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1 Introduction

Consider the composition convex optimization problem of the form

min{f(x) + Φ(x) : x ∈ Rn}, (1)

where Φ : Rn → R ∪ {+∞} is a proper lower-semicontinuous convex func-
tion and f : Rn → R is a continuously differentiable convex function with
L−Lipschitz continuous gradient on domΦ, for L > 0, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ domΦ. (2)

This class of convex optimization problems arises in many applications, es-
pecially, in image processing and in machine learning ([4,5]). Recalling, the
algorithms of forward-backward type (or also called gradient proximal algo-
rithms), generalizing the gradient projection method ([10,12]), which exploit
the additive separability of the smooth part and the nonsmooth one of the
objective function, play an important role for solving (1) (see [13,7] and the
references given therein).

The celebrated acceleration scheme initiated by Nesterov in 1983 ([14],
[15]) for solving smooth unconstrained convex optimization problem improves
the theoretical convergence rate (for the function values) from O(1/k) (of the
standard gradient method) down O(1/k2). Nowadays this accelerated gradient
method is recognized to be one of the most powerful first-order methods for
solving smooth convex optimization problems. Later, this acceleration scheme
was developed for solving composition convex optimization of the form (1)
in which the objective function is represented by the sum of a smooth con-
vex function and a nonsmooth one (see [11,15,17,18] and the references given
therein). In [4], a combination of the forward-backward method with Nes-
terov’s acceleration scheme for solving (1) was proposed, called the fast itera-
tive shrinkage-thresholding algorithm (FISTA), and it was successfully applied
to image processing. In [1] (see also [3]), it was shown that the convergence rate
of the accelerated forward-backward method (with respect to a special sequence
of parameters) is actually o(1/k2), rather than O(1/k2), with a proof relying
on an appropriate finite-difference discretization of a differential inclusion (see
[2] and the references given therein for further about this approach).

In this paper, we will develop two accelerated schemes which generalize the
one by Nesterov [17]. We show that by updating sequences of parameters in a
suitable way, the convergence rate for the function values is actually of the or-
der o(1/k2) for the convex case, and is O

(
ln k/k2p/(p−2)

)
for the p−uniformly

convex case with p > 2. Moreover, when the objective function is strongly con-
vex, the convergence is linear. By-product, as a particular case, the established
convergence results permit us to derive a forward-backward algorithm general-
izing the one considered by Attouch- Peypouquet which produces convergence
sequences with rate of order o(1/k2).

Let us recall some basis notations and properties. In the sequel, the space
Rn is equipped with the canonical inner product 〈·〉, and the subdifferential
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of a convex function ϕ : Rn → R ∪ {+∞} at x ∈ domϕ is denoted by ∂ϕ(x),
that is,

∂ϕ(x) = {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x) ∀y ∈ Rn}.

We set ∂ϕ(x) = ∅ if x /∈ domϕ. The notation proxϕ denotes the proximal
mapping of the function ϕ (see [7]). That is,

proxϕ(x) = argmin{ϕ(y) +
1

2
‖y − x‖2 : y ∈ Rn}.

A function ϕ : Rn → R ∪ {+∞} is called p−unformly convex with parameter
µ, for some µ ≥ 0, p ≥ 2, or called (µ, p)−uniformly convex if for all x, y ∈ Rn,
λ ∈ [0, 1] one has

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)− µ

p
λ(1− λ)‖x− y‖p.

When p = 2, the function ϕ is called strongly convex (with parameter µ.) Note
that if ϕ is (µ, p)−uniformly convex, then for all x, y ∈ Rn, all x∗ ∈ ∂ϕ(x),
one has

〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x)− µ

p
‖y − x‖p. (3)

For a function f which is differentiable on a convex set Ω ⊆ Rn such that the
gradient of this function ∇f is L−Lipschitz on Ω, the well-known inequality
(see e.g., [16]) is useful in the sequel.

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2, ∀x, y ∈ Ω. (4)

2 Generalized Nesterov’s Algorithm and convergence rates

2.1 Algorithm

Firstly we introduce the following notion of support functions of a convex
function at a point.

Definition 1 For a convex function Φ : Rn → R∪{+∞} and a point z ∈ Rn.
A convex function Ψz := Ψz,Φ : Rn → R ∪ {+∞} is called a lower support
function to Φ at z if Ψz ≤ Φ and Ψz(z) = Φ(z).

Obviously, the usual two lower support functions of a convex function Φ, at a
point z : the first is itself Φ, and the second is the linear function

Ψz(x) := Φ(z) + 〈z∗, x− z〉, x ∈ Rn,

where z∗ ∈ ∂Φ(z), when Φ is subdifferentiable at z.

In what follows we make use of the following assumptions:

(A1) The optimal solution set of problem (1) is nonempty.
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(A2) The function Φ : Rn → R ∪ {+∞} is proper lower semicontinuous convex;
the function f : Rn → R is a differentiable convex function such that its
gradient ∇f is L−Lipschitz (for some L > 0) on domΦ.

Pick parameters C, κ, µ ≥ 0; a sequence of positive reals {αk}, and two se-
quences of nonnegative reals {βk} and {γk}. Assume that the sequences {αk},
{βk} verify the condition

Ak :=

k∑
i=0

αk ≥ Bk :=

k∑
i=0

βk, for all k ∈ N. (5)

Pick a strongly convex function h : Rn → R with a strong convexity parameter
ρ > 0, which has a minimizer at y0 ∈ domΦ. Without loss of generality, we
can assume h(y0) = 0. Then one has

h(x) ≥ ρ

2
‖x− y0‖2, for all x ∈ Rn. (6)

The algorithm is stated in the following scheme.

Algorithm 1: Generalized Nesterov’s accelerated proximal gra-
dient algorithm (GAPGA)

Initialization: Initial data: y0 as in (6). Set k = 0.

Repeat: For k = 0, 1, ...,

1. Find

xk = argmin
{
Φ(y) + 〈∇f(yk), y − yk〉+ 1

2κ‖y − yk‖
2 : y ∈ Rn

}
= proxκΦ (yk − κ∇f(yk)) .

(7)

2. Find

zk = argminx∈Rn{Ch(x) +
∑k−1
i=0 αi[f(yi) + 〈∇f(yi), x− yi〉+ Ψzi(x)

+ 1
2µγi‖x− yi‖

2] + αk[f(yk) + 〈∇f(yk), x− yk〉+ Φ(x) + 1
2µγk‖x− yk‖

2]}
(8)

3. Set Ψzk is a support function to Φ at zk such that

minx∈Rn{Ch(x) +
∑k−1
i=0 αi[f(yi) + 〈∇f(yi), x− yi〉+ Ψzi(x) + 1

2µγi‖x− yi‖
2]

+αk[f(yk) + 〈∇f(yk), x− yk〉+ Φ(x) + 1
2µγk‖x− yk‖

2]}
= minx∈Rn{Ch(x) +

∑k
i=0 αi[f(yi) + 〈∇f(yi), x− yi〉+ Ψzi(x) + 1

2µγi‖x− yi‖
2]}.

(9)
4. Set

τk :=
αk+1

Ak+1 −Bk
, yk+1 = τkzk + (1− τk)xk.

Remark 1.

(i). In Nesterov’s original accelerated schemes ([16,17]), τk := αk+1

Ak+1
. which is

a particular case of Algorithm 1 with βk := 0, k ∈ N.
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(ii). In Step 3 of Algorithm 1, we can take Ψzk = Φ. If we set Ψzk = Φ, for all
k ∈ N, Algorithm 1 gives a generalized variant of Nesterov’s accelerated
dual averaging algorithm. An another way to choose Ψzk is as follows. As
in Step 2, zk is a minimizer of the convex function in the right hand of (8),
then there is z∗k ∈ ∂Φ(zk) such that

0 ∈ C∂h(zk)+

k−1∑
i=0

αi[∇f(yi)+∂Ψzi(zk)]+αk[∇f(yk)+z∗k]+µ

k∑
i=0

αiγi(zi−yi).

(10)
Then the support function

Ψzk(x) := 〈z∗k, x− zk〉+ Φ(zk), x ∈ Rn, (11)

verify condition (9) in step 3.

Especially, when h(x) := 1
2‖x−y0‖

2, and for all k ∈ N, the support function
Ψzk is defined by (11) for all k ∈ N, then in view of (10) for k and (k + 1),
one has, for all k ∈ N, for some z∗k+1 ∈ ∂Φ(zk+1),

0 ∈ (C + µαk+1γk+1)zk+1 − (C + µαkγk)zk
+µαkγkyk − αk+1γk+1yk+1 + αk+1[z∗k+1 +∇f(yk+1)].

Thus equivalently,

zk+1 = prox αk+1
C+µαk+1γk+1

Φ

[
1

C+µαk+1γk+1
Wk+1

]
;

Wk+1 := (C + µαkγk)zk − µαkγkyk + αk+1γk+1yk+1 − αk+1∇f(yk+1).
(12)

In particular, when µ = 0, the sequence {zk} is defined recurrently by

zk+1 = proxαk+1
C Φ

[
zk −

αk+1

C
∇f(yk+1)

]
. (13)

This is exactly the (accelerated) scheme of the proximal gradient methods.

2.2 Convergence

The following theorem gives an estimate for function values f(xk) + Φ(xk),
and it is crucial to derive the subsequent convergence rates. Let us introduce
the functions Fk, Gk by respectively,

Fk(x) = Ch(x) +
∑k−1
i=0 αi[f(yi) + 〈∇f(yi), x− yi〉+ Ψzi(x) + 1

2µγi‖x− yi‖
2]

+αk[f(yk) + 〈∇f(yk), x− yk〉+ Φ(x) + 1
2µγk‖x− yk‖

2], x ∈ Rn.
(14)

Gk(x) = Ch(x) +
∑k
i=0 αi[f(yi) + 〈∇f(yi), x− yi〉+ Ψzi(x) + 1

2µγi‖x− yi‖
2].

(15)
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Theorem 1 Let {xk} and {yk} be sequences generated by Algorithm 1. Sup-
pose that κ ≤ 1/L and the sequences {αk}, {βk} and {γk} satisfy the condition(

Cρ+ µ

k−1∑
i=0

αiγi

)
(Ak −Bk−1) ≥ α2

k/κ, for all k ∈ N. (16)

Then one has for all k ∈ N,∑k
i=0 βi[f(xi) + Φ(xi)] + (Ak −Bk)[f(xk) + Φ(xk)]

+ 1
2 (1/κ− L)

∑k
i=0(Ai −Bi−1)‖xi − yi‖2 ≤ minx∈Rn Fk(x).

(17)

where, we set B−1 = 0. Moreover, if f is µ−strong convex, then (17) holds if
γk = 1, k ∈ N, and the sequences {αk}, {βk} verifying the condition(

Cρ+ µ

k−1∑
i=0

αi

)
(Ak −Bk−1) ≥ α2

k(κ−1 − µ), for all k ∈ N. (18)

Proof. We prove (17) by induction on k ∈ N. For k = 0, one has

minx∈Rn F0(x)
= min

{
Ch(x) + α0[f(y0) + 〈∇f(y0), x− y0〉+ Φ(x) + µγ0‖x− y0‖2] : x ∈ Rn

}
≥ α0 min

{
1
2 (Cρ+ α0µγ0)α−10 ‖x− y0‖2 + f(y0) + 〈∇f(y0), x− y0〉+ Φ(x) : x ∈ Rn

}
by (16)

≥ α0 min
{

1
2κ‖x− y0‖

2 + f(y0) + 〈∇f(y0), x− y0〉+ Φ(x) : x ∈ Rn
}

= α0

[
1
2κ‖x0 − y0‖

2 + f(y0) + 〈∇f(y0), x0 − y0〉+ Φ(x0)
]

by (4)

≥ 1
2 (κ−1 − L)α0‖x0 − y0‖2 + α0[f(x0) + Φ(x0)].

That is, (17) holds for k = 0. Suppose that (17) holds for some k ∈ N.
We shall show that (17) holds for k + 1. Since Fk attains minimum at zk;
minx∈Rn Gk(x) = Fk(zk) = minx∈Rn Fk(x) and Gk is strongly convex with

parameter sk := Cρ + µ
∑k
i=0 αiγi, by using the induction assumption, one

has for x ∈ Rn,

Fk+1(x) = Gk(x) + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉+ Φ(x) + 1
2µγk+1‖x− yk+1‖2]

≥ minx∈Rn Gk(x) + 1
2sk‖x− zk‖

2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉
+ 1

2µγk+1‖x− yk+1‖2 + Φ(x)]
= minx∈Rn Fk(x) + 1

2sk‖x− zk‖
2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉

+ 1
2µγk+1‖x− yk+1‖2 + Φ(x)]

≥
∑k
i=0 βi[f(xi) + Φ(xi)] + (Ak −Bk)[f(xk) + Φ(xk)]

+ 1
2 (1/κ− L)

∑k
i=0(Ai −Bi−1)‖xi − yi‖2

+ 1
2sk‖x− zk‖

2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉+ 1
2µ‖x− yk+1‖2 + Φ(x)].

(19)
By the convexity of f and Φ,

f(xk) ≥ f(yk+1) + 〈∇f(yk+1), xk − yk+1〉, (20)
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and

(Ak −Bk)Φ(xk) + αk+1Φ(x) ≥ (Ak+1 −Bk)Φ(τkx+ (1− τk)xk). (21)

Hence, for all x ∈ Rn,
(Ak −Bk)[f(xk) + Φ(xk)] + 1

2sk‖x− zk‖
2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉+ Φ(x)]

≥ (Ak+1 −Bk)[f(yk+1) + 1
2sk(Ak+1 −Bk)−1‖x− zk‖2

+τk〈∇f(yk+1), x− zk〉+ Φ(τkx+ (1− τk)xk)].
(22)

By setting y := τkx+(1−τk)xk, and in view of (16), sk(Ak+1−Bk)−1 ≥ τ2kκ−1,
the preceding relation implies

(Ak −Bk)[f(xk) + Φ(xk)] + 1
2sk‖x− zk‖

2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉+ Φ(x)]
≥ (Ak+1 −Bk)[f(yk+1) + 1

2κ
−1τ2k‖x− zk‖2 + τk〈∇f(yk+1), x− zk〉+ Φ(y)]

= (Ak+1 −Bk)[f(yk+1) + 1
2κ
−1‖y − yk+1‖2 + 〈∇f(yk+1), y − yk+1〉+ Φ(y)]

by (7)

≥ (Ak+1 −Bk)[f(yk+1) + 1
2κ
−1‖xk+1 − yk+1‖2 + 〈∇f(yk+1), xk+1 − yk+1〉+ Φ(xk+1)]

by (4)

≥ (Ak+1 −Bk)[ 12 (κ−1 − L)‖xk+1 − yk+1‖2 + f(xk+1) + Φ(xk+1)].
(23)

This estimate together with (19) yield

minx∈Rn Fk+1(x) ≥
∑k
i=0 βi[f(xi) + Φ(xi)] + 1

2 (κ−1 − L)
∑k
i=0(Ai −Bi−1)‖xi − yi‖2

+(Ak+1 −Bk)[ 12 (κ−1 − L)‖xk+1 − yk+1‖2 + f(xk+1) + Φ(xk+1)]

=
∑k+1
i=0 βi[f(xi) + Φ(xi)] + (Ak+1 −Bk+1)[f(xk+1) + Φ(xk+1)]

+ 1
2 (κ−1 − L)

∑k+1
i=0 (Ai −Bi−1)‖xi − yi‖2.

That is, (17) holds for k + 1, and it completes the proof of the first part.

Suppose now f is µ−strong convex and γk = 1, k ∈ N. The proof is the same
as above, just a different point is as follows. Instead of (20), by the strongly
convexity of f with parameter µ,

f(xk) ≥ f(yk+1) + 〈∇f(yk+1), xk − yk+1〉+
1

2
µ‖xk − yk+1‖2. (24)

By using this and the inequality

(Ak −Bk)‖xk − yk+1‖2 + αk+1‖x− yk+1‖2 ≥ (Ak+1 −Bk)‖x+ (1− τk)xk − yk+1‖2
= (Ak+1 −Bk)τ2k‖x− zk‖2,

estimate (22) is now changed to

(Ak −Bk)[f(xk) + Φ(xk)] + 1
2sk‖x− zk‖

2 + αk+1[f(yk+1) + 〈∇f(yk+1), x− yk+1〉
+ 1

2µ‖x− yk+1‖2 + Φ(x)] ≥ (Ak+1 −Bk)[f(yk+1 + 1
2sk(Ak+1 −Bk)−1‖x− zk‖2

+τk〈∇f(yk+1), x− zk〉+ Φ(τkx+ (1− τk)xk)]
+µ[(Ak −Bk)‖xk − yk+1‖2 + αk+1‖x− yk+1‖2]
≥ (Ak+1 −Bk)[f(yk+1) + 1

2 [sk(Ak+1 −Bk)−1 + µτ2k ]‖x− zk‖2
+τk〈∇f(yk+1), x− zk〉+ Φ(τkx+ (1− τk)xk)]
by (18)

≥ (Ak+1 −Bk)[f(yk+1) + 1
2κτ

2
k‖x− zk‖2

+τk〈∇f(yk+1), x− zk〉+ Φ(τkx+ (1− τk)xk)],
(25)
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where sk := Cρ+ µ
∑k
i=0 αi = Cρ+ µAk. The remain estimates are the same

as before, by using (25) instead of (22), and condition (18). �

Corollary 1 In Algorithm 1, pick αk = k; βk = k/2; µ = 0, and C, κ > 0
such that Cρ ≥ κ−1 ≥ L. Then condition (16) is satisfied, and therefore for a
minimizer x∗ of problem (1), one has

1
2

∑k
i=0 i[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)]

+ 1
4k(k + 1)[f(xk) + Φ(xk)− f(x∗)− Φ(x∗)]

+ 1
8 (1/κ− L)

∑k
i=0 i(3i− 1)‖xi − yi‖2 ≤ Ch(x∗).

(26)

As a result,

lim
k→∞

min
i=[k/2],...,k

k2[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)] = 0, (27)

where [k/2] stands for the integer part of k/2. Therefore if {f(xk) +Φ(xk)} is
a decreasing sequence, then

lim
k→∞

k2[f(xk) + Φ(xk)− f(x∗)− Φ(x∗)] = 0. (28)

Proof. By checking directly, we see that (16) is satisfied for αk = k, βk = k/2,
µ = 0, and Cρ ≥ κ−1 ≥ L. Hence, by set x = x∗ in (17), then using the
convexity of f, we obtain (26). This relation implies

∞∑
i=0

i[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)] < +∞.

Therefore

lim
k→∞

k∑
i=[k/2]

i[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)] = 0.

One has∑k
i=[k/2] i[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)]

≥ mini=[k/2],...,k k
2[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)]

∑k
i=[k/2]

i
k2

≥ mini=[k/2],...,k k
2[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)]k(3k+2)

8k2

≥ 3
8 mini=[k/2],...,k k

2[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)],

which shows (27). �

We consider the case where f is p−uniformly convex, p > 2, with parameter
µ, or called (µ, p)−unformly convex.
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Corollary 2 Let f is (µ, p)−uniformly convex with p > 2, µ > 0. Let 0 < κ ≤
L−1, and C, ρ,m > 0 such that

mµκ ≥

{
2

4
p−2 8p

(p−2)2 if 2 < p < 6,
8p

(p−2)2 if p ≥ 6;
(29)

Cρ ≥
{
κ−1 if 2 < p < 6,
p−2
4 mµ if p ≥ 6.

(30)

In Algorithm 1, set αk = k
p+2
p−2 , βk = 0, and γ0 = 0, γk = mk−2 for k ≥ 1.

Then (16) is satisfied and for x∗ being a minimizer of f + Φ, and therefore
one has for all k ∈ N,

f(xk)+Φ(xk)−f(x∗)−Φ(x∗) ≤ 2p

p− 2
(Ch(x∗)+

1

2
(p/2)

2
p−2m

p
p−2 (ln k+1)k−

2p
p−2 .

(31)

Proof. By using the inequalities

k∑
i=1

iα ≥
k−1∑
i=0

∫ i+1

i

xαdx =
1

α+ 1
kα+1, (32)

if α > 0 and if −1 < α ≤ 0,

k∑
i=1

iα ≥
k∑
i=1

∫ i+1

i

xαdx =
1

α+ 1
[(k + 1)α+1 − 1], (33)

one has for k ≥ 1,

(Cρ+ µ

k−1∑
i=0

αiγi)Ak ≥
p− 2

2p
k

2p
p−2 [Cρ+

p− 2

4
mµ(k − 1)

4
p−2 ],

if 2 < p < 6, and if p ≥ 6,

(Cρ+ µ

k−1∑
i=0

αiγi)Ak ≥
p− 2

2p
k

2p
p−2 [Cρ+

p− 2

4
mµ(k

4
p−2 − 1)].

By virtue of these two inequalities, it is easy to check directly the valid of (16).
For k ∈ N∗, let define

Jk :=
{
i ∈ {1, ..., k} : ‖yk − x∗‖ ≤ (mp/2)

1
p−2 k−

2
p−2

}
.

Then∑
i∈Jk αiγi‖yi − x

∗‖2 ≤ (p/2)
2
p−2m

p
p−2

∑k
i=1 i

6−p
p−2 i−

4
p−2

= (p/2)
2
p−2m

p
p−2

∑k
i=1 i

−1 ≤ (p/2)
2
p−2m

p
p−2 (ln k + 1),

(34)
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where the last inequality follows from the one

k∑
i=1

i−1 ≤ 1 +

k∑
i=2

∫ i

i−1
x−1dx = 1 + ln k.

For i ∈ {1, ..., k} \ Jk, then ‖yk − x∗‖ > (mp/2)
1
p−2 k−

2
p−2 , therefore

1
pαi‖yi − x

∗‖p = 1
pαi‖yi − x

∗‖p−2‖yi − x∗‖2
≥ 1

pαi(mp/2)k−2‖yi − x∗‖2 = 1
2αiγi‖yi − x

∗‖2. (35)

From the latter two relations, in view of (17), setting x = x∗, we derive that
the following estimate

Ak[f(xk) + Φ(xk)] ≤ Fk(x∗)

≤ Ch(x∗) +
∑k−1
i=0 αi[f(yi) + 〈∇f(yi), x

∗ − yi〉+ Φ(x∗) + 1
2µγi‖x

∗ − yi‖2]
≤ Ch(x∗) +

∑
j∈Jk

1
2µαiγi‖x

∗ − yi‖2 +
∑
i∈Jk αi[f(yi) + 〈∇f(yi), x

∗ − yi〉+ Φ(x∗)]

+
∑k
i=0, i/∈Jk αi[f(yi) + 〈∇f(yi), x

∗ − yi〉+ Φ(x∗) + 1
2µγi‖x

∗ − yi‖2]

≤ Ch(x∗) + 1
2 (p/2)

2
p−2m

p
p−2 (ln k + 1) +

∑
i∈Jk αi[f(x∗) + Φ(x∗)]

+
∑k
i=0, i/∈Jk αi[f(yi) + 〈∇f(yi), x

∗ − yi〉+ Φ(x∗) + 1
pµ‖x

∗ − yi‖p]
by (3)

≤ Ch(x∗) + 1
2 (p/2)

2
p−2m

p
p−2 (ln k + 1)

+
∑
i∈Jk αi[f(x∗) + Φ(x∗)] +

∑k
i=0, i/∈Jk [f(x∗) + Φ(x∗)]

≤ Ch(x∗) + 1
2 (p/2)

2
p−2m

p
p−2 (ln k + 1) +Ak[f(x∗) + Φ(x∗)].

By noting from (32) that

Ak =

k∑
i=1

k
p+2
p−2 ≥ k

2p
p−2 ,

one has (31) and the proof is completed. �

Next we consider the case where f is µ−strongly convex for µ > 0. For
sequences αk := qk (for some q > 1) and βk = 0, k ∈ N, relation (18) becomes(

Cρ+ µ
qk − 1

q − 1

)
qk+1 − 1

q − 1
≥ q2k(κ−1 − µ), ∀k ∈ N.

Equivalently,

µ
q2k+1

(q − 1)2
+ Cρ

qk+1 − 1

q − 1
− µq

k+1 − 1

(q − 1)2
≥ q2k(κ−1 − µ), ∀k ∈ N.

If we take C > 0 such that Cρ(q − 1)− µ ≥ 0 as well as

Cρ
qk+1 − 1

q − 1
− µq

k+1 − 1

(q − 1)2
≥ (Cρ(q − 1)− µ)

qk+1 − 1

(q − 1)2
≥ 0 ∀k ∈ N.
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Then, relation (18) holds if

µ
q2k+1

(q − 1)2
≥ q2k(κ−1 − µ), ∀k ∈ N,

equivalently
µq

(q − 1)2
≥ κ−1 − µ.

Hence in summary, (18) holds for αk = qk, βk = 0 with

q =
2κ−1 − µ+

√
4κ−1µ− 3µ2

2(κ−1 − µ)
and Cρ ≥ µ

q − 1
. (36)

So one obtains the following corollary for the linear convergence of Algorithm
1 in the case of strong convexity.

Corollary 3 Let f is µ−strongly convex for some µ > 0, and let q, C such
as (36). Then for the sequence {xk} generated by Algorithm 1 with sequences
αk := qk, βk = 0, and γk = 1, k ∈ N, and a minimizer x∗ of problem (1), one
has

f(xk) + Φ(xk)− f(x∗)− Φ(x∗) ≤ (q − 1)Ch(x∗)

qk+1 − 1
, for all k ∈ N. (37)

Proof. Relation (37) follows directly from (17) by noticing that as f is µ−strongly
convex, for all i = 1, ..., k,

f(yi) + 〈∇f(yi), x− yi〉+ µ‖x− yi‖2 ≤ f(x), ∀x ∈ Rn,

therefore, Fk(x) ≤ Ch(x) +Ak(f(x) + Φ(x)), for all x ∈ Rn. �

Note that the linear convergence of the standard gradient method and
Nesterov’s accelerated schemes in the case of strongly convexity was well es-
tablished in the literature (see e.g., [15]). Alternatively, in the papers [6,9],
some geometric descent methods with linear convergence rates for minimizing
smooth strongly convex functions have been proposed. Then in [8], this method
has been generalized for convex composite minimization of the form (1). More
recently, some results on the linear convergence of several first-order methods
for smooth convex optimization problems in which the objective function is
not necessarily strongly convex, have been derived in [19].

3 Generalized accelerated forward-backward algorithm

In [1], the authors have considered the following accelerated forward-backward
scheme for solving (1):{

yk = xk + k−1
k+α−1 (xk − xk−1),

xk+1 = proxκΦ(yk − κ∇f(yk)),
(38)
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where α > 0, κ > 0. The authors have established the rate of convergence of or-
der o(1/k2) when α > 3 and κ ≤ 1/L, when ∇f is assumed to be L−Lipschitz
on the whole space Rn.
By considering the operator Gκ : Rn → Rn, defined by

Gκ(y) =
1

κ
[y − proxκΦ(y − κ∇f(y))], y ∈ Rn,

and setting

zk =
k + α− 1

α− 1
yk −

k

α− 1
xk,

then we can rewrite the scheme (38) as follows. zk+1 = zk − κ(k+α−1)
α−1 Gκ(yk),

yk = α−1
k+α−1zk + k

k+α−1xk,

xk+1 = proxκΦ(yk − κ∇f(yk)).

(39)

Obviously, the sequence {zk} in the scheme (39) can be represented equiva-
lently

zk+1 = argminx∈Rn

{
1

2κ
‖x‖2 +

k∑
i=0

αi〈Gκ(yi), x〉

}
,

where αi = i+α−1
α−1 , for i ∈ N. In view of this representation, we propose

the generalized accelerated forward-backward algorithm: Given a ρ−strongly
convex function h : Rn → R (ρ > 0) as before; parameters C, µ > 0, 0 <
κ ≤ 1/L, and a sequence of positive reals {αk}; sequences of nonnegative reals
{βk}, and {γk} as in Section 2. Set

Ak =

k∑
i=0

αk, Bk =

k∑
i=0

βk,

and also assume that Ak ≥ Bk for all k ∈ N, and denote A−1 = B−1 = 0.

In this section, in assumption (A2), instead of the L−Lipschitz continuity
of ∇f on domΦ, we assume that

(H) The gradient ∇f is L−Lipschitz on the whole space Rn.

Algorithm 2: Generalized accelerated forward-backward algo-
rithm (GAFBA)

Initialization: Initial data: x0 = z0 = y0 ∈ Rn, with y0 as in (6). Set
k = 0.

Repeat: For k = 0, 1, ...,

1. Set
τk :=

αk
Ak −Bk−1

, yk = τkzk + (1− τk)xk.

2. Find
xk+1 = proxκΦ(yk − κ∇f(yk)). (40)
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4. Set

Gκ(yk) =
1

κ
[yk − proxκΦ(yk − κ∇f(yk))] =

1

κ
(yk − xk+1).

3. Find

zk+1 = argmin{Ch(x) +

k∑
i=0

αi[〈Gκ(yi), x− yi〉+
1

2
µγi‖x− yi‖2] : x ∈ Rn}

(41)

By a straightforward computation, scheme (38) with α > 3, is a particular
case of Algorithm 2 with h(x) = 1

2‖x‖
2, C = κ−1, µ = 0 and

αk =
k + α− 1

α− 1
, βk =

(α− 3)(2k + 1)

2(α− 1)2
+ 2α− 5, k ∈ N. (42)

Let us introduce the following functions Ek, k ∈ N, which plays a role of
an ”estimating function” for Algorithm 2, as the one of the functions Fk for
Algorithm 1.

Ek(x) = Ch(x)+

k∑
i=0

αi[f(xi+1)+Φ(xk+1)+〈Gκ(yi), x−yi〉+
κ

2
‖Gκ(yi)‖2+

1

2
µγi‖x−yi‖2].

(43)
The following property of the operator Gκ (see e.g., [1,4,21]) plays a key role
in the proof of the convergence result,

(f +Φ)(y− κGκ(y)) + 〈Gκ(y), x− y〉 ≤ (f +Φ)(x)− κ

2
‖Gκ(y)‖2, ∀x, y ∈ Rn.

(44)
More generally, either f or Φ is (µ, p)−uniformly convex for some µ ≥ 0, p ≥ 2,
one has

Lemma 1 Suppose f : Rn → R is constinuously differentiable with L−Lipschitz
continuous gradient on Rn and 0 < κ ≤ 1/L. then for ȳ = y − κGκ(y) =
proxκΦ(y − κ∇f(y)), one has

(i) If f is (µ, p)−uniformly convex, then

(f+Φ)(ȳ)+〈Gκ(y), x−y〉+µ

p
‖x−y‖p ≤ (f+Φ)(x)−κ

2
‖Gκ(y)‖2, ∀x, y ∈ Rn.

(45)
(ii) If Φ is (µ, p)−uniformly convex, then

(f+Φ)(ȳ)+〈Gκ(y), x−y〉+µ

p
‖x−ȳ‖p ≤ (f+Φ)(x)−κ

2
‖Gκ(y)‖2, ∀x, y ∈ Rn.

(46)
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Proof. As

ȳ = proxκΦ(y−κ∇f(y)) = argmin{Φ(x)+〈∇f(y), x−y〉+ 1

2κ
‖x−y‖2 : x ∈ Rn},

one has
−κ−1(ȳ − y)−∇f(y) ∈ ∂Φ(ȳ). (47)

Firstly for part (i), this relation implies

〈−κ−1(ȳ − y)−∇f(y), x− ȳ〉 ≤ Φ(x)− Φ(ȳ), ∀x ∈ Rn.

Equivalently, for x ∈ Rn,

(f + Φ)(ȳ) + 〈Gκ(y), x− y〉+ κ
2 ‖Gκ(y)‖2

≤ Φ(x) + [f(y) + 〈∇f(y), x− y〉] + [f(ȳ)− f(y)− 〈∇f(y), ȳ − y〉 − 1
2κ‖ȳ − y‖

2].

Relation (45) follows directly from this relation, since f is (µ, p)−uniformly
convex,

f(y) + 〈∇f(y), x− y〉 ≤ f(x)− µ

p
‖x− y‖p,

and as ∇f is L−Lipschitz continuous,

f(ȳ)− f(y)− 〈∇f(y), ȳ − y〉 − 1

2κ
‖ȳ − y‖2 ≤ 0.

For (ii), Φ is (µ, p)−uniformly convex, (47) implies

〈−κ−1(ȳ − y)−∇f(y), x− ȳ〉 ≤ Φ(x)− Φ(ȳ)− µ

p
‖x− ȳ‖2, ∀x ∈ Rn,

and as before, equivalently,

(f + Φ)(ȳ) + 〈Gκ(y), x− y〉+ κ
2 ‖Gκ(y)‖2

≤ Φ(x)− µ
p ‖x− ȳ‖

2 + [f(y) + 〈∇f(y), x− y〉]
+[f(ȳ)− f(y)− 〈∇f(y), ȳ − y〉 − κ

2 ‖ȳ − y‖
2],

which implies (46) by the convexity of f , as well as the L−Lipschitz continuity
of ∇f. �

We are now ready to state the convergence result of Algorithm 2.

Theorem 2 Let {xk} be the sequences defined by Algorithm 2. Suppose that
κ ≤ 1/L and the sequences {αk}, {βk} and {γk} satisfy the condition (16) in
Theorem 1. Then for all k ∈ N,

k∑
i=0

βi[f(xi+1)+Φ(xi+1)]+(Ak−Bk)[f(xk+1)+Φ(xk+1)] ≤ min
x∈Rn

Ek(x). (48)

where, we set B−1 = 0. Moreover, if f is µ−strong convex, then (48) holds if
γk = 1, k ∈ N, and the sequences {αk}, {βk} verifying the condition (18) in
Theorem 1.

As results, for a minimizer x∗ of problem (1), one has
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(i) For µ = 0, and any two sequences of positive reals {αk} and {βk} with
αk ≥ βk for k ∈ N and

0 < lim inf
k→∞

βk
k
≤ lim sup

k→∞

αk
k
< +∞, lim sup

k→∞

βk
αk

< 1,

then we can find C0 > 0 satisfying the condition

C0ρ(Ak −Bk−1) ≥ αkκ−1, ∀k ∈ N, (49)

and therefore for all C ≥ C0, for the sequence {xk} generated by Algorithm
2, one has

lim
k→∞

k2 min
i=[k/2],...,k

[f(xi) + Φ(xi)− f(x∗)− Φ(x∗)] = 0.

(ii) Suppose that f is (µ, p)−uniformly convex with µ > 0, p > 2. Then with
the same conditions as in Corollary 2, one has

f(xk) + Φ(xk)− f(x∗)− Φ(x∗) = O

(
ln k

k2p/(p−2)

)
.

(iii) If f is µ−strongly convex, then with q > 1 C > 0 as in Corollary 3, and
the sequences αk = qk, βk = 0 and γk = 1, for k ∈ N, one has

f(xk) + Φ(xk)− f(x∗)− Φ(x∗) = O
(
q−k

)
.

Proof. Similarly to the proof of Theorem 1, we prove (48) by induction on
k ∈ N. For k = 0, since Cρ+ α0µγ0 ≥ κ−1, one has

E0(x) = Ch(x) + α0[f(x1) + Φ(x1) + 〈Gκ(y0), x− y0〉+ κ
2 ‖Gκ(y0)‖2 + 1

2µγ0‖x− y0‖
2]

≥ 1
2 (Cρ+ α0µγ0)‖x− y0‖2 + α0[f(x1) + Φ(x1) + 〈Gκ(y0), x− y0〉+ κ

2 ‖Gκ(y0)‖2]
≥ α0(f(x1) + Φ(x1) + κ

2 [κ−1(x− y0)−Gκ(y0)]2 ≥ α0(f(x1) + Φ(x1)),

for all x ∈ Rn, showing (48) holds for k = 0. Assuming (48) holds for k−1 ∈ N,
we will show that it holds for k. As zk = argminx∈RnEk−1(x), since Ek−1 is

(Cρ+ µ
∑k−1
i=0 αiγi)−strongly convex, one has

Ek−1(x) ≥ min
x∈Rn

Ek−1(x) +
sk−1

2
‖x− zk‖2,

for x ∈ Rn, where sk−1 = Cρ+ µ
∑k−1
i=0 αiγi, which implies

Ek(x) = Ek−1(x) + αk[f(xk+1) + Φ(xk+1) + 〈Gκ(yk), x− yk〉+ κ
2 ‖Gκ(yk)‖2 + 1

2µγk‖x− yk‖
2]

≥
∑k−1
i=0 βi[f(xi+1) + Φ(xi+1)] + (Ak−1 −Bk−1)[f(xk) + Φ(xk)] + sk−1

2 ‖x− zk‖
2

+αk[f(xk+1) + Φ(xk+1) + 〈Gκ(yk), x− yk〉+ κ
2 ‖Gκ(yk)‖2 + 1

2µγk‖x− yk‖
2]

(50)
In view of inequality (44), noticing xk+1 = yk − κGκ(yk),

f(xk) + Φ(xk) ≥ f(xk+1) + Φ(xk+1) + 〈Gκ(yk), xk − yk〉+
κ

2
‖Gκ(yk)‖2,
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therefore (50) implies

Ek(x) ≥
∑k
i=0 βi[f(xi+1) + Φ(xi+1)] + (Ak −Bk)[f(xk+1) + Φ(xk+1)]

+(Ak −Bk−1)[ sk−1

2(Ak−Bk−1)
‖x− zk‖2 + 〈Gκ(yk), τkx+ (1− τk)xk − yk〉+ κ

2 ‖Gκ(yk)‖2]

by (16)

≥
∑k
i=0 βi[f(xi+1) + Φ(xi+1)] + (Ak −Bk)[f(xk+1) + Φ(xk+1)]

+(Ak −Bk−1)[
κ−1τ2

k

2 ‖x− zk‖2 + τk〈Gκ(yk), x− zk〉+ κ
2 ‖Gκ(yk)‖2]

=
∑k
i=0 βi[f(xi+1) + Φ(xi+1)] + (Ak −Bk)[f(xk+1) + Φ(xk+1)] + κ

2 ‖κ
−1τk(x− zk)−Gκ(yk)‖2

≥
∑k
i=0 βi[f(xi+1) + Φ(xi+1)] + (Ak −Bk)[f(xk+1) + Φ(xk+1)],

showing (48) holds for k.

For (i), with the assumptions on {αk}, {βk}, there are 0 < η1 < η2 < η3 <
η4 and r1, r2, r3, r4 ∈ R such that for all k sufficiently large, one has

η1k + r1 ≤ βk ≤ η2k + r2, η3k + r3 ≤ αk ≤ η4k + r4.

Hence, for k sufficiently large,

Ak −Bk−1 ≥ η3
k(k + 1)

2
+ kr3 − η2

k(k − 1)

2
− (k − 1)r2 = O(k2),

and α2
k ≤ (η4k + r4)2 = O(k2), so we can find out C0 > 0 such that

C0ρ(Ak −Bk−1) ≥ α2
kκ
−1.

That is, condition (16) is satisfied for all C ≥ C0. Next by inequality (44), for
x∗ being a minimizer of problem (1), one has

Ek(x∗) = Ch(x∗) +
∑k
i=0 αi[f(xi+1) + Φ(xk+1) + 〈Gκ(yi), x

∗ − yi〉+ κ
2 ‖Gκ(yi)‖2]

≤ Ch(x∗) +Ak(f(x∗) + Φ(x∗)).

Therefore, (48) implies

∞∑
i=0

βi(f(xi+1) + Φ(xi+1)) < +∞,

and since βi = O(i) as i → ∞, with the same argument as in the proof
Corollary 1, one derives the conclusion of part (i).

For (ii) and (iii), from (48), invoking the inequality (45), with the same
arguments as in the proofs of Corollaries 2 and 3, respectively, one derives the
desired conclusions �

Note that for the scheme (38), then ρ = 1; the sequences αk and βk are
defined as (42), one has Ak−Bk−1 = α2

k, for all k ∈ N, so we can take C0 = κ−1.
Generally, we are going to consider Algorithm 2 when h(x) := 1

2‖x−y0‖
2, x ∈

Rn; µ = 0, and sequences {αk} and {βk} satisfying the condition

Ak −Bk−1 = α2
k, k ∈ N.
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In this case, τk = 1/αk, moreover (16) is verified for C := κ−1, and the formula
of zk can be represented equivalently,

zk+1 = zk − καkGκ(yk), k ∈ N. (51)

Hence, recalling yk − xk+1 = κGκ(yk), and zk = (yk − (1 − τk)xk)τ−1k , yk+1

can be rewritten as

yk+1 = τk+1zk+1 + (1− τk+1)xk+1

= τk+1[(yk − (1− τk)xk)τ−1k − αk(yk − xk+1)] + (1− τk+1)xk+1

= xk+1 + τk+1(1−τk)
τk

(xk+1 − xk)

= xk+1 + αk−1
αk+1

(xk+1 − xk)

Thus Algorithm 2 can be rewritten simply in the following scheme generalizing
(38): {

yk = xk + αk−1−1
αk

(xk − xk−1),

xk+1 = proxκΦ(yk − κ∇f(yk)).
(52)

For this scheme, we establish the following convergence result which generalizes
Theorems 1 and 3 in [1].

Theorem 3 Let {αk}, {βk} be sequences of positive reals such that for some
0 < c1, c2 < 1,

c1αk ≤ βk ≤ c2αk, Ak −Bk−1 = α2
k, k ∈ N. (53)

Consider Algorithm 2 with h(x) := 1
2‖x − y0‖

2; C = κ−1 ≥ L, and µ = 0, or
equivalently the scheme (52). Then one has

lim
k→∞

k2[f(xk)+Φ(xk)−f(x∗)−Φ(x∗)] = 0 and lim
k→∞

k‖xk+1−xk‖ = 0,

(54)
that is, f(xk) + Φ(xk) − f(x∗) − Φ(x∗) = o(k−2) and ‖xk+1 − xk‖ = o(k−1),
where x∗ is a minimizer of problem (1). Moreover, the whole sequence {xk}
converges to a minimizer of problem (1).

The following lemma is needed.

Lemma 2 Suppose that sequences of positive reals {αk}, {βk} satisfy (53).
Then {αk} is an increasing sequence and there are 0 < a1 < a2, and b > 0
such that

a1k ≤ αk ≤ a2k + b, for all k ∈ N.

Proof. Since αk > 0 and Ak −Bk−1 = α2
k,

αk =
1

2
(1 +

√
1 + 4(Ak−1 −Bk−1)), k ∈ N.

As 0 ≤ Bk−1 ≤ c2Ak−1, it implies that

1

2

√
(1− c2)Ak−1 ≤ αk ≤

1

2
(1 +

√
1 + 4Ak−1), k ∈ N.
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We prove the lemma by induction. Pick

0 < a1 < min{α1, α2/2, (1−c2)/3} and b ≥ max{α0, α1, α2, 16}, a2 > 2b.

Obviously, (2) holds for k = 0, 1, 2. Assume that (2) holds for k− 1 ≥ 2. Then

a1
k(k−1)

2 ≤ Ak−1 ≤ a2 k(k−1)2 + bk, therefore,√
(1− c2)a1k(k − 1)/2 ≤ αk ≤

1

2
(1 +

√
1 + 4(a2k(k − 1)/2 + bk)).

As a1 ≤ (1− c2)/3, (1− c2)a1k(k− 1)/2 ≥ a21k2, so one has αk ≥ a1k. On the
other hand, by making use of the inequality

1

2
(1 +

√
1 + x) ≤

√
x, for x ≥ 16,

one derives

αk ≤ 1
2 (1 +

√
1 + 4(a2k(k − 1)/2 + bk)) ≤ 2

√
a2k(k − 1)/2 + bk

≤ 2
√
a2k2 ≤ a2k ≤ a2k + b.

That is (2) holds for k, so the lemma is proved. �

Proof of Theorem 3. Denoting by θk = f(xk) + Φ(xk) − f(x∗) − Φ(x∗)(≥ 0),
k ∈ N, relation (44) in Theorem 2 (with µ = 0) and (44) imply∑k

i=0 βi[f(xi+1) + Φ(xi+1)− f(x∗)− Φ(x∗)]
+(Ak −Bk)[f(xk+1) + Φ(xk+1)− f(x∗)− Φ(x∗)]

≤ minx∈Rn Ek(x) ≤ Ek(x∗) ≤ κ−1

2 ‖x
∗ − y0‖2 +Ak(f(x∗) + Φ(x∗)),

which implies immediately
∑∞
i=0 βiθi+1 < +∞. Then in view of Lemma 2,∑∞

i=0 kθi+1 < +∞, which follows
∑∞
i=0 αiθi+1 < +∞, and

∑∞
i=0 αiθi < +∞,

as well.

Note that yk−xk+1 = κGκ(yk) and yk−xk = αk−1−1
αk

(xk−xk−1), relation

(44) gives

(f + Φ)(xk+1) + κ−1〈yk − xk+1, xk − yk〉+
κ−1

2
‖yk − xk+1‖2 ≤ (f + Φ)(xk).

Equivalently,

θk+1 +
κ−1

2
‖xk+1 − xk‖2 ≤ θk +

κ−1

2

(αk−1 − 1)2

α2
k

‖xk − xk−1‖2.

Therefore,

α2
kθk+1+

κ−1

2
α2
k‖xk+1−xk‖2 ≤ α2

kθk+
κ−1

2
α2
k−1‖xk−xk−1‖2−

κ−1

2
(2αk−1−1)‖xk−xk−1‖2.

By Ak−Bk−1 = α2
k, then α2

k−α2
k−1 = αk−βk−1, thus the preceding inequality

implies

α2
kθk+1 + κ−1

2 α2
k‖xk+1 − xk‖2 ≤ α2

k−1θk + κ−1

2 α2
k−1‖xk − xk−1‖2

+(αk − βk−1)θk − κ−1

2 (2αk−1 − 1)‖xk − xk−1‖2.
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Since
∑∞
k=0(αk − βk−1)θk ≤

∑∞
k=0 αkθk < +∞, the inequality above yields

lim
k→∞

[α2
kθk+1 +

κ−1

2
α2
k‖xk+1 − xk‖2] exists

as well as
∞∑
k=0

αk‖xk+1 − xk‖2 < +∞,

and consequently,

∞∑
k=0

αk(θk +
κ−1

2
‖xk+1 − xk‖2) < +∞.

To complete the proof, we will show that this relation implies

lim
k→∞

[α2
kθk+1 +

κ−1

2
α2
k‖xk+1 − xk‖2] = 0.

Indeed, if this is not the case, then

lim
k→∞

[α2
kθk+1 +

κ−1

2
α2
k‖xk+1 − xk‖2] = δ > 0,

which follows that

limk→∞
∑k
i=[k/2] αk(θk + κ−1

2 ‖xk+1 − xk‖2) ≥ limk→∞
∑k
i=[k/2]

δ
αk

by Lemma 2

≥ limk→∞
∑k
i=[k/2]

δ
a2k+b

≥ limk→∞
δ(k−[k/2])
a2k+b

= δ
2a2

> 0,

which contradicts the summable property of
∑∞
k=0 αk(θk + κ−1

2 ‖xk+1−xk‖2).
Hence limk→∞ α2

kθk = 0 as well as limk→∞ αk‖xk+1 − xk‖ = 0. In view of
Lemma 2, one obtains (54).

The proof of the convergence of the sequence {xk} follows the idea in [1,2],
that, by virtue of Opial’s Lemma [20], it suffices to show that for any minimizer
x∗ of (1), limk→∞ ‖xk − x∗‖2 exists finitely. Indeed, considering the sequence

zk = xk + (αk−1 − 1)(xk − xk−1), k ∈ N,

one has

‖zk − x∗‖2 = ‖xk + (αk−1 − 1)(xk − xk−1)− x∗‖2
= ‖xk − x∗‖2 + (αk−1 − 1)2‖xk − xk−1‖2 + 2(αk−1 − 1)〈xk − xk−1, xk − x∗〉
= [(αk−1 − 1)2 + αk−1 − 1]‖xk − xk−1‖2 + bk,

where,
bk = αk−1‖xk − x∗‖2 − (αk−1 − 1)‖xk−1 − x∗‖2.

By Lemma 2, αk = O(k), implying (αk−1 − 1)2 + αk−1 − 1 = O(k2). Thus,
since limk→∞ k‖xk − xk−1‖ = 0, one has

lim
k→∞

[(αk−1 − 1)2 + αk−1 − 1]‖xk − xk−1‖2 = 0,
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which follows that the convergence of {‖zk − x∗‖2} is equivalent to the one of
{bk}. Thanks to Lemma 1 (for µ = 0),

〈Gκ(yk), yk − x∗〉 −
κ

2
‖Gκ(yk)‖2 ≥ (f + Φ)(xk+1)− (f + Φ)(x∗) ≥ 0.

Using this inequality, and Gκ(yk) = (yk − xk+1)/κ, it is easy to derive that

‖xk+1 − x∗‖2 ≤ ‖yk − x∗‖2 = ‖xk + (αk−1 − 1)α−1k (xk − xk−1)− x∗‖2
= (1 + (αk−1 − 1)α−1k )‖xk − x∗‖2 − (αk−1 − 1)α−1k ‖xk−1 − x∗‖2
+[(αk−1 − 1)2α−2k + (αk−1 − 1)α−1k ]‖xk − xk−1‖2.

By virtue of Lemma 2, there is a constant c > 0, such that

(αk−1 − 1)2α−2k + (αk−1 − 1)α−1k ≤ c, ∀k ∈ N∗.

Therefore, the preceding inequality yields immediately

bk+1 − bk ≤ cαk‖xk − xk−1‖2,

and by
∑∞
k=1 αk‖xk − xk−1‖2 < +∞, it follows the existence finitely of

limk→∞ bk, so is limk→∞ ‖zk − x∗‖2. As limk→∞(αk−1 − 1)‖xk − xk−1‖ = 0,
since αk = O(k) and limk→∞ k‖xk − xk−1‖ = 0, the convergence of {‖xk −
x∗‖2} follows, and the proof is completed. �
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