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Abstract In order to solve the minimization of a nonsmooth convex function, we de-
sign an inertial second-order dynamic algorithm, which is obtained by approximating
the nonsmooth function by a class of smooth functions. By studying the asymptotic
behavior of the dynamic algorithm, we prove that each trajectory of it weakly con-
verges to an optimal solution under some appropriate conditions on the smoothing
parameters, and the convergence rate of the objective function values is o

(
t−2
)
. We

also show that the algorithm is stable, that is, this dynamic algorithm with a perturba-
tion term owns the same convergence properties when the perturbation term satisfies
certain conditions. Finally, we verify the theoretical results by some numerical exper-
iments.
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Convergence rate
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1 Introduction

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm‖ · ‖.
In this paper, our goal is to design an accelerated numerical method to solve the
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following convex optimization problem

min
x∈H

f (x), (1)

where f : H → R is a nonsmooth convex function. For the nonsmooth function f ,
we use a class of smooth convex functions to approximate it. Then we consider a
dynamic algorithm with a smoothing function of f , that is,

ẍ(t)+
α

t
ẋ(t)+∇x f̃ (x(t),µ(t)) = 0, (2)

where α > 0, f̃ : H × [0,∞)→ R is a smoothing function of convex function f ,
µ : [0,∞)→ [0,∞) is a continuously differentiable and decreasing function satisfying
limt→∞ µ(t) = 0. The definition of smoothing function for convex function f will
be defined in Section 2. In our setting, because of the singularity of the damping
coefficient α

t at t = 0, we always set the initial time t0 > 0. Our main work is to study
the asymptotic behavior of dynamic algorithm (2) for solving (1).

1.1 Associated dynamic algorithms when f is a smoothing function

There is a long history of using dynamic algorithms to solve optimization problems
[17,19]. The asymptotic behavior of some dynamic algorithms has been studied when
the function f is smooth and convex. The heavy ball with friction algorithm is one of
them, which is modeled by

ẍ(t)+ γ ẋ(t)+∇ f (x(t)) = 0, (3)

where γ is a fixed positive damping coefficient. This dynamic algorithm was first
introduced by Polyak in [29,30] from the perspective of optimization, and Álvarez
studied the convergence of the trajectories in the case of convexity in [1]. For a gen-
eral smooth convex function f , the convergence rate of dynamic algorithm (3) is
O(t−1) in the worst case. When f is strongly convex and γ is selected appropriately,
the convergence rate of dynamic algorithm (3) can be exponential. Since there is too
much friction involved in this process, replacing the fixed viscosity coefficient with
vanishing viscosity coefficient yields the inertial gradient dynamic algorithm

ẍ(t)+ γ(t)ẋ(t)+∇ f (x(t)) = 0, (4)

where γ(·) is a time-dependent positive damping coefficient. It has been studied by
Cabot, Engler and Gaddat [12,13], and developed by Attouch and Cabot [3]. A par-
ticularly interesting situation is the case γ(t) = α

t . Su, Boyd and Candès [32] studied
the following dynamic algorithm

ẍ(t)+
α

t
ẋ(t)+∇ f (x(t)) = 0, (5)

with α > 0. When α ≥ 3, they proved that dynamic algorithm (5) owns the fast
convergence property f (x(t))−min f = O(t−2). Furthermore, [24,25,26,27] showed
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that dynamic algorithm (5) is the continuous version of the Nesterov accelerated gra-
dient method with α = 3. Beck and Teboulle proposed the Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) in [7] to solve the nonsmooth convex minimization
problems with a splitting structure on the objective function, which is an extension
of the accelerated gradient method in [24]. Moreover, dynamic algorithm (5) was
further developed by Attouch-Chbani-Peypouquet-Redont to show that its each tra-
jectory weakly converges to an element in argmin f when α > 3 [5]. May [22] proved
that when α > 3, the asymptotic convergence rate of dynamic algorithm (5) on the ob-
jective values can be improved from O(t−2) to o(t−2). Chambolle-Dossal in [14] had
also obtained the same conclusions for the corresponding discrete algorithms. In the
case of α ≤ 3, Apidopoulos-Aujol-Dossal [2] and Attouch-Chbani-Riahi [6] demon-
strated that the convergence rate of dynamic algorithm (5) on the objective values is
O
(

t−
2α
3

)
. In addition, Attouch and Cabot [4] studied the case that f : H →R∪{∞}

is a convex lower semicontinuous proper function, and obtained the convergence rate
on the objective values. The corresponding dynamic algorithm is

ẍ(t)+
α

t
ẋ(t)+∇ fλ (t)(x(t)) = 0, (6)

where fλ : H →R is the Moreau envelope of f for index λ > 0. Let us review some
main properties of dynamic algorithm (6).
• For α ≥ 3, its trajectories satisfy the fast minimization property fλ (t)(x(t))−min f =
O
(
t−2
)

and f (ξ (t))−min f =O
(
t−2
)
, where ξ (t)= proxλ (t) f (x(t)) and proxλ f (x)=

argminζ∈H
{

f (ζ )+ 1
2λ
‖x−ζ‖2

}
.

• For α > 3, the improved convergence rates are fλ (t)(x(t))−min f = o
(
t−2
)

and
f (ξ (t))−min f = o

(
t−2
)
. In addition, each trajectory converges weakly to an opti-

mal solution of minH f under appropriate conditions.

1.2 Smoothing methods

The subgradient methods were the first numerical schemes to solve nonsmooth con-
vex minimization problems [31]. It has been proved that the complexity of using these
methods to obtain an ε-approximate solution of nonsmooth optimization problems is
O(ε−2). Smoothing methods are effective to overcome the nonsmoothness of opti-
mization problems, which had been developed in the past decades [15,9,21,23]. Nes-
terov [27] proposed a special smoothing technique for constructing efficient schemes
for nonsmooth convex optimization, which is to approximate the initial nonsmooth
objective function by a function with Lipschitz-continuous gradient. He showed that
the complexity of finding an ε-approximate solution of nonsmooth optimization prob-
lems by smoothing technology is O(ε−1). Chen introduced the smoothing methods
for nonsmooth nonconvex minimization problems in [16], the main feature of which
is to approximate nonsmooth functions by parameterized smoothing functions. She
showed the properties of the smoothing functions and the gradient consistency of
the subdifferentials related to a smoothing function, and presented how to update
the smoothing parameter in the outer iteration of the smoothing methods to ensure
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that the iterative sequence converges to a stationary point of the original optimization
problem.

These smoothing methods are widely used in various nonsmooth optimization
problems. Zhang and Chen [33] presented a novel smoothing active set method to
solve the linearly constrained non-Lipschitz nonconvex minimization problems. They
proved that any accumulation point of the iterative sequence generated by the smooth-
ing active set method is a stationary point of the original problem. Bian and Chen
studied the sparse regression problem with constraints in [8], the loss function of
which is nonsmooth and convex. They gave an exact continuous relaxation model
with the same optimal solution set as the regression problem, and then proposed a
smoothing proximal gradient (SPG) algorithm based on the smoothing methods to
find a lifted stationary point of the continuous relaxation problem. Burke-Chen-Sun
[11] proposed an approximation theory of smooth functions for measurable com-
posite max (CM) functions, explained the sub-consistency of gradient of CM inte-
grands, and proved that the subgradient of expectation function can be approximated
by smoothing without regularity.

On the one hand, we note that the dynamic algorithms (3)-(5) are not well-posed
when f is a convex lower semicontinuous proper function. On the other hand, though
we can use the above second-order dynamic algorithm (6) to solve the nonsmooth
convex optimization problem (1), we need to know the Moreau envelope of f , which
is much difficult for many functions. Thus, we will introduce smoothing methods
into the dynamic algorithm, which is to use a sequence of smoothing functions to
approximate the nonsmooth function. The main advantage of the smoothing method
is that we can easily construct the smoothing functions for a large class of nonsmooth
functions. Thus, the dynamic algorithm not only can be well-defined, but also can be
implemented easily.

This paper is organized as follows. In Section 2, some preliminary results are
presented, what’s more, the existence and uniqueness of solutions of the considered
dynamic algorithm (2) are proved. In Section 3, we give the convergence rate on ob-
jective values f (x(t)) along the solution of dynamic algorithm (2), and prove that
the solution of it weakly converges to a minimizer of f . In Section 4, we analyze
the properties of dynamic algorithm (2) with a perturbation term. When the pertur-
bation satisfies some appropriate conditions, the same convergence properties can be
obtained. Finally, We use some numerical experiments to illustrate our theoretical
results in Section 5.

2 Preliminaries

For any t ∈ R, we use L1(t,∞) to denote the space of integrable functions from
(t,∞) to R, namely, L1(t,∞) := {ϕ : (t,∞)→ R|

∫
∞

t ϕ(s)ds < ∞}; L1
loc([t,∞)) de-

notes the space of locally integrable functions on [t,∞), that is, L1
loc([t,∞)) := {ϕ :

[t,∞)→ R|
∫ T

t ϕ(s)ds < ∞,∀T ∈ (t,∞)}. For a function φ : H → R, we let [φ ]+ =
max{φ(x),0}, which is the positive part of function φ .
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2.1 Smooth approximation

A famous way to solve optimization problems with nonsmooth functions is to ap-
proximate these nonsmooth functions by a sequence of smooth functions. This paper
uses a class of smoothing functions defined as follows.

Definition 2.1 [8] Let f : H →R be a convex function. We call f̃ : H × [0,∞)→R
a smoothing function of f , if f̃ (x,µ) satisfies the following conditions:

(i) for any fixed µ > 0, f̃ (·,µ) is continuously differentiable in H , and for any
fixed x ∈H , f̃ (x, ·) is continuously differentiable in (0,∞);

(ii) limz→x,µ↓0 f̃ (z,µ) = f (x), ∀x ∈H ;
(iii) f̃ (x,µ) is convex with respect to x in H for any fixed µ > 0;
(iv) there exists a positive constant κ such that

|∇µ f̃ (x,µ)| ≤ κ, ∀µ ∈ (0,∞),x ∈H ; (7)

(v) there exists a constant L > 0 such that for any µ ∈ (0,∞), ∇x f̃ (·,µ) is Lipschitz
continuous on H with Lipschitz constant Lµ−1;

(vi) ∇z f̃ (z,µ) is continuous with respect to µ on (0,∞) for any fixed z ∈H .

By Definition 2.1-(iv), we know that

| f̃ (x,µ2)− f̃ (x,µ1)| ≤ κ|µ1−µ2|, ∀x ∈H , µ1,µ2 ∈ (0,∞). (8)

Furthermore,
| f̃ (x,µ)− f (x)| ≤ κµ, ∀x ∈H , µ ∈ (0,∞). (9)

For the function µ(·) in dynamic algorithm (2), the following hypothesis is assumed
throughout the paper:

(((HHH111))) :
∫

∞

t0
tµ(t)dt < ∞.

Remark 2.1 For fixed t0 > 0, (H1) implies∫
∞

t0

1
t

µ(t)dt < ∞. (10)

2.2 Preliminary results

Before giving the existence and uniqueness of the global solution to (2), we introduce
some lemmas which are used in the following to analyze the asymptotic behavior of
trajectories.

Lemma 2.1 [28] Let S be a nonempty subset of H and let x : [0,∞)→H . Assume
that

(i) for every z ∈ S, limt→∞ ‖x(t)− z‖ exists;
(ii) every weak sequential limit point of x(t), as t→ ∞, belongs to S.
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Then x(t) converges weakly as t→ ∞ to a point in S.

Lemma 2.2 [20] Take δ > 0, and let g ∈ L1(δ ,∞) be nonnegative and continuous.
Consider a nondecreasing function ψ : [δ ,∞)→ [0,∞) such that limt→∞ ψ(t) = ∞.
Then

lim
t→∞

1
ψ(t)

∫ t

δ

ψ(s)g(s)ds = 0.

Lemma 2.3 [5] Let δ > 0, and w : [δ ,∞)→R be a continuously differentiable func-
tion which is bounded from below. Assume

tẅ(t)+αẇ(t)≤ m(t),

for some α > 1, almost every t > δ , and some nonnegative function m ∈ L1(δ ,∞).
Then, [ẇ]+ ∈ L1(t0,∞), and limt→∞ w(t) exists.

Lemma 2.4 [10] Let m : [δ ,T ]→ [0,∞) be integrable, and constant c ≥ 0. Suppose
w : [δ ,T ]→ R is continuous and

1
2

w2(t)≤ 1
2

c2 +
∫ t

δ

m(τ)w(τ)dτ,

for all t ∈ [δ ,T ]. Then, |w(t)| ≤ c+
∫ t

δ
m(τ)dτ for all t ∈ [δ ,T ].

2.3 Existence and uniqueness of solutions

Proposition 2.1 For every initial value x0 := x(t0) ∈H and v0 := ẋ(t0) ∈H , there
exists a unique global trajectory x : [t0,∞)→H of the dynamic algorithm (2).

Proof Denote X(t) :=
(

x(t)
ẋ(t)

)
and let F : [t0,∞)×H ×H →H ×H be

F(t,z,v) =
(

v
−α

t v−∇z f̃ (z,µ(t))

)
.

We endow H ×H with scalar product 〈(z,v),(z̄, v̄)〉H ×H = 〈z, z̄〉+ 〈v, v̄〉 and norm
‖(z,v)‖H ×H = ‖z‖+‖v‖. Hence (2) can be written as

d
dt

X(t) = F(t,X(t)),

X(t0) =
(

x0
v0

)
.

(11)

For the first-order dynamic algorithm (11), we apply the non-autonomous version of
Cauchy-Lipschitz-Picard theorem [18] to prove the existence and uniqueness of its
solution.
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Step1: For any (z,v), (z̄, v̄) ∈H ×H , from Definition 2.1-(v), we know that there
exists L > 0 such that

‖F(t,z,v)−F(t, z̄, v̄)‖H ×H

=‖v− v̄‖+
∥∥∥−α

t
(v− v̄)+∇z f̃ (z̄,µ(t))−∇z f̃ (z,µ(t))

∥∥∥
≤
(

1+
α

t

)
‖v− v̄‖+Lµ(t)−1‖z− z̄‖

≤M(t)‖(z,v)− (z̄− v̄)‖H ×H ,

where M(t)=max
{(

1+ α

t

)
,Lµ(t)−1

}
, ∀t ∈ [t0,∞). Hence F(t, ·, ·) is M(t)-Lipschitz

continuous for every t ≥ t0. Moreover, for any t ≥ t0, by the continuity of α

t and
µ(t)−1, we know that M(·) is integrable on [t0,T ] for any t0 < T < ∞. Thus M(·) ∈
L1

loc ([t0,∞)).
Step2: For fixed z,v ∈H , t0 < T < ∞, we get∫ T

t0
‖F(t,z,v)‖H ×H dt

=
∫ T

t0

(
‖v‖+

∥∥∥−α

t
v−∇z f̃ (z,µ(t))

∥∥∥)dt

≤
∫ T

t0

((
1+

α

t

)
‖v‖+

∥∥∇z f̃ (z,µ(t))
∥∥)dt.

By Definition 2.1-(vi) and the continuity of µ(·), we know that ∇z f̃ (z,µ(t)) is con-
tinuous with respect to t for fixed z. This together with the continuity of α

t yields∫ T

t0
‖F(t,z,v)‖H ×H dt < ∞, ∀t0 < T < ∞.

Step3: For fixed z,v ∈H , we obtain

‖F(t,z,v)‖H ×H = ‖v‖+
∥∥∥−α

t
v−∇z f̃ (z,µ(t))

∥∥∥
≤
(

1+
α

t

)
‖v‖+

∥∥∇z f̃ (z,µ(t))
∥∥ . (12)

In view of Definition 2.1-(v), we know∥∥∇z f̃ (z,µ(t))
∥∥≤ ∥∥∇z f̃ (0,µ(t))

∥∥+Lµ(t)−1‖z‖, ∀z ∈H . (13)

Substituting (13) into (12), we get

‖F(t,z,v)‖H ×H ≤
(

1+
α

t

)
‖v‖+

∥∥∇z f̃ (0,µ(t))
∥∥+Lµ(t)−1‖z‖

≤ P(t)(1+‖v‖+‖z‖) ,
(14)

where P(t) := 1+ α

t +Lµ(t)−1 +
∥∥∇z f̃ (0,µ(t))

∥∥. By virtue of the continuity of α

t ,
µ(t) and ∇z f̃ (0,µ(t)) with respect to t, we conclude that P(t) ∈ L1

loc(t0,∞). There-
fore, by Cauchy-Lipschitz-Picard theorem, we can obtain that there is a global unique
solution for dynamic algorithm (11), and then the proof is completed. ut
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3 Convergence of dynamic algorithm in (2)

In this section, we will analyze the convergence properties of trajectory to dynamic
algorithm (2), including the convergence rate on the objective values and the weak
convergence of the trajectory to a minimizer of f .

3.1 Minimizing property

We begin by introducing a function that plays a crucial role in proving weak conver-
gence of the trajectory to (2).
Let z ∈H , and define the function h : (t0,∞)→ R+ by

h(t) =
1
2
‖x(t)− z‖2. (15)

By differentiating it, we obtain

ḣ(t) = 〈x(t)− z, ẋ(t)〉 and ḧ(t) = 〈x(t)− z, ẍ(t)〉+‖ẋ(t)‖2.

Using (2) and the convex inequality of f̃ (x,µ) with respect to x, we have

ḧ(t)+
α

t
ḣ(t) =‖ẋ(t)‖2 + 〈x(t)− z,−∇x f̃ (x(t),µ(t))〉

≤‖ẋ(t)‖2 + f̃ (z,µ(t))− f̃ (x(t),µ(t)).

Rearranging the terms, we find

ḧ(t)+
α

t
ḣ(t)+ f̃ (x(t),µ(t))− f̃ (z,µ(t))≤ ‖ẋ(t)‖2. (16)

Proposition 3.1 Suppose α > 0 and inf f >−∞. Let x : [t0,∞)→H be a trajectory
of (2). Then

lim
t→∞

f (x(t)) = inf f ,

and
lim
t→∞
‖ẋ(t)‖= 0.

Proof In view of (9), we know

f̃ (z,µ(t))≤ κµ(t)+ f (z), ∀z ∈H . (17)

Introducing (17) into (16), we conclude that

ḧ(t)+
α

t
ḣ(t)+ f̃ (x(t),µ(t))− f (z)−κµ(t)≤ ‖ẋ(t)‖2. (18)

Let us introduce the function W : [t0,∞)→ R defined by

W (t) :=
1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))+κµ(t).
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Differentiating W along the trajectory of (2) and by (7), we obtain

d
dt

W (t) =−α

t
‖ẋ(t)‖2 +

(
∇µ f̃ (x(t),µ(t))+κ

)
µ̇(t)≤−α

t
‖ẋ(t)‖2 ≤ 0. (19)

Thus the function W is nonincreasing on [t0,∞). Recalling inf f > −∞ and (9), we
have

W (t)≥ f̃ (x(t),µ(t))+κµ(t)≥ f (x(t))≥ inf f >−∞.

Hence W∞ = limt→∞W(t) exists. From (19), it follows that∫
∞

t0

1
t
‖ẋ(t)‖2dt ≤ 1

α
(W (t0)−W∞)< ∞. (20)

Substituting W in (18), we get

ḧ(t)+
α

t
ḣ(t)+W (t)− f (z)≤ b(t), (21)

where b(t) := 3
2‖ẋ(t)‖

2+2κµ(t). Multiplying each member of inequality (21) by tα ,
we find

d
dt

(
tα ḣ(t)

)
+ tα (W (t)− f (z))≤ tα b(t).

Integrating the above inequality on [t0, t], we obtain

tα ḣ(t)− tα
0 ḣ(t0)+

∫ t

t0
sα(W (s)− f (z))ds≤

∫ t

t0
sα b(s)ds.

By virtue of the nonincreasing property of W , we deduce that

tα ḣ(t)− tα
0 ḣ(t0)+(W (t)− f (z))

∫ t

t0
sα ds≤

∫ t

t0
sα b(s)ds.

Dividing the above inequality by tα and integrating it from t0 to t again, we get

h(t)−h(t0)+
∫ t

t0
s−α (W (s)− f (z))

(∫ s

t0
τ

α dτ

)
ds

≤tα
0 ḣ(t0)

∫ t

t0
s−α ds+

∫ t

t0
s−α

(∫ s

t0
τ

α b(τ)dτ

)
ds.

Since W is nonincreasing, we find

h(t)−h(t0)+(W (t)− f (z))
∫ t

t0
s−α

(∫ s

t0
τ

α dτ

)
ds

≤ 1
α−1

t0
∣∣ḣ(t0)∣∣+∫ t

t0
s−α

(∫ s

t0
τ

α b(τ)dτ

)
ds.

Calculating and rearranging the above inequalities, we get

1
α +1

(W (t)− f (z))

(
t2

2
−

t2
0
2
+

tα+1
0

(α−1)tα−1 −
t2
0

α−1

)

≤h(t0)+
1

α−1
t0
∣∣ḣ(t0)∣∣+∫ t

t0
s−α

(∫ s

t0
τ

α b(τ)dτ

)
ds.

(22)
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By using Fubini theorem to estimate the last term in (22), we have∫ t

t0
s−α

(∫ s

t0
τ

α b(τ)dτ

)
ds =

∫ t

t0

(∫ t

τ

s−α ds
)

τ
α b(τ)dτ

=
1

α−1

∫ t

t0

(
1

τα−1 −
1

tα−1

)
τ

α b(τ)dτ

≤ 1
α−1

∫ t

t0
τb(τ)dτ.

Coming back to inequality (22), we conclude that

1
α +1

(W (t)− f (z))

(
t2

2
−

t2
0
2
+

tα+1
0

(α−1)tα−1 −
t2
0

α−1

)

≤h(t0)+
1

α−1
t0
∣∣ḣ(t0)∣∣+ 1

α−1

∫ t

t0
τb(τ)dτ.

Dividing the above inequality by t2 and rewriting the last term, we deduce that

1
α +1

(W (t)− f (z))

(
1
2
−

t2
0

2t2 +
tα+1
0

(α−1)tα+1 −
t2
0

(α−1)t2

)

≤
h(t0)+ 1

α−1 t0
∣∣ḣ(t0)∣∣

t2 +
1

(α−1)t2

∫ t

t0
τ

2 1
τ

b(τ)dτ.

(23)

Under condition (10) and estimation (20), we have∫
∞

t0

1
t

b(t)dt =
∫

∞

t0

(
3
2t
‖ẋ(t)‖2 +2κ

1
t

µ(t)
)

dt < ∞.

Taking the limit as t→ ∞ in (23) and applying Lemma 2.2, we derive that

limsup
t→∞

W (t)≤ f (z). (24)

Under the definition of W and by (9), we know

limsup
t→∞

f (x(t))≤ limsup
t→∞

(
f̃ (x(t),µ(t))+κµ(t)

)
≤ f (z).

Since the above inequality holds for an arbitrary z, we conclude that

limsup
t→∞

f (x(t))≤ inf f .

Thus, we have
lim
t→∞

f (x(t)) = inf f .

Then, (24) and W (t)≥ 1
2‖ẋ(t)‖

2 + f (x(t)) further implies that

lim
t→∞
‖ẋ(t)‖= 0.

ut
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3.2 Convergence rate on objective values

Theorem 3.1 Let x : [t0,∞)→ H be a trajectory of (2), and assume argmin f is
nonempty and (H1) is ture.

(i) Suppose α ≥ 3. Then

f (x(t))−min f = O
(

1
t2

)
.

(ii) Suppose α > 3. Then ∫
∞

t0
t ( f (x(t)−min f )dt < ∞, (25)

∫
∞

t0
t‖ẋ(t)‖2dt < ∞, (26)

f (x(t))−min f = o
(

1
t2

)
. (27)

Proof (i) Fix x∗ ∈ argmin f , and consider the energy function

E (t) = t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
+

1
2
‖(α−1)(x(t)− x∗)+ tẋ(t)‖2.

In view of (9), this gives

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)≥ f (x(t))− f (x∗)≥ 0, (28)

which implies E (t)≥ 0.
Using the classical derivation chain rule and equation (2), we obtain

d
dt

E (t) =2t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)

+ t2 (〈
∇x f̃ (x(t),µ(t)), ẋ(t)

〉
+∇µ f̃ (x(t),µ(t))µ̇(t)−∇µ f̃ (x∗,µ(t))µ̇(t)

+2κµ̇(t))+ 〈(α−1)(x(t)− x∗)+ tẋ(t),α ẋ(t)+ tẍ(t)〉
=2t

(
f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
− (α−1)t〈x(t)− x∗,∇x f̃ (x(t),µ(t))〉
+ t2 (

∇µ f̃ (x(t),µ(t))µ̇(t)−∇µ f̃ (x∗,µ(t))µ̇(t)+2κµ̇(t)
)
.

(29)

By (7) and µ̇(t)≤ 0, we deduce that

∇µ f̃ (x(t),µ(t))µ̇(t)−∇µ f̃ (x∗,µ(t))µ̇(t)≤−2κµ̇(t). (30)

Since f̃ (x,µ) is convex with respect to x for any fixed µ , we have

f̃ (x∗,µ(t))− f̃ (x(t),µ(t))≥
〈
∇x f̃ (x(t),µ(t)),x∗− x(t)

〉
. (31)
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If α ≥ 3, introducing (30) and (31) into (29), we obtain

d
dt

E (t)≤− (α−3)t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
+2(α−1)κtµ(t)

≤2(α−1)κtµ(t),
(32)

where last inequality uses (28).
From (H1), we have the positive part [ d

dt E (t)]+ belongs to L1(t0,∞). Let ρ(t) :=
E (t)−

∫ t
t0 [

d
dt E (s)]+ds, and ρ(·) is bounded by the boundedness of E (·) and [ d

dt E (t)]+
∈ L1(t0,∞). This together with d

dt ρ(t) = d
dt E (t)− [ d

dt E (t)]+ ≤ 0 yields the existence
of limt→∞ ρ(t). Hence,

lim
t→∞

E (t) = lim
t→∞

w(t)+
∫

∞

t0
[E (s)]+ds < ∞. (33)

It ensues that E (·) is bounded on [t0,∞), and then t2
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κ

µ(t)) is bounded on [t0,∞), which means that there exists C > 0 such that

t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
≤C, ∀t ≥ t0.

As a consequence, returning to (28), we have

f (x(t))− f (x∗)≤ C
t2 ,

namely

f (x(t))− f (x∗) = O
(

1
t2

)
.

(ii) Now suppose α > 3. By integrating (32) from t0 to t, we obtain∫ t

t0
s
(

f̃ (x(s),µ(s))− f̃ (x∗,µ(s))+2κµ(s)
)

ds

≤ 1
α−3

(E (t0)−E (t))+
2(α−1)κ

α−3

∫ t

t0
sµ(s)ds

≤ 1
α−3

E (t0)+
2(α−1)κ

α−3

∫ t

t0
sµ(s)ds.

Under (H1), we have the estimate∫
∞

t0
s
(

f̃ (x(s),µ(s))− f̃ (x∗,µ(s))+2κµ(s)
)

ds < ∞. (34)

From (28), we obtain ∫
∞

t0
t ( f (x(t)−min f )dt < ∞,
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which shows (25).
To prove (26), take the scalar product of (2) with t2ẋ(t), then we have

t2

2
d
dt
‖ẋ(t)‖2 +αt‖ẋ(t)‖2 + t2 d

dt

(
f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
=t2 (

∇µ f̃ (x(t),µ(t))µ̇(t)−∇µ f̃ (x∗,µ(t))µ̇(t)+2κµ̇(t)
)
.

By integrating the above equation from t0 to t, we obtain

t2

2
‖ẋ(t)‖2− t02

2
‖ẋ(t0)‖2 +(α−1)

∫ t

t0
s‖ẋ(s)‖2ds+ t2 ( f̃ (x(t),µ(t))

− f̃ (x∗,µ(t))+2κµ(t)
)
− t2

0 ( f̃ (x(t0),µ(t0))− f̃ (x∗,µ(t0))

+2κµ(t0))−2
∫ t

t0
s
(

f̃ (x(s),µ(s))− f̃ (x∗,µ(s))+2κµ(s)
)

ds

=
∫ t

t0
s2 (

∇µ f̃ (x(s),µ(s))µ̇(s)−∇µ f̃ (x∗,µ(s))µ̇(s)+2κµ̇(s)
)

ds.

Combining the above relation with (28), (30) and t2

2 ‖ẋ(t)‖
2 ≥ 0, we conclude that

(α−1)
∫ t

t0
s‖ẋ(s)‖2ds≤ C̃+2

∫ t

t0
s
(

f̃ (x(s),µ(s))− f̃ (x∗,µ(s))+2κµ(s)
)

ds.

where C̃ = t02

2 ‖ẋ(t0)‖
2 + t2

0
(

f̃ (x(t0),µ(t0))− f̃ (x∗,µ(t0))+2κµ(t0)
)
. By virtue of

(34) and α > 3, we get (26).
Now, we consider

E(t) :=
1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t), (35)

which is nonnegative on [t0,∞). By (26) and (34), we know∫
∞

t0
tE(t)dt < ∞. (36)

Differentiating t2E, we get that

d
dt
(t2E(t)) =2tE(t)+ t2 dE(t)

dt

=2t
(

1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
+ t2(〈ẋ(t), ẍ(t)〉+ 〈∇x f̃ (x(t),µ(t)), ẋ(t)〉
+∇µ f̃ (x(t),µ(t))µ̇(t)−∇µ f̃ (x∗,µ(t))µ̇(t)+2κµ̇(t)).

By (2), (30) and α > 3, we deduce that

d
dt
(t2E(t))≤2t

(
f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
+ t(1−α)‖ẋ(t)‖2

≤2t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
.

(37)
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Combining (34) and (37) yields that [ d
dt (t

2E(t))]+ ∈ L1(t0,∞), hence similar to the
analysis for (33), we know limt→∞ t2E(t) exists. Recalling (36), we have

∫
∞

t0 tE(t)dt =∫
∞

t0
1
t (t

2E(t))dt < ∞. By
∫

∞

t0
1
t dt = ∞ and the existence of limt→∞ t2E(t), we conclude

that
lim
t→∞

t2E(t) = 0.

Under the definition of E, we have the estimate

0≤ lim
t→∞

t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
≤ lim

t→∞
t2E(t) = 0.

Furthermore,

0≤ lim
t→∞

t2 ( f (x(t))− f (x∗))≤ lim
t→∞

t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
= 0,

namely,

f (x(t))−min f = o
(

1
t2

)
.

ut

3.3 Weak convergence of trajectories

Theorem 3.2 Suppose argmin f 6= /0 and (H1) is ture. Let x : [t0,∞)→ H be the
trajectory of (2) with α > 3, then x(t) converges weakly in H , as t → ∞, to a point
in argmin f .

Proof The proof is based on the Opial’s lemma (Lemma 2.1). For any x∗ ∈ argmin f ,
coming back to (16), and let z = x∗, we have

tḧ(t)+α ḣ(t)+ t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
≤ k(t),

where k(t) := t‖ẋ(t)‖2 +2κtµ(t). From (28), we have

tḧ(t)+α ḣ(t)≤ k(t).

Combining (26) with (H1), we know k∈ L1(t0,∞). By applying Lemma 2.3, we know
limt→∞ h(t) exists. The first point of Opial’s lemma is proved. It also implies that
the trajectory x(·) is bounded on [t0,∞). The next step is to prove the second point
of Opail’s lemma, which is that every weak sequential limit point of x(t) belongs to
argmin f . Let x̄ be a sequential limit point of x(·) on [t0,∞) with convergence sequence
{tn}. In view of Proposition 3.1, we have

f (x̄) = lim
n→∞

f (x(tn)) = lim
t→∞

f (x(t)) = inf f .

It implies x̄ ∈ argmin f , which gives the claim. ut
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4 Asymptotic convergence of (2) for minimization under perturbations

In this section, we show that the perturbation term satisfying certain conditions does
not affect the convergence results of (2) for solving optimization problem (1), that is,
dynamic algorithm (2) is stable. For this purpose, we consider the following dynamic
algorithm with perturbation

ẍ(t)+
α

t
ẋ(t)+∇x f̃ (x(t),µ(t)) = g(t), (38)

where α > 0, g : [t0,∞)→H is the perturbation term and the functions f̃ ,µ are
defined same as in (2).
For the function g(·) in dynamic algorithm (38), the following hypothesis is assumed
throughout the paper:

(((HHHggg))) :
∫

∞

t0
‖g(s)‖ds < ∞.

Under the condition (Hg) and Definition 2.1-(v)(vi), we can prove the global exis-
tence and uniqueness of trajectory to (38) by similar analogy with Proposition 2.1.

4.1 Minimizing property under perturbations

Proposition 4.1 Suppose α > 0, inf f >−∞ and (Hg) is ture. Let x : [t0,∞)→H be
a trajectory of (38). Then

lim
t→∞

f (x(t)) = inf f .

Proof Let T > t0, and t0 ≤ t ≤ T . Define the energy function Wg,T : [t0,∞)→ R by

Wg,T (t) :=
1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))− inf f +κµ(t)+

∫ T

t
〈ẋ(τ),g(τ)〉dτ.

Differentiating Wg,T and using (7), (38), we get that

d
dt

Wg,T (t) =〈ẋ(t), ẍ(t)+∇x f̃ (x(t),µ(t))−g(t)〉+
(
∇µ f̃ (x(t),µ(t))+κ

)
µ̇(t)

≤− α

t
‖ẋ(t)‖2.

Hence Wg,T is a nonincreasing function on [t0,∞), which means that Wg,T (t)≤Wg,T (t0),
for any t ≥ t0, i.e.

1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))− inf f +κµ(t)+

∫ T

t
〈ẋ(τ),g(τ)〉dτ

≤1
2
‖ẋ(t0)‖2 + f̃ (x(t0),µ(t0))− inf f +κµ(t0)+

∫ T

t0
〈ẋ(τ),g(τ)〉dτ.

From (9), we know that f̃ (x(t),µ(t))− inf f +κµ(t) ≥ 0. Combining with Cauchy-
Schwarz inequality, we obtain

1
2
‖ẋ(t)‖2 ≤ 1

2
‖ẋ(t0)‖2 + f̃ (x(t0),µ(t0))− inf f +κµ(t0)+

∫ t

t0
‖ẋ(τ)‖‖g(τ)‖dτ.
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Together Lemma 2.4 with (Hg), we deduce that

‖ẋ(t)‖ ≤
(
‖ẋ(t0)‖2 +2

(
f̃ (x(t0),µ(t0))− inf f +κµ(t0)

)) 1
2 +

∫ t

t0
‖g(τ)‖dτ,

which gives
sup
t≥t0
‖ẋ(t)‖< ∞. (39)

From (39), we know that

Wg(t) :=
1
2
‖ẋ(t)‖2 + f̃ (x(t),µ(t))− inf f +κµ(t)+

∫
∞

t
〈ẋ(τ),g(τ)〉dτ

is well defined, and

Wg(t)≥−sup
t≥0
‖ẋ(t)‖

∫
∞

t0
‖g(τ)‖dτ,

d
dt

Wg(t) =
d
dt

Wg,T (t)≤−
α

t
‖ẋ(t)‖2, (40)

which gives limt→∞ Wg(t) =Wg,∞ ∈ R.
Let us now integrate inequality (40) on [t0, t] and let t→ ∞, we find∫

∞

t0

α

τ
‖ẋ(τ)‖2dτ ≤Wg(t0)−Wg,∞ < ∞. (41)

For any z ∈H , recalling the function h(t) = 1
2‖x(t)− z‖2, similar to the analysis for

(16) and using (38), we obtain

ḧ(t)+
α

t
ḣ(t)+ f̃ (x(t),µ(t))− f̃ (z,µ(t))≤ ‖ẋ(t)‖2 + 〈g(t),x(t)− z〉. (42)

By virtue of (9), we get

ḧ(t)+
α

t
ḣ(t)+ f̃ (x(t),µ(t))− f (z)−κµ(t)≤ ‖ẋ(t)‖2 + 〈g(t),x(t)− z〉. (43)

Substituting Wg into (43) and using Cauchy-Schwarz inequality to get

Wg,∞ + inf f − f (z)≤Wg(t)+ inf f − f (z)≤ 3
2
‖ẋ(t)‖2 +‖g(t)‖‖x(t)− z‖

+sup
t≥t0
‖ẋ(t)‖

∫
∞

t
‖g(τ)‖dτ +2κµ(t)− 1

tα

d
dt

(
tα ḣ(t)

)
,

where the first inequality uses the nonincreasing property of Wg.
Let θ > t0. Multiplying both sides of the above inequality by 1

t and integrating it
from t0 to θ , we conclude that

(Wg,∞ + inf f − f (z)) ln
θ

t0
≤3

2

∫
θ

t0

1
t
‖ẋ(t)‖2dt +

∫
θ

t0

‖g(t)‖‖x(t)− z‖
t

dt

+ sup
t≥t0
‖ẋ(t)‖

∫
θ

t0

(
1
t

∫
∞

t
‖g(τ)‖dτ

)
dt +2κ

∫
θ

t0

1
t

µ(t)dt

−
∫

θ

t0

1
tα+1

d
dt

(
tα ḣ(t)

)
dt.

(44)
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Estimation of several terms in (44) are given below.

(1) Since

‖x(t)− z‖ ≤ ‖x(t0)− z‖+
∫ t

t0
‖ẋ(s)‖ds, (45)

we get

∫
θ

t0

‖g(t)‖‖x(t)− z‖
t

dt ≤

(
‖x(t0)− z‖

t0
+ sup

t≥t0
‖ẋ(t)‖

)∫
θ

t0
‖g(t)‖dt,

where we use 1
t
∫ t

t0 ‖ẋ(s)‖ds≤ supt≥t0 ‖ẋ(t)‖.
(2) By direct calculating, we have∫

θ

t0

(
1
t

∫
∞

t
‖g(τ)‖dτ

)
dt =

∫
θ

t0

(∫
∞

t
‖g(τ)‖dτ

)
d (ln t)

= lnθ

∫
∞

θ

‖g(τ)‖dτ− ln t0
∫

∞

t0
‖g(τ)‖dτ

+
∫

θ

t0
‖g(t)‖ ln tdt.

(3) Estimating the last term in inequality (44), we deduce that∫
θ

t0

1
tα+1

d
dt

(
tα ḣ(t)

)
dt =

1
θ

ḣ(θ)− 1
t0

ḣ(t0)−
∫

θ

t0
tα ḣ(t)(−α−1)t−α−2dt

=
1
θ

ḣ(θ)− 1
t0

ḣ(t0)

+(α +1)
(

1
θ 2 h(θ)− 1

t2
0

h(t0)+2
∫

θ

t0

1
t3 h(t)dt

)
=C0 +

1
θ

ḣ(θ)+
α +1

θ 2 h(θ)+2(α +1)
∫

θ

t0

1
t3 h(t)dt

≥C0 +
1
θ

ḣ(θ),

where C0 = (α +1) 1
t2
0

h(t0)− 1
t0

ḣ(t0), and by (45), we have

|ḣ(θ)|= |〈ẋ(θ),x(θ)− z〉| ≤ sup
t≥t0
‖ẋ(t)‖

(
‖x(t0)− z‖+θ sup

t≥t0
‖ẋ(t)‖

)
.

Combining the above results with (10) and (44), we obtain

(Wg,∞ + inf f − f (z)) ln
θ

t0
≤C1 + sup

t≥t0
‖ẋ(t)‖ lnθ

∫
∞

θ

‖g(t)‖dt

+

(
sup
t≥t0
‖ẋ(t)‖

)∫
θ

t0
‖g(t)‖ ln tdt,
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where C1 =
3
2
∫

θ

t0
1
t ‖ẋ(t)‖

2dt+
(
‖x(t0)−z‖

t0
+ supt≥t0 ‖ẋ(t)‖

)∫
θ

t0 ‖g(t)‖dt−
∫

∞

t0 ‖g(t)‖dt

ln t0 supt≥t0 ‖ẋ(t)‖+2κ
∫

θ

t0
1
t µ(t)dt + 1

θ
supt≥t0 ‖ẋ(t)‖

(
‖x(t0)− z‖+θ supt≥t0 ‖ẋ(t)‖

)
is a constant by (1), (2) and (3). Dividing both sides by ln θ

t0
, letting θ → ∞ in the

above inequality, and using Lemma 2.2, we have Wg,∞ ≤ f (z)− inf f , ∀z ∈ H ,
which implies Wg,∞ ≤ 0 by the continuity and convexity of f .
In fact

Wg(t)≥ f̃ (x(t),µ(t))− inf f +κµ(t)− sup
t≥t0
‖ẋ(t)‖

∫
∞

t
‖g(τ)‖dτ.

Letting t→ ∞, we obtain

0≥Wg,∞ ≥ limsup
t→∞

(
f̃ (x(t),µ(t))− inf f +κµ(t)

)
≥ 0,

which implies

lim
t→∞

f (x(t)) = lim
t→∞

(
f̃ (x(t),µ(t))+κµ(t)

)
= inf f .

ut

4.2 Convergence rate on the objective values under perturbations

As can be seen from the following theorem, the convergence rate of the objective val-
ues along the trajectory of (38) is consistent with (2) under the condition of

∫
∞

t0 t‖g(t)‖
dt < ∞.

Remark 4.1 It is clear that
∫

∞

t0 t‖g(t)‖dt < ∞ implies (Hg).

Theorem 4.1 Let argmin f 6= /0 and x : [t0,∞)→H be the trajectory of (38). Assume∫
∞

t0 t‖g(t)‖dt < ∞ and (H1) is ture.

(i) If α ≥ 3. Then

f (x(t))−min f = O
(

1
t2

)
.

(ii) If α > 3. Then x is bounded on [t0,∞), and∫
∞

t0
t ( f (x(t)−min f )dt < ∞, (46)

∫
∞

t0
t‖ẋ(t)‖2dt < ∞, (47)

f (x(t))−min f = o
(

1
t2

)
. (48)
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Proof (i) Given x∗ ∈ argmin f and T > t0, we introduce the energy function t 7→ Eg,T
defined by

Eg,T (t) :=
2

α−1
t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
+(α−1)

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥2

+2
∫ T

t
τ

〈
x(τ)− x∗+

τ

α−1
ẋ(t),g(τ)

〉
dτ.

By differentiating Eg,T , and together (30) with (38), we immediately find

d
dt

Eg,T (t) =
4

α−1
t( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t))

+
2

α−1
t2(
〈
∇x f̃ (x(t),µ(t)), ẋ(t)

〉
+∇µ f̃ (x(t),µ(t))µ̇(t)

−∇µ f̃ (x∗,µ(t))µ̇(t)+2κµ̇(t))

+2(α−1)
〈

x(t)− x∗+
t

α−1
ẋ(t),

t
α−1

(
α

t
ẋ(t)+ ẍ(t)−g(t)

)〉
≤ 4

α−1
t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)

+
2

α−1
t2 〈

∇x f̃ (x(t),µ(t)), ẋ(t)
〉

+2(α−1)
〈

x(t)− x∗+
t

α−1
ẋ(t),− t

α−1
∇x f̃ (x(t),µ(t))

〉
=

4
α−1

t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)

−2t
〈
x(t)− x∗,∇x f̃ (x(t),µ(t))

〉
.

(49)

From the convexity of f̃ (x,µ) with respect to x for any fixed µ , (28) and α ≥ 3, we
then deduce that

d
dt

Eg,T (t)≤
2(3−α)

α−1
t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
+4κtµ(t)

≤4κtµ(t).

Integrating the above inequality from t0 to t yields

Eg,T (t)−Eg,T (t0)≤
∫ t

t0
4κτµ(τ)dτ ≤

∫
∞

t0
4κτµ(τ)dτ < ∞, (50)
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which uses condition (H1).
Recalling the definition of Eg,T , we find

2
α−1

t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
+(α−1)

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥2

≤C2 +2
∫ t

t0
τ

〈
x(τ)− x∗+

τ

α−1
ẋ(t),g(τ)

〉
dτ,

(51)

where C2 =
∫

∞

t0 4κτµ(τ)dτ+ 2
α−1 t2

0
(

f̃ (x(t0),µ(t0))− f̃ (x∗,µ(t0))+2κµ(t0)
)
+(α−

1)
∥∥x(t0)− x∗+ t0

α−1 ẋ(t0)
∥∥2 is a constant by (50). Then, from (28) and (51), we know

1
2

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥2

≤ C2

2(α−1)
+

1
α−1

∫ t

t0

∥∥∥∥x(τ)− x∗+
τ

α−1
ẋ(t)
∥∥∥∥‖τg(τ)‖dτ.

Applying Lemma 2.4, we have∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥≤ ( C2

α−1

) 1
2
+

1
α−1

∫ t

t0
τ‖g(τ)‖dτ,

which together with
∫

∞

t0 t‖g(t)‖dt < ∞ gives

sup
t≥t0

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥< ∞. (52)

Returning to (51), applying the Cauchy-Schwart inequality and by α > 3, we see that

2
α−1

t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)

≤C2 +2sup
t≥t0

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥∫ ∞

t0
‖τg(τ)‖dτ < ∞.

In view of (28), we deduce that

f (x(t))− f (x∗) = O
(

1
t2

)
.

(ii) From (52), we know

Eg(t) :=
2

α−1
t2 ( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
+(α−1)

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥2

+2
∫

∞

t
τ

〈
x(τ)− x∗+

τ

α−1
ẋ(t),g(τ)

〉
dτ
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is well defined. Similar to the calculation to Eg,T , we have that

d
dt

Eg(t)+2
α−3
α−1

t
(

f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)
)
≤ 4κtµ(t). (53)

By integrating (53) on [t0, t], we obtain

Eg(t)+2
α−3
α−1

∫ t

t0
τ
(

f̃ (x(τ),µ(τ))− f̃ (x∗,µ(τ))+2κµ(τ)
)

dτ

≤
∫ t

t0
4κτµ(τ)dτ +Eg(t0).

Recalling the definition of Eg and by (28), we obtain

2
∫

∞

t
τ

〈
x(τ)− x∗+

τ

α−1
ẋ(τ),g(τ)

〉
dτ +2

α−3
α−1

∫ t

t0
τ( f̃ (x(τ),µ(τ))

− f̃ (x∗,µ(τ))+2κµ(τ))dτ ≤
∫ t

t0
4κτµ(τ)dτ +Eg(t0).

Rearranging the above inequality and using the Cauchy-Schwart inequality, we infer
that

2
α−3
α−1

∫ t

t0
τ
(

f̃ (x(τ),µ(τ))− f̃ (x∗,µ(τ))+2κµ(τ)
)

dτ

≤Eg(t0)+2sup
t≥t0

∥∥∥∥x(t)− x∗+
t

α−1
ẋ(t)
∥∥∥∥∫ ∞

t0
‖τg(τ)‖dτ +

∫ t

t0
4κτµ(τ)dτ.

Recalling α > 3 and (52), under the condition (H1) and by
∫

∞

t0 t‖g(t)‖dt < ∞, we
conclude that ∫

∞

t0
τ
(

f̃ (x(τ),µ(τ))− f̃ (x∗,µ(τ))+2κµ(τ)
)

dτ < ∞. (54)

According to (28), we obtain∫
∞

t0
t ( f (x(t)−min f )dt < ∞,

which proves (46).
Next, let us show that (47). Taking the scalar product of (38) with t2ẋ(t), we obtain

t2 〈ẍ(t), ẋ(t)〉+αt‖ẋ(t)‖2 + t2 〈
∇x f̃ (x(t),µ(t)), ẋ(t)

〉
= t2 〈g(t), ẋ(t)〉 .

Using the Chain rule, Cauchy-Schwart inequality and (30), we get

1
2

t2 d
dt
‖ẋ(t)‖2 +αt‖ẋ(t)‖2 + t2 d

dt

(
f̃ (x(t),µ(t))− f̃ (x∗,µ(t))+2κµ(t)

)
≤‖tg(t)‖‖tẋ(t)‖.

(55)
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Let us integrate (55) on [t0, t], then we have

t2

2
‖ẋ(t)‖2− t02

2
‖ẋ(t0)‖2 +(α−1)

∫ t

t0
s‖ẋ(s)‖2ds+ t2( f̃ (x(t),µ(t))− f̃ (x∗,µ(t))

+2κµ(t))− t2
0 ( f̃ (x(t0),µ(t0))− f̃ (x∗,µ(t0))+2κµ(t0))−2

∫ t

t0
s( f̃ (x(s),µ(s))

− f̃ (x∗,µ(s))+2κµ(s))ds≤
∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds.

Using (28) again, we have

1
2
‖tẋ(t)‖2 +(α−1)

∫ t

t0
s‖ẋ(s)‖2ds≤C3 +2

∫ t

t0
s( f̃ (x(s),µ(s))− f̃ (x∗,µ(s))

+2κµ(s))ds+
∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds

(56)

for some constant C3 =
t02

2 ‖ẋ(t0)‖
2+t2

0 ( f̃ (x(t0),µ(t0))− f̃ (x∗,µ(t0))+2κµ(t0)) only
depending on the information at t0.
From (54) and α > 1, it follows that

1
2
‖tẋ(t)‖2 ≤C4 +

∫ t

t0
‖sg(s)‖‖sẋ(s)‖ds,

where C4 = C3 +
∫

∞

t0 τ
(

f̃ (x(τ),µ(τ))− f̃ (x∗,µ(τ))+2κµ(τ)
)

dτ is a constant. Ap-
plying Lemma 2.4, we obtain

‖tẋ(t)‖ ≤ (2C4)
1
2 +

∫ t

t0
‖sg(s)‖ds,

by
∫

∞

t0 ‖sg(s)‖ds < ∞, which implies

sup
t≥t0
‖tẋ(t)‖< ∞. (57)

Returning to (56), it gives

(α−1)
∫ t

t0
s‖ẋ(s)‖2ds≤C3 +2

∫ t

t0
s
(

f̃ (x(s),µ(s))− f̃ (x∗,µ(s))+2κµ(s)
)

ds

+ sup
t≥t0
‖tẋ(t)‖

∫
∞

t0
‖sg(s)‖ds,

which implies (47).
Combining (52) with (57), we get

sup
t≥t0
‖x(t)‖< ∞. (58)

Recalling the definition of E in (35), by (47) and (54), we deduce that∫
∞

t0
tE(t)dt < ∞.
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Same as the proof of (ii) in Theorem 3.1 we can deduce that

f (x(t))−min f = o
(

1
t2

)
.

ut

4.3 Weak convergence of trajectory under perturbations

Theorem 4.2 Assume argmin f 6= /0,
∫

∞

t0 t‖g(t)‖dt <∞ and (H1) is ture. Let x : [t0,∞)→
H be the trajectory of (38) with α > 3. Then x(t) converges weakly to an element of
argmin f , as t→ ∞.

Proof Applying Cauchy-Schwarz inequality in (42), we find that

tḧ(t)+α ḣ(t)+ t
(

f̃ (x(t),µ(t))− f̃ (z,µ(t))+2κµ(t)
)

≤t‖ẋ(t)‖2 +‖x(t)− z‖‖tg(t)‖+2κtµ(t),

where h is defined in (15).
By virtue of (28) and letting z = x∗ ∈ argmin f , we have

tḧ(t)+α ḣ(t)≤ l(t),

where l(t) := t‖ẋ(t)‖2 +
(
supt≥t0 ‖x(t)− x∗‖

)
‖tg(t)‖+ 2κtµ(t) ≥ 0. Under (H1),

(47), (58) and
∫

∞

t0 t‖g(t)‖dt < ∞, we deduce that l(t) ∈ L1(t0,∞). By Lemma 2.3,
we know limt→∞ h(t) exists, where x∗ can be any element in argmin f . Moreover, let
x̄ be a sequential limit point of x(t) on [t0,∞) with convergence sequence {tn}. Sim-
ilar to the proof of Theorem 3.2, using Proposition 4.1 we obtain that x̄ ∈ argmin f .
Hence, the proof is completed by Lemma 2.1. ut

5 Numerical experiments

In this section, we report three numerical experiments to verify the theoretical results
of dynamic algorithms (2) and (38). All experiments are performed in Python 3.7.3
on a Lenovo PC (2.30GHz, 8.00GB of RAM).

Example 5.1 Consider the following nonsmooth convex optimization problem in R2,
namely,

min f (x1,x2) = (x1 + x2−1)2 + |x1|+max{x2,0}. (59)

We can deduce that optimal solution set of (59) is X̂ := {x : x1 + x2 =
1
2 ,x1 ≥ 0,x2 ≥

0}, and the optimal value is f (x̂) = 3
4 ,∀x̂ ∈ X̂ .

Let α = 7 and µ(t) = 1
t3 . Fig. 5.1 illustrates that trajectories of (2) with ten random

initial points converge to some elements in X̂ , and shows the convergence rate on
objective values.
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Fig. 5.1 Convergence of trajectories and function values associated with dynamic algorithm (2) for Ex-
ample 5.1
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Fig. 5.2 Convergence of trajectories and function values associated with dynamic algorithm (38) for Ex-
ample 5.1

For the above Example 5.1, we take as a perturbation g(t) = 20e−t to verify the
theoretical results of dynamic algorithm (38). The corresponding results are presented
in Fig. 5.2-(a) with four random initial points, from which we can see the stability
of dynamic algorithm (2) under the perturbation. And Fig. 5.2-(b) shows the con-
vergence rate on objective values of dynamic algorithm (38) with ten random initial
points.

Example 5.2 We consider the following nonsmooth convex optimization problem,

min f (x) := ‖Ax−b‖2
2 +‖Dx−d‖1, (60)
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where A ∈ R20×10, b ∈ R20, D ∈ R50×10 and d ∈ R50 are randomly generated as
follows:

A = randn(20,10);D = randn(50,10);

x∗ = randn(10,1);b = A∗x∗;d = D∗x∗.

From the above generation, we know that x∗ is an optimal solution of Example 5.2
and its optimal value is 0.
• Let µ(t) = 1

t3 . Fig. 5.3-(a) shows the influence of α on the convergence rate of func-
tion values of dynamic algorithm (2) with the same initial value. It can be seen from
Fig. 5.3-(a) that for different values of α , each objective function value converges to
the optimal value along the trajectory of dynamic algorithm (2), and the larger of α ,
the faster the convergence rate of the function value.
• Let α = 4. Fig. 5.3-(b) shows the influence of µ(t) on the convergence rate of func-
tion values of dynamic algorithm (2) with the same initial value. We can see that for
selecting different µ(t), each objective function value also converges to the optimal
value along the trajectory of dynamic algorithm (2), and the faster µ(t) decreases as
t→ ∞, the faster the convergence rate of the function value.
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Fig. 5.3 Convergence of function values associated with dynamic algorithm (2) for Example 5.2

Example 5.3 For example 5.2, we consider the high-dimensional case

min f (x) := ‖Ax−b‖2
2 +‖Dx−d‖1, (61)

where A ∈R200×100, b ∈R200, D ∈R500×100 and d ∈R500 are randomly generated as
follows:

A = randn(200,100);D = randn(500,100);

x∗ = randn(100,1);b = A∗x∗;d = D∗x∗.
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Fig. 5.4 presents the fast convergence rate on the function values of dynamic algo-
rithm (2) with five random initial points.
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Fig. 5.4 Convergence of function values associated with dynamic algorithm (2) for Example 5.3

6 Conclusions

In this paper, we focused on the asymptotic convergence of dynamic algorithm (2)
and its a perturbed version (38) for solving convex optimization problem (1), where
the smoothing method is used to overcome the gradient Lipschitz condition of the
objective function. Firstly, we used Cauchy-Lipschitz-Picard theorem to prove the
global existence and uniqueness of the trajectory of dynamic algorithm (2). Then by
constructing an appropriate energy functions, we showed that the convergence rate
on the objective values is O

(
t−2
)

as α ≥ 3, and o
(
t−2
)

as α > 3, which are same
as the results of dynamic algorithm (5) for solving the corresponding continuous dif-
ferentiable convex optimization problems. In addition, we proved that the trajectory
of (2) is weakly convergent to an optimal solution of problem (1). For the perturbed
second-order dynamic algorithm (38), we verified that it has the same convergence
properties as (2) under a proper condition on the perturbation. Finally, we illustrated
the theoretical results by some numerical examples.

Funding This work is funded by the National Science Foundation of China (No:
11871178).
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