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Abstract. This paper studies loss functions for finite sets. For a given finite

set S, we give sum-of-square type loss functions of minimum degree. When

S is the vertex set of a standard simplex, we show such loss functions have
no spurious minimizers (i.e., every local minimizer is a global one). Up to

transformations, we give similar loss functions without spurious minimizers

for general finite sets. When S is approximately given by a sample set T , we
show how to get loss functions by solving a quadratic optimization problem.

Numerical experiments and applications are given to show the efficiency of

these loss functions.

1. Introduction

This paper studies loss functions for finite sets. The questions of concerns are:
for a finite set, how do we construct a convenient loss function for it? When does
the loss function have no spurious optimizers, i.e., every local optimizer is also a
global one? We discuss these topics in this paper. Let n, k be positive integers.
Suppose S is a set of k distinct points in the n-dimensional real Euclidean space
Rn. A function f in x := (x1, . . . , xn) is said to be a loss function for S if the global
minimizers of f are precisely the points in S. For convenience, we often select f
such that f is nonnegative in Rn and the minimum value is zero. Mathematically,
this is equivalent to that

(1.1) f(x) = 0 if and only if x ∈ S.
When S = {u1, . . . , uk}, a straightforward choice for the loss function is f = ‖x−
u1‖2 · · · ‖x − uk‖2, where ‖ · ‖ is the standard Euclidean norm. This loss function
is a polynomial of degree 2k in the variable x. It requires to use all points of S. In
applications, the cardinality k may be big. Moreover, the set S often has noises and
it may be given by a large number of samplings around the points in S. For this
reason, the above choice of loss function may not be convenient in computational
practice.

A frequently used loss function is the class of sum-of-squares (SOS) polynomials.
That is, the loss function f is in the form

f = p21 + · · ·+ p2m,

where each pi is a polynomial in x. Then f is a loss function for S if and only if each
pi ≡ 0 on S. For convenience of computation, we prefer that f and each pi have
degrees as low as possible. A more preferable function is that every local minimizer
of f is a global minimizer (i.e., a zero of f). That is, we wish that the loss function
f has no spurious minimizer.1 Optimization without spurious minimizers is studied
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1A local minimizer that is not a global minimizer is called a spurious minimizer.
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in [22, 26]. Polynomial loss functions have good mathematical properties and are
convenient computationally (see [1, 9, 12]). In particular, polynomial optimization
problems (especially nonconvex ones) can be efficiently solved by Moment-SOS
relaxations. We refer to [8, 18, 19, 20, 23, 24, 28, 29] for recent work on polynomial
optimization.

In applications, the set S may not be given explicitly. It is often approximately
given by a sample set

T = {v1, . . . , vN},
where each vi is a sample for a point in S and the sample size N � k. For such a
case, we can choose a family F of loss functions, which is parameterized to represent
the set S. Since S is approximated by T , we choose a loss function f ∈ F such
that the average value of f on T is minimum. Mathematically, this is equivalent to
solving the optimization

(1.2) min
f∈F

1

N

N∑
i=1

f(vi).

The optimization (1.2) requires that we choose parameters for f such that the
average loss on T is minimum. The set S can be determined by parameters for f
in the family F .

Loss functions are useful in data science optimization. There are broad applica-
tions of loss functions [2, 4, 5, 10, 17, 31, 32, 35, 38]. Selection of loss functions needs
to consider application purposes and data structures. There are various types of
loss functions for different applications. We refer to the survey [37] for loss functions
in machine learning. Polynomial loss functions are used in optimal control [13, 14].
Linear loss functions are used for network blocking games [21]. Loss functions ob-
tained via statistical averaging are given in [3]. For inverted beta loss functions,
their properties and applications are given in [25]. Some properties of Erlang loss
functions are given in [15]. Properties of correntropic loss functions are given in
[36].

Contributions. The paper studies loss functions for finite sets. We focus on the
SOS type loss functions with minimum degrees. Let S be a given finite set in
Rn. We characterize loss functions that satisfy (1.1). When S is approximately
given by a set T of larger cardinality, we look for loss functions by solving the
optimization (1.2). Let x := (x1, . . . , xn). We consider the loss function f such that
f = p21 + · · ·+ p2m, where every pi is a polynomial in x. The f is a loss function for
S if and only if S precisely consists of common real zeros of polynomials p1, . . . , pm.
Mathematically, this is equivalent to that

(1.3) S = {v ∈ Rn : p1(v) = · · · = pm(v) = 0}.

For the polynomial pi to have minimum degrees, we consider generating polynomials
for the S, which are introduced for symmetric tensor decomposition [30, 31]. Let
Φ be the set of all generating polynomials for S. It is interesting to note that Φ
has the minimum degree, such that (1.3) holds. In particular, when S is given by
vertices of a standard simplex, the resulting loss function f does not have spurious
minimizers. Up to transformations, we can get loss functions without spurious
minimizers, for general finite sets. In computational practice, we choose such loss
functions of degree four.
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When the set S is approximately given by a set T of larger size, we propose to
solve the optimization (1.2) to get the loss function. Equivalently, we determine
parameters for f from a family F of loss functions of S. Each f ∈ F is determined
by a set of parameters, and vice versa. By solving (1.2), we not only get a loss
function, but also get a set S∗ of k points that are approximations for the points
in S. Once S∗ is determined, up to transformations, we can use S∗ to get loss
functions that have no spurious minimizers.

In summary, our major results are:

• For a given finite set S, we give an SOS type loss function of minimum
degree, such that S is precisely the set of global minimizers.
• When S consists of the vertices of a standard simplex, we show that the

selected loss function has no spurious minimizers. For more general finite
sets, we give these loss functions by applying transformations.
• When the set S is approximately given by a sample set T , we solve the

optimization (1.2) to get loss functions of similar properties, i.e., they are
in SOS type and have minimum degrees.

The paper is organized as follows. In Section 2, we briefly review some back-
grounds for polynomial ideals. In Section 3, we show how to get SOS type loss
functions for finite sets, with desired properties. In Section 4, when the set S con-
sists of vertices of a standard simplex, we show that the constructed loss functions
have no spurious minimizers. For more general S, we show how to get similar loss
functions by applying transformations. In Section 5, we show how to get loss func-
tions when the set S is approximately given by a sample set T . Some numerical
experiments are given in Section 6.

2. Preliminaries

Notation. The symbol R (resp., C, N) denotes the set of real (resp., complex,
nonnegative integer) numbers respectively. The symbol Nn (resp., Rn, Cn) stands
for the set of n-dimensional vectors with entries in N (resp., R, C) respectively. For
an integer k > 0, [k] := {1, · · · , k}. We use 0 to denote the vector of all zeros and e
to denote the vector of all ones. The symbol ei stands for the unit vector such that
the ith entry is one and all other entries are zeros. For a vector v, the ‖v‖ denotes its
Euclidean norm. For a vector u ∈ Rn and δ ≥ 0, B(u, δ) := {x ∈ Rn : ‖x− u‖ ≤ δ}
denotes the closed ball centered at u with radius δ. The symbol In denotes the n-
by-n identity matrix. The superscript T (resp., H) denotes the operation of matrix
transpose (resp., Hermitian). A square matrix A is said to be positive semidefinite
(resp., positive definite) if xTAx ≥ 0 (resp., xTAx > 0) for all nonzero vectors x.
For two square matrices X,Y of the same dimension, their commutator is

[X,Y ] := XY − Y X.

That is, X commutes with Y if and only if [X,Y ] = 0. For a function f which
is continuously differentiable in x = (x1, . . . , xn), the ∇f denotes its gradient in x
and ∇2f denotes its Hessian.

Let F = R or C. Denote by F[x] := F[x1, . . . , xn] the ring of polynomials in
x := (x1, . . . , xn) with coefficients in F. For every d ∈ N, F[x]d denotes the
subspace of F[x] which contains all polynomials of degree at most d. For every
α = (α1, . . . , αn) ∈ Nn, denote the monomial xα := xα1

1 · · ·xαn
n . Its total degree is

|α| := α1 + · · ·+ αn.
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A subset I ⊆ F[x] is an ideal of F[x] if p · q ∈ I for all p ∈ I, q ∈ F[x], and
p1 + p2 ∈ I for all p1, p2 ∈ I. For an ideal I, its radical is the set

√
I := {f ∈ F[x] : fk ∈ I for some k ∈ N}.

The set
√
I is also an ideal and I ⊆

√
I. The ideal I is said to be radical if I =

√
I.

Each ideal I determines the variety in Fn as

VF(I) := {x ∈ Fn : p(x) = 0 (p ∈ I)}.

For a polynomial tuple p := (p1, . . . , pm), we similarly denote that

VF(p) := {x ∈ Fn : p(x) = 0}.

The tuple p generates the ideal

Ideal(p) := p1 · F[x] + · · ·+ pm · F[x].

Clearly, VF(Ideal(p)) = VF(p).
For a set S ⊆ Cn, its vanishing ideal is

I(S) := {q ∈ C[x] : q(u) = 0 (u ∈ S)}.

If S = VC(p) for some polynomial tuple p in x, then Ideal(p) ⊆ I(S) but the

equality may not hold. For every I ⊆ C[x], we have I(VC(I)) =
√
I. This is

Hilbert’s Nullstellensatz [7].
For a given ideal I ⊆ C[x], it determines an equivalence relation ∼ on C[x] such

that p ∼ q if p − q ∈ I, or equivalently, p ≡ q mod I. Then every p ∈ C[x]
corresponds to an equivalence class with the module of I, i.e.,

[p] = {q ∈ C[x] : q ≡ p mod I}.

The set of all equivalent classes is the quotient ring

C[x]/I := {[p] : p ∈ C[x]}.

3. A class of loss functions

In this section, we give a general framework of constructing loss functions for
finite sets. For convenience, we assume the finite sets are real. Suppose S ⊆ Rn is
a finite set of cardinality k, say,

S = {u1, . . . , uk}.

A function f is a loss function for S if and only if the global minimizers of f are
precisely the points of S. In computational practice, we often consider the sum-of-
squares loss functions

(3.1) f = p21 + · · ·+ p2m,

where each pi is a polynomial in x. Denote the tuple

p = (p1, . . . , pm).

Without loss of generality, one can assume that the minimum value of f is zero, up
to shifting of a constant. Note that f(x) = 0 if and only if p(x) = 0. Therefore, f
is a loss function for S if and only if

(3.2) S = {x ∈ Rn : p1(x) = · · · = pm(x) = 0}.

The above observation gives the following lemma.
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Lemma 3.1. Let S, f be as above. Then f is a loss function for S if and only if S
is the real zero set of p, i.e., S = VR(p).

The existence of p such that S = VR(p) is obvious. For instance, one can choose
pi to be a product like

(xj1 − (u1)j1) · (xj2 − (u2)j2) · · · (xjk − (uk)jk),

for all possible j1, . . . , jk ∈ {1, . . . , n}. However, for such a choice of p, each pi has
degree k and f has degree 2k. The degree is high if the cardinality k is big, and
there are nk such products. This is not practical in applications. In particular, if
the set S is approximately given by a sample set of large size, then the resulting
p is not convenient for usage. In applications, people prefer loss functions of low
degrees.

In the following, we show how to choose a computationally efficient loss function
for S. Let B0 be the set of first k vectors in the nonnegative power set Nn, in the
graded lexicographic ordering, i.e.,

(3.3) B0 :=
{
0, e1, . . . , en, 2e1, e1 + e2, . . . ,︸ ︷︷ ︸

first k of them

}
.

Then, we consider the set

(3.4) B1 :=
(

(e1 + B0) ∪ · · · ∪ (en + B0)
)
\ B0.

For convenience of notation, denote the monomial vectors

[x]B0
:=
(
xα
)
α∈B0

, [x]B1
:=
(
xα
)
α∈B1

.

Since S is a finite set of cardinality k, we wish to select B0 so that the set of
equivalent classes of monomials in {xβ : β ∈ B0} is a basis for the quotient space
R[x]/I(S), where I(S) is the vanishing ideal of S. This requires that xα (α ∈ B1) is
a linear combination of monomials xβ (β ∈ B0), modulo I(S). Equivalently, there
exist scalars G(β, α) such that

(3.5) ϕ[G,α](x) := xα −
∑
β∈B0

G(β, α)xβ ≡ 0 mod I(S)

for each α ∈ B1. Let G := (G(β, α)) ∈ RB0×B1 be the matrix of all such scalars
G(β, α). The polynomial ϕ[G,α] has coefficients that are linear in entries of G. For
convenience, denote that

(3.6)

ϕ[G] =
(
ϕ[G,α]

)
α∈B1

,

X0 =
[
[u1]B0

· · · [uk]B0

]
,

X1 =
[
[u1]B1

· · · [uk]B1

]
.

The X0 is a square matrix, which is nonsingular if the points in S are in generic
positions. For ϕ[G] to vanish on S, the equation (3.5) implies that

X1 −GTX0 = 0.

If X0 is nonsingular, then the matrix G is given as

(3.7) G = X−T0 XT
1 .
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We look for conditions on G such that ϕ[G] has k common zeros in Cn. For each
i = 1, . . . , n, define the multiplication matrix Mxi(G) such that

(3.8) [Mxi(G)]µ,ν =

 1 if xi · xν ∈ B0, µ = ν + ei,
0 if xi · xν ∈ B0, µ 6= ν + ei,
G(µ, ν + ei) if xi · xν ∈ B1.

The rows and columns of Mxi(G) are labelled by monomial powers µ, ν ∈ B0. The
following proposition characterizes when ϕ[G] has k common zeros.

Proposition 3.2. ([30, Proposition 2.4]) Let B0, B1 be as in (3.3)-(3.4). Then,
the polynomial tuple ϕ[G] has k common complex zeros (counting multiplicities) if
and only if the multiplication matrices Mx1

(G), . . . ,Mxn
(G) commute, i.e.,

(3.9) [Mxi
(G),Mxj

(G)] = 0 (1 ≤ i < j ≤ n).

In particular, ϕ[G] has k distinct complex zeros if and only if Mx1(G), . . . ,Mxn(G)
are simultaneously diagonalizable.

The polynomial tuple ϕ[G] generates the vanishing ideal I(S) of S and p = ϕ[G]
has minimum degrees for (3.2) to hold.

Theorem 3.3. Assume S is a finite set such that X0 is nonsingular. Let G be as
in (3.7). Then, the ideal Ideal(ϕ[G]) equals the vanishing ideal of S, i.e.,

(3.10) Ideal(ϕ[G]) = {h ∈ R[x] : h ≡ 0 onS}.

In particular, if a polynomial h vanishes on S identically, then there are polynomials
pα (α ∈ B1) such that

(3.11) h =
∑
α∈B1

qαϕ[G,α]), deg(qα) + |α| ≤ deg(h).

Proof. Since X0 is nonsingular, the set S has k distinct points. Since G is given
as in (3.7), the polynomial equation ϕ[G](x) = 0 has k distinct solutions. By
Proposition 3.2, the multiplication matrices Mx1

(G), . . . ,Mxn
(G) are simultane-

ously diagonalizable. Note that the ideal Ideal(ϕ[G]) is zero-dimensional, because
the quotient space C[x]/Ideal(ϕ[G]) has the dimension k. The ideal Ideal(ϕ[G])
must be radical. This can be implied by Corollary 2.7 of [33]. So (3.10) holds.

Suppose h is a polynomial such that h ≡ 0 on S. Then the above shows that
h ∈ Ideal(ϕ[G]). So there exist polynomials qα (α ∈ B1) such that

h =
∑
α∈B1

qαϕ[G,α].

The multiplication matrices Mx1(G), . . . ,Mxn(G) commute. One can check that
the set of polynomials in the tuple ϕ[G] is a Gröbner basis for Ideal(ϕ[G]), with
respect to the graded lexicographical ordering. This can also be implied by the
proof of Lemma 2.8 in [30]. Therefore, we can further select polynomials qα ∈ R[x]
with degree bounds as in (3.11). �

The condition that X0 is nonsingular holds when the points of S are in generic
positions. The equation (3.11) shows that the polynomial tuple ϕ[G] is a minimum-
degree generating set for the vanishing ideal I(S). The following are some examples.
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Example 3.4. i) Consider the set S in R3 such that

S =
{2

1
3

 ,
−1
−2
4

},
B0 =

{0
0
0

 ,
1

0
0

}, B1 =
{0

1
0

 ,
0

0
1

 ,
2

0
0

 ,
1

1
0

 ,
1

0
1

}.
The matrix G as in (3.7) and ϕ[G] are

G =

[
−1 11

3 2 2 − 2
3

1 − 1
3 1 0 10

3

]
, ϕ[G] =



x2 − x1 + 1

x1
3

+ x3 −
11

3

x21 − x1 − 2

x1x2 − 2

x1x3 −
10x1

3
+

2

3


.

ii) Consider the set S in R2 such that

S =
{[ 2
−1

]
,

[
−1
3

]
,

[
−2
−2

]}
,

B0 =
{[

0
0

]
,

[
1
0

]
,

[
0
1

]}
, B1 =

{[
2
0

]
,

[
1
1

]
,

[
0
2

]}
.

The matrix G as in (3.7) and ϕ[G] are

G =
1

19

 58 −14 82
3 −23 −20

−12 −22 23

 , ϕ[G] =


x21 +

12x2
19
− 3x1

19
− 58

19

x1x2 +
22x2
19

+
23x1
19

+
14

19

x22 −
23x2
19

+
20x1
19
− 82

19

 .

iii) Consider the set S in R2 such that

S =
{[

3
−1

]
,

[
−1
2

]
,

[
2
1

]
,

[
−2
−1

]}
,

B0 =
{[

0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
2
0

]}
, B1 =

{[
1
1

]
,

[
0
2

]
,

[
3
0

]
,

[
2
1

]}
.

The matrix G in (3.7) and the polynomial vector ϕ[G] are

G =


20 −5 −36 22
7
2 − 3

2 −2 9
2

−7 3 12 −5
− 9

2
3
2 9 − 11

2

 , ϕ[G] =



x1x2 +
9x21
2

+ 7x2 −
7x1
2
− 20

x22 −
3x21
2
− 3x2 +

3x1
2

+ 5

x31 − 9x21 − 12x2 + 2x1 + 36

x21x2 +
11x21

2
+ 5x2 −

9x1
2
− 22


.
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For given S, the polynomial tuple ϕ[G] with G as in (3.7), gives the loss function
f = ‖ϕ[G]‖2 whose global minimizers are precisely the points in S. However, the
loss function f may have spurious minimizers.

Example 3.5. Consider the S =
{[ 5
−2

]
,

[
4
3

]}
in R2. The loss function f =

‖ϕ[G]‖2 is

f(x) = (x2 + 5x1 − 23)2 + (x21 − 9x1 + 20)2 + (x1x2 + 22x1 − 100)2.

Its total gradient ∇f is[
4x31 − 54x21 + 2x1x

2
2 + 88x1x2 + 1260x1 − 190x2 − 4990

2x2 − 190x1 + 2x21x2 + 44x21 − 46

]
and its Hessian ∇2f is[

12x21 − 108x1 + 2x22 + 88x2 + 1260 88x1 + 4x1x2 − 190
88x1 + 4x1x2 − 190 2x21 + 2

]
.

By checking the optimality conditions ∇f(x) = 0, ∇2f(x) � 0, we get a local
minimizer (−2.2588,−49.7911), which is not a global one.

4. Simplicial loss functions

In this section, we study loss functions when S is the vertex set of a standard sim-
plex. For such a case, we show that the loss function f = ‖ϕ[G]‖2 has no spurious
minimizers, i.e., every local minimizer of f is also a global minimizer. Moreover,
when S is not the vertex set of a standard simplex, we apply a transformation and
get similar loss functions.

4.1. Simplicial loss functions. For a vector a := (a1, . . . , an), with each scalar
ai 6= 0, consider the standard simplex vertex set

(4.1) ∆n(a) := {0, a1e1, . . . , anen}.

For the special case that a = (1, . . . , 1), we denote

(4.2) ∆n := {0, e1, . . . , en}.

When the dimension n is clear in the context, we just write ∆ = ∆n for convenience.
In this subsection, we consider the special case that S = ∆n(a). Then the monomial
power sets B0, B1 are respectively

B0 = {0, e1, . . . , en},
B1 = {2e1, e1 + e2, . . . , 2en}.

For the matrix G ∈ RB0×B1 given as in (3.7), we have that

(4.3)
ϕ[G, 2ei] = x2i − aixi (i ∈ [n]),
ϕ[G, ei + ej ] = xixj (i < j).

The resulting loss function for the set ∆n(a) is

(4.4) f(x) =

n∑
i=1

x2i (xi − ai)2 +
∑

1≤i<j≤n

x2ix
2
j .
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In particular, the above loss function for ∆n is

(4.5) F (x) :=

n∑
i=1

x2i (xi − 1)2 +
∑

1≤i<j≤n

x2ix
2
j .

A nice property is that the simplicial loss function as in (4.4) has no spurious
minimizers.

Theorem 4.1. Fix nonzero scalars a1, . . . , an, the function f in (4.4) has no spu-
rious minimizers, i.e., every local minimizer of f is also a global minimizer.

Proof. Suppose z = (z1, . . . , zn) is a local minimizer of f . Then z satisfies the
optimality conditions

∇f(z) = 0, ∇2f(z) � 0.

This implies that for i = 1, . . . , n,

∂f

∂xi
(z) = 2zi

(
2z2i − 3aizi + (zT z − z2i + a2i )

)
= 0,(4.6)

∂2f

∂x2i
(z) = 12z2i − 12aizi + 2(zT z − z2i + a2i ) ≥ 0.(4.7)

Denote δi(z) := a2i − 8(zT z − z2i ). The real solutions for (4.6) are zi = 0 and

(4.8) zi =
3ai ±

√
δi(z)

4
if δi(z) ≥ 0.

If each zi = 0, then z = 0 is a global minimizer. Suppose some zi is nonzero,
then it satisfies δi(z) ≥ 0 and 2z2i − 3aizi + (zT z − z2i + a2i ) = 0. So (4.7) can be
reformulated as

∂2f

∂x2i
(z) = 8z2i − 6aizi = 2zi(4zi − 3ai) ≥ 0.

Plug (4.8) into the above inequality. Since
√
δi(z) ≤ |ai| < |3ai| (note ai 6= 0),

zi =


3ai−
√
δi(z)

4 if ai < 0,
3ai+
√
δi(z)

4 if ai > 0.

It is clear that |zi| ≥ |3ai/4|. If zi is the only nonzero entry of z, then
√
δi(z) = |ai|

and z = aiei, which is a global minimizer. Suppose z has another nonzero entry
zj . By a similar argument, we can get δj(z) ≥ 0 and |zj | ≥ |3aj/4|. Note that
2a2i − 9a2j ≥ 0 since

a2i − 8 ·
∣∣∣3aj

4

∣∣∣2 ≥ a2i − 8z2j ≥ δi(z) ≥ 0.

Similarly, 2a2j − 9a2i ≥ 0, so

2a2j − 9a2i ≥ 2a2j − 9 · 9

2
a2j = −77

2
a2j ≥ 0.

The above holds if and only if aj = 0, which contradicts that all a1, . . . , an are
nonzero. Therefore, every local minimizer of f is a global minimizer, i.e., f has no
spurious minimizers.

�
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4.2. Transformation for general sets. When S is not a simplicial vertex set, we
can still use the function F in (4.5) to get new loss functions, up to a transformation.
These new functions have no spurious minimizers. They are called transformed
simplicial loss functions. Consider that S is given as

(4.9) S = {u1, . . . , uk}.
We discuss the transformation for two different cases.

Case I: k ≤ n+ 1. Consider the vertex set of a standard simplex set in Rk−1

∆k−1 = {0, e1, . . . , ek−1}.
The loss function as in (4.5) for ∆k−1 is

(4.10) Fk−1(z) :=

k−1∑
i=1

z2i (zi − 1)2 +
∑

1≤i<j≤k−1

z2i z
2
j ,

in the variable z = (z1, . . . , zk−1). Consider the linear map

(4.11) ` : Rk−1 → Rn, `(ei) = ui − uk, i = 1, . . . , k − 1.

The representing matrix for the linear map ` is

(4.12) U =
[
u1 − uk · · · uk−1 − uk

]
.

When u1, . . . , uk are in generic positions, the matrix U has full column rank. Let

U† := (UTU)−1UT

be the Pseudo inverse of U . For x = (x1, . . . , xn), consider the loss function

(4.13) f(x) = Fk−1
(
U†(x− uk)

)
.

Recall that Null(U†) denotes the null space of the matrix U†.

Theorem 4.2. Suppose k ≤ n + 1 and rank U = k − 1. Then, the function f as
in (4.13) is a loss function for the set

S + Null(U†) := {x+ y : x ∈ S,U†y = 0}.
Moreover, f has no spurious minimizers.

Proof. The function f as in (4.13) is nonnegative everywhere. Note that f(x) = 0
if and only if U†(x− uk) ∈ ∆k−1. It holds that

∆k−1 = {U†(x− uk) : x ∈ S}.
For x ∈ Rn, we have U†(x − uk) ∈ ∆k−1 if and only if x ∈ S + Null(U†). This
shows that f is a loss function for S + Null(U†) in Rn.

The gradient and Hessian of f can be written as

∇xf(x) = (U†)T∇zFk−1(z), ∇2
xf(x) = (U†)T∇2

zFk−1(z)U†.

Note that U† has full row rank. If u is a local minimizer of f , then ∇xf(u) = 0,
∇2
xf(u) � 0. Let z = U†(u− uk), then the above implies that

∇zFk−1(z) = 0, ∇2
zFk−1(z) � 0.

As in the proof of Theorem 4.1, one can show that z ∈ ∆k−1. This implies that z
is a global minimizer of Fk−1 and hence u is a global minimizer of f . So f has no
spurious minimizers. �
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Case II: k > n+ 1. Let ω : Rn → Rk−1 be the monomial function such that

(4.14) [x]B0 =

[
1

ω(x)

]
,

where B0 is the power set in (3.3). For the set S as in (4.9), denote

(4.15) Ŝ :=
{
ω(u1), . . . , ω(uk)

}
⊆ Rk−1.

Define the linear map L such that

L : Rk−1 → Rk−1, L(ei) = ω(ui)− ω(uk), i = 1, . . . , k − 1.

The representing matrix for the linear map L is

(4.16) L =
[
ω(u1) · · · ω(uk−1)

]
−
[
ω(uk) · · · ω(uk)

]
.

When u1, . . . , un are in generic positions, the matrix L is nonsingular. For such a
case, define the function

(4.17) f̂(z) := Fk−1
(
L−1(z − ω(uk)

)
,

in the z = (z1, . . . , zk−1), where Fk−1 is the simplicial loss function as in (4.10).

The above f̂ is called a transformed simplicial loss function for Ŝ. The following
theorem follows from Theorem 4.2.

Theorem 4.3. Suppose k > n+ 1 and L is nonsingular. Then, the function f̂ as
in (4.17) is a loss function for Ŝ and it has no spurious minimizers.

For x = (x1, . . . , xn), define the function

(4.18) f(x) = Fk−1
(
L−1(ω(x)− ω(uk)

)
.

Corollary 4.4. Suppose k > n+1 and L in (4.16) is nonsingular, then the function
f in (4.18) is a loss function for S.

Proof. The function f as in (4.18) is nonnegative everywhere. By Theorem 4.3, we

know f(x) = 0 if and only if ω(x) ∈ Ŝ. Since ω is a one-to-one map, the f is a loss
function for S. �

The transformed simplicial loss functions in (4.13) and (4.17) have no spuri-
ous minimizers. The following are some examples of transformed simplicial loss
functions.

Example 4.5. i) Consider the set S in R3 such that

S =
{ 4
−2
1

 ,
−1

3
−5

}.
The matrix U as in (4.12) and its Pseudo inverse are

U =

 5
−5

6

 , U† =
1

86

 5
−5

6

T .
Since k = 2, the simplicial loss function for ∆k−1 is F1 = z2(z−1)2 in the univariate
variable z. Then, the transformed simplicial loss function as in (4.13) is

f(x) =

(
5x1
86
− 5x2

86
+

3x3
43

+
25

43

)2

·
(

5x1
86
− 5x2

86
+

3x3
43
− 18

43

)2

.
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ii) Consider the set S in R2 such that

S =
{[2

3

]
,

[
−1
−2

]
,

[
1
−3

]
,

[
−2
2

]}
.

Since k = 4 > n+ 1, the set Ŝ in (4.15) is

Ŝ =


2

3
4

 ,
−1
−2
1

 ,
 1
−3
1

 ,
−2

2
4

 .

The matrix L as in (4.16) and its inverse are

L =

 4 1 3
1 −4 −5
0 −3 −3

 , L−1 =
1

18

 3 6 −7
−3 12 −23

3 −12 17

 .
Since k = 4, the simplicial loss function for ∆k−1 is

F3(z) = z21(z1 − 1)2 + z21z
2
2 + z22(z2 − 1)2 + z22z

2
3 + z23(z3 − 1)2.

in the variable z = (z1, z2, z3). Then, the transformed simplicial loss function as in

(4.17) is f̂(z) = F3(L−1(z − ω(u4)), with

L−1(z − ω(u4)) =
1

18

 3z1 + 6z2 − 7z3 + 22
−3z1 + 12z2 − 23z3 + 62

3z1 − 12z2 + 17z3 − 38

 .
5. Finite sets with noises

In this section, we study loss functions for finite sets that are given with noises. In
many applications, the finite set S, with the cardinality k, is often approximately
given by another finite set T , with the cardinality N � k. For instance, each
point of S is often approximated by a number of samplings, and T consists of all
such samplings. The cardinality N is the total number of samplings. We look for
good loss functions for such approximately given sets. This kind of questions have
important applications in clustering and classification.

5.1. Best approximation sets. Suppose S is approximately given by a sampling
set T , say,

(5.1) T = {v1, . . . , vN}.

Each point of S is sampled by a certain number of points in T . We discuss how to
recover the k points of S from sampling points in T .

A finite set can be represented as the optimizer set of a loss function. For
convenience, we consider loss functions whose minimum values are zeros. Let F
be a family of loss functions such that each f ∈ F has k common zeros. The loss
function family F is parameterized by some parameters. For such given F , we look
for the best loss function in F such that its average value on T is the smallest. This
leads to the following definition.

Definition 5.1. Let F be a family of loss functions such that each f ∈ F is
nonnegative and it has k common zeros. A set S∗ = {u∗1, . . . , u∗k} is called the best
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F-approximation set for T as in (5.1) if S∗ is the zero set of f∗, where f∗ is the
minimizer of the optimization

(5.2)

 min µ(f) := 1
N

N∑
i=1

f(vi)

s.t . f ∈ F .

For a given set S, if the matrix G is as in (3.7), then S is the common zero
set of the polynomial tuple ϕ[G], given as in (3.5). In fact, Ideal(ϕ[G]) is the
vanishing ideal I(S) and ϕ[G] gives the minimum-degree generating set for I(S).
The relation between S and ϕ[G] is characterized by Theorem 3.3. As shown in
Proposition 3.2, ϕ[G] has k common zeros (counting multiplicities and all complex
ones) if and only if the multiplication matrices Mx1(G), . . . ,Mxn(G) commute with
each other. Moreover, ϕ[G] has k distinct zeros if and only if Mx1(G), . . . ,Mxn(G)
are simultaneously diagonalizable. So, one can use the matrix G and the polynomial
tuple ϕ[G] to represent the finite set S. As in Section 3, we consider the family of
the following loss functions

(5.3) fG := ‖ϕ[G]‖2,
parameterized by G. We look for the matrix G such that the average of the values
of fG on T is minimum and ϕ[G] has k common zeros.

In view of the above, we consider the following matrix optimization problem

(5.4)

 min ϑ(G) := 1
N

N∑
j=1

fG(vj)

s.t . [Mxi
(G),Mxj

(G)] = 0 (1 ≤ i < j ≤ n).

The value ϕ[G](vi) is linear in the matrix G. The feasible set of (5.4) is given by
a set of quadratic equations. The optimization (5.4) is the specialization of (5.2)
such that F is the family of loss function fG, with ϕ[G] having k common zeros.

5.2. Approximation analysis. Suppose G∗ is the minimizer of (5.4). Let S0

denote the common zero set of ϕ[G∗]. We can use S0 to approximate the points in
S. In some applications, the set S contains only real points and people like to get
a real set approximation for S.

First, we study the approximation quality of the optimization (5.4). For each
α ∈ B1, the sub-Hessian of the objective ϑ(G) with respect to the αth column
G(:, α) is the matrix

H :=
2

N

N∑
j=1

[vj ]B0
([vj ]B0

)H.

In the above, the superscript H denotes the Hermitian transpose.

Theorem 5.2. Let T be as in (5.1) and let S = {u1, . . . , uk} be such that the matrix
X0 as in (3.6) is nonsingular. Assume there exists δ > 0 such that H � 2δIk.
Suppose the set T is such that

(5.5) T ⊆ S +B(0, ε), T ∩B(ui, ε) 6= ∅ (i = 1, . . . , k),

for some ε > 0. Then, as ε → 0, the optimizer G∗ of (5.4) converges to Ĝ :=

X−T0 XT
1 , and the common zero set S0 of ϕ[G∗] converges to S.

In particular, when S, T ⊆ Rn, if ε > 0 is sufficiently small, the common zero
set S0 contains k distinct real points.
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Proof. First, we show the convergence G∗ → Ĝ as ε → 0. Since the set B̂ :=
∪ki=1B(ui, 1) is compact, the polynomial function ϕ[Ĝ](x) is Lipschitz continuous

on B̂. There exists R > 0 such that for all i ∈ [k] and for all x ∈ B(ui, ε),

‖ϕ[Ĝ](x)− ϕ[Ĝ](ui)‖ ≤ R‖x− ui‖ ≤ Rε.
Since T ⊆ S+B(0, ε), each vj ∈ T belongs to some B(uij , ε) for ij ∈ {1, . . . , k}. So

the above inequality implies that (note that each ϕ[Ĝ](uij ) = 0)

ϑ(Ĝ) =
1

N

N∑
j=1

‖ϕ[Ĝ](vj)‖2

=
1

N

N∑
j=1

‖ϕ[Ĝ](vj)− ϕ[Ĝ](uij )‖2 ≤ (Rε)2.

Since G∗ is the minimizer of (5.4), we have

(5.6) 0 ≤ ϑ(G∗) ≤ ϑ(Ĝ) ≤ (Rε)2.

Moreover, it holds that

ϑ(G∗) =
1

N

N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj) + ϕ[Ĝ](vj)‖2,

≥ 1

N

N∑
j=1

(
‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ − ‖ϕ[Ĝ](vj)‖

)2
≥ 1

N2

( N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ −
N∑
j=1

‖ϕ[Ĝ](vj)‖
)2
.

In the above, the first inequality follows from that ‖a+ b‖2 ≥ (‖a‖− ‖b‖)2 and the
second inequality follows from the Cauchy-Schwartz inequality. Then, we have

N∑
j=1

‖ϕ[G∗](vj)− ϕ[Ĝ](vj)‖ ≤ N
√
ϑ(G∗) +

N∑
j=1

‖ϕ[Ĝ](vj)‖

By the formula of ϕ[G](x) and using Cauchy-Schwartz inequality again, we get

N∑
j=1

‖(G∗ − Ĝ)T [vj ]B0
‖ ≤ N

(√
ϑ(G∗) +

√
ϑ(Ĝ)

)
.

Since
∑N
j=1 ‖(G∗ − Ĝ)T [vj ]B0

‖2 ≤
(∑N

j=1 ‖(G∗ − Ĝ)T [vj ]B0
‖
)2

, we have

1

N

N∑
j=1

‖(G∗ − Ĝ)T [vj ]B0
‖2 ≤ N

(√
ϑ(G∗) +

√
ϑ(Ĝ)

)2
.

By the assumption H � 2δIk, the above implies

‖G∗ − Ĝ‖ ≤
√
N

δ

(√
ϑ(G∗) +

√
ϑ(Ĝ)

)
.

Therefore, as ε→ 0, we have G∗ converges to Ĝ.
In the following, we assume that S, T ⊆ Rn. Since X0 is nonsingular, S has k

distinct real points. Recall the multiplication matrices Mxi
(G∗),Mxi

(Ĝ) given as
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in (3.8). Since G∗ → Ĝ, the common zero set of ϕ[G∗] converges to that of ϕ[Ĝ].

The zero set of ϕ[Ĝ] is S, which consists of k distinct real points. Hence, ϕ[G∗] also
has k distinct common zeros when ε > 0 is sufficiently small. Then it remains for
us to show that all common zeros of ϕ[G∗] are real. For a vector ξ = (ξ1, . . . , ξn),
define the matrices

M1 =

n∑
i=1

ξiMxi(G
∗), M2 =

n∑
i=1

ξiMxi(Ĝ).

Their characteristic polynomials are

p1(λ) := det(M1 − λI), p2(λ) := det(M2 − λI).

Fix a generic real value for ξ so that M2 has k distinct real eigenvalues. This is
because ϕ[Ĝ](x) has real distinct solutions and by the Stickelberger’s Theorem (see
(5.8) as in [23, 33]). Note that both p1(λ), p2(λ) have degree k and all coefficients
are real. The p2(λ) has k distinct real roots. They are ordered as

λ̂1 < λ̂2 < · · · < λ̂k.

We can choose real scalars b0, . . . , bk such that

b0 < λ̂1 < b1 < · · · < bk−1 < λ̂k < bk.

As ε → 0, the coefficients of p1 converge to those of p2. So, when ε > 0 is small
enough, p1(bj) has the same sign as p2(bj) does. Since each p2(bj−1)p2(bj) < 0, we
have

p1(bj−1)p1(bj) < 0, j = 1, . . . , k + 1.

This implies that p1 has k distinct real roots. Equivalently, M1 has k distinct
real eigenvalues for ε > 0 sufficiently small. By Proposition 3.2, the multiplication
matrices Mx1

(G∗), . . . ,Mxn
(G∗) are simultaneously diagonalizable. Also note that

M1 is diagonalizable and there is a unique real eigenvector (up to scaling) for each
real eigenvalue. This shows that Mx1(G∗), . . . ,Mxn(G∗) can be simultaneously
diagonalized by common real eigenvectors. All Mx1

(G∗), . . . ,Mxn
(G∗) have real

entries, so they have only real eigenvalues. Therefore, by Stickelberger’s Theorem,
ϕ[G∗] has k distinct real common zeros if ε > 0 is sufficiently small. �

5.3. Loss functions for noisy sets. When the set S is approximately given by
the sampling set T , we can solve (5.4) for an optimizer matrix G∗, to get loss
functions. Let S0 be the common zero set of the polynomial tuple ϕ[G∗]. If T is
far from S, S0 may have non-real points. If real points are wanted, we can choose
the real part set

(5.7) Sre := {Re(u) : u ∈ S0}.

First, we show how to compute the common zero set S0. By Stickelberger’s
Theorem (see [23, 33]), the set S0 can be expressed as

(5.8) S0 =

{
(λ1, . . . , λn)

∣∣∣∣ ∃q ∈ Ck \ {0} such that
Mxi

(G∗)q = λiq, i = 1, . . . , n

}
.

To get S0 numerically, people often use Schur decompositions. Let

(5.9) M1 = ξ1Mx1
(G∗) + · · ·+ ξnMxn

(G∗),
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where ξ1, . . . , ξn are generically chosen scalars. Then, compute the Schur decom-
position for M1:

(5.10) QHM1Q = P, Q =
[
q1 · · · qk

]
.

In the above, Q ∈ Ck×k is a unitary matrix and P ∈ Ck×k is upper triangular.
Based on the Schur decomposition (5.10), the common zeros û1, . . . , ûk of ϕ[G∗]
can be given as

(5.11) ûi :=
(
qHiMx1

(G∗)qi, . . . , q
H
iMxn

(G∗)qi
)
, i = 1, . . . , k.

We refer to [6] for how to use Schur decompositions to compute common zeros
of zero-dimensional polynomial systems. For general cases, the set S0 contains k
distinct points. It holds when S, T ⊆ Rn and the points in T are close to S; see
Theorem 5.2.

Based on the above discussions, we get the following algorithm for obtaining loss
functions when S is approximately given by the sampling set T .

Algorithm 5.3. For the given set T as in (5.1) and the cardinality k, do the
following:

Step 1 Solve quadratic optimization (5.4) for the optimizer G∗.
Step 2 Compute the common zero set S0 = {û1, . . . , ûk} of ϕ[G∗]. Let S∗ be the

set S0 or Sre be as in (5.7) if the real points are wanted.
Step 3 Get a loss function for the set S∗, by the method in Section 3 or Section 4.

In Step 1, the optimization (5.4) has a convex quadratic objective, but its con-
straints are given by quadratic equations, in the matrix variable G. So (5.4) is a
quadratically constrained quadratic program (QCQP). It can be solved as a polyno-
mial optimization problem (e.g., by the software GloptiPoly 3 [11]). The classical
nonlinear optimization methods, (e.g., Gauss-Newton, trust region, and Levenberg-
Marquardt type methods) can also be applied to solve (5.4). We refer to [16, 27, 39]
for such references.

In Step 2, the common zero set S0 can be computed as in (5.11), by using the
Schur decomposition (5.10) for the matrix M1 in (5.9), for generically chosen scalars
ξ1, . . . , ξn.

In Step 3, there are two options for obtaining loss functions for the set S∗, given
in Sections 3 and 4 respectively. One is to choose f = ‖ϕ[G]‖2; the other one is to
apply a transformation first and then choose f similarly. After the transformation,
there are no spurious optimizers for the loss function.

6. Numerical Experiments

In this section, we present numerical experiments for loss functions. The com-
putation is implemented in MATLAB R2018a, in a Laptop with CPU 8th Generation
Intel® Core™ i5-8250U and RAM 16 GB. The optimization problem (5.4) can be
solved by the polynomial optimization software GloptiPoly 3 (with the SDP solver
SeDuMi), or it can be solved by classical nonlinear optimization solvers (e.g., the
MATLAB function fmincon can be used for convenience).

First, we explore the numerical performance of Algorithm 5.3.

Example 6.1. Consider the set

S =
{[1

1

]
,

[
3
2

]
,

[
1.5
2.5

]
,

[
2.5
3

]
,

[
2

1.5

]
,

[
3
1

]}
.
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Suppose T is a sampling set of S such that

T ⊆ S + ε[−1, 1]2, and

|T ∩ {ui + ε[−1, 1]2}| = Ni (i = 1, . . . , 6).

We apply Algorithm 5.3 for cases Ni ∈ {50, 100} and ε ∈ {0.05, 0.1, 0.5}. The sam-
ples are generated with MATLAB function randn. We summarize the computational
results in Table 1 and Figure 1. In Table 1, the symbol S∗ denotes the computed
approximation set as in (5.7). We use the distance

‖S − S∗‖ := max
v∈S∗

min
ui∈S

‖v − ui‖

to measure the approximation quality of S∗ to S. The loss function for S∗ is in
form of f = ‖ϕ[G]‖2, whose maximum value on S is shown in the fourth column. In
Figure 1, the sampling points in T are plotted in dots, the points in S are plotted
in diamonds and the points in S∗ are plotted in squares. The left column from top
to bottom shows cases for Ni = 50 and ε = 0.05, 0.1, 0.5 respectively. The right
column shows cases for Ni = 100 accordingly.

Table 1. The numerical results of Example 6.1

Ni ε ‖S − S∗‖ max
u∈S

f(u)

50
0.05 0.0064 1.27 · 10−4

0.1 0.0145 2.98 · 10−4

0.5 0.1821 0.0862

Ni ε ‖S − S∗‖ max
u∈S

f(u)

100
0.05 0.0055 8.06 · 10−5

0.1 0.0067 1.89 · 10−4

0.5 0.1080 0.0359

We explore the performance of Algorithm 5.3 for sampling sets T that are not
evenly distributed around S.

Example 6.2. Let S be the same set given as in Example 6.1. Suppose T is a
sampling set of S such that for each i = 1, . . . , 6,

T ⊆ S + ai[−1, 1]2, |T ∩ {ui + ai[−1, 1]2}| = bi,

where a = (a1, . . . , a6) and b = (b1, . . . , b6) are given as

a = (0.4, 0.2, 0.6, 0.2, 0.32, 0.4),

b = (50, 25, 100, 30, 40, 70).

We apply Algorithm 5.3 for samples generated with the MATLAB function randn. The
computational results are summarized as follows. The computed approximation set
is

S∗ =
{[0.8820

0.9557

]
,

[
3.0807
1.7892

]
,

[
1.1759
2.5383

]
,

[
2.3481
3.0050

]
,

[
1.9854
1.6354

]
,

[
3.0292
0.8541

]}
.

We have that

‖S − S∗‖ = 0.3264, max
u∈S

f(u) = 0.2147,

where f(x) = ‖ϕ[G](x)‖2 is the loss function for S∗. The visualization of Exam-
ple 6.2 is given in Figure 2, where the points in S are plotted in diamonds and the
points in S∗ are plotted in squares.
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Figure 1. The performance of Algorithm 5.3 for Example 6.1.
The left column is for Ni = 50, and the right column is for Ni =
100. The first row is for ε = 0.05, the second row is for ε = 0.1,
and the third row is for ε = 0.5.

Then, we apply loss functions to study Gaussian mixture models. For a given
sampling set T , we compute the finite set S∗ and its loss function by Algorithm 5.3.
The loss function in Section 4 are used, so there are no spurious minimizers. For
a point v ∈ T , apply a nonlinear optimization method (we use MATLAB function
fminunc) to minimize f with the starting point v. Once a minimizer u is returned,
we cluster v to the group labeled by the point u ∈ S∗.

Example 6.3. We use Algorithm 5.3 and the transformed simplicial loss functions
in Section 4 to learn Gaussian mixture models (GMMs). Each GMM has parameters
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Figure 2. The performance of Algorithm 5.3 for Example 6.2.

(wi, µi,Σi), i = 1, . . . , k, where each weight wi > 0, the mean vector µi ∈ Rn and
the covariance matrix Σi ∈ Sn++ (the cone of real symmetric positive definite n-by-n
matrices), such that w1 + · · ·+wk = 1. We explore the performance of transformed
simplicial loss functions for two cases

I) : n = 4, k ∈ {4, 5}, II) : n = 5, k ∈ {3, 4}.

In particular, we compare the results for diagonal Gaussian mixture models (each Σi
is diagonal) and non-diagonal Gaussian mixture models (each Σi is non-diagonal).
For each instance, 1000 samples are generated. The weights w1, . . . , wk are also
computed from sampling: we first use the MATLAB command randi getting 1000
integers from [k], and then counting each wi based on the occurrence probability
of i ∈ [k]. We generate each covariance matrix as Σi = RTR, for some randomly
generated square matrix R. The clustering accuracy rate counts the percentage of
samples belonging to the correct cluster. We run 10 instances for each case and give
the average CPU time (in seconds) consumed by the method and the accuracy rate
for all instances. The computational results are reported in Table 2. Algorithm
5.3 together with transformed simplicial loss functions has good performance for
both diagonal and non-diagonal Gaussian mixture models. The clustering accuracy
rate is higher for non-diagonal Gaussian mixtures than that for diagonal ones. In
particular, for (n, k) = (4, 5), the clustering accuracy rate can be as high as 98.92%.
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Table 2. The computational results for Example 6.3.

Accuracy Rate CPU Time
n k diagonal non-diagonal diagonal non-diagonal

4
4 77.66% 85.34% 66.14 68.28
5 88.73% 98.92% 93.32 90.76

5
3 80.93% 84.04% 73.35 75.25
4 82.40% 89.58% 132.88 129.19

7. Conclusions

This paper studies loss functions for finite sets. We give a framework for loss
functions. For a generic finite set S, we show that S can be equivalently given as the
zero set of SOS polynomials with minimum degrees. When S is the vertex set of a
standard simplex, we show that the given loss function has no spurious minimizers.
For general finite sets, after a transformation, we can get similar loss functions that
have no spurious minimizers. When S is approximately given by a sampling set T ,
we show how to get loss functions for S based on sampling points in T . This can
be done by solving a quadratic optimization problem. Some examples are given to
show the efficiency of the proposed loss functions.
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