
Efficient differentiable quadratic programming layers: an ADMM

approach

Andrew Butler and Roy H. Kwon
University of Toronto

Department of Mechanical and Industrial Engineering

December 15, 2021

Abstract

Recent advances in neural-network architecture allow for seamless integration of convex opti-
mization problems as differentiable layers in an end-to-end trainable neural network. Integrating
medium and large scale quadratic programs into a deep neural network architecture, however, is
challenging as solving quadratic programs exactly by interior-point methods has worst-case cubic
complexity in the number of variables. In this paper, we present an alternative network layer
architecture based on the alternating direction method of multipliers (ADMM) that is capable of
scaling to problems with a moderately large number of variables. Backward differentiation is per-
formed by implicit differentiation of the residual map of a modified fixed-point iteration. Simulated
results demonstrate the computational advantage of the ADMM layer, which for medium scaled
problems is approximately an order of magnitude faster than the OptNet quadratic programming
layer. Furthermore, our novel backward-pass routine is efficient, from both a memory and com-
putation standpoint, in comparison to the standard approach based on unrolled differentiation
or implicit differentiation of the KKT optimality conditions. We conclude with examples from
portfolio optimization in the integrated prediction and optimization paradigm.

Keywords: Data driven stochastic-programming, differentiable neural networks, quadratic pro-
gramming, ADMM

1 Introduction

Many problems in engineering, statistics and machine learning require solving convex optimization
programs. In many real-world applications, the solution to the convex optimization program is a
single component in a larger decision-making process (see for example [14, 13, 19]). Recent advances
in neural-network architecture allow for seamless integration of convex optimization programs as dif-
ferentiable layers in an end-to-end trainable neural network [1, 2, 3].

In this paper, we consider convex programming layers that take the form of parametric quadratic
programs (PQPs) with linear equality and box inequality constraints:

minimize
z

1

2
zT Q(θ) z + zT p(θ)

subject to A(θ) z = b(θ), l(θ) ≤ z ≤ u(θ)
(1)

1

ar
X

iv
:2

11
2.

07
46

4v
1

 [
m

at
h.

O
C

]
 1

4
D

ec
 2

02
1

Here z ∈ Rdz denotes the decision variable and Q(θ), p(θ), A(θ), b(θ), l(θ), u(θ) are the parameter-
ized problem variables. Program (1) occurs in many applications to statistics [41, 42], machine-learning
[25, 29], signal-processing [30] and finance [8, 35, 34].

In general, a differentiable convex optimization layer can be viewed as a function that maps the
program input variables to optimal primal(-dual) solution(s). Therefore, in a fully integrated system,
optimizing problem variables by backpropogation ultimately requires computing the action of the
Jacobian of the optimal solution(s) with respect to the corresponding program input variables. For
example, the OptNet layer, proposed by Amos and Kolter [3] is a specialized differentiable optimization
layer that uses a primal-dual interior-point method for small scale batch quadratic programs. The
authors demonstrate that the solution to the system of equations provided by the KKT conditions
at optimality provide a system of equations for implicit differentiation with respect to all relevant
problem variables. Therefore, by strategically caching the KKT matrix factorization(s) (obtained
during the forward-pass), then the gradients required for backpropogation are obtained at little extra
additional cost. Indeed, the authors note that the OptNet layer is computationally efficient and
therefore practical for small-scale problems (dz < 100). However, solving convex quadratic programs
exactly by interior-point methods has worst-case time complexity on the order ofO(d3z) [27]. Therefore,
for medium (100 < dz < 1000) and large (dz > 1000) scale problems, embedding an OptNet layer in
a larger neural network can be computationally intractable.

In this paper, we address the computational challenges in the medium to large scale limit and
propose an alternative differentiable network architecture for batch constrained quadratic programs
of the form of Program (1). Our differentiable quadratic programming layer is built on top of the al-
ternating direction method of multipliers (ADMM) algorithm, which recently has become increasingly
popular for solving large-scale convex optimization problems [11, 36, 39, 40, 38]. Indeed, embedding
the ADMM algorithm in a larger neural-network system has been fundamental to recent innovations
in signal processing, compressed sensing, imaging and statistics (see for example [16, 45, 46]). The
standard ADMM-network implementation computes the relevant gradients by unrolling the ADMM
computational graph, which is memory inefficient and typically requires substantially larger networks.
Furthermore, when the number of ADMM iterations is large in the forward-pass then the unrolled
gradient can be computationally demanding. Alternatively, many differentiable convex optimization
layers compute the relevant gradients by implicitly differentiating the Karush–Kuhn–Tucker (KKT)
optimality conditions. Indeed differentiating the KKT system of equations is possible but unfortu-
nately requires solving a system of equations of dimension R3dz×3dz , which can also be computationally
impractical. As an alternative, we present a novel modified backward-pass routine that is efficient from
both a memory and computational standpoint. Specifically, we recast the ADMM algorithm as a fixed-
point iteration and apply the implicit function theorem to the resulting residual map in order to obtain
the relevant backpropogation gradients. A primary advantage of our fixed-point differentiation is that
the fixed-point iteration is of dimension dz and therefore the resulting system of equations is approxi-
mately 3 times smaller than the equivalent KKT system. Finally, our differentiable ADMM-layer and
all algorithmic implementations is made available as an open-source R package, available here:

https://github.com/adsb85/lqp

The remainder of the paper is outlined as follows. We begin with the problem motivation and a
brief discussion of related work in the field of differentiable convex optimization layers. In Section 2

2

we review the ADMM algorithm and present our ADMM-based architecture for forward solving batch
PQPs. We review the KKT based implicit differentiation and then present the fixed-point iteration
and derive the expression for the relevant gradients. In Section 3 we perform several simulations (under
numerous model specifications) and compare the computational efficiency and performance accuracy
of our ADMM-layer with the state-of-the-art OptNet layer. We demonstrate that for medium-scale
problems, our ADMM-layer implementation is approximately an order of magnitude faster than the
OptNet layer and provides solutions that are equally as optimal. Moreover, we compare the com-
putational efficiency of the backpropogation routines based on unrolled differentiation, KKT implicit
differentiation and fixed-point implicit differentiation. We demonstrate that the fixed-point implicit
differentiation is universally more efficient than the KKT implicit differentiation, and under certain
conditions is preferred to the unrolled differentiation. We conclude with a real world application of
the ADMM-layer to a medium scale portfolio optimization problem in the integrated prediction and
optimization paradigm.

1.1 Related work:

1.1.1 Problem Motivation

Many problems in machine learning, statistics, engineering and operations research involve both pre-
dictive forecasting and decision based optimization. Recent advances in neural network architecture
embed convex optimization programs as differentiable layers in a larger neural network structure. A
fully integrated prediction and optimization (IPO) architecture therefore enables the integration of
predictive forecasting and convex optimization and allows for the minimization of the total decision er-
ror induced by the forecast estimates (see for example [13, 14, 19, 20, 21]). This is in contrast to a more
traditional ‘predict, then optimize’ approach which would first fit the predictive models (for example
by maximum likelihood or least-squares) and then ‘plug-in’ those predictions to the corresponding
decision-based optimization program. While it is true that a perfect predictive model would lead to
optimal decision making, in reality, all predictive models do make some error, and thus an inefficiency
exists in the ‘predict, then optimize’ paradigm. With the widespread adoption of machine-learning
and data science in operations research, there has been a growing body of literature on data-driven
decision making and the relative merits of decoupled versus integrated predictive decision-making
[4, 7, 28, 33, 32, 43].

The preliminary findings of the aforementioned work advocate strongly for an IPO approach. In-
deed, IPO models typically exhibit lower model complexity and demonstrate statistically significant
improvements in out-of-sample performance in comparison to more traditional ‘predict, then optimize’
models. Unfortunately, training medium and large scale IPO models can be computationally demand-
ing. For example, Elmachtoub and Grigas [20], Elmachtoub et al. [21] report that their ‘smart predict,
then optimize’ models can take several hours to train medium and large scale problems, while tradi-
tional prediction methods typically take seconds or minutes to train. Butler and Kwon [13] provide
details on the computational complexity of IPO models trained with the OptNet layer and demon-
strate that when dz > 100 then fitting IPO models can be computationally impractical. Improving
the efficiency of the integrated framework is therefore an open and important area of research.

3

1.1.2 Differentiable convex optimization layers:

Differentiable convex optimization layers provide an efficient and seamless framework for integrating
predictive forecasting with downstream decision-based optimization in a end-to-end trainable neural
network. Modern neural network technology (such as torch or tensorflow) require that every layer in
the network inherits a forward and backward-pass routine. For differentiable convex optimization lay-
ers , the forward-pass is typically an iterative optimization algorithm that converts problem variables
into optimal primal(-dual) solution(s). The backward-pass routine therefore computes the action of
the Jacobian of the optimal solution(s) with respect to all problem variables, and returns the left
matrix-vector product of the Jacobian with the previous backward-pass gradient(s).

For example, the state-of-the-art OptNet layer implements a primal-dual interior-point method
for solving small-scale batch constrained quadratic programs [3]. For backward differentiation, the
authors implement a novel and efficient argmin differentiation routine that implicitly differentiates
the KKT system of equations at optimality. By strategically caching the factorized KKT left-hand
side matrix then the resulting method is shown to be computationally tractable for small problems
within the context of deep neural network architectures. The author’s acknowledge, however, that
the OptNet layer may be impractical for optimization problems with a moderate to large number of
variables.

More recently, Agrawal et al. [2] provide a general framework for differentiable convex cone pro-
gramming. Their forward-pass recasts the conic program in its equivalent homogeneous self-dual
embedding form, which is then solved by operator splitting [36]. In the backward-pass, the relevant
gradients are obtained by implicit differentiation of the residual map provided by the homogeneous
self-dual embedding. The resulting differentiable cone programming layer is flexible, but requires the
user to transform their problem into a canonical form, which is often time-consuming, prone to error
and requires a certain level of domain expertise.

Alternatively, Agrawal et al. [1], provide a domain-specific language for differentiable disciplined
convex programs. Their approach abstracts away the process of converting problems to canonical
form with minimal loss in computational efficiency in comparison to specialized convex optimization
layers. They also provide an efficient sparse matrix solver, which for sparse quadratic programs is on
average an order of magnitude faster than the OptNet layer. Similarly, Blondel et al. [9] provide an
efficient and modular approach for implicit differentiation of optimization problems. They consider
KKT, proximal gradient and mirror descent fixed-point implicit differentiation and provide a software
infrastructure for efficiently integrating their modular implicit differentiation routines with state-of-
the-art optimization solvers. That said, for solving batches of convex optimization problems it is
often preferred and more efficient to avail of optimization solvers that have the ability to exploit fast
GPU-based batch solves.

1.1.3 ADMM and unrolled differentiation:

The alternating direction method of multipliers (ADMM) algorithm, first proposed by Gabay and
Mercier [24] and Glowinski and Marroco [26], is well suited to many large-scale and distributed prob-
lems common to applications of statistics, machine learning, control and finance. We note that the
ADMM algorithm is closely related to algorithms such as dual ascent, the augmented Lagrangian
method of multipliers, and operator (Douglas–Rachford) splitting and refer to Boyd et al. [11] for a

4

comprehensive overview.
Embedding the above mentioned algorithms in larger neural-network structures has been funda-

mental to recent innovations in signal processing, compressed sensing, imaging and statistics (see for
example [6, 16, 17, 23, 31]). Perhaps most closely related to our own work, the ADMM-Net, first
proposed by Yang et al. [46], recasts and embeds the iterative ADMM procedure as a fully learnable
network graph. The authors provide examples from compressive sensing magnetic resonance imaging
and demonstrate that their ADMM-Net achieves state-of-the-art model accuracy and computationally
efficiency. More recently, the Differentiable Linearized ADMM (D-LADMM) algorithm, proposed by
[45], generalizes the ADMM-Net and is capable of solving general deep learning problems with equality
constraints. The authors show that there exists a set of learnable parameters for D-LADMM to gen-
erate global solutions and provide the relevant convergence analysis. However, in all cases mentioned
above the authors consider either unconstrained or linear equality constrained least-squares problems
and do not consider inequality constraints. Furthermore, they perform the action of argmin differenti-
ation by unrolling the ‘inner-loop’ of the convex optimization routine, which necessitates substantially
larger and less efficient networks [3, 4].

Our ADMM-layer derives inspiration from both the differentiable convex optimization and ADMM
network literature. To our knowledge, our ADMM-layer is the first implementation of its kind that
can efficiently handle medium to large scale differentiable constrained PQPs. In this paper we demon-
strate that solving medium and large scale QPs by interior-point methods can be computationally
burdensome. An obvious course of action is to replace the interior-point algorithm in the forward-pass
with a more computationally efficient first-order method, such as ADMM. However, implementing
an efficient backward-pass routine by implicit differentiation of the KKT conditions is challenging as
the ADMM algorithm does not explicit solve the KKT system of equations. Therefore, unlike the
OptNet implementation, at each ‘outer’ iteration (hereafter referred to as epochs) we must form and
solve the resulting KKT system, which for large scale problems creates a computational bottleneck.
Unrolled differentiation of the ADMM algorithm is appropriate for small scale problems. However, for
larger scale problems or for problems that require solving the convex optimization problem to a high
degree of accuracy, an unrolled differentiation approach can also be computationally impractical. In
contrast, our novel fixed-point implicit differentiation method is shown to be computationally efficient
and invariant to the number of ‘inner’ iterations performed in the ADMM forward-pass. Furthermore,
as mentioned earlier, a primary advantage of the fixed-point differentiation is that the fixed-point iter-
ative scheme is of dimension dz and is therefore approximately 3 times smaller than the KKT system.
We demonstrate that in the absence of a pre-factorized KKT system, the fixed-point implicit differ-
entiation is preferred to the KKT implicit differentiation and is competitive with the efficient KKT
factorization caching provided in the OptNet layer. Furthermore, we demonstrate that for small-scale
problems, our ADMM-layer is competitive with the state-of-the-art OptNet layer in terms of accuracy
and computational efficiency. For medium and large scale problems, our ADMM layer is shown to be
approximately an order of magnitude faster than the OptNet layer. Of course, our ADMM-layer is
not without its own limitations and areas for improvement, discussed in detail in Section 4.

5

2 Methodology

In general, the ADMM algorithm is applied to problems of the form:

minimize f(x) + g(z)

subject to A x + B z = c
(2)

with decision variables x ∈ Rdx , z ∈ Rdz and problem variables A ∈ Rdeq×dx , B ∈ Rdeq×dz and
c ∈ Rdeq . In order to guarantee convergence we assume that f : Rdx → R and g : Rdz → R are closed,
proper convex functions [11]. The augmented Lagrangian of Program (2) is given by:

Lρ(x, z,y) = f(x) + g(z) + λT (r) +
ρ

2
‖r‖22, (3)

with Lagrange dual variable λ, residual r = A x + B z− c and user-defined penalty parameter ρ > 0.
We denote µ = ρ−1 λ and therefore the well-known scaled ADMM iterations are as follows:

xk+1 = argmin
x

f(x) +
ρ

2
‖A x + B zk− c +µk‖22

zk+1 = argmin
z

g(z) +
ρ

2
‖A xk+1 + B z− c +µk‖22

µk+1 = µk + A xk+1 + B zk+1− c

(4)

where xk and zk denote the decision variables at iteration k.
We denote rk = A xk + B zk− c and sk = ρAT B(zk− zk−1) as the primal and dual residual at

iteration k. Let εp > 0 and εd > 0 be the user defined stopping tolerances for the primal and dual
residuals, respectively. Therefore a reasonable stopping criteria would be:

rk ≤ εp and sk ≤ εd. (5)

2.1 ADMM for parametric quadratic programs

We consider convex parametric quadratic programs (PQPs) of the form:

minimize
z

1

2
zT Q(θ) z + zT p(θ)

subject to A(θ) z = b(θ), l(θ) ≤ z ≤ u(θ),
(6)

with decision variable z ∈ Rdz . The objective function is therefore defined by a vector p(θ) ∈ Rdz and
symmetric positive definite matrix Q(θ) ∈ Rdz×dx . Here, A(θ) ∈ Rdeq×dz , b(θ) ∈ Rdeq , l(θ) ∈ Rdz
and u(θ) ∈ Rdz define the linear equality and box inequality constraints. We assume that all problem
variables are parameterized by θ and are therefore trainable when integrated in an end-to-end neural
network; rather than simply being supplied by the user.

6

2.1.1 ADMM-layer: forward-pass

Our ADMM-layer solves Program (6) in the forward-pass by applying the ADMM algorithm as outlined
in Section 2. Note that for ease of notation we temporarily drop the parameterization, θ.

We define

f(x) =
1

2
xT Q x + xT p, (7)

with domain {x |A x = b}. Similarly, we define

g(z) = Il≤z≤u(z) (8)

where Il≤z≤u(z) denotes the indicator function with respect to the linear inequality constraints. Pro-
gram (6) is then recast to the following convex optimization Program:

minimize f(x) + g(z)

subject to x− z = 0.
(9)

Applying the ADMM iterations, as defined by Equations (4), to Program (9) therefore gives the
following iterative optimization algorithm:

xk+1 = argmin
{x |Ax=b}

1

2
xT Q x + xT p +

ρ

2
‖x− zk +µk‖22 (10a)

zk+1 = argmin
{l≤z≤u}

ρ

2
‖xk+1− z +µk‖22 (10b)

µk+1 = µk + xk+1− zk+1 (10c)

The ADMM algorithm, as defined by Equations (10), allows for efficient optimization of medium
and large scale quadratic programs. Firstly, we note that (10b) is a least squares problem with box-
inequality constraints, and therefore can be solved analytically. Specifically, we define the euclidean
projection onto a set of box constraints as:

Π(x) =

lj if xj < lj

xj if lj ≤ xj ≤ lj

uj if xj > uj

. (11)

The analytic solution to Program (10b) is therefore given by:

zk+1 = Π(xk+1 +µk). (12)

Furthermore, Program (10a) is an equality constrained quadratic program, which can also be solved
analytically. Specifically, the KKT optimality conditions of Program (10a) can be expressed as the
solution to the following linear system of equations:[

Q +ρ Ix AT

A 0

] [
xk+1

ηk+1

]
= −

[
p−ρ(zk−µk)

−b

]
, (13)

7

with identity matrix Ix ∈ Rdx×dx . Applying Equations (12) and (13) allows us to express the ADMM
iterations in a simplified form:

[
xk+1

ηk+1

]
= −

[
Q +ρ Ix AT

A 0

]−1 [
p−ρ(zk−µk)

−b

]
(14a)

zk+1 = Π(xk+1 +µk) (14b)

µk+1 = µk + xk+1− zk+1 (14c)

Observe that the per-iteration cost of the ADMM algorithm is dominated by solving the system of
Equations (13). Note, however, that this linear system is in general smaller than the Newton system
found in a standard primal-dual interior-point solvers by a factor of approximately 5, and therefore
remains tractable for medium and large scale problems. Furthermore, if ρ is static then the left-hand
side matrix in Equation (13) remains unchanged at each iteration and therefore is factorized only once
at the onset of the ADMM algorithm. Furthermore, as we demonstrate below, this matrix factorization
can subsequently be cached and invoked during backpropogation to compute the relevant gradients.
Lastly, we note that if the matrices Q and A remain unchanged at each epoch of gradient descent,
then the left-hand-side matrix needs to only be factorized once during the entire training process.

2.1.2 ADMM-layer: unrolled differentiation

Note that the standard unrolled differentiation approach ‘unrolls’ the iterations in Equation (14) by
standard backpropogation [37] and requires that each operation in Equation (14) be differentiable.
We refer to Domke [17] and Diamond et al. [16] for a more comprehensive overview of unrolled
differentiation. Our unrolled differentiation is invoked by the standard auto-differentiation routine in
the torch library.

2.1.3 ADMM-layer: KKT implicit differentiation

As an alternative to unrolled differentiation, we note that the system of equations provided by the
KKT conditions at optimality is a fixed point mapping. As outlined by [3, 4], it is therefore possible to
apply the implicit function theorem and derive the gradient of the primal-dual variables with respect
to the problem variables in Program (6). In this section we derive the KKT implicit differentiation
for our ADMM solver. We begin with a few definitions.

Definition 1. Let F : Rdv × Rdθ → Rdv be a continuously differentiable function with variable v and
parameter θ. We define v∗ as a fixed-point of F at (v∗,θ) if:

F (v∗,θ) = v∗ .

Definition 2. The residual map, G : Rdv × Rdθ → Rdv of a fixed point, (v∗,θ), of F is given by:

G(v∗,θ) = F (v∗,θ)− v∗ = 0.

The implicit function theorem, as defined by Dontchev and Rockafellar [18], then provides the
conditions on G for which the Jacobian of the solution mapping with respect to θ is well defined.

8

Theorem 1. Let G : Rdv × Rdθ → Rdv be a continuously differentiable function in a neighborhood
of (v∗,θ) such that G(v∗,θ) = 0. Denote the nonsingular partial Jacobian of G with respect to
v as ∇vG(v∗,θ). Then v(θ) is an implicit function of θ and is continuously differentiable in a
neighborhood, Θ, of θ with Jacobian:

∇θ v(θ) = −[∇vG(v(θ),θ)]−1∇θG(v(θ),θ) ∀ θ ∈ Θ. (15)

Corollary 1. Let F : Rdv×Rdθ → Rdv be a continuously differentiable function with fixed-point (v∗,θ).
Then v(θ) is an implicit function of θ and is continuously differentiable in a neighborhood, Θ, of θ
with Jacobian:

∇θ v(θ) = [Iv−∇vF (v(θ),θ)]−1∇θF (v(θ),θ) ∀ θ ∈ Θ. (16)

For constrained quadratic programming, let us denote the primal-dual solution at optimality by
ν∗ = (z∗, λ̃

∗
,η∗), where z∗ and η∗ are defined by Equations (13) at optimality. Note that the dual

variables associated with the inequality constraints are given by λ̃
∗

= (λ∗−,λ
∗
+) with:

λ∗− = −min(ρµ∗, 0) and λ∗+ = max(ρµ∗, 0). (17)

We define the box inequality constraints as G z ≤ h, where

G =

[
− Ix
Ix

]
and h =

[
− l
u

]
.

Note that all constraints are affine and therefore Slater’s condition reduces to feasibility. The KKT
conditions for stationarity, primal feasibility, and complementary slackness therefore defines a fixed-
point at optimality ν∗ given by:

G(ν∗,θ) =

p + Q z∗+ GT λ̃
∗

+ AT η∗

diag(λ̃
∗
)(G z∗−h)

A z∗−b

 =

0
0
0

 (18)

Applying Theorem 1, we take the differential of these conditions to give the following system of
equations:

 Q GT AT

diag(λ̃
∗
) G diag(G z∗−h) 0

A 0 0

dz
dλ
dν

 = −

dQ z∗+dp + dGT λ̃
∗

+ dAT η ∗
diag(λ̃

∗
)dG z∗−diag(λ̃

∗
)dh

dA z∗−db

 . (19)

Observe that the left side matrix gives the optimality conditions of the convex quadratic problem,
which, when solving by interior-point methods, must be factorized in order to obtain the solution
to the nominal program [10]. The right side gives the differentials of the relevant functions at the
achieved solution with respect to any of the problem variables. In practice, however, we never explicitly
form the right-side Jacobian matrix directly. Instead we follow the work of Amos and Kolter [3] and
compute the left matrix-vector product of the Jacobian with the previous backward-pass gradient,
∂`
∂ z∗ , as outlined below:

9

d̄z

d̄λ

d̄η

 = −

Q GT diag(λ̃
∗
) AT

G diag(G z∗−h) 0
A 0 0

−1 (∂`
∂ z∗

)T
0
0

 . (20)

Equation (20) allows for efficient computation of the gradients with respect to any of the relevant
problem variables. This is particularly true when using interior-point methods as the required gradients
are effectively obtained ‘for free’ upon factorization of the left matrix when obtaining the solution, z∗,
in the forward-pass. In the ADMM algorithm, however, we never explicitly solve the KKT system of
equations and therefore we must form and factorize the left side KKT matrix during the backward
pass routine. Observe that the left-side matrix in Equation (20) is of dimension 3dz+deq and therefore
for large scale problems solving this system of equations can be computationally burdensome. Finally,
for the reader’s interest, we state the gradients for all problem variables and refer the reader to Amos
and Kolter [3] for their derivation.

∂`

∂Q
=

1

2

(
d̄z z∗T + z∗ d̄

T
z

) ∂`

∂ p
= d̄z

∂`

∂A
= d̄η z∗T +η∗ d̄

T
z

∂`

∂ b
= −d̄η

∂`

∂G
= diag(λ∗)d̄λ z∗T +λ∗ d̄

T
z

∂`

∂ h
= −diag(λ∗)d̄λ

(21)

2.1.4 ADMM-layer: fixed-point implicit differentiation

In this section we demonstrate that the ADMM iterations in Equation (13) can be cast as a fixed-
point iteration of dimension dz + deq. In many applications, deq is typically much smaller than dz,
and therefore the proposed fixed-point differentiation will almost certainly decrease the computational
overhead of the backward-pass routine. We begin with the following proposition. Note that all proofs
are available in the Appendix.

Proposition 1. Let vk = xk+1 +µk, ṽk = (vk,ηk) and define F : Rdṽ×Rdθ → Rdṽ . Then the ADMM
iterations in Equation (13) can be cast as a fixed-point iteration of the form F (ṽ,θ) = ṽ given by:[

vk+1

ηk+2

]
= −

[
Q +ρ Iv AT

A 0

]−1 [
p−ρ(2Π(vk)− vk)

−b

]
+

[
vk

ηk+1

]
−
[
Π(vk)
ηk+1

]
. (22)

We follow Busseti et al. [12] and define the derivative of the projection operator, Π as:

DΠ(x) =

0 if xj < lj

1 if lj ≤ xj ≤ lj

0 if xj > uj

. (23)

Observe that DΠ(x) is not continuously differentiable when xj = lj or xj = uj . In practice, we
can overcome the non-differentiability of Π by introducing a small perturbation to x, thus moving x

10

away from the boundaries. Alternatively, smooth sigmoid based approximations to Π(x) may also be
suitable. In all experiments below, however, we invoke DΠ(x) directly as defined in Equation (23).

The Jacobian, ∇ṽF , is therefore defined as:

∇ṽF = −
[
Q +ρ Iv AT

A 0

]−1 [−ρ(2DΠ(v)− Iv) 0
0 0

]
+

[
Iv 0
0 Iη

]
−
[
DΠ(v) 0

0 Iη

]
. (24)

Corollary 1 therefore gives the desired Jacobian, ∇θṽ(θ), with respect to the parameter θ:

∇θṽ(θ) = [Iṽ−∇ṽF (ṽ(θ),θ)]−1∇θF (ṽ(θ),θ) (25)

From the definition of v we have that the Jacobians ∇θ x(θ) and ∇θ η(θ) are given by:[
∇θ x(θ)
∇θ η(θ)

]
=

[
DΠ(v) 0

0 Iη

] [
Iṽ−∇ṽF (ṽ(θ),θ)

]−1
∇θF (ṽ(θ),θ) (26)

As before we never form the Jacobians ∇θ x(θ) and ∇θ η(θ) directly. Instead, we compute the
left matrix-vector product of the Jacobian with the previous backward-pass gradient, ∂`

∂ z∗ , as outlined
below.

Proposition 2. Let d̂x and d̂η be defined as:[
d̂x

d̂η

]
=

[
Q +ρ Iv AT

A 0

]−1 [
Iṽ−∇ṽF (ṽ(θ),θ)

]−T [DΠ(v) 0
0 Iη

][(
− ∂`

∂ z∗

)T
0

]

=

[[
DΠ(v) 0

0 Iη

] [
Q +ρ Iv AT

A 0

]
+

[
−ρ(2DΠ(v)− Iv) 0

0 0

]]−1 [
DΠ(v) 0

0 Iη

][(
− ∂`

∂ z∗

)T
0

]
.

(27)

Then the gradients of the loss function, `, with respect to problem variables Q, p, A and b are given
by: .

∂`

∂Q
=

1

2

(
d̂x x∗T + x∗ d̂

T

x

) ∂`

∂ p
= d̂x

∂`

∂A
= d̂η x∗T +η∗ d̂

T

x

∂`

∂ b
= −d̂η

(28)

Computing the gradients of the loss with respect to the box constraint variables, l and u is also
straightforward.

Proposition 3. Define µ̃∗ and d̂λ as:

µ̃∗j =

{
µ∗j if µ∗j 6= 0

1 otherwise,
(29)

and

d̂λ = diag(ρµ̃∗)−1
(
−
(∂`

∂ z∗

)T
−Q d̂x −AT d̂η

)
. (30)

Then the gradients of the loss function, `, with respect to problem variables l and u are given by:

∂`

∂ l
= diag(λ∗−)d̂λ

∂`

∂ u
= −diag(λ∗+)d̂λ. (31)

11

We now have a framework for computing the gradient with respect to all problem variables by
implicit differentiation of the fixed-point mapping of the transformed ADMM iterations. We re-iterate
that the implicit differentiation of the KKT conditions requires solving a system of equations on the
order of 3dz + deq. In contrast, the fixed-point iteration, presented in Equation (22) is of dimension
dz + deq. As we will demonstrate shortly, reducing the dimension of the fixed-point mapping results
in a considerable improvement in computational efficiency in the backward-pass.

3 Computational experiments

We present several experimental results that highlight the computational efficiency and performance
accuracy of the ADMM-layer. In all experiments, computational efficiency is measured by the average
runtime (in seconds), required to implement the forward-pass and backward-pass algorithms of each
model. We compare across 4 models:

1. ADMM Unroll: ADMM in the forward-pass and unrolled differentiation in the backward-pass.

2. ADMM KKT: ADMM in the forward-pass and KKT implicit differentiation in the backward-
pass.

3. ADMM FP: ADMM in the forward-pass and fixed-point implicit differentiation in the backward-
pass.

4. OptNet: primal-dual interior-point method in the forward-pass and efficient KKT implicit
differentiation in the backward-pass.

Both the ADMM and interior-point solvers terminate when the L2 norms of the primal and dual
residuals are sufficiently small (i.e. less than some user-defined tolerance εtol). In many applications,
however, it is not always necessary to solve the batch QPs exactly during training. We therefore
consider and compare the computational efficiency of each model over several stopping tolerances:
εtol ∈ {10−1, 10−3, 10−5}. Going forward, the model label ‘ADMM FP 3’, for example, denotes the
ADMM FP model with a stopping tolerance of 10−3.

Lastly, first-order methods are known to be vulnerable to ill-conditioned problems and the resulting
convergence rates can vary significantly when the data and algorithm parameters (ρ) are poorly scaled.
Many first-order solvers therefore implement a preconditioning and problem scaling initialization step
(see for example [36, 38, 40]). In our case, however, the QP problem variables are parameterized and
are therefore expected to change at each epoch. Scaling and conditioning the problem variables at
each epoch would potentially result in excessive computational overhead. As a result, our ADMM-
layer implementation does not include a preconditioning step. Instead, in all experiments presented
below, we normalize the problem data to have approximately unit standard deviation (on average) and
manually scale the problem variables: p, Q, A and b where appropriate. We find that for unit-scaled
problem data, a value of ρ ∈ {0.10, 1.0} provides a consistent rate of convergence. Indeed, an efficient
and dynamic preconditioning and scaling routine is an interesting area of future research.

All experiments are conducted on an Apple Mac Pro computer (2.7 GHz 12-Core Intel Xeon E5,128
GB 1066 MHz DDR3 RAM) running macOS ‘Catalina’. All computations are run on an unloaded,
single-threaded CPU. The software was written using the R programming language (version 4.0.0)
and torch (version 0.6.0).

12

3.1 Experiment 1: ADMM-layer performance

We conduct an experiment comparing the computational efficiency of the ADMM and OptNet models
with various stopping tolerances. We randomly generate problem data of dimension:

dz ∈ {10, 50, 100, 250, 500, 1000}.

and for each trial implement the forward and backward algorithms on a mini-batch size of 128. Problem
variables are generated as follows. We set Q = 1

2dz
UT U where entries of U ∈ R2dz×dz are sampled

from a standard normal distribution. We randomly generate p by sampling from the standard normal
distribution and randomly generate l and u by randomly sampling from the uniform distribution with
domain [−2,−1] and [1, 2], respectively . Finally we set A = 1 and b = 1.

Figure 1 provides the average runtime and 95%-ile confidence interval, evaluated over 10 trials,
of the forward and backward-pass algorithms. We make several important observations. First, for
small scale problems (dz < 100), there is negligible performance differences across all methods of the
same stopping tolerance. As expected, the total runtime increases as the required stopping tolerance
decreases. For medium scaled problems (100 < dz < 1000) we observe a substantial performance degra-
dation in both the ADMM-KKT models and the OptNet models, in comparison to the ADMM-FP and
ADMM-Unroll models. Specifically, the ADMM-KKT model exhibits an increase in computation time
that is anywhere from 4 to 16 times larger than the corresponding ADMM fixed-point backward-pass
implementation. This result is not surprising as the ADMM-KKT backward-pass algorithm must first
form and then factorize the KKT system of equations, which is of dimension 3dz + deq. In contrast,
the fixed-point backward-pass routine solves a system of equations of size dz + deq and is shown to
be comparable in computational efficiency to the OptNet backward-pass algorithm. Furthermore,
for problems of size dz ≥ 250, we note that the ADMM-FP and ADMM-Unroll models are approx-
imately an order of magnitude more efficient than the corresponding OptNet models. For example,
when dz = 1000 and εtol = 10−3, the total runtime for the OptNet model is 150 seconds, whereas
the total runtime for the ADMM model is less than 10 seconds; over an order of magnitude faster.
This increase in computational performance will ultimately enable training architectures that can
practically support substantially larger quadratic optimization problems. Lastly, we note that while
the ADMM-unroll algorithm is relatively efficient, it requires a significantly larger memory footprint,
which may be impractical in some settings. Furthermore, we observe that the as the stopping tolerance
decreases the computation time of the unrolled backward-pass increases. In contrast, the fixed-point
implicit differentiation method is invariant to the number of ‘inner’ iterations performed in the ADMM
forward-pass. Going forward, we choose to work with the ADMM fixed-point model as it is efficient
from both a computational and memory standpoint.

13

1.4x

1.0x

0.6x

1.1x 1.2x 1.2x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(a) dz = 10.

2.0x

1.6x

1.2x

2.6x 2.5x 2.4x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(b) dz = 50.

3.5x

3.0x

2.9x

4.5x 4.4x 4.5x

0.0

0.2

0.4

0.6

0.8

1.0

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(c) dz = 100.

 8.5x

 8.8x

10.0x

 8.6x 8.5x 8.1x

0

2

4

6

8

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(d) dz = 250.

10.9x

12.2x

22.4x

12.6x 12.7x 13.4x

0

10

20

30

40

50

60

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(e) dz = 500.

13.7x

16.6x

16.4x

16.3x 16.3x 16.4x

0

50

100

150

200

250

ADM
M

 F
P 1

ADM
M

 F
P 3

ADM
M

 F
P 5

ADM
M

 K
KT 1

ADM
M

 K
KT 3

ADM
M

 K
KT 5

ADM
M

 U
nr

oll
 1

ADM
M

 U
nr

oll
 3

ADM
M

 U
nr

oll
 5

Opt
Net

 1

Opt
Net

 3

Opt
Net

 5

T
im

e
(s

)

Backward Forward Total

(f) dz = 1000.

Figure 1: Computational performance of ADMM-FP, ADMM-KKT, ADMM-Unroll and Optnet for
various problem sizes, dz, and stopping tolerances. Batch size = 128.

3.2 Experiment 2: learning p

We now consider a full training experiment whereby the objective is to learn a parameterized model for
the variable p, that is optimal in the context of the remaining QP problem variables. This problem was
considered by Donti et al. [19] with applications to power scheduling and battery storage, and more
recently by Butler and Kwon [14] for optimal return forecasting within the context of a mean-variance
portfolio. We refer to the aforementioned work for more details.

14

The learning process can be posed as a bi-level optimization program where the objective is to
learn a parameter θ in order to minimize the average QP loss induced by the optimal decision policies
{z∗(θ)(i)}mi=1. Program (32) is referred to as an integrated predict and optimize (IPO) model as the
prediction model for p is fully integrated with the resulting down-stream decision-based optimization
model.

minimize
θ

1

m

m∑
i=1

(
z∗(θ)T

(i)

p(i) +
1

2
z∗(θ)T

(i)

Q(i) z∗(θ)(i)
)

subject to z∗(θ)(i) = argmin
z
− zT p̂(θ)(i) +

1

2
zT Q̂

(i)
z ∀i = 1, ...,m

A z∗(θ)(i) = b ∀i = 1, ...,m

l ≤ z∗(θ)(i) ≤ u ∀i = 1, ...,m.

(32)

Here p(i) and Q(i) denote the ground truth problem data and are generated as follows. We let

p(i) ∼ N (wT (i)
θ0 +τ ε(i),Q) where Q ∈ Rdz×dz has entry (j, k) equal to ρ

|j−k|
p . We set ρp = 0.50

and generate the auxiliary feature data from the standard normal distribution, w(i) ∼ N (0, Iw). The
residuals, ε(i) ∼ N (0,Q), preserve the desired correlation structure and the scalar value τ controls
the signal-to-noise level. All experiments target a signal-to-noise level of 0.10.

We let p̂(θ)(i) denote the estimate of p(i) according to the linear model:

p̂(θ)(i) = wT (i)
θ . (33)

The bound constraints, l and u, are generated by randomly sampling from the uniform distribution
with domain [−1, 0] and [0, 1], respectively and we set A = 1 and b = 1. In all experiments we set
the stopping tolerance to εtol = 10−3.

We randomly generate problem data of dimension dz ∈ {250, 500, 1000}. The training process
for each trial consists of 30 epochs with a mini-batch size of 32. Figures 2(a) - 4(a) report the
average training loss at each epoch and the 95%-ile confidence interval, evaluated over 10 independent
trials. Observe that the loss curves for the ADMM model and OptNet model are almost identical
at each epoch, suggesting that the training accuracy of the ADMM model and OptNet model are
equivalent. Conversely, Figures 2(b) - 4(b), compare the average and 95%-ile confidence interval time
spent executing the forward and backward pass algorithms. When dz = 250 the ADMM model is
shown to be approximately 5 times faster than the OptNet model. Furthermore, when dz = 500
and dz = 1000, the ADMM model is a full order of magnitude faster than the OptNet model. More
concretely, when dz = 1000 the entire learning process takes approximately 1600 seconds to train the
OptNet model, but less than 130 seconds to train the ADMM model to an equal level of accuracy.

15

−0.75

−0.50

−0.25

0.00

0 10 20 30
Epoch

N
or

m
al

iz
ed

 Q
P

 L
os

s

ADMM OptNet

(a) Training Loss.

5.1x

1.6x

5.6x

0

10

20

30

40

50

60

ADMM OptNet

T
im

e
(s

)

Backward Forward Total

(b) Computational Performance.

Figure 2: Training loss and computational performance for learning p. Batch size = 32 and dz = 250.

−0.75

−0.50

−0.25

0.00

0 10 20 30
Epoch

N
or

m
al

iz
ed

 Q
P

 L
os

s

ADMM OptNet

(a) Training Loss

 9.0x

 1.3x

11.0x

0

50

100

150

200

250

ADMM OptNet

T
im

e
(s

)
Backward Forward Total

(b) Computational Performance

Figure 3: Training loss and computational performance for learning p. Batch size = 32 and dz = 500.

−0.75

−0.50

−0.25

0.00

0 10 20 30
Epoch

N
or

m
al

iz
ed

 Q
P

 L
os

s

ADMM OptNet

(a) Training Loss

12.4x

 0.8x

16.5x

0

500

1000

1500

ADMM OptNet

T
im

e
(s

)

Backward Forward Total

(b) Computational Performance

Figure 4: Training loss and computational performance for learning p. Batch size = 32 and dz = 1000.

16

3.3 Experiment 3: learning A

We now present a real-world experiment from portfolio optimization whereby the objective is to learn
a parameterized model for the variable A. We consider an asset universe of dz = 255 liquid US stocks
traded on major U.S. exchanges (NYSE, NASDAQ, AMEX, ARCA). The universe is summarized in
Table 3, with representative stocks from each of the Global Industry Classification Standard (GICS)
sectors. Weekly price data is given from January 1990 through December 2020, and is provided by
Quandl.

We denote the matrix of weekly return observations as A = [a(1),a(2), ...,a(m)] ∈ Rm×dz with
m > dz. Let Q(i) ∈ Rdz×dz denote the symmetric positive definite covariance matrix of asset returns.
We define the portfolio z(i) ∈ Rdz , where the element, z(i)j , denotes the proportion of total capital
invested in the jth asset at time i.

We define the Sharpe ratio at observation i as the ratio of portfolio return to portfolio risk, where
risk is measured by the portfolio volatility (standard deviation).

SR
(i) =

aT
(i)

z(i)√
zT

(i)
Q(i) z(i)

(34)

We consider a long-only (z(i) ≥ 0), fully invested (1T z(i) = 1) max-Sharpe portfolio optimization,
presented in Program (35):

maximize
z

aT
(i)

z√
zT Q(i) z

subject to 1T z = 1, 0 ≤ z ≤ 1

(35)

Observe, however, that the Sharpe ratio is not convex in z but is homogeneous of degree zero. We
follow Cornuejols and Tutuncu [15] and re-cast Program (35) as a convex quadratic optimization
program:

minimize
z

1

2
zT Q(i) z

subject to aT
(i)

z = 1, z ≥ 0.

(36)

Note that the fully-invested constraint can be enforced by normalizing the optimal weights, z∗.
As before, the learning process can be posed as a bi-level optimization program where the objective

is to learn a parameter θ and the associated constraints, â(θ)(i), in order to maximize the average

realized Sharpe ratio induced by the optimal decision policies {z∗(θ)(i)}mi=1.

minimize
θ

− 1

m

m∑
i=1

aT
(i)

z∗(θ)√
z∗(θ)T

(i)
Q(i) z∗(θ)(i)

subject to z∗(θ) = argmin
z

1

2
zT Q(i) z ∀i = 1, ...,m

â(θ)T
(i)

z∗(θ)(i) = 1, 1T z∗(θ)(i) = 1, z∗(θ)(i) ≥ 0 ∀i = 1, ...,m

(37)

17

In reality, we do not know the true value of a(i) at decision time and instead we estimate a(i)

through associated auxiliary feature variables w(i) ∈ Rdw . Again we consider a linear model of the
form:

â(i) = θT w(i) . (38)

In this experiment, asset returns, a(i) are modelled using the well-known Famma-French Five (FF5)
factor model [22], provided by the Kenneth R. French data library.

The goal is to observe the training and out-of-sample performance of the ADMM model in compar-
ison to the OptNet model. As a benchmark, we include the out-of-sample performance of an equally
weighted portfolio, and a max-Sharpe portfolio where θ is fit by ordinary least-squares (OLS). All ex-
periments are trained on data from January 1990 through December 2014. The out-of-sample period
begins in January 2015 and ends in December 2020. Portfolios are formed at the close of each week,
and rebalanced on a weekly basis.

The training process for each trial consists of 500 epochs with a mini-batch size of 32. Portfolio
models are fit to an accuracy of εtol = 10−4 in training, and a higher accuracy of εtol = 10−6 in
the out-of-sample period in order to guarantee strict adherence to the constraint set. Figure 5(a)
reports the average training loss at each epoch and the 95%-ile confidence interval, evaluated over 10
independent trials. Once again, we observe that the loss curves for the ADMM model and OptNet
model are very similar. Interestingly, we observe that the ADMM model produces a consistently lower
average training loss. Recall that both models use implicit differentiation to compute the relevant
gradient, which assumes an exact fixed point at each optimal solution z∗(θ)(i). In practice, each

z∗(θ)(i) is only approximately optimal, to within a tolerance εtol, and therefore differentiating at a
solution that is not an exact fixed point will result in small errors in the gradient that likely explain
the observed difference. That said, the training loss profile of the ADMM and OptNet models are
very similar, and the final models achieve approximately equal loss after 500 epochs. Figure 5(b)
compares the average and 95%-ile confidence interval of the total time spent executing the forward
and backward pass algorithms during training. Once again we observe that the ADMM model is
shown to be approximately 5 times faster than the OptNet model and requires less than 100 seconds
to train.

−0.6

−0.4

−0.2

0.0

0 100 200 300 400 500
Epoch

S
ha

rp
e

R
at

io
 L

os
s

ADMM OptNet

(a) Training Loss

5.3x

0.7x

7.7x

0

100

200

300

400

500

ADMM OptNet

T
im

e
(s

)

Backward Forward Total

(b) Computational Performance

Figure 5: Training loss and computational performance for learning A on US stock data.
Batch size = 32 and dz = 255.

18

Figure 6 reports the out-of-sample equity growth of the ADMM IPO max-Sharpe portfolio, Equal
Weight portfolio, OLS max-Sharpe portfolio and OptNet IPO max-Sharpe portfolio. The out-of-
sample economic performance metrics are reported in Table 1. First, observe that all max-Sharpe
models outperform the Equal Weight benchmark on an absolute and risk-adjusted basis. Further-
more, the ADMM and OptNet IPO max-Sharpe models achieve an out-of-sample Sharpe ratio that
is approximately 50% higher than that of the naive ‘predict, then optimize’ OLS max-Sharpe model,
thus highlighting the benefit of training a fully integrated system. Lastly, the ADMM model achieves
a marginally higher out-of-sample Sharpe ratio in comparison to the OptNet model, though the dif-
ference is not statistically significant.

0.0

0.5

1.0

1.5

2015 2016 2017 2018 2019 2020 2021

Ou
t−o

f−S
am

ple
 Eq

uit
y

ADMM Equal Weight OLS OptNet

Figure 6: Out-of-sample equity growth for ADMM IPO max-Sharpe portfolio, Equal Weight portfolio,
OLS max-Sharpe portfolio and OptNet IPO max-Sharpe portfolio.

ADMM Equal Weight OLS OptNet

Mean 0.2382 0.0950 0.2122 0.2413
Volatility 0.1777 0.1950 0.2435 0.1880
Sharpe Ratio 1.3407 0.4872 0.8747 1.2836

Table 1: Out-of-sample economic performance metrics for ADMM IPO max-Sharpe portfolio, Equal
Weight portfolio, OLS max-Sharpe portfolio and OptNet IPO max-Sharpe portfolio.

3.4 Experiment 4: learning Q

We consider another real-world experiment from portfolio optimization whereby the objective is to
learn a parameterized model for the variable Q. We use the same asset universe of dz = 255 liquid
US stocks from Experiment 3 and an identical experimental design. Here, we consider the long-only,
fully-invested minimum variance portfolio optimization, described in Program (39).

minimize
z

1

2
zT Q(i) z

subject to 1T z = 1, 0 ≤ z ≤ 1.
(39)

19

As before, the learning process is posed as a bi-level optimization program where the objective is to

learn a parameter θ and the associated covariance matrix, Q̂(θ)
(i)

, in order to minimize the average

realized variance induced by the optimal decision policies {z∗(θ)(i)}mi=1.

minimize
θ

1

m

m∑
i=1

z∗(θ)T
(i)

Q(i) z∗(θ)(i)

subject to z∗(θ) = argmin
z

1

2
zT Q̂(θ)

(i)
z ∀i = 1, ...,m

1T z∗(θ)(i) = 1, 0 ≤ z∗(θ)(i) ≤ 1 ∀i = 1, ...,m

(40)

Asset returns, a(i) are modelled using the Famma-French Five (FF5) factor model. We follow
Butler and Kwon [13] and model w(i) according to a multivariate GARCH(1, 1) process with constant

correlation. We let Ŵ
(i)

denote the the time-varying covariance estimate of the auxiliary feature
variables. We therefore model the stock covariance matrix as follows:

â(i) = θT w(i), Q̂
(i)

= θT Ŵ
(i)

θ +F̂, (41)

where F̂ denotes the diagonal matrix of residual variances.
Again, the goal is to observe the training and out-of-sample performance of the ADMM model

in comparison to the OptNet model. As a benchmark, we include the out-of-sample performance of
the equal weight portfolio, and a minimum variance portfolio where θ is fit by OLS. The training
process for each trial consists of 200 epochs with a mini-batch size of 32. Portfolio models are fit to an
accuracy of εtol = 10−4 in training, and a higher accuracy of εtol = 10−6 in the out-of-sample period.

Figure 7(a) reports the average training loss at each epoch and the 95%-ile confidence interval,
evaluated over 10 independent trials. We observe that the loss curves for the ADMM model and
OptNet model are very similar, thus highlighting the accuracy of the ADMM-layer. Once again we
observe that the ADMM model produces a consistently lower average training loss and we refer to the
discussion in Experiment 3 for a likely explanation. Figure 7(b) compares the average and 95%-ile
confidence interval of the total time spent executing the forward and backward pass algorithms in
training. As before, we observe that the ADMM model requires approximately 60 seconds to train
and is approximately 5 times faster than the OptNet model, which requires over 300 seconds.

20

2e−04

3e−04

4e−04

5e−04

6e−04

50 100 150 200
Epoch

V
ar

ia
nc

e
Lo

ss

ADMM OptNet

(a) Training Loss

5.2x

1.4x

6.2x

0

50

100

150

200

250

300

350

ADMM OptNet

T
im

e
(s

)

Backward Forward Total

(b) Computational Performance

Figure 7: Training loss and computational performance for learning Q on US stock data.
Batch size = 32 and dz = 255.

Finally, Figure 8 reports the out-of-sample equity growth of the ADMM IPO minimum variance
portfolio, Equal Weight portfolio, OLS minimum variance portfolio and OptNet IPO minimum vari-
ance portfolio. The out-of-sample economic performance metrics are reported in Table 2. Again,
observe that all minimum-variance models outperform the Equal Weight benchmark on an absolute
and risk-adjusted basis. Furthermore, the ADMM and OptNet IPO minimum variance models achieve
an out-of-sample volatility that is approximately 25% lower and Sharpe ratio that is approximately
35% higher than that of the naive ‘predict, then optimize’ OLS minimum variance model. These
results are broadly consistent with the findings in Butler and Kwon [13], who consider an identical
stock universe but with considerably smaller portfolios (dz ≤ 100). Our ADMM model, on the other
hand, is able to overcome the computational challenges in the medium to large scale limit (described
in Butler and Kwon [13]), without any apparent loss in performance accuracy.

0.0

0.2

0.4

0.6

0.8

2015 2016 2017 2018 2019 2020 2021

Ou
t−o

f−S
am

ple
 Eq

uit
y

ADMM Equal Weight OLS OptNet

Figure 8: Out-of-sample equity growth for ADMM IPO minimum variance portfolio, Equal Weight
portfolio, OLS minimum variance portfolio and OptNet IPO minimum variance portfolio.

21

ADMM Equal Weight OLS OptNet

Mean 0.1058 0.0950 0.0984 0.1070
Volatility 0.1420 0.1950 0.1786 0.1443
Sharpe Ratio 0.7446 0.4872 0.5510 0.7418

Table 2: Out-of-sample economic performance metrics for ADMM IPO minimum variance portfo-
lio, Equal Weight portfolio, OLS minimum variance portfolio and OptNet IPO minimum variance
portfolio.

4 Conclusion and future work

In this paper, we provide a novel and efficient framework for differentiable constrained quadratic
programming. Our differentiable quadratic programming layer is built on top of the ADMM algorithm,
which for medium to large scale problems is shown to be approximately an order of magnitude more
efficient than the interior point implementation of the OptNet layer. The backward-pass algorithm
computes the relevant problem variable gradients by implicit differentiation of a modified fixed-point
iteration, which is computationally favorable to KKT implicit differentiation and memory efficient
in comparison to standard unrolled differentiation. Numerical results, using both simulated and real
problem data, demonstrates the efficacy of the ADMM layer, which for medium to large scale problems
exhibits state-of-the art accuracy and improved computational performance.

Our experimental results should be interpreted as a proof-of-concept and we acknowledge that
further testing on alternative data sets or with different problem variable assumptions is required in
order to better determine the efficacy of the ADMM layer as a general purpose solver. Indeed, there is a
plethora of areas for active research and algorithm improvement. First, our ADMM layer currently only
supports linear equality and box inequality constraints, whereas the OptNet layer supports general
linear inequality constraints. Indeed, incorporating more general inequality constraints as well as
augmenting the QP with parameterized regularization norms is an active area of research. Secondly,
as discussed earlier, the ADMM algorithm is known to be vulnerable to ill-conditioned problems and
the resulting convergence rates can vary significantly when the data and algorithm parameter, ρ, are
poorly scaled. To overcome this, most first-order solvers implement a preconditioning and scaling
initialization step. Currently, our ADMM-layer implementation does not support preconditioning and
scaling, which is challenged by virtue of the fact that the problem data is expected to change at each
epoch of training. Instead, we leave it to the user to select ρ and manually scale the problem data and
acknowledge that preconditioning, scaling and automatic parameter selection is an important area of
future development.

Furthermore, there are several heuristic methods that could be implemented in order to improve the
convergence rates and computational efficiency of our ADMM forward-pass. For example, acceleration
methods, such as Andersen acceleration [5], have recently been shown to improve the convergence rates
of first-order solvers [39, 44]. Indeed, applying acceleration methods to the modified fixed-point algo-
rithm presented in this paper provides an numerically efficient scheme for potentially improving the
convergence rate of the ADMM algorithm and is an interesting area of future research. Alternatively,
methods that hybridize the efficiency of first-order methods with the precision of interior-point meth-
ods, such solution polishing and refinement [12], is another area of future exploration. Nonetheless,

22

our proposed ADMM layer is shown to be highly effective and in its current form can be instrumental
for efficiently solving real-world medium and large scale learning problems.

References

[1] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. In Advances in Neural Information Processing
Systems, volume 32, pages 9562–9574. Curran Associates, Inc., 2019.

[2] Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M. Moursi. Differenti-
ating through a cone program, 2020. URL http://arxiv.org/abs/1703.00443.

[3] Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. CoRR, abs/1703.00443, 2017. URL http://arxiv.org/abs/1703.00443.

[4] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter.
Differentiable mpc for end-to-end planning and control, 2019.

[5] Donald G. M. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12:
547–560, 1965.

[6] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured pre-
diction energy networks, 2017.

[7] Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Management
Science, 66(3):1025–1044, 2020.

[8] F. Black and R. Litterman. Asset allocation combining investor views with market equilibrium.
Journal of Fixed Income, 1(2):7–18, 1991.

[9] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
Lopez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation,
2021.

[10] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3:1–122, 01 2011. doi: 10.1561/2200000016.

[12] E. Busseti, W. Moursi, and S. Boyd. Solution refinement at regular points of conic problems,
2018.

[13] Andrew Butler and Roy Kwon. Covariance estimation for risk-based portfolio optimization: an
integrated approach. Social Science Research Network, 1(1), 2021.

23

http://arxiv.org/abs/1703.00443
http://arxiv.org/abs/1703.00443

[14] Andrew Butler and Roy H. Kwon. Integrating prediction in mean-variance portfolio optimization.
arXiv 2102.09287, pages 1–33, 2021.

[15] Gerard Cornuejols and Reha Tutuncu. Optimization Methods in Finance. Cambridge University
Press, 2006.

[16] Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled optimization
with deep priors, 2018.

[17] Justin Domke. Generic methods for optimization-based modeling. In AISTATS, 2012.

[18] Asen Dontchev and R Rockafellar. Implicit Functions and Solution Mappings: A View from
Variational Analysis. 01 2009. ISBN 978-0-387-87820-1. doi: 10.1007/978-0-387-87821-8.

[19] Priya L. Donti, Brandon Amos, and J. Zico Kolter. Task-based End-to-end Model Learning.
CoRR, abs/1703.04529, 2017. URL http://arxiv.org/abs/1703.04529.

[20] Adam N. Elmachtoub and Paul Grigas. Smart predict, then optimize. arXiv, 2020.

[21] Adam N. Elmachtoub, Jason Cheuk Nam Liang, and Ryan McNellis. Decision trees for decision-
making under the predict-then-optimize framework, 2020.

[22] Eugene F. Fama and Kenneth R. French. A five-factor asset pricing model. Journal of Financial
Economics, 116(1):1 – 22, 2015. ISSN 0304-405X. doi: https://doi.org/10.1016/j.jfineco.2014.10.
010. URL http://www.sciencedirect.com/science/article/pii/S0304405X14002323.

[23] Jean Feng and Noah Simon. Gradient-based regularization parameter selection for problems with
non-smooth penalty functions, 2017.

[24] Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics With Applications, 2:
17–40, 1976.

[25] R. Ganti and Alexander G. Gray. Cake: Convex adaptive kernel density estimation. In AISTATS,
2011.

[26] Roland Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. 1975.

[27] D. Goldfarb and Shucheng Liu. An o(n3l) primal interior point algorithm for convex quadratic
programming. Mathematical Programming, 49:325–340, 1991.

[28] Paul Grigas, Meng Qi, Zuo-Jun, and Shen. Integrated conditional estimation-optimization, 2021.

[29] Michael Ho, Zheng Sun, and Jack Xin. Weighted elastic net penalized mean-variance portfolio
design and computation. SIAM Journal on Financial Mathematics, 6(1):1220–1244, 2015.

[30] Seung-Jean Kim, K. Koh, M. Lustig, Stephen Boyd, and Dimitry Gorinevsky. An interior-point
method for large-scale l1-regularized least squares. Selected Topics in Signal Processing, IEEE
Journal of, 1:606 – 617, 01 2008. doi: 10.1109/JSTSP.2007.910971.

24

http://arxiv.org/abs/1703.04529
http://www.sciencedirect.com/science/article/pii/S0304405X14002323

[31] Jonathan Lorraine and David Duvenaud. Stochastic hyperparameter optimization through hy-
pernetworks, 2018.

[32] Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation, 2020.

[33] Jaynta Mandi, Emir Demirovic, Peter. J Stuckey, and Tias Guns. Smart predict-and-optimize
for hard combinatorial optimization problems, 2019.

[34] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[35] Richard Michaud and Robert Michaud. Estimation error and portfolio optimization: A resampling
solution. Journal of Investment Management, 6(1):8–28, 2008.

[36] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding, 2016.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

[38] Michel Schubiger, Goran Banjac, and John Lygeros. Gpu acceleration of admm for large-scale
quadratic programming. Journal of Parallel and Distributed Computing, 144:55–67, 2020. ISSN
0743-7315. doi: https://doi.org/10.1016/j.jpdc.2020.05.021. URL https://www.sciencedirect.

com/science/article/pii/S0743731520303063.

[39] Pantelis Sopasakis, Krina Menounou, and Panagiotis Patrinos. Superscs: fast and accurate large-
scale conic optimization. pages 1500–1505, 06 2019. doi: 10.23919/ECC.2019.8796286.

[40] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp:
an operator splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637?672, Feb 2020. ISSN 1867-2957. doi: 10.1007/s12532-020-00179-2. URL http://dx.

doi.org/10.1007/s12532-020-00179-2.

[41] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statis-
tical Society, 58(1), 1996.

[42] Andrey Tikhonov. Solution of incorrectly formulated problems and the regularization method.
Soviet Mathematics, (4):1035–1038, 1963.

[43] Ayse Sinem Uysal, Xiaoyue Li, and John M. Mulvey. End-to-end risk budgeting portfolio opti-
mization with neural networks, 2021.

[44] Homer Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM J. Numerical
Analysis, 49:1715–1735, 08 2011. doi: 10.2307/23074353.

[45] Xingyu Xie, Jianlong Wu, Zhisheng Zhong, Guangcan Liu, and Zhouchen Lin. Differentiable
linearized admm, 2019.

[46] Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Admm-net: A deep learning approach for
compressive sensing mri, 2017.

25

https://www.sciencedirect.com/science/article/pii/S0743731520303063
https://www.sciencedirect.com/science/article/pii/S0743731520303063
http://dx.doi.org/10.1007/s12532-020-00179-2
http://dx.doi.org/10.1007/s12532-020-00179-2

A Proof of Proposition 1

We define vk = xk+1 +µk. We can therefore express Equation (14b) as:

zk+1 = Π(xk+1 +µk) = Π(vk), (42)

and Equation (14c) as:
µk+1 = µk + xk+1− zk+1 = vk−Π(vk). (43)

Substituting Equations (42) and (43) into Equation (14b) gives the desired fixed-point iteration:

[
vk+1

ηk+2

]
=

[
xk+2 +µk+1

ηk+2

]
(44)

= −
[
Q +ρ Iv AT

A 0

]−1 [
p−ρ(zk+1−µk+1)

−b

]
+

[
µk+1

0

]
(45)

= −
[
Q +ρ Iv AT

A 0

]−1 [
p−ρ(2Π(vk)− vk)

−b

]
+

[
vk

ηk+1

]
−
[
Π(vk)
ηk+1

]
. (46)

B Proof of Proposition 2

We define F : Rdv × Rdη → Rdv × Rdη as:

F (v,η) = −
[
Q +ρ Iv AT

A 0

]−1 [
p−ρ(2Π(v)− v)

−b

]
+

[
v
η

]
−
[
Π(v)
η

]
, (47)

and let

M =

[
Q +ρ Iv AT

A 0

]
. (48)

Therefore we have

MF (v,η) = −
[
p−ρ(2Π(v)− v)

−b

]
+ M

[
v
η

]
−M

[
Π(v)
η

]
. (49)

Taking the partial differentials of Equation (50) with respect to the relevant problem variables therefore
gives:

M ∂F (v,η) = −
[
∂ p
−∂ b

]
+ ∂M

[
v
η

]
− ∂M

[
Π(v)
η

]
− ∂MF (v,η)

= −
[
∂ p
−∂ b

]
− ∂M

[
−M−1

[
p−ρ(2Π(v)− v)

−b

]]

= −
[
∂ p
−∂ b

]
− ∂M

[
x∗

η∗

]
= −

[
∂ p +1

2(∂Q x∗+∂QT x∗) + ∂AT η∗

−∂ b +∂A x∗

]
.

(50)

26

From Equation (50) we have that the differential ∂F (v,η) is given by:

∂F (v,η) = −M−1
[
∂ p +1

2(∂Q x∗+∂QT x∗) + ∂AT η∗

−∂ b +∂A x∗

]
. (51)

Substituting the gradient action of Equation (51) into Equation (26) and taking the left matrix-vector
product of the transposed Jacobian with the previous backward-pass gradient, ∂`

∂ z∗ , gives the desired
result. [

d̂x

d̂η

]
=

[
Q +ρ Iv AT

A 0

]−1 [
Iṽ−∇ṽF (ṽ(θ),θ)

]−T [DΠ(v) 0
0 Iη

][(
− ∂`

∂ z∗

)T
0

]
. (52)

From Equation (24) we have:

Iṽ−∇ṽF (ṽ(θ),θ) =

[
Q +ρ Iv AT

A 0

]−1 [−ρ(2DΠ(v)− Iv) 0
0 0

]
+

[
DΠ(v) 0

0 Iη

]
. (53)

Simplifying Equation (52) with Equation (53) yields the final expression:

[
d̂x

d̂η

]
=

[[
DΠ(v) 0

0 Iη

] [
Q +ρ Iv AT

A 0

]
+

[
−ρ(2DΠ(v)− Iv) 0

0 0

]]−1 [
DΠ(v) 0

0 Iη

][(
− ∂`

∂ z∗

)T
0

]
.

(54)

C Proof of Proposition 3

From the KKT system of equations (20) we have:

GT diag(λ̃
∗
)d̂λ = diag(ρµ∗)d̂λ =

(
−
(∂`

∂ z∗

)T
−Q d̂x −AT d̂η

)
. (55)

From Equation (21) it follows that:

∂`

∂ l
= 0 ⇐⇒ λ∗− > 0 and

∂`

∂ u
= 0 ⇐⇒ λ∗+ > 0, (56)

and therefore Equation (55) uniquely determines the relevant non-zero gradients. Let µ̃∗ be as defined
by Equation (29), then it follows that:

d̂λ = diag(ρµ̃∗)−1
(
−
(∂`

∂ z∗

)T
−Q d̂x −AT d̂η

)
. (57)

Substituting d̂λ into Equation (21) gives the desired gradients.

27

D Data Summary

GICS Sector Stock Symbols
Communication CBB CMCSA DIS FOX IPG LUMN MDP NYT
Services T VOD VZ

Consumer BBY CBRL CCL F GPC GPS GT HAS
Discretionary HD HOG HRB JWN LB LEG LEN LOW

MCD NKE NVR NWL PHM PVH ROST TGT
TJX VFC WHR WWW

Consumer ADM ALCO CAG CASY CHD CL CLX COST
Staples CPB FLO GIS HSY K KMB KO KR

MO PEP PG SYY TAP TR TSN UVV
WBA WMK WMT

Energy AE APA BKR BP COP CVX EOG HAL
HES MRO OKE OXY SLB VLO WMB XOM

Financials AFG AFL AIG AJG AON AXP BAC BEN
BK BXS C GL JPM L LNC MMC
PGR PNC RJF SCHW STT TROW TRV UNM
USB WFC WRB WTM

Health ABMD ABT AMGN BAX BDX BIO BMY CAH
Care CI COO CVS DHR HUM JNJ LLY MDT

MRK OMI PFE PKI SYK TFX TMO VTRS
WST

Industrials ABM AIR ALK AME AOS BA CAT CMI
CSL CSX DE DOV EFX EMR ETN FDX
GD GE GWW HON IEX ITW JCI KSU
LMT LUV MAS MMM NOC NPK NSC PCA
RPH PNR ROK ROL RTX SNA SWK TXT
UNP

Information AAPL ADBE ADI ADP ADSK AMAT AMD GLW
Technology HPQ IBM INTC MSFT MSI MU ORCL ROG

SWKS TER TXN TYL WDC XRX

Materials APD AVY BLL CCK CRS ECL FMC GLT
IFF IP MOS NEM NUE OLN PPG SEE
SHW SON VMC

Real ALX FRT GTY HST PEAK PSA VNO WRI
Estate WY

Utilities AEP ATO BKH CMS CNP D DTE DUK
ED EIX ETR EVRG EXC LNT NEE NFG
NI NJR OGE PEG PNM PNW PPL SJW
SO SWX UGI WEC XEL

Table 3: U.S. stock data, sorted by GICS Sector. Data provided by Quandl.

28

	1 Introduction
	1.1 Related work:
	1.1.1 Problem Motivation
	1.1.2 Differentiable convex optimization layers:
	1.1.3 ADMM and unrolled differentiation:

	2 Methodology
	2.1 ADMM for parametric quadratic programs
	2.1.1 ADMM-layer: forward-pass
	2.1.2 ADMM-layer: unrolled differentiation
	2.1.3 ADMM-layer: KKT implicit differentiation
	2.1.4 ADMM-layer: fixed-point implicit differentiation

	3 Computational experiments
	3.1 Experiment 1: ADMM-layer performance
	3.2 Experiment 2: learning `39`42`"613A``45`47`"603Ap
	3.3 Experiment 3: learning `39`42`"613A``45`47`"603AA
	3.4 Experiment 4: learning `39`42`"613A``45`47`"603AQ

	4 Conclusion and future work
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Proposition 3
	D Data Summary

