�
P(R1)

2m

2m−2

�� 2m−2

2m

, m > 1,

sup �P(R1)�, m = 1.

�k[I1] ≤ D1�
2
k
,

I2 =
(
wk − w∗, (Tk − I)w∗

)

=
(
wk − w∗, (Tk − I)w∗ + �k�∇fk(w

∗)
)
−
(
wk − w∗, �k�∇fk(w

∗)
)
.

��k [
(
wk − w∗, �k�∇fk(w

∗)
)
] =

(
wk − w∗,��k [�k�∇fk(w

∗)]
)
= 0.

�k[I2] ≤ �k

�‖wk − w∗‖‖𝜄−1(Tk − I)w∗ + 𝛼k∇fk(w
∗)‖H∗

�

≤ �k

�
L𝜉k (R2)𝛼

2

k
‖wk − w∗‖‖∇fk(w∗)‖H∗

�

≤ 𝛼2

k
L̃2
�
�k−1

�‖wk − w∗‖2m��2−m��𝜉k

�‖∇fk(w∗)‖2m
H∗

��2−m
,

L̃2 =

⎧
⎪⎨⎪⎩

�
�
k

�
P(R2)

2m

2m−2

�� 2m−2

2m

, m > 1,

sup �P(R2)�, m = 1.

�k[I2] ≤ D2�
2
k
,

�k

�‖wk+1 − w∗‖2� ≤ C̃k�k−1

�‖wk − w∗‖2� + 𝛼2
k
D
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with C̃k =
(
1 − 2𝜇𝛼k + 3𝜈2𝛼2

k

)1∕2 and D = �2 + D1 + D2 . Recursively applying the 
above bound yields

Applying Lemma 10 (i) and (ii) with p = 1∕2 , r = 1 , C1 = 2�� and C2 = 3�2�2 then 
shows that

and

Thus, we finally arrive at

where C depends on ‖w∗‖ , ‖w1 − w∗‖ , � , � and � .   ◻

Remark 4 The above proof is complicated mainly due to the stochasticity and due 
to the lack of strong convexity. We consider briefly the simpler, deterministic, full-
batch, case with

where F is strongly convex with convexity constant � . Then it can easily be shown 
that

This means that

i.e. the resolvent is a strict contraction. Since ∇F(w∗) = 0 , it follows that 
(I + �∇F)−1w∗ = w∗ so a simple iterative argument shows that

Using (1 + ��)−1 ≤ 1 − �� + �2�2 , choosing �k = �∕k and applying Lemma  10 
then shows that

�k

�‖wk+1 − w∗‖2� ≤
k�

j=1

C̃j‖w1 − w∗‖2 + D

k�
j=1

𝛼2
j

k�
i=j+1

C̃i.

k∏
j=1

C̃j ≤ exp

(
𝜈2𝜂2𝜋2

4

)
(k + 1)−𝜇𝜂

k∑
j=1

𝛼2
j

k∏
i=j+1

C̃i ≤ 𝜂22𝜇𝜂exp

(
𝜈2𝜂2𝜋2

4

)
1

𝜇𝜂 − 1
(k + 1)−1.

�k

�‖wk+1 − w∗‖2� ≤ C

k + 1
,

wk+1 = wk − �k∇F(w
k+1),

(∇F(v) − ∇F(w), v − w) ≥ �‖v − w‖2.

‖(I + �∇F)−1(v) − (I + �∇F)−1(w)‖ ≤ (1 + ��)−1‖v − w‖,

‖wk+1 − w∗‖2 ≤
k�

j=1

�
1 + �j�

�−1‖w1 − w∗‖2.
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for appropriately chosen � . In particular, these arguments do not require the Lip-
schitz continuity of ∇F , which is needed in the stochastic case to handle the terms 
arising due to ∇f (w∗, �) ≠ 0.

5  Numerical experiments

In order to illustrate our results, we set up a numerical experiment along the lines given 
in the introduction. In the following, let H = L2(0, 1) be the Lebesgue space of square 
integrable functions equipped with the usual inner product and norm. Further, let 
xi
j
∈ H for i = 1 , j = 1,… ,

⌊
n

2

⌋
 and i = 2 , j =

⌊
n

2

⌋
+ 1,… , n be elements from two 

different classes within the space H. In particular, we choose each x1
j
 to be a polynomial 

of degree 4 and each x2
j
 to be a trigonometric function with bounded frequency for 

j = 1,… , n . The polynomial coefficients and the frequencies were randomly chosen.
We want to classify these functions as either polynomial or trigonometric. To 

do this, we set up an affine (SVM-like) classifier by choosing the loss function 
�(h, y) = ln(1 + e−hy) and the prediction function h([w,w], x) = (w, x) + w with 
[w,w] ∈ L2(0, 1) ×ℝ . Without w , this would be linear, but by including w we can 
allow for a constant bias term and thereby make it affine. We also add a regularization 
term �

2
‖w‖2 (not including the bias), such that the minimization objective is

where [xj, yj] = [x1
j
,−1] if j ≤

⌊
n

2

⌋
 and [xj, yj] = [x2

j
, 1] if j >

⌊
n

2

⌋
 , similar to Eq. (2). 

In one step of SPI, we use the function

with a random variable � ∶ Ω → {1,… , n} . Since we cannot do computations 
directly in the infinite-dimensional space, we discretize all the functions using N 
equidistant points in [0, 1], omitting the endpoints. For each N, this gives us an opti-
mization problem on ℝN , which approximates the problem on H.

For the implementation, we make use of the following computational idea, which 
makes SPI essentially as fast as SGD. Differentiating the chosen � and h shows that the 
scheme is given by the iteration

where ck =
�kyk

1+exp((wk+1, xk)yk+w
k+1

yk)
 . This is equivalent to

‖wk+1 − w∗‖2 ≤ C(k + 1)−1

F([w,w], �) =
1

n

n�
j=1

�(h([w,w], xj), yj) +
�

2
‖w‖2,

f ([w,w], �) = �(h([w,w], x�), y�) +
�

2
‖w‖2,

[w,w]k+1 = [w,w]k + ck[xk, 1] − ��k[w, 0]
k+1,
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Inserting the expression for [w,w]k+1 in the definition of ck , we obtain that

We thus only need to solve one scalar-valued equation. This is at most twice as 
expensive as SGD, since the equation solving is essentially free and the only addi-
tional costly term is (xk, xk) (the term (wk, xk) of course has to be computed also 
in SGD). By storing the scalar result, the extra cost will be essentially zero if the 
same sample is revisited. We note that extending this approach to larger batch-sizes 
is straightforward. If the batch size is B, then one has to solve a B-dimensional 
equation.

Using this idea, we implemented the method in Python and tested it on a series 
of different discretizations. We took n = 1000 , i.e. 500 functions of each type, 
M = 10,000 time steps and discretization parameters N = 100 ⋅ 2i for i = 1,… , 11 to 
approximate the infinite dimensional space L2(0, 1) . We used � = 10−3 and the initial 
step size � = 2∕� , since in this case it can be shown that � ≥ � . There is no closed-
form expression for the exact minimum w∗ , so instead we ran SPI with 10M time 
steps and used the resulting reference solution as an approximation to w∗ . Further, 
we approximated the expectation �k by running the experiment 100 times and aver-
aging the resulting errors. In order to compensate for the vectors becoming longer as 

wk+1 =
1

1 + �k�

(
wk + ckxk

)
and w

k+1
= w

k
+ ck.

ck =
�kyk

1 + exp
(

1

1+�k�
(wk + ckxk, xk)yk + (w

k
+ ck)yk

) .

102 103 104

k
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10−1
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N = 800

N = 1600
N = 3200
N = 6400

N = 12800
N = 25600
N = 51200

N = 102400
N = 204800
O(1/k)

Fig. 1  Approximated errors �
k−1[‖wk − w

∗‖2
N
] for the SPI method, measured in RMS-norm, for discre-

tizations with varying number of grid points N. Statistics were only computed at every 100 time steps, 
this is why the plot starts at k = 100 . The 1/k-convergence is clearly seen by comparing to the uppermost 
solid black reference line
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N increases, we measure the errors in the RMS-norm ‖ ⋅ ‖N = ‖ ⋅ ‖
ℝN∕

√
N + 1 . As 

N → ∞ , this tends to the L2 norm.
Figure 1 shows the resulting approximated errors �k−1[‖wk − w∗‖2

N
] . As expected, 

we observe convergence proportional to 1∕k for all N. The error constants do vary 
to a certain extent, but they are reasonably similar. As the problem approaches the 
infinite-dimensional case, they vary less. In order to decrease the computational 
requirements, we only compute statistics at every 100 time steps, this is why the plot 
starts at k = 100.

In contrast, redoing the same experiment but with the explicit SGD method 
instead results in Fig. 2. We note that except for N = 200 and N = 400 , the method 
seemingly does not converge at all. This is partially explained by the fact that the 
Lipschitz constant grows with N (at least for the coarsest discretizations, for which 
we could estimate it), such that we get closer to the stability boundary. The main 
reason, however, is because of rare “bad” paths. In those, the method initially takes a 
large step in the wrong direction. Theoretically, it will eventually recover from this. 
In practice, it does not, due to the finite computational budget. Even when such bad 
paths are omitted from the results and O(1∕k)−convergence is observed, the errors 
are much larger than in Fig. 1. Many more steps would be necessary to reach the 
same accuracy as SPI. Since our implementations are certainly not optimal in any 
sense, we do not show a comparison of computational times here. They are, how-
ever, very similar, meaning that SPI is more efficient than SGD for this problem.

102 103 104

k

101

102

103
N = 200
N = 400
N = 800

N = 1600
N = 3200
N = 6400

N = 12800
N = 25600
N = 51200

N = 102400
N = 204800

Fig. 2  Approximated errors �
k−1[‖wk − w

∗‖2
N
] for the SGD method, measured in RMS-norm, for discre-

tizations with varying number of grid points N. Statistics were only computed at every 100 time steps, 
this is why the plot starts at k = 100 . Except for N = 200 and N = 400 , the method does not converge at 
all. Even when it does, the errors are much larger than in Fig. 1
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6  Conclusions

We have rigorously proved convergence with an optimal rate for the stochastic prox-
imal iteration method in a general Hilbert space. This improves the analysis situ-
ation in two ways. Firstly, by providing an extension of similar results in a finite-
dimensional setting to the infinite-dimensional case, as well as extending these to 
more general operators. Secondly, by improving on similar infinite-dimensional 
results that only achieve convergence, without any error bounds. The latter improve-
ment comes at the cost of stronger assumptions on the cost functional. Global Lip-
schitz continuity of the gradient is, admittedly, a rather strong assumption. However, 
as we have demonstrated, this can be replaced by local Lipschitz continuity where 
the maximal growth of the Lipschitz constant is determined by higher moments of 
the gradient applied to the minimum. This is a weaker condition. Finally, we have 
seen that the theoretical results are applicable also in practice, as demonstrated by 
the numerical results in the previous section.
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