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Abstract In this paper, we propose an algorithmic framework, dubbed inertial
alternating direction methods of multipliers (iADMM), for solving a class of
nonconvex nonsmooth multiblock composite optimization problems with linear
constraints. Our framework employs the general minimization-majorization (MM)
principle to update each block of variables so as to not only unify the convergence
analysis of previous ADMM that use specific surrogate functions in the MM step,
but also lead to new efficient ADMM schemes. To the best of our knowledge,
in the nonconvex nonsmooth setting, ADMM used in combination with the MM
principle to update each block of variables, and ADMM combined with inertial

terms for the primal variables have not been studied in the literature. Under standard
assumptions, we prove the subsequential convergence and global convergence for
the generated sequence of iterates. We illustrate the effectiveness of iADMM on a
class of nonconvex low-rank representation problems.
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1 Introduction

In this paper, we consider the following nonconvex minimization problem with
linear constraints

min
x,y

F (x1, . . . , xs) + h(y) such that
s∑
i=1

Aixi + By = b, (1)

where y ∈ Rq, xi ∈ Rni , x := [x1; . . . ;xs] ∈ Rn, n =
∑s
i=1 ni, Ai is a linear

map from Rni to Rm, B is a linear map from Rq to Rm, b ∈ Rm, h : Rq → R
is a differentiable function, and F (x) = f(x) +

∑s
i=1 gi(xi), where f : Rn → R

is a nonconvex nonsmooth function and gi : Rni → R ∪ {+∞} are proper lower
semi-continuous functions for i = 1, 2, . . . , s. We assume that F satisfies ∂F (x) =
∂x1F (x) × . . . × ∂xsF (x), where ∂F denote the limiting subdifferential of F (see
the definition in Appendix A). Note that this condition is satisfied when f is a
sum of a continuously differentiable function and a block separable function; see [2,
Proposition 2.1].

Notation. We denote [s] := {1, . . . , s}. For the p-dimensional Euclidean space Rp,
we use 〈·, ·〉 to denote the inner product, and ‖ · ‖ to denote the corresponding
induced norm. For a linear mapM,M∗ denotes the adjoint linear map with respect
to the inner product, and ‖M‖ is the induced operator norm of M. We use I to
denote the identity map. For a positive definite self-adjoint operator Q, we denote
‖x‖2Q := 〈x,Qx〉. We denote the smallest eigenvalue of a symmetric linear self-map
(that is, M =M∗) by λmin(M). We use Im(B) to denote the image of B.

1.1 Nonconvex low-rank representation problem

Low-rank matrix approximations play a central role in various fields of computer
science and applied mathematics, and are used in many applications, e.g., rec-
ommender systems [27], topic modeling [29], system identification [38], graph
clustering [57], compression and denoising [55], to cite a few; see also below for
other examples. Given a data matrix, D, the goal of low-rank matrix approxima-
tions is to find a nearby low-rank matrix, X. The low-rank assumption is valid in
many applications as there are typically redundancy and correlations within large
data sets; see, e.g., [47,56] and the references therein.

In this paper, we will illustrate the use of (1) on the following generalized
nonconvex low-rank representation problem: given a data matrix D ∈ Rd×n, solve

min
X,Y,Z

min(m,n)∑
i=1

r1(σ(X)) + r2(Y ) + r3(Z) such that D = A1X + Y A2 + Z, (2)

where X ∈ Rm×n, Y ∈ Rd×q, Z ∈ Rd×n, A1 ∈ Rd×m, A2 ∈ Rq×n, σ(X) is the vector
of singular values of X, r1 is an increasing concave function to promote X to be
of low rank (by promoting the sparsity of σ(X)), r2 is a regularization function,
and r3 is a function that models some noise; e.g., taking r3(Z) = 1

2‖Z‖
2
F when

Z models Gaussian noise. Problem 2 generalize low-rank matrix approximations,
taking A1 as the identity matrix and A2 = 0, so that D = X + Z where X is low
rank, and Z models the noise.
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In particular, Problem (2) generalizes the following machine learning problems:

(i) Let r1(t) = tχ with 0 < χ ≤ 1, r2(Y ) =
∑q−1
i=1 ‖Yi − Yi+1‖ where Yi is the i-th

column of Y , and let A1 and A2 be the identity matrices so that Problem (2)
decomposes the data matrix D into the sum of three components, X, Y and Z.
An application is video surveillance where each column of D is a vectorized
image of a video frame, X is a low-rank matrix that plays the role of the
background, Y is the foreground that has small variations between its columns
(such as slowly moving objectives), and Z represents some noise [58].

(ii) When A1 and A2 are identity matrices, r1(t) = t, and r2(Y ) = λ‖Y ‖1 for
some constant λ > 0, Problem (2) recovers the robust principal component
analysis (robust PCA) model, see, e.g., [12]. Robust PCA decomposes the input
matrix D as the sum of a low-rank matrix X, a sparse matrix Y modeling
gross corruptions and outliers, and an additional noise matrix Z (e.g., r3(Z)
is a multiple of ‖Z‖2F to model Gaussian noise). Robust PCA is also used for
foreground-background separation in video surveillance.

(iii) When r1(t) = t and r2(Y ) = ‖Y ‖∗, Problem (2) is the latent low-rank rep-
resentation problem [34]. In [34], authors used A1 = DP1 and A2 = P ∗2D,
where P1 and P2 are computed by orthogonalizing the columns of D∗ and D,
respectively. We will use this application to illustrate the effectiveness of our
proposed framework, iADMM, in Section 3.

Other applications of Problem (1) include statistical learning, see, e.g., [4,59], and
minimization on compact manifolds, see, e.g., [28,60].

1.2 Motivation and related works

Let A := [A1 . . .As] and Ax :=
∑s
i=1Aixi ∈ Rm. The augmented Lagrangian for

Problem (1) is

L(x, y, ω) := F (x) + h(y) + 〈ω,Ax+ By − b〉+ β

2
‖Ax+ By − b‖2, (3)

where β > 0 is a penalty parameter. ADMM was first introduced by [18] and [17]. It
has recently become popular because of its efficacy in solving emerging large-scale
problems in machine learning and computer vision [9,50,64,65,66]. For simplicity,
let us describe the iteration scheme of a classical ADMM for solving Problem (1)
with 2 blocks x and y:

xk+1 ∈ argmin
x

L(x, yk, ωk), (4a)

yk+1 ∈ argmin
y

L(xk+1, y, ωk), (4b)

ωk+1 = ωk + β(Axk+1 + Byk+1 − b). (4c)

For a multi-block problem, with s > 1, the scheme is similar, see, e.g., [58]. The
update of x in (4a) (a similar discussion is applicable to (4b)) can be rewritten as
xk+1 ∈ argminx F (x) + ϕk(x), where

ϕk(x) =
β

2
‖Ax+ Byk − b‖2 + 〈ωk,Ax+ Byk − b〉. (5)
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Solving the subproblem (4a) is usually very expensive especially when F is not
smooth. A remedy is minimizing a suitable surrogate function of L(·, yk, ωk) that
allows a more efficient update for x. For example, since ϕk(x) is upper bounded by

ϕ̂(x) = ϕk(xk) + 〈∇ϕk(xk), x− xk〉+ κβ

2
‖x− xk‖2, (6)

where κ ≥ ‖A∗A‖ (because ∇ϕk(x) is β‖A∗A‖-Lipschitz continuous), x can be
updated by xk+1 ∈ argminx F (x) + ϕ̂(x), which leads to the linearized ADMM
method, see [32,61]. This update has a closed form for some nonsmooth F ; see
[43]. When F = f + g and f is Lf -smooth then we can also use the upper bound

F̂ (x) = f(xk) + 〈∇f(xk), x − xk〉 +
Lf

2 ‖x − x
k‖2 + g(x) of F to obtain xk+1 ∈

argminx F̂ (x) + ϕ̂(x). This leads to the proximal linearized ADMM method, see [8,
35]. We note that L(·, yk, ωk) is always upper bounded by L(·, yk, ωk) + Dφ(x, xk),
where Dφ is the Bregman distance associated with a continuously differentiable
convex function φ on Rn:

Dφ(a, b) := φ(a)− φ(b)− 〈∇φ(b), a− b〉,∀a, b ∈ Rn. (7)

For example, if φ(x) = ‖x‖2Q = 〈x,Qx〉 then Dφ(a, b) = ‖a− b‖2Q. This upper bound
leads to proximal ADMM, see [15,30]. The above mentioned upper bound functions
are specific examples of surrogate functions for L(·, yk, ωk) (see Definition 1 at
page 6 for the definition of a surrogate function) while each method of updating
x corresponds to a majorization-minimization (MM) step that minimizes the
corresponding majorizer/surrogate function (see [52] for more specific examples of
the MM procedure). In the convex setting (that is, f(·, ·) is convex), [13] and [23]
use the MM principle to unify and generalize the convergence analysis of many
ADMM for multi-blocks problems (that is, s > 1). However, ADMM with the MM
principle has not been studied for the nonconvex problem (1), to the best of our
knowledge.

When the linear coupling constraint is absent, the block coordinate descent
(BCD) method is a standard approach to solve (1). Razaviyayn et al. [46] proposed
the block successive upper-bound minimization (BSUM) framework that employs
the MM principle in each block update. By employing suitable surrogate functions
in each block update, BSUM recovers the typical BCD methods, for example of
[19,22,45,53,5,7,54]. In the non-convex setting, BCD methods with inertial terms1

have also been studied, and have showed significant improvement in their practical
performance; see, e.g., [41] for inertial BCD methods with heavy-ball acceleration,
[62,63] for inertial BCD methods with Nesterov-type acceleration, and [44,20] for
inertial BCD methods that use two extrapolation points. Recently, the authors
in [21] proposed a general inertial block MM framework for solving (1) without
the linear coupling constraint. To the best of our knowledge, inertial ADMM
with Nesterov-type acceleration for the primal variables have not been studied in the
nonconvex case of (1) although some variants of ADMM with inertial terms for
the primal variables have been analysed in the convex case (that is, when both F

and h are convex); see e.g., [11,31,42].

1 We use in this paper the terminology “inertial” to mean that an inertial term that involves
the current iterate and the previous iterates is added to the objective of the subproblem to
update each block, see [21].
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Recently, [51] proposes ADMM with inertial term for the dual variable, see the
description in [51, Expression (17)]. We would like to remark that we realize a gap2

in the proof of [51, Lemma 5]. Let us also mention stochastic ADMM methods for
solving Problem (1) in which the objective is in expectation formulation, see, e.g.,
[24,25], which is out of the scope of this paper.

1.3 Contribution and Organization

In this paper, we propose iADMM, a framework of inertial alternating direction
methods of multipliers, for solving the nonconvex nonsmooth problem (1). When no
extrapolation is used, iADMM becomes a general ADMM framework that employs
the minimization-majorization principle in each block update. For the first time in
the nonconvex nonsmooth setting of Problem (1), we study ADMM and its inertial
version combined with the MM principle when updating each block of variables.
Moreover, our framework allows to use an over-relaxation parameter α ∈ (0, 2) to
set αβ as the constant stepsize for updating the dual variable ω. Note that α = 1,

see, e.g., [23,30,58], or α ∈
(
0, 1+

√
5

2

)
, see, e.g., [16,65], are the standard choices in

the nonconvex setting. Recently, [8] proposed proximal ADMM that use α ∈ (0, 2)
for solving a special case of the nonconvex Problem (1) with s = 1 and A = −I.

Under standard assumptions and α ∈ (0, 2), we analyse the subsequential
convergence for the generated sequence of iADMM and ADMM. When F (x) + h(y)
satisfies the Kurdyka- Lojasiewicz (K L) property and α = 1, we prove the global
convergence and provide the convergence rate for the generated sequence. We would
like to emphasize that although proving convergence towards a critical point has
become a typical task when considering the nonconvex nonsmooth Problem (1),
see e.g., [8,30,58], the techniques to accomplish this task heavily depend on the
considered algorithms and the involved assumptions. As far as we are aware of,
this has not been done for ADMM used in combination with the MM principle
and inertial terms for the primal variables.

Finally, we apply the proposed framework to solve a class of nonconvex low-rank
representation to illustrate the efficacy of iADMM. More specifically, in order to
illustrate the effect of MM procedure in Algorithm 1, we use suitable surrogate
functions such that each block of variables has a close-form update rule (thus, we do
not need to use an outer optimization solver to find a solution for the corresponding
subproblem), see details in Section 3.1. In order to illustrate the acceleration effect
of Algorithm 1, we also employ inertial terms and the extrapolation parameters are
appropriately chosen to guarantee a global convergence, see details in Section 3.2.
Indeed, the numerical results presented in Section 3.3 (see also Appendix C and
Appendix D) empirically show the significant acceleration effect of using inertial
terms.

The paper is organized as follows. In the next section, we describe the proposed
method, iADMM, and analyse its convergence properties. In Section 3, we report
the numerical results of iADMM on a class of nonconvex low-rank representation
problems. We conclude the paper in Section 4. All the technical proofs are presented
in Appendix B.

2 Specifically, the second equality of [51, Expression (51)] is not correct.
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2 An inertial ADMM framework

In this section, we describe the iADMM framework and prove its subsequential
and global convergence. Throughout the paper, we make the following assumptions
that are standard for studying Problem (1) and the convergence of ADMMs in the
nonconvex setting, see for example [58,8,30].

Assumption 1 (i) σB := λmin(BB∗) > 0.

(ii) F (x) + h(y) is lower bounded.

(iii) The function h is Lh-smooth, that is, ∇h is Lh-Lipschitz continuous.

2.1 Description of iADMM

Let us first formally define a surrogate function. Some examples were given in the
introduction. More examples can be found in [37,46,21].

Definition 1 (Surrogate function) Let X ⊆ Rn. A function u : X × X → R is
called a surrogate function of a function f on X if the following two conditions are
satisfied:

(a) u(z, z) = f(z) for all z ∈ X , and (b) u(x, z) ≥ f(x) for all x, z ∈ X .
As we are considering multi-block problems, we need the following definition of a
block surrogate function, which is a generalization of Definition 1.

Definition 2 (Block surrogate function) Let Xi ⊆ Rni , X ⊆ Rn. A function
ui : Xi × X → R is called a block i surrogate function of f on X if the following
conditions are satisfied:
(a) ui(zi, z) = f(z) for all z ∈ X ,
(b) ui(xi, z) ≥ f(xi, z 6=i) for all xi ∈ Xi and z ∈ X ,

where (xi, z 6=i) denotes (z1, . . . , zi−1, xi, zi+1, . . . , zs). The block approximation error
is defined as ei(xi, z) := ui(xi, z)− f(xi, z 6=i).

A separability condition is necessary in [13, Def. 3] for the surrogate function of
f (i.e., when fixing z, the surrogate function u of f satisfies û(x) =

∑s
i=1 ûi(xi),

where û(x) = u(x, z) and ûi(xi) = ui(xi, z)) while our upcoming analysis does not
require such a condition.

The inertial alternating direction method of multipliers (iADMM) framework
is described in Algorithm 1. iADMM cyclically update the blocks x1, . . . , xs and y.
We use xk,i to denote (xk+1

1 , . . . , xk+1
i , xki+1, . . . , x

k
s ), let xk,0 = xk and xk+1 = xk,s,

where k is the outer iteration index, and i the cyclic inner iteration index (i ∈ [s]).

The update of block xi in (8) (note that xk+1
i = xk,ii ) means that iADMM chooses

a surrogate function for xi 7→ L(xi, x
k,i
6=i , y

k, ωk), which is formed by summing a

surrogate function of xi 7→ f(xi, x
k,i
6=i) + gi(xi) and a surrogate function of xi 7→

ϕk(xi, x
k,i
6=i) where ϕk is defined in (5), then apply extrapolation to the latter

surrogate function3. To update block y, as h(y) is Lh-smooth, we apply Nesterov

3 It is important noting that it is possible to embed the general inertial term Gki to the

surrogate of xi 7→ L(xi, x
k,i
6=i , y

k, ωk) as in [21]. This inertial term may also lead to the extrapo-

lation for the block surrogate function of f(x) or for both the two block surrogates. However,
to simplify our analysis, we only consider here the effect of the inertial term for the block
surrogate of ϕk(x).
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Algorithm 1: iADMM, a general framework for solving Problem (1)

Choose x0 = x−1, y0 = y−1, ω0. Let ui, i ∈ [s], be a block i surrogate functions of f(x) on
Rn.
For the choice of the extrapolation parameters, ζki and δk, and of the parameters κi, α and
β, see the paragraph “Choosing parameters for iADMM” (page 8).
for k = 0, . . . do

for i = 1, ..., s do

Compute x̄ki = xki + ζki (xki − x
k−1
i ), and update block xi as follows

xk+1
i ∈ argmin

xi

{
ui(xi, x

k,i−1) + gi(xi) + 〈A∗i
(
ωk + β(Ax̄k,i−1 + Byk − b)

)
, xi〉

+
κiβ

2
‖xi − x̄ki ‖2

}
,

(8)

where κi ≥ ‖A∗iAi‖, and x̄k,i−1 = (xk+1
1 , . . . , xk+1

i−1 , x̄
k
i , x

k
i+1, . . . , x

k
s ).

end for
Compute ŷk = yk + δk(yk − yk−1), and update y as follows

yk+1 ∈ argmin
y

{
〈B∗ωk +∇h(ŷk), y〉+

β

2
‖Axk+1 + By − b‖2 +

Lh

2
‖y − ŷk‖2

}
. (9)

Update ω as follows
ωk+1 = ωk + αβ(Axk+1 + Byk+1 − b). (10)

end for

type acceleration on h as in (9). Together with Assumption 1, we make the following
standard assumption for ui throughout the paper.

Assumption 2 (i) The block surrogate function ui(xi, z) is continuous.

(ii) Given z ∈ Rn, for i ∈ [s], there exists a function xi 7→ ēi(xi, z) such that

ēi(·, z) is continuously differentiable at zi, ēi(zi, z) = 0, ∇xi ēi(zi, z) = 0, and the

block approximation error ei satisfies

ei(xi, z) ≤ ēi(xi, z) for all xi. (11)

Assumption 2 (ii) is satisfied when we simply choose ui(xi, z) = f(xi, z 6=i) (i.e.,
f(xi, z 6=i) is a surrogate function of itself), or when ei(·, z) is continuously differen-
tiable at zi and ∇xiei(zi, z) = 0, or when ei(xi, z) ≤ c‖xi − zi‖1+ε for some ε > 0
and c > 0; see [21, Lemma 3]. In the following, we provide some examples of block
surrogate functions satisfying Assumption 2.

– The block proximal surrogate function, see, e.g., [1,3,20], has the following form

ui(xi, z) = f(xi, z 6=i) + ρi
2 ‖xi − zi‖

2,

where ρi > 0 is a scalar. We have ei(xi, z) = ρi
2 ‖xi − zi‖

2. In this case, ēi = ei.
– The Lipschitz gradient surrogate function, see, e.g., [62,63,20], has the form

ui(xi, z) = f(z) + 〈∇if(z), xi − zi〉+
κiL

(z)
i

2 ‖xi − zi‖2, (12)

where κi ≥ 1 and we assume xi 7→ f(xi, z 6=i) is differentiable and ∇if(xi, z 6=i)

is L
(z)
i -Lipschitz continuous (we note that L

(z)
i may depend on z). We have

∇xiei(xi, z) = L
(z)
i (xi − zi) +∇if(z)−∇if(xi, z 6=i).
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Hence ∇xiei(zi, z) = 0. In this case ēi = ei.
– The quadratic surrogate, see e.g., [14,41], has the following form

ui(xi, z) = f(z) + 〈∇if(z), xi − zi〉+
κi
2

(xi − zi)TH
(z)
i (xi − zi), (13)

where κi ≥ 1 and we assume f is twice differentiable, H
(z)
i is a positive definite

matrix such that (H
(z)
i −∇2

i f(xi, z 6=i)) is positive definite (we note that H
(z)
i

may depend on z). Similarly, we also have ēi = ei in this case.

Choosing parameters for iADMM. The parameters of iADMM include: α in (10),
κi and the extrapolation parameters ζki in the update (8) of block xi, the extrapola-
tion parameter δk in the update (9) of y, and the penalty parameter β. In the next
section, Proposition 1 provides the formulas for ηi and γki that involve β, κi, and
ζki , while Proposition 2 provides the formulas for ηy and γky that involve β and δk.
To guarantee a subsequential convergence, we choose α ∈ (0, 2), and the parameters
ηy, γky , ηi and γki satisfying the conditions of Proposition 4; see Theorem 1. To
guarantee a global convergence, we choose α = 1, use no extrapolation for y,
and choose the other parameters to satisfy (21); see Theorem 2. It is important
noting that the convexity of xi 7→ ui(xi, z) + gi(xi) allows larger extrapolation
parameters in the update of xi (Proposition 1), while the convexity of h allows
larger extrapolation parameters in the update of y (Proposition 2).

Remark 1 As we target Nesterov-type acceleration to update of y (h is assumed
to be Lh-smooth), we analyse the update rule as in (9) for y. Updating y using
yk+1 ∈ argminy L(xk+1, y, ωk) would work as well, and the convergence analysis of
iADMM would be simplified by using the same rationale to obtain subsequential
as well as global convergence. We hence omit this case in our analysis.

2.2 Convergence analysis

Assumptions. Throughout the paper we assume Assumption 1 and Assumption 2
hold, and α ∈ (0, 2).

Let xk,i, yk and ωk be the iterates generated by iADMM. We define some
additional notations as follows. We denote ∆xki = xki − x

k−1
i , ∆yk = yk − yk−1,

∆ωk = ωk − ωk−1, α1 = |1−α|
ασB(1−|1−α|) , α2 = 3α

σB(1−|1−α|)2 and Lk = L(xk, yk, ωk).

We let νi, i ∈ [s], and νy be arbitrary constants in (0, 1). We take the following
convention in the notation that allows us to analyse iADMM and its non-inertial
version in parallel:

– If ζki = 0 (i.e., there is no extrapolation in the update of xki ), then ζki /νi = 0
and νi = 0.

– If δk = 0 (i.e., there is no extrapolation in the update of y), then δk/νy = 0 and
νy = 0.

Now we present our main convergence results; see the proofs in Appendix B.
As iADMM allows to use extrapolation in the update of xki and yk, the La-

grangian is not guaranteed to decrease at each iteration. Instead, it has the following
nearly sufficiently decreasing property as stated in the following Propositions 1
and 2.
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Proposition 1 (i) Considering the update in (8), in general (when xi 7→ ui(xi, z) +
gi(xi) can be nonconvex), we choose κi > ‖A∗iAi‖. Denote aki = βζki (κi + ‖A∗iAi‖).

Then we have

L(xk,i, yk, ωk) + ηi‖∆xk+1
i ‖2 ≤ L(xk,i−1, yk, ωk) + γki ‖∆x

k
i ‖

2, (14)

where

ηi =
(1− νi)(κi − ‖A∗iAi‖)β

2
, γki =

(aki )2

2νi(κi − ‖A∗iAi‖)β
. (15)

(ii) If xi 7→ ui(xi, z)+gi(xi) is convex, we take κi = ‖A∗iAi‖ (note that if ‖A∗iAi‖ = 0
then we can choose κi as in case (i)). Inequality (14) is then satisfied with

γki =
β‖A∗iAi‖(ζ

k
i )2

2
, ηi =

β‖A∗iAi‖
2

. (16)

Proposition 2 Considering the update in (9), we have

L(xk+1, yk+1, ωk) + ηy‖∆yk+1‖2 ≤ L(xk+1, yk, ωk) + γky‖∆yk‖2,

where ηy =
(1−νy)(βλmin(B∗B)+Lh)

2 and γky =
2L2

hδ
2
k

νy(βλmin(B∗B)+Lh)
when h(y) is noncon-

vex, and ηy = Lh
2 and γky =

Lhδ
2
k

2 when h(y) is convex.

From Proposition 1 and Proposition 2, we obtain the following recursion for
{Lk}.

Proposition 3 We have

Lk+1 + ηy‖∆yk+1‖2 +
s∑
i=1

ηi‖∆xk+1
i ‖2

≤ Lk +
s∑
i=1

γki ‖∆x
k
i ‖

2 + γky‖∆yk‖2 +
α1

β
(‖B∗∆ωk‖2 − ‖B∗∆ωk+1‖2)

+
α2

β
L2
h‖∆y

k+1‖2 +
α2

β

(
δ̄kL

2
h‖∆y

k‖2 + 4L2
hδ

2
k−1‖∆y

k−1‖2
)
,

(17)

where δ̄k = 2 if δk = 0 for all k and 4(1 + δk)2 otherwise.

Now we characterize the chosen parameters for Algorithm 1 in the following
proposition.

Proposition 4 Let ηy, γky , ηi, and γki , i ∈ [s], be defined in Proposition 1 and Propo-

sition 2. Denote µ = ηy − α2L
2
h

β . For k ≥ 1, suppose the parameters are chosen such

that µ > 0, ηi > 0, and the following conditions are satisfied for some constants

0 < Cx, Cy < 1:

γki ≤ Cxηi,
4α2L

2
hδ

2
k−1

β
≤ C2µ,

α2L
2
hδ̄k
β

+ γky ≤ C1µ, (18)

where

{
C1 = Cy andC2 = 0 if δk = 0 ∀ k,
0 < C1 < Cy andC2 = Cy − C1 otherwise,

and δ̄k is defined in Proposi-

tion 3. Furthermore, suppose we use one of the following methods:
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– we choose δk = 0 for all k, that is, there is no extrapolation in the update of y,

– we use extrapolation in the update of y and choose the parameters such that

β ≥ 4Lhα

σB(1− |1− α|)
, β ≥ 6αL2

h

µσB(1− |1− α|)
max

{
1,

12δ2k
1− C1

}
. (19)

(i) For K > 1 we have

LK+1 + µ‖∆yK+1‖2 +
s∑
i=1

ηi‖∆xK+1
i ‖2 +

α1

β
‖B∗∆wK+1‖2 + (1− C1)µ‖∆yK‖2

+
K−1∑
k=1

[
(1− Cy)µ‖∆yk‖2 + (1− Cx)

s∑
i=1

ηi‖∆xk+1
i ‖2

]
≤ L1 +

α1

β
‖B∗∆ω1‖2 + Cx

s∑
i=1

ηi‖∆x1i ‖
2 + µ‖∆y1‖2 + C2µ‖∆y0‖2.

(20)

(ii) The sequences {∆yk}, {∆xki } and {∆ωk} converge to 0.

We will assume that Algorithm 1 generates a bounded sequence in our subse-
quential and global convergence results. Let us provide a sufficient condition that
guarantees this boundedness assumption.

Proposition 5 If b+ Im(A) ⊆ Im(B), λmin(B∗B) > 0 and F (x) + h(y) is coercive

over the feasible set {(x, y) : Ax + By = b} then the sequences {xk}, {yk} and {ωk}
generated by Algorithm 1 are bounded.

It is important noting that the coercive condition of F (x)+h(y) over the feasible
set is weaker than the coercive condition of F (x) +h(y) over x ∈ Rn, y ∈ Rq. Let us
now present the subsequential convergence, the global convergence of the generated
sequence and its convergence rate.

Theorem 1 (Subsequential convergence) Suppose the parameters of Algorithm 1

are chosen satisfying the conditions in Proposition 4. If the generated sequence of Algo-

rithm 1 is bounded, then every limit point of the generated sequence is a critical point

of L.

Theorem 2 (Global convergence) Suppose we do not use extrapolation to update

y, that is, δk = 0 for all k (note that extrapolation to update xi is still applicable), and

we take α = 1. Then the conditions in (18) become

γki ≤ Cxηi,
2α2L

2
h

β
≤ Cyµ, for all k ≥ 0, i ∈ [s] (21)

for some constants 0 < Cx, Cy < 1. Furthermore, we assume that (i) for any x, z ∈ Rn,

xi ∈ dom(gi), we have

∂xi

(
f(x) + gi(xi)

)
= ∂xif(x) + ∂xigi(xi),

∂xi

(
ui(xi, z) + gi(xi)

)
= ∂xiui(xi, z) + ∂xigi(xi),

(22)

and (ii) for any x, z in a bounded subset of Rn, if si ∈ ∂xiui(xi, z), there exists ξi ∈
∂xif(x) such that
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‖ξi − si‖ ≤ Li‖x− z‖ for some constantLi. (23)

If the generated sequence of Algorithm 1 is bounded and F (x)+h(y) has the K L property

(see Appendix A), then the whole generated sequence converges to a critical point of L.

We refer the readers to [49, Corollary 10.9] for a sufficient condition for (22)
(see Appendix A for more details). Some specific examples that satisfy (22) in-
clude: (i) gi = 0, (ii) the functions xi 7→ f(x) and xi 7→ ui(xi, z) are strictly
differentiable (see [49, Exercise 10.10]), (iii) the functions xi 7→ f(x) and xi 7→
ui(xi, z) are convex and the relative interior qualification conditions are satisfied:
ri(dom(f(·, x 6=i)) ∩ ri(domgi) 6= ∅ and ri(dom(g(·, z)) ∩ ri(domgi) 6= ∅, where ri is
short for relative interior. We note that although the condition in (23) is necessary
for our convergence proof, the constant Li does not influence how to choose the
parameters in our framework. The condition in (23) is satisfied when both ui and
f are twice continuously differentiable and ∇xiei(xi, x) = 0 for all x (which implies
that ∇xiui(xi, x) = ∇xif(x) for all x). Indeed, in this case we have

‖∇xiui(xi, z)−∇xif(x)‖ = ‖∇xiui(xi, z)−∇xiui(xi, x)‖ ≤ Li‖x− z‖

for some Li because ∇xiui(xi, z) is continuously differentiable and thus is Lipschitz
continuous over any bounded subset. We note that all the examples given after
Assumption 2 in Section 2 satisfy the condition in (23) when f is twice continuously
differentiable.

Convergence rate A convergence rate for the generated sequence of iADMM can
be derived using the same technique as in [1, Theorem 2]. To the best of our
knowledge, in the nonconvex setting, the convergence rate for block coordinate
methods (including inertial as well as non-inertial algorithms) appears to be the
same in different papers in the literature since all papers use the technique in [1].
As it is similar to establish the rate for iADMM, we omit the details. Instead, we
refer the readers to [62, Theorem 2.9] and [20, Theorem 3] for some examples of
using this technique to establish the convergence rate. The type of the convergence
rate depends on the value of the K L exponent, which is the coefficient a such
that Υ (t) in Definition 6 (see Appendix A) equals ct1−a, where c is a constant.
Specifically, when a = 0, the algorithm converges after a finite number of steps,
when a ∈ (0, 1/2], the algorithm has linear convergence, and when a ∈ (1/2, 1), the
algorithm has sublinear convergence. Determining the value of the K L exponent is
out of the scope of this paper, and is an active and challenging topic.

3 Numerical results

In this section, we apply iADMM to solve a latent low-rank representation problem.
We consider Problem (2) with

– r1(t) = λ1t to promote X to be of low-rank, since r1(σ(X)) = λ1
∑
i σi(X) =

λ1‖X‖∗ is the nuclear norm [47].
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– r2(Y ) = λ
∑q
i=1 φ(‖Yi‖2), where φ(t) = 1 − exp(−θt) is concave, θ > 0 is a

parameter, and Yi is the i-th column of Y . This is a nonconvex regularization
that promotes Y to be column sparse, that is, it promotes Y to have many
columns equal to the zero vector [10]. In fact, φ(t) = 0 when t = 0, while φ(t)
quickly goes to 1 as t increases.

– r3(Z) = 1
2‖Z‖

2 to model Gaussian noise.
– A1 = DP1 and A2 = P ∗2D, where P1 and P2 are computed by orthogonalizing

the columns of D∗ and D, respectively, as proposed in [34]. In [34], the authors
showed that this resulting problem is a simpler equivalent form of the one in
which D is considered as a dictionary, i.e. A1 = A2 = D. Hence, it can be scaled
for data sets with a large number of observations.

In this scenario, Problem (2) takes the form of (1) with B being the identity
operator, b being the data set D, x1 and x2 being the matrices X and Y , y being
the matrix Z, gi = 0, h(Z) = 1

2‖Z‖
2 and f(X,Y ) = λ1‖X‖∗ + r2(Y ).

3.1 Surrogate functions and iADMM updates.

We choose u1(X,Xk, Y k) = λ1‖X‖∗ + r2(Y k), and u2(Y,Xk+1, Y k) = r2(Y k) +∑q
i=1 ς

k
i (‖Yi‖2 − ‖Y ki ‖2) + λ1‖Xk+1‖∗, where ςki = λ∇φ(‖Y ki ‖2). The function u1

satisfies Assumption 2, and u2 satisfies Assumption 2 (i). Since φ is continuously
differentiable with Lipschitz gradient on [0,+∞), and the Euclidean norm is
Lipschitz continuous, it follows from Section 4.5 of [21] that u2 also satisfies
Assumption 2 (ii). We derive from [48, Corollary 5Q] that the condition in (23) is
satisfied. According to the update (8), Xk+1 is computed by solving the following
nuclear norm problem

min
X

λ1‖X‖∗+

〈
A∗1

(
β(A1X̄

k+Y kA2 +Zk−D)+W k
)
, X

〉
+
κ1β

2
‖X−X̄k‖2, (24)

where κ1 ≥ ‖A∗1A1‖ and X̄k = Xk + ζk1 (Xk −Xk−1). Let diag(u) denote a diagonal
matrix whose diagonal elements are the entries of u, and [.]+ denote the projection
onto the nonnegative orthant. Problem (24) has a closed-form solution given by
Xk+1 = USλ1/(κ1β)V

T , where USV T is the SVD of X̄k −A∗1(A1X̄
k +Y kA2 +Zk −

D+W k)/(κ1β) and Sλ1/(κ1β) = diag([Sii − λ1/(κ1β)]+). Letting κ2 ≥ ‖A2A
∗
2‖ and

Ȳ k = Y k + ζk2 (Y k − Y k−1), the update (9) for Y is

Y k+1 ∈ arg min
Y

q∑
i=1

ςki ‖Yi‖2 + 〈(W k + β(A1X
k+1 + Ȳ kA2

+ Zk −D))A∗2, Y 〉+
κ2β

2
‖Y − Ȳ k‖2.

It has a closed-form solution given by Y k+1
i =

[
‖P ki ‖ − ς

k
i /(κ2β)

]
+

Pk
i

‖Pk
i ‖
, where P ki

is the i-th column of Ȳ k − (A1X
k+1 + Ȳ kA2 + Zk −D)/κ2 −W k/(κ2β).

The update (9) for Z is Zk+1 = −(W k + β(A1X
k+1 + Y k+1A2 −D))/(1 + β), and

the update (10) for W is W k+1 = W k + αβ(A1X
k+1 + Y k+1A2 + Zk+1 −D).
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3.2 Choosing parameters

We have Lh = 1, σB = 1, and δk = 0. As h(Z) is convex and we do not apply
extrapolation for Z, by Proposition 2, ηy = 1

2 and γky = 0. Since ‖X‖∗ and∑q
i=1 ς

k
i ‖Yi‖2 are convex, we choose κ1 = ‖A∗1A1‖, κ2 = ‖A2A

∗
2‖, and the conditions

in (21) become ζki ≤
√
Cx (i = 1, 2) and

(2+Cy)α2

β ≤ Cy

2 . We take Cx = 1− 10−15,

α = 1, Cy = 1− 10−6, β = 2(2 + Cy)α2/Cy, a0 = 1, ak = 1
2 (1 +

√
1 + 4a2k−1), and

ζki = min
{
ak−1−1
ak

,
√
Cx

}
. We set α = 1 as we target global convergence. We have

also conducted experiments with other values of α (namely 0.5, 1.4 and 1.8); see
Appendix C.

3.3 Experiments

We compare the following three methods: (1) ADMM-mm: iADMM without ex-
trapolation, (2) iADMM-mm: iADMM with extrapolation, (2) linearizedADMM:
a linearized ADMM which is different from ADMM-mm for updating Y . lin-
earizedADMM updates Y by solving min−λ exp(‖Yi‖2) + κ2β

2 ‖Yi − V
k
i ‖

2, where

V ki is the i-the column of Xk − (W k + β(A1X
k+1 + Ȳ kA2 + Zk − D))A∗2/(κ2β).

Since these sub-problems do not have closed-form solutions, we employ an MM
scheme to solve them. To examine the performance of the three algorithms, we
consider subspace segmentation tasks. After obtaining a solution X∗, we follow the
setting in [33] to construct the affinity matrix Q by Qij = (Ũ ŨT )ij , where Ũ is

formed by U∗(Σ∗)1/2 with normalized rows and U∗Σ∗(V ∗)T being the SVD of X∗.
Finally, we apply the Normalized Cuts [26] on Q to cluster the data into groups.
The experiments are run on three data sets: Hopkins 155, extended Yale B and
Umist. Hopskins 155 consists of 156 sequences, each of which has from 39 to 550
vectors drawn from two or three motions (one motion corresponds to one subspace).
Each sequence is a sole segmentation task and thus there are 156 clustering tasks in
total. Yale B contains 2414 frontal face images with 38 classes, and Umist contains
564 images with 20 classes. To avoid computational issues when computing the
segmentation error rate, we construct clustering tasks by using the first 10 classes
of these two data sets [36]. All tests are preformed using Matlab R2019a on a PC
2.3 GHz Intel Core i5 of 8GB RAM.
In our experiments, we choose θ = 5, λ1 = λ = 0.01 for Hopkins 155, and λ1 = λ = 1
for the two other data sets. We set the initial points to zero, that is, X0 = 0,
Y 0 = 0, Z0 = 0, W 0 = 0. We do not optimize numerical results by tweaking
the parameters and initial points as this is beyond the scope of this work. It is
important noting that we evaluate the algorithms on the same models with the
same initializations. We run each algorithm 10, 300, and 500 seconds for each
sequence of Hopkins 155, Umist10, and Yaleb10, respectively. Figure 1 displays
the values of the segmentation error rate and the objective function versus the
training time, and Table 1 reports the final values. Since there are 156 sequences
(data sets) in Hopkins 155, we plot the average values, and report the final average
results and standard deviation over these sequences. We observe that iADMM-mm
converges the fastest on all the data sets, providing a significant acceleration of
ADMM-mm. iADMM-mm achieves not only the best final objective function values
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Fig. 1 Evolution of the segmentation error rate and the objective function value with respect
to time. For Hopkins155, the results are the average values over 156 sequences.

but also the best segmentation error rates. This illustrates the usefulness of the
acceleration technique. In addition, ADMM-mm outperforms linearizedADMM
which illustrates the usefulness of properly choosing a proper surrogate function.
The conclusions are the same for other values of α; see Appendix C.

4 Conclusion

We have proposed and analysed iADMM, a framework of inertial alternating
direction methods of multipliers, for solving a class of nonconvex nonsmooth
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Table 1 Comparison of segmentation error rate and final objective function values obtained
within the allotted time. Bold values indicate the best results.

Method
Error Obj. value
mean ± std mean ± std

H
o
p

k
in

s linearizedADMM 0.1579 ± 0.1550 3.0254 ± 2.4189
ADMM-mm 0.1472 ± 0.1513 1.8081 ± 1.6674
iADMM-mm 0.0562± 0.1006 0.2023± 0.1062

U
m

is
t linearizedADMM 0.5170 1.0838×109

ADMM-mm 0.5170 1.0167×109

iADMM-mm 0.2604 0.1694×109

Y
a
le

b linearizedADMM 0.7656 5.2317×103

ADMM-mm 0.7047 4.4829×103

iADMM-mm 0.1984 0.6951×103

optimization problem with linear constraints. The preliminary computational
results in solving a class of nonconvex low-rank representation problems not only
show the efficacy of using inertial terms for ADMM but also show the advantage
of using suitable block surrogate functions that provide closed-form solutions in
the block update of ADMM. We conclude the paper by mentioning two important
questions that we consider as a future research directions: (i) Can we extend the
cyclic update rule of iADMM to randomized/non-cyclic setting? (ii) To guarantee
the global convergence, iADMM does not allow extrapolation in the update of
y; see Theorem 2. Can we extend the analysis to allow the extrapolation in the
update of y?
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APPENDIX

A Preliminaries of non-convex non-smooth optimization

In this appendix, we recall some basic definitions and results, namely directional derivative and
subdifferentials in Definition 3, critical point in Definition 4, the subdifferential of a sum of
function in Proposition 6, and K L functions in Definition 6.

Let g : E→ R ∪ {+∞} be a proper lower semicontinuous function.

Definition 3 [49, Definition 8.3]

(i) For any x ∈ dom g, and d ∈ E, we denote the directional derivative of g at x in the direction
d by

g′ (x; d) = lim inf
τ↓0

g(x+ τd)− g(x)

τ
.

(ii) For each x ∈ dom g, we denote ∂̂g(x) as the Frechet subdifferential of g at x which contains
vectors v ∈ E satisfying

lim inf
y 6=x,y→x

1

‖y − x‖
(g(y)− g(x)− 〈v, y − x〉) ≥ 0.

If x 6∈ dom g, then we set ∂̂g(x) = ∅.
(iii) The limiting-subdifferential ∂g(x) of g at x ∈ dom g is defined as follows:

∂g(x) :=
{
v ∈ E : ∃x(k) → x, g

(
x(k)

)
→ g(x), v(k) ∈ ∂̂g

(
x(k)

)
, v(k) → v

}
.

(iv) The horizon subdifferential ∂∞g(x) of g at x is defined as follows:

∂∞g(x) :=
{
v ∈ E : ∃λ(k) → 0, λ(k) ≥ 0, λ(k)x(k) → x, g(x(k))→ g(x),

v(k) ∈ ∂̂g(x(k)), v(k) → v
}
.

Definition 4 We call x∗ ∈ dom F a critical point of F if 0 ∈ ∂F (x∗) .

Definition 5 [49, Definition 7.5] A function f : Rn → R ∪ {+∞} is called subdifferentially
regular at x̄ if f(x̄) is finite and the epigraph of f is Clarke regular at (x̄, f(x̄)) as a subset of
Rn × R (see [49, Definition 6.4] for the definition of Clarke regularity of a set at a point).

Proposition 6 [49, Corollary 10.9] Suppose f = f1 + ·+fm for proper lower semi-continuous
function fi : Rn → R ∪ {+∞} and let x̄ ∈ domf . Suppose each function fi is subdifferential
regular at x̄, and the condition that the only combination of vector νi ∈ ∂∞fi(x̄) with ν1 +
. . . νm = 0 is νi = 0 for i ∈ [m]. Then we have

∂f(x̄) = ∂f1(x̄) + . . . ∂fm(x̄).

To obtain a global convergence, we need the following Kurdyka- Lojasiewicz (K L) property for
F (x) + h(y).

Definition 6 A function φ(·) is said to have the K L property at x̄ ∈ dom ∂ φ if there exists
ς ∈ (0,+∞], a neighborhood U of x̄ and a concave function Υ : [0, ς)→ R+ that is continuously
differentiable on (0, ς), continuous at 0, Υ (0) = 0, and Υ ′(t) > 0 for all t ∈ (0, η), such that for
all x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + ς], we have

Υ ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1, (25)

where dist (0, ∂φ(x)) = min {‖z‖ : z ∈ ∂φ(x)}. If φ(x) has the K L property at each point of
dom ∂φ then φ is a K L function.

When Υ (t) = ct1−a, where c is a constant, we call a the K L coefficient.

Many non-convex non-smooth functions in practical applications belong to the class of K L
functions, for examples, real analytic functions, semi-algebraic functions, and locally strongly
convex functions, see for example [6,7].
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B Proofs

In this appendix, we provide the proofs of all propositions and theorems of our paper. Before
that, let us give some preliminary results. We use x, z to denote vectors in Rn.

Lemma 1 [21, Lemma 2.8] If the function xi 7→ Θ(xi, z) is ρ-strongly convex, differentiable
at zi, and ∇xiΘ(zi, z) = 0 then we have

Θ(xi, z) ≥
ρ

2
‖xi − zi‖2.

We recall the notation (xi, z 6=i) = (z1, . . . , zi−1, xi, zi+1, . . . , zs). Suppose we are trying to solve

min
x
Ψ(x) := Φ(x) +

s∑
i=1

gi(xi).

Proposition 7 [21, Theorem 2.7] Suppose Gki : Rni × Rni → Rni be some extrapolation

operator that satisfies Gki (xki , x
k−1
i ) ≤ aki ‖xki −x

k−1
i ‖. Let ui(xi, z) is a block surrogate function

of Φ(x). We assume one of the following conditions holds:

– xi 7→ ui(xi, z) + gi(xi) is ρi-strongly convex,

– the approximation error Θ(xi, z) := ui(xi, z)−Φ(xi, z 6=i) satisfying Θ(xi, z) ≥ ρi
2
‖xi−zi‖2

for all xi.

Note that ρi may depend on z. Let

xk+1
i = argmin

xi

ui(xi, x
k,i−1) + gi(xi)− 〈Gki (xki , x

k−1
i ), xi〉.

Then we have

Ψ(xk,i−1) + γki ‖xki − x
k−1
i ‖2 ≥ Ψ(xk,i) + ηki ‖x

k+1
i − xki ‖2, (26)

where

γki =
(aki )

2

2νρi
, ηki =

(1−ν)ρi
2

,

and 0 < ν < 1 is a constant. If we do not apply extrapolation, that is aki = 0, then (26) is

satisfied with γki = 0 and ηki = ρi/2.

The following proposition is derived from [20, Remark 3] and [62, Lemma 2.1].

Proposition 8 Suppose xi 7→ Φ(x) is a Li-smooth convex function and gi(xi) is convex.

Define x̄k,i−1 = (xk+1
1 , . . . , xk+1

i−1 , x̄
k
i , x

k
i+1, . . . , x

k
s ), x̂ki = xki + αki (xki − xk−1

i ) and x̄ki =

xki + βki (xki − x
k−1
i ). Let xk+1

i = argminxi 〈∇Φ(x̄k,i−1), xi〉+ gi(xi) + Li
2
‖xi − x̂ki ‖2. Then we

have Inequality (26) is satisfied with

γki =
Li

2

(
(βki )2 +

(γki − αki )2

ν

)
, ηki =

(1− ν)Li

2
.

If αki = βki then we have Inequality (26) is satisfied with

γki =
Li

2
(βki )2, ηki =

Li

2
.
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B.1 Proof of Proposition 1

(i) Suppose we are updating xki . Let us recall that

L(x, y, ω) := f(x) +

s∑
i=1

gi(xi) + h(y) + ϕ(x, y, ω),

where

ϕ(x, y, ω) =
β

2
‖Ax+ By − b‖2 + 〈ω,Ax+ By − b〉. (27)

Denote ui(xi, z, y, ω) = ui(xi, z) + h(y) + ϕ̂i(xi, z, y, ω), where

ϕ̂i(xi, z, y, ω) = ϕ(z, y, ω) + 〈A∗i
(
ω + β(Az + By − b)

)
, xi − zi〉+

κiβ

2
‖xi − zi‖2.

We see that ϕ̂i(xi, z, y, ω) is a block surrogate function of x 7→ ϕ(x, y, ω) with respect to
block xi, and ui(xi, z, y, ω) is a block surrogate function of x 7→ f(x) + h(y) + ϕ(x, y, ω) with
respect to block xi. The update in (8) can be rewritten as follows.

xk+1
i = argmin

xi

ui(xi, x
k,i−1, yk, ωk) + gi(xi)− 〈Gki (xki , x

k−1
i ), xi〉, (28)

where

Gki (xki , x
k−1
i ) = βA∗iA

(
xk,i−1 − x̄k,i−1)

)
+ κiβζ

k
i (xki − x

k−1
i ). (29)

The block approximation error function between ui(xi, z, y, ω) and x 7→ f(x) +h(y) +ϕ(x, y, ω)
is defined as

ei(xi, z, y, ω) = ui(xi, z, y, ω)−
(
f(xi, z 6=i) + h(y) + ϕ((xi, z 6=i), y, ω)

)
= ui(xi, z)− f(xi, z 6=i) + ϕ̂i(xi, z, y, ω)− ϕ((xi, z 6=i), y, ω)

≥ θi(xi, z, y, ω) :=

ϕ(z, y, ω)− ϕ((xi, z 6=i), y, ω) + 〈A∗i
(
ω + β(Az + By − b)

)
, xi − zi〉+

κiβ

2
‖xi − zi‖2.

(30)

We have∇xiθi(xi, z, y, ω) = κiβ(xi−zi)+∇xiϕ(z, y, ω)−∇xiϕ((xi, z 6=i), y, ω). So∇xiθi(zi, z, y, w) =

0. On the other hand, note that xi 7→ ϕ((xi, z 6=i), y
k, ωk) is β‖A∗iAi‖ - smooth. So, xi 7→

θi(xi, z, y, ω) is a β(κi − ‖A∗iAi‖) - strongly convex function. From Lemma 1 we have

θi(xi, z, y, w) ≥ β(κi−‖A∗iAi‖)
2

‖xi−zi‖2. The result follows from (28), (30) and Proposition (7).
(ii) When xi 7→ ui(xi, z) + gi(xi) is convex and we apply the update as in (8), it follows

from Proposition 8 (see also [21, Remark 4.1]) that

ui(x
k
i , x

k,i−1) + gi(x
k
i ) + ϕ(xk,i−1, yk, ωk) +

β‖A∗iAi‖
2

(ζki )2‖xki − x
k−1
i ‖2

≥ ui(xk+1
i , xk,i−1) + gi(x

k+1
i ) + ϕ(xk,i, yk, ωk) +

β‖A∗iAi‖
2

‖xk+1
i − xki ‖2.

(31)

On the other hand, note that ui(x
k
i , x

k,i−1) = f(xk,i−1) and ui(x
k+1
i , xk,i−1) ≥ f(xk,i). The

result follows then.

B.2 Proof of Proposition 2

Denote

ĥ(y, y′) = h(y′) + 〈ω,Ax+ By′ − b〉+ 〈B∗ω +∇h(y′), y − y′〉+
Lh

2
‖y − y′‖2.

Then we have ĥ(y, y′) + β
2
‖Ax+By− b‖2 is a surrogate function of y 7→ h(y) +ϕ(x, y, ω). Note

that the function y 7→ ĥ(y, y′) + β
2
‖Ax+ By − b‖2 is (Lh + βλmin(B∗B))-strongly convex. The

result follows from Proposition 7 (see also [21, Section 4.2.1]).

Suppose h(y) is convex. We note that y 7→ β
2
‖Ax+ By − b‖2 is also convex and plays the

role of gi in Proposition 8. The result follows from Proposition 8.
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B.3 Proof of Proposition 3

Note that

L(xk+1, yk+1, ωk+1) = L(xk+1, yk+1, ωk) +
1

αβ
〈ωk+1 − ωk, ωk+1 − ωk〉 (32)

From the optimality condition of (9) we have

∇h(ŷk) + Lh(yk+1 − ŷk) + B∗ωk + βB∗(Axk+1 + Byk+1 − b) = 0.

Together with (10) we obtain

∇h(ŷk) + Lh(∆yk+1 − δk∆yk) + B∗ωk +
1

α
B∗(wk+1 − wk) = 0. (33)

Hence,
B∗wk+1 = (1− α)B∗ωk − α(∇h(ŷk) + Lh(∆yk+1 − δk∆yk)), (34)

which implies that
B∗∆wk+1 = (1− α)B∗∆wk − α∆zk+1, (35)

where ∆zk+1 = zk+1 − zk and zk+1 = ∇h(ŷk) + Lh(∆yk+1 − δk∆yk). We now consider 2
cases.

Case 1: 0 < α ≤ 1. From the convexity of ‖ · ‖ we have

‖B∗∆wk+1‖2 ≤ (1− α)‖B∗∆wk‖2 + α‖∆zk+1‖2 (36)

Case 2: 1 < α < 2. We rewrite (35) as B∗∆wk+1 = −(α− 1)B∗∆wk − α
2−α (2− α)∆zk+1.

Hence

‖B∗∆wk+1‖2 ≤ (α− 1)‖B∗∆wk‖2 +
α2

(2− α)
‖∆zk+1‖2 (37)

Combine (36) and (37) we obtain

‖B∗∆wk+1‖2 ≤ |1− α|‖B∗∆wk‖2 +
α2

1− |1− α|
‖∆zk+1‖2, (38)

which implies

(1−|1−α|)‖B∗∆wk+1‖2 ≤ |1−α|(‖B∗∆wk‖2−‖B∗∆wk+1‖2)+
α2

1− |1− α|
‖∆zk+1‖2. (39)

On the other hand, when we use extrapolation for the update of y we have

‖∆zk+1‖2 = ‖∇h(ŷk)−∇h(ŷk−1) + Lh(∆yk+1 − δk∆yk)− Lh(∆yk − δk−1∆y
k−1)‖2

≤ 3L2
h‖ŷ

k − ŷk−1‖2 + 3L2
h‖∆y

k+1‖2 + 3‖(1 + δk)Lh∆y
k − Lhδk−1∆y

k−1‖2

≤ 6L2
h

[
(1 + δk)2‖∆yk‖2 + δ2k−1‖∆y

k−1‖2
]

+ 3L2
h‖∆y

k+1‖2

+ 6(1 + δk)2L2
h‖∆y

k‖2 + 6L2
hδ

2
k−1‖∆y

k−1‖2

= 3L2
h‖∆y

k+1‖2 + 12(1 + δk)2L2
h‖∆y

k‖2 + 12L2
hδ

2
k−1‖∆y

k−1‖2.
(40)

If we do not use extrapolation for y then we have

‖∆zk+1‖2 = ‖∇h(yk)−∇h(yk−1) + Lh∆y
k+1 − Lh∆yk‖2

≤ 3L2
h‖∆y

k‖2 + 3L2
h‖∆y

k+1‖2 + 3L2
h‖∆y

k‖2 = 6L2
h‖∆y

k‖2 + 3L2
h‖∆y

k+1‖2.
(41)

Furthermore, note that σB‖∆wk+1‖2 ≤ ‖B∗∆wk+1‖2. Therefore, it follows from (39) that

‖∆wk+1‖2 ≤
|1− α|

σB(1− |1− α|)
(‖B∗∆wk‖2 − ‖B∗∆wk+1‖2)

+
α23L2

h

σB(1− |1− α|)2
(‖∆yk+1‖2 + δ̄k‖∆yk‖2 + 4δ2k−1‖∆y

k−1‖2).

(42)

The result is obtained from (42), (32) and Proposition 1.
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B.4 Proof of Proposition 4

(i) From Inequality (17) and the conditions in (18),

Lk+1 + µ‖∆yk+1‖2 +
s∑
i=1

ηi‖∆xk+1
i ‖2 +

α1

β
‖B∗∆wk+1‖2

≤ Lk + C1µ‖∆yk‖2 + C2µ‖∆yk−1‖2 + Cx

s∑
i=1

ηi‖∆xki ‖2 +
α1

β
‖B∗∆wk‖2.

(43)

By summing from k = 1 to K Inequality (43) and noting that C1 + C2 = Cy we obtain (20).
(ii) Let us prove {∆yk} and {∆xki } converge to 0. Let us first prove the second situation,

that is we use extrapolation for the update of y and Inequality (19) is satisfied. From (34) we
have αB∗wk+1 = −(1− α)B∗∆ωk+1 − αzk+1, where zk+1 = ∇h(ŷk) + Lh(∆yk+1 − δk∆yk).
Using the same technique that derives Inequality (38), we obtain the following

ασB‖wk+1‖2 ≤ α‖B∗wk+1‖2 ≤ |1− α|‖B∗∆ωk+1‖2 +
α2

1− |1− α|
‖zk+1‖2. (44)

On the other hand, we have

Lk = F (xk) + h(yk) +
β

2
‖Axk + Byk − b+

ωk

β
‖2 −

1

2β
‖ωk‖2 ≥ F (xk) + h(yk)−

1

2β
‖ωk‖2.

Together with (44) and

‖zk‖2 = ‖∇h(ŷk−1)−∇h(yk) +∇h(yk) + Lh(∆yk − δk−1∆y
k−1)‖2

≤ 4‖∇h(ŷk−1)−∇h(yk)‖2 + 4‖∇h(yk)‖2 + 4L2
h‖∆y

k‖2 + 4L2
hδ

2
k−1‖∆y

k−1‖2

≤ 12L2
h‖∆y

k‖2 + 12δ2k−1‖∆y
k−1‖2 + 4‖∇h(yk)‖2.

we obtain

Lk ≥ F (xk) + h(yk)−
1

2αβσB

(
|1− α|‖B∗∆ωk‖2 +

α2

1− |1− α|
‖zk‖2

)
≥ F (xk) + h(yk)−

|1− α|
2αβσB

‖B∗∆ωk‖2

−
α

2βσB(1− |1− α|)
(
12L2

h‖∆y
k‖2 + 12δ2k−1‖∆y

k−1‖2 + 4‖∇h(yk)‖2
)

(45)

Since h(y) is Lh-smooth, for all y ∈ Rq and αL > 0 we have, (see [40])

h(y − αL∇f(y)) ≤ h(y)− αL(1−
LhαL

2
)‖∇h(y)‖2.

Let us choose αL such that αL(1− LhαL
2

) = 4α
2βσB(1−|1−α|)

. Note that this equation always

has a positive solution when β ≥ 4Lhα
σB(1−|1−α|)

. Then we have

h(yk)−
4α

2βσB(1− |1− α|)
‖∇h(yk)‖2 ≥ h(yk − αL∇f(yk)).

Together with (45) we get

Lk ≥ F (xk) + h(yk − αL∇f(yk))−
|1− α|
2αβσB

‖B∗∆ωk‖2

−
α

2βσB(1− |1− α|)
(12L2

h‖∆y
k‖2 + 12δ2k−1‖∆y

k−1‖2).

(46)
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So from α1
β
≥ |1−α|

2αβσB
, µ ≥ α12L2

h
2βσB(1−|1−α|)

, (1− C1)µ ≥ α12L2
h12δ2k

2βσB(1−|1−α|)
we have

LK+1 + µ‖∆yK+1‖2 +
α1

β
‖B∗∆wK+1‖2 + (1− C1)µ‖∆yK‖2

≥ F (xK+1) + h(yK+1 − αL∇f(yK+1)).

(47)

Hence LK+1 + µ‖∆yK+1‖2 + α1
β
‖B∗∆wK+1‖2 + (1− C1)µ‖∆yK‖2 is lower bounded.

Furthermore, since ηi and µ are positive numbers we derive from Inequality (20) that∑∞
k=1 ‖∆yk‖2 < +∞ and

∑∞
k=1 ‖∆xki ‖2 < +∞. Therefore, {∆yk} and {∆xki } converge to 0.

Let us now consider the first situation when δk = 0 for all k.
From Inequality (17) and the conditions in (18) we have

Lk+1 + µ‖∆yk+1‖2 +

s∑
i=1

ηi‖∆xk+1
i ‖2 +

α1

β
‖B∗∆wk+1‖2

≤ Lk + Cyµ‖∆yk‖2 + Cx

s∑
i=1

ηi‖∆xki ‖2 +
α1

β
‖B∗∆wk‖2.

(48)

By summing Inequality (48) from k = 1 to K we obtain

LK+1 + Cyµ‖∆yK+1‖2 + Cx

s∑
i=1

ηi‖∆xK+1
i ‖2 +

α1

β
‖B∗∆wK+1‖2

+

K∑
k=1

[
(1− Cy)µ‖∆yk+1‖2 + (1− Cx)

s∑
i=1

ηi‖∆xk+1
i ‖2

]
≤ L1 +

α1

β
‖B∗∆ω1‖2 +

s∑
i=1

η0i ‖∆x1i ‖2 + Cµ‖∆y1‖2.

(49)

Denote the value of the right side of Inequality (48) by L̂k. Note that 0 < Cx, Cy < 1, then

from (48) we have the sequence {L̂k} is non-increasing. It follows from [39, Lemma 2.9] that

L̂k ≥ ϑ for all k, where ϑ is is the lower bound of F (xk) + h(yk). For completeness, let us
provide the proof in the following. We have

L̂k ≥ Lk = F (xk) + h(yk) +
β

2
‖Axk +Byk − b‖2 +

1

αβ
〈ωk, ωk − ωk−1〉

≥ ϑ+
1

2αβ
(‖ωk‖2 − ‖ωk−1‖2 + ‖∆ωk‖2) ≥ ϑ+

1

2αβ
(‖ωk‖2 − ‖ωk−1‖2),

(50)

Assume that there exists k0 such that L̂k < ϑ for all k ≥ k0. As L̂k is non-increasing we have

K∑
k=1

(L̂k − ϑ) ≤
k0∑
k=1

(L̂k − ϑ) + (K − k0)(L̂k − ϑ)

Hence
∑∞
k=1(L̂k − ϑ) = −∞. However, from (50) we have

K∑
k=1

(L̂k − ϑ) ≥
K∑
k=1

1

2αβ
‖ωk‖2 −

1

2αβ
‖ωk−1‖2 ≥

1

2αβ
(−‖ω0‖2),

which gives a contradiction.
Since L̂K ≥ ϑ and ηi and µ are positive numbers we derive from Inequality (20) that∑∞

k=1 ‖∆yk‖2 < +∞ and
∑∞
k=1 ‖∆xki ‖2 < +∞. Therefore, {∆yk} and {∆xki } converge to 0.

Now we prove {∆ωk} goes to 0. Since
∑∞
k=1 ‖∆yk‖2 < +∞, we derive from (40) that∑∞

k=1 ‖∆zk‖2 < +∞. Summing up Equality (38) from k = 1 to K we have

(1− |1− α|)
K∑
k=1

‖B∗∆ωk‖2 + ‖B∗∆ωK+1‖2 ≤ ‖B∗∆ω1‖2 +
α2

1− |1− α|

K∑
k=1

‖∆zk+1‖2,

which implies that
∑∞
k=1 ‖B∗∆ωk‖2 < +∞. Hence, ‖B∗∆ωk‖2 → 0. Since σB > 0 we have

{∆ωk} goes to 0.
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B.5 Proof of Proposition 5

We remark that we use the idea in the proof of [58, Lemma 6] to prove the proposition. However,
our proof is more complicated since in our framework α ∈ (0, 2), the function h is linearized
and we use extrapolation for y.

Note that as σB > 0 we have B is a surjective. Together with the assumption b+ Im(A) ⊆
Im(B) we have there exist ȳk such that Axk + Bȳk − b = 0.

Now we have

Lk = F (xk) + h(yk) +
β

2
‖Axk + Byk − b‖2 + 〈ωk,Axk + Byk − b〉

= F (xk) + h(yk) +
β

2
‖Axk + Byk − b‖2 + 〈B∗ωk, yk − ȳk〉

(51)

From (33) we have

〈B∗ωk, yk − ȳk〉 =
〈
∇h(ŷk) + Lh(∆yk+1 − δk∆yk) +

1

α
B∗(wk+1 − wk), ȳk − yk

〉
≥ 〈∇h(yk), ȳk − yk〉 −

(
‖∇h(yk)−∇h(ŷk)‖+ Lh‖∆yk+1‖+ Lhδk‖∆yk‖

+
1

α
‖B∗∆ωk+1‖

)
‖ȳk − yk‖.

Therefore, it follows from (51) and Lh-smooth property of h that

Lk ≥ F (xk)+h(ȳk)−
Lh

2
‖yk− ȳk‖2−

(
2Lhδk‖∆yk‖+Lh‖∆yk+1‖+

1

α
‖B∗∆ωk+1‖

)
‖ȳk−yk‖.

(52)
On the other hand, we have

‖ȳk−yk‖2 ≤
1

λmin(B∗B)
‖B(ȳk−yk)‖2 =

1

λmin(B∗B)
‖Axk+Byk−b‖2 =

1

λmin(B∗B)

∥∥ 1

αβ
∆ωk

∥∥2.
(53)

We have proved in Proposition 4 that ‖∆ωk‖, ‖∆xk‖ and ‖∆yk‖ converge to 0. Furthermore,
from Proposition 4 we have Lk is upper bounded. Therefore, from (52), (53) and (20) we have
F (xk) + h(ȳk) is upper bounded. So {xk} is bounded. Consequently, Axk is bounded.

Furthermore, we have

‖yk‖2 ≤
1

λmin(B∗B)
‖Byk‖2 =

1

λmin(B∗B)

∥∥ 1

αβ
∆ωk −Axk − b

∥∥2.
Therefore, {yk} is bounded, which implies that ‖∇h(ŷk)‖ is also bounded. Finally, from (33)
and the assumption λmin(BB∗) > 0 we also have {ωk} is bounded.

B.6 Proof of Theorem 1

Suppose (xkn , ykn , ωkn) converges to (x∗, y∗, ω∗). Since ∆xki goes to 0, we have xkn+1
i and

xkn−1
i also converge to x∗i for all i ∈ [s]. From (28), for all xi,

ui(x
k+1
i , xk,i−1, yk, ωk) + gi(x

k+1
i ) ≤ ui(xi, x

k,i−1, yk, ωk) + gi(xi)− 〈Gki (xki , x
k−1
i ), xi − xk+1

i 〉.
(54)

Choosing xi = x∗i and k = kn−1 in (54) and noting that ui(xi, z) is continuous by Assumption 2

(i), we have lim supn→∞ ui(x
∗
i , x
∗, y∗, ω∗)+gi(x

kn
i ) ≤ ui(x

∗
i , x
∗, y∗, ω∗)+gi(x

∗
i ). On the other

hand, as gi(xi) is lower semi-continuous. Hence, gi(x
kn
i ) converges to gi(x

∗
i ). Now we choose

k = kn →∞ in (54) for all xi we obtain

L0(x∗, y∗, ω∗) + gi(x
∗
i ) ≤ ui(xi, x

∗, y∗, ω∗) + gi(xi)

= L0(xi, x
∗
6=i, y

∗, ω∗) + ei(xi, x
∗, y∗, ω∗) + gi(xi),

(55)
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where L0(x, y, ω) = f(x) + h(y) + ϕ(x, y, ω) and ei is the approximation error defined in (30).
We have

ei(xi, x
∗, y∗, ω∗) = ui(xi, x

∗)− f(xi, x
∗
6=i) + ϕ̂i(xi, x

∗, y∗, ω∗)− ϕ((xi, x
∗
6=i), y

∗, ω∗)

≤ ēi(xi, x∗) + ϕ̂i(xi, x
∗, y∗, ω∗)− ϕ((xi, x

∗
6=i), y

∗, ω∗).

Note that ēi(x
∗
i , x
∗) = 0 by Assumption 2. From (55) we have x∗i is a solution of

min
xi

L(xi, x
∗
6=i, y

∗, ω∗) + ēi(xi, x
∗) + ϕ̂i(xi, x

∗, y∗, ω∗)− ϕ((xi, x
∗
6=i), y

∗, ω∗).

Writing the optimality condition for this problem we obtain 0 ∈ ∂xiL(x∗, y∗, ω∗). Totally
similarly we can prove that 0 ∈ ∂yL(x∗, y∗, ω∗). On the other hand, we have

∆ωk = ωk − ωk−1 = αβ(Axk + Byk − b)→ 0.

Hence, ∂ωL(x∗, y∗, ω∗) = Ax∗ + By∗ − b = 0.
As we assume ∂F (x) = ∂x1F (x)× . . .× ∂xsF (x), we have

∂L(x, y, ω) = ∂F (x) +∇
(
h(y) + 〈ω,Ax+ By − b〉+

β

2
‖Ax+ By − b‖2

)
= ∂x1L(x, y, ω)× . . .× ∂xsL(x, y, ω)× ∂yL(x, y, ω)× ∂ωL(x, y, ω).

So 0 ∈ ∂L(x∗, y∗, ω∗).

B.7 Proof of Theorem 2

Note that we assume the generated sequence of Algorithm 1 is bounded. The following analysis
is considered in the bounded set that contains the generated sequence of Algorithm 1. We first
prove some preliminary results.

(A) The optimality condition of (28) gives us

Gki (xki − x
k−1
i )−A∗i

(
ωk + β(Axk,i−1 + Byk − b)

)
− κiβ(xk+1

i − xki )

∈ ∂xi
(
ui(x

k+1
i , xk,i−1) + gi(x

k+1
i )

)
.

(56)

As (22) holds, there exists sk+1
i ∈ ∂ui(xk+1

i , xk,i−1) and tk+1
i ∈ ∂gi(xk+1

i ) such that

Gki (xki − x
k−1
i )−A∗i

(
ωk + β(Axk,i−1 + Byk − b)

)
− κiβ(xk+1

i − xki ) = sk+1
i + tk+1

i (57)

As (23) holds, there exists ξk+1
i ∈ ∂xif(xk+1) such that

‖ξk+1
i − sk+1

i ‖ ≤ Li‖xk+1 − xk,i−1‖. (58)

Denote τk+1
i := ξk+1

i + tk+1
i ∈ ∂xiF (xk+1) (as (22) holds). Then, from (57) we have

τk+1
i = ξk+1

i +Gki (xki −x
k−1
i )−A∗i

(
ωk+β(Axk,i−1+Byk−b)

)
−κiβ(xk+1

i −xki )−sk+1
i . (59)

On the other hand, we note that

∂xiL(xk+1, yk+1, ωk+1) = ∂xiF (xk+1) +A∗i
(
ωk+1 + β(Axk+1 + Byk+1 − b)

)
. (60)

Let dk+1
i := τk+1

i +A∗i
(
ωk+1 +β(Axk+1 +Byk+1− b)

)
∈ ∂xiL(xk+1, yk+1, ωk+1). From (59),

‖dk+1
i ‖ =

∥∥∥ξk+1
i + Gki (xki − x

k−1
i )−A∗i

(
ωk + β(Axk,i−1 + Byk − b)

)
− κiβ(xk+1

i − xki )

− sk+1
i +A∗i

(
ωk+1 + β(Axk+1 + Byk+1 − b)

)∥∥∥
(61)
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Together with (58) we obtain

‖dk+1
i ‖ ≤ aki ‖∆xki ‖+ β‖A∗iA‖‖xk+1 − xk,i−1‖+ β‖A∗iB‖‖∆yk+1‖+ ‖A∗i ‖‖∆ωk+1‖

+ κiβ‖∆xk+1
i ‖+ Li‖xk+1 − xk,i−1‖.

(62)

It follows from (9) that

B∗ωk +∇h(ŷk) + βB∗(Axk+1 + Byk+1 − b) + Lh(yk+1 − ŷk) = 0.

Let dk+1
y := ∇h(yk+1)+B∗

(
ωk+1+β(Axk+1+Byk+1−b)

)
. Then dk+1

y ∈ ∂yL(xk+1, yk+1, ωk+1)
and

‖dk+1
y ‖ = ‖∇h(yk+1)−∇h(ŷk) + B∗(ωk+1 − ωk)− Lh(yk+1 − ŷk)‖

≤ 2Lh‖yk+1 − ŷk‖+ ‖B∗‖‖∆ωk+1‖ ≤ 2Lh(‖∆yk+1‖+ δk‖∆yk‖) + ‖B∗‖‖∆ωk+1‖.

Let dk+1
ω := Axk+1 + Bk+1 − b. We have dk+1

ω ∈ ∂ωL(xk+1, yk+1, ωk+1) and

dk+1
ω = (ωk+1 − ωk)/(αβ) = ∆ωk+1/(αβ).

(B) Let us now prove F (xkn ) converges to F (x∗). This implies L(xkn , ykn , ωkn ) converges
to L(x∗, y∗, ω∗) since L is differentiable in y and ω. We have

F (xkn ) = f(xkn ) +
s∑
i=1

gi(x
kn
i ) = us(x

kn
s , xkn ) +

s∑
i=1

gi(x
kn
i ).

So F (xkn ) converges to us(x∗i , x
∗) +

∑s
i=1 gi(x

∗
i ) = F (x∗).

We now proceed to prove the global convergence. Denote z = (x, y, ω), z̃ = (x̃, ỹ, ω̃), and
zk = (xk, yk, ωk). We consider the following auxiliary function

L̄(z, z̃) = L(x, y, ω) +

s∑
i=1

ηi + Cxηi

2
‖xi − x̃i‖2 +

(1 + Cy)µ

2
‖y − ỹ‖2 +

α1

β
‖B∗(ω − ω̃)‖2.

The auxiliary sequence L̄(zk, zk−1) has the following properties.
1. Sufficient decreasing property. From (48) we have

L̄(zk+1, zk) +

s∑
i=1

ηi − Cxηi
2

(
‖xk+1
i − xki ‖2 + ‖xki − x

k−1
i ‖2

)
+

(1− Cy)µ

2

(
‖yk+1 − yk‖2 + ‖yk − yk−1‖2

)
≤ L̄(zk, zk−1).

2. Boundedness of subgradient. In the proof (A) above, we have proved that

‖dk+1‖ ≤ a1(‖xk+1 − xk‖+ ‖xk − xk−1‖+ ‖yk+1 − yk‖+ ‖ωk+1 − ωk‖)

for some constant a1 and dk+1 ∈ ∂L(zk+1). On the other hand, as we use α = 1, from (35)
we obtain
√
σB‖ωk+1 − ωk‖ ≤ ‖B∗(ωk+1 − ωk)‖ = ‖∆zk+1‖

= ‖∇h(yk)−∇h(yk−1) + Lh(∆yk+1 −∆yk)‖ ≤ 2Lh‖yk − yk−1‖+ Lh‖yk+1 − yk‖.
(63)

Hence,

‖dk+1‖ ≤ a2(‖xk+1 − xk‖+ ‖xk − xk−1‖+ ‖yk+1 − yk‖+ ‖yk − yk−1‖)

for some constant a2. Note that

∂L̄(z, z̃) = ∂L(z, z̃)+∂
( s∑
i=1

ηi + Cxηi

2
‖xi−x̃i‖2+

(1 + Cy)µ

2
‖y−ỹ‖2+

α1

β
‖B∗(ω−ω̃)‖2

)
.

Hence, it is not difficult to show that

‖dk+1‖ ≤ a3(‖xk+1 − xk‖+ ‖xk − xk−1‖+ ‖yk+1 − yk‖+ ‖yk − yk−1‖)

for some constant a3 and dk+1 ∈ ∂L̄(zk+1, zk).
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3. KL property. Since F (x) + h(y) has KL property, then L̄(z, z̃) also has K L property.
4. A continuity condition. Suppose zkn converges to (x∗, y∗, ω∗). In the proof (B) above,

we have proved that L(zkn) converges to L(x∗, y∗, ω∗). Furthermore, from Proposition 4
we proved that ‖zk+1 − zk‖ goes to 0. Hence we have zkn−1 converges to (x∗, y∗, ω∗). So,
L̄(zk+1, zk) converges to L̄(z∗, z∗).

Using the same technique as in [7, Theorem 1], see also [20,41], we can prove that

∞∑
k=1

(
‖xk+1 − xk‖+ ‖xk − xk−1‖+ ‖yk+1 − yk‖+ ‖yk − yk−1‖

)
<∞.

which implies {(xk, yk)} converges to (x∗, y∗). From (63) we obtain

∞∑
k=1

‖ωk+1 − ωk‖ ≤
∞∑
k=1

(
‖yk+1 − yk‖+ ‖yk − yk−1‖

)
<∞.

Hence, {ωk} also converges to ω∗.

C Additional Experiment for different values of α

In this experiment, we rerun the experiments from Section 3 with other values for α, namely
0.5, 1.4 and 1.8; see Figures 2-4 (on pages 31-33). The penalty parameter β is computed by
β = 2(2 + Cy)α2/Cy , where Cy = 1− 10−6 and α2 = 3α

(1−|1−α|)2 . Although the segmentation

errors and objective function values differ for different values of α, we observe that, in all cases,
iADMM-mm outperforms ADMM-mm which outperforms linearizedADMM. This confirms our
observations from Section 3. On the other hand, we observe that the performances of ADMM-
mm and linearizedADMM are similar for different values of α; however, the performances of
iADMM-mm (that is, ADMM-mm with inertial terms) for α = 0.5 and α = 1.4 are slightly
worse than for α = 1, and the value α = 1.8 leads to significantly worse performances for
iADMM-mm. It is known that, in the convex setting, the ADMM variants often perform better
for α > 1. However, in our experiments, α = 1 provides the best performance for iADMM-mm.
A possible reason is that the global convergence of iADMM-mm has been established only for
the case α = 1 (see Theorem 2) while α ∈ (0, 2) only guarantees a subsequential convergence
(see Theorem 1).

D Additional experiments for a regularized nonnegative matrix

factorization problem

In the previous example, the function f(X,Y ) = λ1‖X‖∗ + r2(Y ) was separable while our
framework allows non-separable functions; see (1) and the discussion that follows. To illustrate
the use and effectiveness of iADMM on a non-separable case, let us consider the following
regularized nonnegative matrix factorization (NMF) problem

min
W∈Rn×r

+ ,H∈Rr×m
+

1/2‖X −WH‖2 + c1‖W‖2F + c2‖H‖2F , (64)

where X ∈ Rn×m is a given nonnegative matrix, and c1 > 0 and c2 > 0 are regularized
parameters. Problem (64) can be rewritten in the form of (1) as follows:

min
W∈Rn×r

+ ,H∈Rr×m
+

1/2‖X −WH‖2 + c1‖W‖2F + c2‖Y ‖2F ,

such that H − Y = 0.

(65)

In this case, x1 = W , x2 = H, y = Y , f(W,H) = 1
2
‖X −WH‖2 + β‖W‖2F , g1(W ) and g2(H)

are indicator functions of Rn×r+ and Rr×m+ respectively, h(Y ) = c2‖Y ‖2F , A1 = 0, A2 = I,
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B = −I (where I is identity operator), and b = 0. As W 7→ f(W,H) is LW -Lipschitz smooth
and H 7→ f(W,H) is LH -Lipschitz smooth, where LW = ‖HH>‖+ 2c1 and LH = ‖W>W‖,
we use the Lipschitz gradient surrogate for block W and H as in (12), and apply the inertial
term as in the footnote 3 (that is, we apply inertial terms that also lead to the extrapolation
for the block surrogate of f). The augmented Lagrangian for (65) is

L(W,H, Y, ω) = f(W,H) + h(Y ) + 〈H − Y, ω〉+
β

2
‖H − Y ‖2.

Applying iADMM for solving (65), the update of W is

Wk+1 ∈ arg min
W∈Rn×r

+

〈−(X − W̄kHk)(Hk)> + 2c1W̄
k,W 〉+

LW (Hk)

2
‖W − W̄k‖2

= max
{
W̄k −

1

LW (Hk)

(
− (X − W̄kHk)(Hk)> + 2c1W̄

k
)
, 0
}
,

(66)

where W̄k = Wk + ζk1 (Wk −Wk−1). Note that we have used extrapolation for the surrogate
of W 7→ f(W,H). The update of H is

Hk+1 ∈ arg min
H∈Rr×m

+

〈−(Wk+1)>(X −Wk+1H̄k) + ωk + β(H̄k − Y k), H〉

+
β + LH(Wk+1)

2
‖H − H̄k‖2

= max
{
H̄k −

1

β + LH(Wk+1)

(
− (Wk+1)>(X −Wk+1H̄k) + ωk + β(H̄k − Y k)

)
, 0
}
,

(67)

where H̄k = Hk + ζk2 (Hk −Hk−1). We do not use extrapolation for Y (that is, δk = 0), and
simply choose α = 1. The update of Y is

Y k+1 ∈ arg min
Y
〈−ωk + 2c2Y

k, Y 〉+
β

2
‖Y −Hk+1‖2 + c2‖Y − Y k‖2

=
1

β + 2c2
(βHk+1 + ωk),

(68)

while the update of ω is
ωk+1 = ωk + β(Hk+1 − Y k+1).

Choosing parameters By Proposition 8, the update of W in (66) implies that Inequality (14)
is satisfied:

L(Wk+1, Hk, Y k, ωk) + ηk1‖Wk+1 −Wk‖2 ≤ L(Wk, Hk, Y k, ωk) + γk1 ‖Wk −Wk−1‖2,

where

ηk1 =
LW (Hk)

2
, γk1 =

LW (Hk)

2
(ζk1 )2.

Note that we use ηk1 instead of η1 as this value varies along with the update of H (because we
used the extrapolation for the surrogate of W 7→ f(W,H)). Similarly, the update of H in (67)
implies that Inequality (14) is satisfied:

L(Wk+1, Hk+1, Y k, ωk) + ηk2‖Hk+1 −Hk‖2 ≤ L(Wk+1, Hk, Y k, ωk) + γk2 ‖Hk −Hk−1‖2,

where

ηk2 =
LH(Wk+1) + β

2
, γk2 =

LH(Wk+1) + β

2
(ζk2 )2.

Because of the update of Y in (68), the inequality in Proposition (2) is satisfied:

L(Wk+1, Hk+1, Y k+1, ωk) +ηy‖Y k+1−Y k‖2 ≤ L(Wk+1, Hk+1, Y k, ωk) +γky‖Y k−Y k−1‖2,
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where ηy = c2 and γky = 0. Following the same rationale that leads to Theorem 1, we obtain,
as in (18),

γki ≤ Cxη
k−1
i ,

2α2(2c2)2

β
≤ Cy(ηy −

α2(2c2)2

β
),

where α2 = 3α
σB(1−|1−α|)2

= 3 and 0 < Cx, Cy < 1. In our experiments, we choose

ζk1 = min
{ak−1 − 1

ak
,

√
Cx

LW (Hk−1)

LW (Hk)

}
, ζk2 = min

{ak−1 − 1

ak
,

√
Cx

LH(Wk+1) + β

LH(Wk) + β

}
,

where a0 = 1, ak = 1
2

(1 +
√

1 + 4a2k−1), and β ≥ 4c2
(6+3Cy)

Cy
.

Experiments We will compare iADMM with (i) ADMM (that is iADMM without using the
inertial terms: ζk1 = ζk2 = 0), and (ii) TITAN - the inertial block majorization minimization
proposed in [21] that directly solves Problem (64) and competes favorably with the state of the
art on the NMF problem (see [20] which is a special case of TITAN). In our implementation,
we use Lipschitz gradient surrogate for W and H and use default parameter setting for TITAN.

In the following experiments, we set the parameters c1 and c2 of Problem (64) to be
c1 = 0.001 and c2 = 0.01.

In the first experiment, we generate 2 synthetic low-rank data sets X with (n,m, r) =
(500, 200, 20) and (n,m, r) = (500, 500, 20): we generate U and V by using the MATLAB
command rand(n,r) and rand(r,m) respectively, and then let X=U*V. For each data set, we
run each algorithm with the same 30 random initial points W0=rand(n,r), H0=rand(r,m) (for
iADMM and ADMM we let Y0=H0 and ω0=zeros(r,m)), and for each initial point we run each
algorithm for 15 seconds. We report the evolution of the average objective function values
of Problem (64) with respect to time in Figure 5 and the mean ± std of the final objective
function values in Table 2. We observe that iADMM outperforms ADMM which illustrates the
acceleration effect. Among the algorithms, TITAN converges the fastest, but only slightly faster
than iADMM. However, iADMM provides the best final objective function values on average.

In the second experiment, we test the algorithms on 4 image data sets CBCL4 (2429
images of dimension 19× 19), ORL5 (400 images of dimension 92× 112), Frey6(1965 images of
dimension 28× 20), and Umist7 (565 images of dimension 92× 112). For each data set, we run
each algorithm with the same 20 random initial points. We run each algorithm 100 seconds for
the data sets Umist and ORL and 30 seconds for the data sets CBCL and Frey. We draw the
evolution of the average objective functions values with respect to time in Figure 6 and the
mean ± std of the final objective function values in Table 3.

Once again we observe that although iADMM converges slighly slower than TITAN,
iADMM always produces the best objective function values among the three algorithms. On
the other hand, ADMM also outperforms TITAN in term of the final objective function values.
This means that, for some reason, ADMM and iADMM are able to avoid spurious local minima
more effectively than TITAN.

Table 2 Mean and standard deviation of the objective function value over 30 random initial-
izations on the synthetic data sets. The best result is highlighted in bold.

(n,m, r) iADMM ADMM TITAN
(500, 200, 20) 16.443± 5.015× 10−1 35.873± 2.299 17.751± 1.092
(500, 500, 20) 34.289± 4.492 135.037± 6.409 35.799± 1.525

4 http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
5 https://cam-orl.co.uk/facedatabase.html
6 https://cs.nyu.edu/~roweis/data.html
7 https://cs.nyu.edu/~roweis/data.html

http://cbcl.mit.edu/software-datasets/heisele/facerecognition-database.html
https://cam-orl.co.uk/facedatabase.html
https://cs.nyu.edu/~roweis/data.html
https://cs.nyu.edu/~roweis/data.html
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Fig. 2 Evolution of the average value of the segmentation error rate and the objective function
value with respect to time on Hopkins155.

Table 3 Mean and standard deviation of the objective function value over 20 random initial-
izations on the image data sets. The best result is highlighted in bold.

Data set iADMM ADMM TITAN
CBCL 1 659.323± 2.514 1 800.626± 1.156× 101 3 321.104± 7.271
ORL 8 409.274± 7.688 13 825.606± 1.312× 102 16 844.426± 1.439× 101

Frey 1 525.242± 3.555 1 706.385± 7.380 3 048.246± 4.737
Umist 14 635.222± 1.444× 101 18 195.557± 1.059× 102 29 316.019± 3.433× 101
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Fig. 3 Evolution of the segmentation error rate and the objective function value with respect
to time on Umist10.
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Fig. 4 Evolution of the segmentation error rate and the objective function value with respect
to time on Yaleb10.
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Fig. 5 Evolution of the average value of the objective function value of Problem (64) with
respect to time on synthetic data sets with (n,m, r) = (500, 200, 20) (left) and (n,m, r) =
(500, 500, 20) (right).
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Fig. 6 Evolution of the average value of the objective function value of Problem (64) with
respect to time on the image data sets CBCL (top left), ORL (top right), Frey (bottom left)
and Umist (bottom right).
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