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Abstract The attention mechanism for Neural Machine Translation (NMT)
added flexibility to neural models, and the possibility to visualize soft-
alignments between source and target representations. While there is much
debate about the impact of attention in the translation quality of neural mod-
els [25,40,35,32], in this paper we propose a different assessment, investigating
soft-alignment interpretability in low-resource scenarios. We experiment with
different architectures (RNN [5], 2D-CNN [15], and Transformer [36]), compar-
ing their capacity to produce directly exploitable alignments. For evaluating
exploitability, we replicate the Unsupervised Word Segmentation (UWS) task
from Godard et al. [21]. There, source words are translated into unsegmented
phone sequences. Posterior to training, the resulting soft-alignments are used
for producing segmentation over the target side. Our results show that the
RNN produces the most exploitable alignments in this scenario. We thus con-
clude by investigating methods for increasing its UWS scores. We compare
the following methodologies: monolingual pre-training, input representation
augmentation (hybrid model), and explicit word length optimization during
training. We reach the best results by using the hybrid model, which uses an in-
termediate monolingual-rooted segmentation from a non-parametric Bayesian
model [24] to enrich the input representation before training.
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1 Introduction

Recently, encoder-decoder architectures equipped with attention mechanisms
emerged as a popular solution for addressing sequence-to-sequence (S2S) prob-
lems for a variety of tasks. These include Automatic Speech Recognition [39,
11], Text-to-Speech Synthesis [38,33], and Neural Machine Translation (NMT)
[5,15,36,17,34]. For NMT, popular leaderboards, such as WMT 2014 and
IWSLT 2015, have been dominated by these attention-based approaches for
years now.1

An interesting effect of encoder-decoder attention is the possibility of visu-
alizing soft-alignment between source and target sentences posterior to train-
ing. Several NMT architecture papers provide these visualizations as a way
of attesting training quality, relating the soft-alignment with bilingual align-
ments. However, recent studies focused on the interpretability of attention
mechanisms failed to find a strong connection between the soft-alignment ma-
trices’ quality and the systems’ performance [25,40,35,32]. While this does
not mean the produced soft-alignments are meaningless, these studies high-
light that they will not always directly relate to, or impact the word ranking
obtained during decoding stage. Consequently, the soft-alignments should not
be considered as directly responsible for the model’s translation capacities,
and instead should be seen as a by-product of training NMT models.

Nonetheless, the existence of an unsupervised source-to-target alignment
mechanism inside NMT models remains a useful resource. Recent works [13,
21,10] trained NMT models between speech and translation sentences, and
used the soft-alignment weights for performing word segmentation at speech-
level. These studies also highlight that the attention mechanism is robust to
low-resource settings, resting exploitable even when only few parallel sentences
(5k) were available for training. On this line of work, Zenkel et al. [41] scored
word-level alignment obtained through NMT training in well-resource settings,
and Garg et al. [16] and Godard et al. [20] are examples of works that perform
explicit optimization of the attention layer’s soft-alignments, weighting the
quality of the discovered alignments during training.

In this paper we investigate alignment interpretability in low-resource set-
tings extending the work of Boito et al. [10]. We compare three well-known
architectures for attention-based NMT with respect to their capability of
generating directly interpretable alignments. These three architectures are:
2D Convolutional Neural Networks (2D-CNN) [15], Recurrent Neural Net-
works (RNN) [5], and Transformer [36]. For evaluating the generated align-
ments, we model the task following Godard et al. [21]. There, NMT models
are trained for translating words in a source language into phone sequences
in a target language, inferring from it word segmentation over the target side.
This comes from the hypothesis that, if a model is able to generate a directly
exploitable alignment between source and target, it will naturally produce

1 Leaderboards available at: https://paperswithcode.com/task/machine-translation
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word-level segmentation when translating words into phones.2 Finally, while
this Unsupervised Word Segmentation (UWS) task can be used for the extrin-
sic evaluation of the soft-alignment weights obtained, we also measure Average
Normalized Entropy (ANE), a task-agnostic confidence metric to quantify the
quality of the source-to-target alignments.

During this architecture comparison, we find that RNN produce the most
exploitable alignments for the UWS task. We thus follow this investigation by
studying methods for increasing the quality of this architecture’s generated
alignments. We do so by considering the UWS problem in the light of Com-
putational Language Documentation (CLD). CLD is an emerging field [1,2,8,
28,6], whose main goal is the creation of automatic approaches able to help
the documentation of the many languages soon to be extinct [3].

The first method investigated consists of pre-training the neural models
on a smaller monolingual, manually annotated, subset can bias the attention
mechanism towards better segmentation. We follow this by investigating if
boundary clues inserted into the unsegmented phone sequence could enrich
the representation learned by the decoder network. These boundary clues are
extracted from a Bayesian segmentation system.3 Finally, we investigate an
explicit word-length optimization training method initially introduced by Go-
dard et al. [20], and its impact on alignment quality.

All our models are trained in realistic documentation settings (only 5,130
aligned sentences), and evaluated considering their performance segmenting a
true unwritten language: Mboshi (Bantu C25) [19]. Experiments confirm that
all three methods, at different degrees, result in better exploitable alignments
for the RNN model. Nonetheless, adding boundary clues into the input repre-
sentation provides the best segmentation improvement over the baseline. This
hints that intermediate annotations made by linguists during documentation
could be leveraged during training.

Summarizing, this paper studies the interpretability of the soft-alignments
produced by NMT architectures in low-resource settings. We first present our
evaluation methodology (Section 2), followed by the description of the architec-
tures investigated (Section 3). We compare them for the UWS task (Section 4),
and study methods for increasing the quality of the produced alignments (Sec-
tion 5). Section 6 concludes this work.

2 The translation direction matters, since the attention layer outputs probability distri-
bution over the encoder annotations for every decoder symbol generated. Translating in the
opposite direction may result in phones being ignored [9].

3 They could correspond, in another kind of scenario, to intermediate word boundaries
developed by linguists during language documentation.
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2 Alignment Assessment Methodology

2.1 Unsupervised Word Segmentation from Speech

Godard et al. [21] introduced a pipeline for performing Unsupervised Word
Segmentation (UWS) from speech. The system outputs time-stamps delimiting
stretches of speech, associated with class labels, corresponding to real words in
the language. The pipeline consists of first transforming speech into a sequence
of phones, either through Automatic Unit Discovery (e.g. [30]) or manual tran-
scription. The phone sequences, together with their translations, are then fed
to an attention-based S2S system that produces soft-alignment probability
matrices between target and source languages. The alignment probability dis-
tributions between the phones and the translation words (as in Figure 1) are
used to cluster (segment) together neighbor phones whose alignment distribu-
tion peaks at the same source word, as, for example, the phones phn25-phn10-
phn60-phn10 and the word monzo in the first matrix from Figure 1. The final
speech segmentation is evaluated using the Zero Resource Challenge4 (ZRC)
2017 [12] evaluation suite (track 2).

2.2 Average Normalized Entropy

To assess the overall quality of the soft-alignment probability matrices with-
out having gold alignment information, we use Average Normalized Entropy
(ANE) [10]. Given the source and target pair (s, t) of lengths |s| and |t| respec-
tively, for every phone ti, the normalized entropy (NE) is computed considering
all possible words in s (Eq. 1), where P (ti, sj) is the alignment probability be-
tween the phone ti and the word sj (a cell in the matrix). The ANE for a
sentence is then defined by the arithmetic mean over the resulting NE for
every phone from the sequence t (Eq. 2). From this definition, we can derive
ANE for different granularities (sub or supra-sentential) by accumulating its
value for the full corpus, for a single type or for a single token. Corpus ANE
will be used to summarize the overall performance of a S2S model on a specific
corpus. Token ANE extends ANE to tokens by averaging NE for all phones
from a single (discovered) token. Type ANE results from averaging the ANE
for every token instance of a discovered type. Finally, Alignment ANE is the
result of averaging the ANE for every discovered (type, translation word) align-
ment pair. The intuition that lower ANEs correspond to better alignments is
exemplified in Figure 1.

NE(ti, s) = −
|s|∑

j=1

P (ti, sj) · log|s|(P (ti, sj)) (1)

ANE(t, s) =

∑|t|
i=1

NE(ti, s)

|t| (2)

4 Available at http://zerospeech.com/2017.
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Fig. 1 Soft-alignment probability matrices from the alignment complexity buckets 1 to 4
(left to right) for examples with same source length. Darker squares correspond to higher
probabilities. The sentence ANE scores are, from left to right, 0.26, 0.40, 0.47 and 0.53. The
language pair is French (words) to Mboshi (phones).

3 Attention-based NMT Architectures

3.1 RNN: Encoder-Decoder Attention

The classic RNN encoder-decoder model [5] connects a bidirectional encoder
with an unidirectional decoder by the use of an alignment module. The RNN
encoder learns annotations for every source token, and these are weighted by
the alignment module for the generation of every target token. Weights allow
the computation of context vectors, capturing the importance of every source
token for the generation of each target token.

Attention mechanism: a context vector for a decoder step t is computed
using the set of source annotations H and the last state of the decoder network
(translation context). The attention is the result of the weighted sum of the
source annotations H (with H = h1, ..., h|s|) and their α probabilities (Eq. 3)
obtained through a feed-forward network align (Eq. 4).

ct = Att(H, st−1) =

|s|∑

j=1

αt,jhj (3)

αt,j = softmax(align(hj , st−1)) (4)

3.2 Transformer: Multi-head Attention

Transformer [36] is a fully attentional S2S architecture, which has obtained
state-of-the-art results for several NMT shared tasks. It replaces the use of
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sequential cell units (such as LSTM) by Multi-Head Attention (MHA) opera-
tions, which make the architecture considerably faster. Both encoder and de-
coder networks are stacked layers sets that receive source and target sequences,
embedded and concatenated with positional encoding. An encoder block is
made of two sub-layers: a Self-Attention MHA and a feed-forward sub-layer.
A decoder block is made of three sub-layers: a masked Self-Attention MHA
(no access to subsequent positions); an Encoder-Decoder MHA (operation over
the encoder stack’s final output and the decoder self-attention output); and a
feed-forward sub-layer. Dropout and residual connections are applied between
all sub-layers. Final output probabilities are generated by applying a linear
projection over the decoder stack’s output, followed by a softmax operation.
Multi-head attention mechanism: attention is seen as a mapping problem
in which, given a pair of key-value vectors and a query vector, the task is the
computation of the weighted sum of the given values (output). In this setup,
weights are learned by compatibility functions between key-query pairs (of
dimension dk). For a given query (Q), keys (K) and values (V) set, the Scaled
Dot-Product (SDP) Attention function is computed as in Eq. 5.

Att(V,K,Q) = softmax(
QKT

√
dk

)V (5)

In practice, several attentions are computed for a given QKV set. The QKV set
is first projected into h different spaces (multiple heads), where the scaled dot-
product attention is computed in parallel. Resulting values for all heads are
then concatenated and once again projected, yielding the layer’s output. Eq. 6
and Eq. 7 illustrate the process, in which H is the set of n heads (H = h1, ..., hn)
and f is a linear projection. Self-Attention defines the case where query and
values come from same source (learning compatibility functions within the
same sequence of elements).

MultiHead(V,K,Q) = f(Concat(H)) (6)

hi = Att(fi(V ), fi(K), fi(Q)) (7)

3.3 2D-CNN: Pervasive Attention

Different from the previous models, which are based on encoder-decoder struc-
tures interfaced by attention mechanisms, this approach relies on a single 2D
CNN across both sequences (no separate coding stages) [15]. Using masked
convolutions, an auto-regressive model predicts the next output symbol based
on a joint representation of both input and partial output sequences. Given a
source-target pair (s, t) of lengths |s| and |t| respectively, tokens are first em-
bedded in ds and dt dimensional spaces via look-up tables. Token embeddings
{x1, . . . , x|s|} and {y1, . . . , y|t|} are then concatenated to form a 3D tensor

X ∈ R|t|×|s|×f0 , with f0 = dt + ds, where Xij = [yi xj ]. Each convolutional
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#Types #Tokens Avg Token Length Avg #Tokens/Sentence
FR 5,162 42,715 4.39 8.33
MB 6,633 30,556 4.18 5.96

Table 1 Statistics for the French (FR) and Mboshi (MB) parallel sentences.

layer l ∈ {1, . . . , L} of the model produces a tensor Hl of size |t|×|s|×fl, where
fl is the number of output channels for that layer. To compute a distribution
over the tokens in the output vocabulary, the second dimension of the tensor
is used. This dimension is of variable length (given by the input sequence) and
it is collapsed by max or average pooling to obtain the tensor HPool

L of size
|t|×fL. Finally, 1×1 convolution followed by a softmax operation are applied,
resulting in the distribution over the target vocabulary for the next output
token.
Attention mechanism: joint encoding acts as an attention-like mechanism,
since individual source elements are re-encoded as the output is generated. The
self-attention approach of Lin et al. [29] is applied. It computes the attention
weight tensor α, of size |t|×|s|, from the last activation tensor HL, to pool the
elements of the same tensor along the source dimension, as in Eq. 8-9, where
W1 ∈ Rfa and W2 ∈ Rfa×fL are weight tensors that map the fL dimensional
features in HL to the attention weights via an fa dimensional intermediate
representation.

α = softmax(W1 tanh(HLW2)) (8)

HAtt
L = αHL (9)

4 Comparing Architectures

4.1 Experimental Settings

Data: For our experiments we use the bilingual Mboshi-French parallel cor-
pus [19]. This is a 5,130 sentence corpus from the language documentation
process of Mboshi (Bantu C25), an endangered language spoken in Congo-
Brazzaville. Table 1 presents some statistics for the dataset. We use 10% of
the sentences for validation, and the remaining for training.
Parameters: Across all architectures,5 we use embeddings of size 64, batch
size of 32, dropout of 0.5 and early-stopping procedure. RNN models have
one layer, a bi-directional encoder, and cell size equal to the embedding size.
2D-CNN models have 3 layers, and kernel size of 3. Transformer models were
extensively optimized. The presented models have 2 heads, 3 layers (encoder
and decoder), warm-up of 5k steps, and use cross-entropy loss without label-
smoothing. For selecting which head to use for UWS, we experimented using

5 RNN, 2D-CNN and Transformer implementations come respectively from [7,15,31]. The
extensive list of parameters for these architectures is available at: https://gitlab.com/

mzboito/attention_study
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different averages (between heads and layers), and selecting the head with
minimum corpus ANE. While the results were not significantly different, we
kept the latter approach (ANE selection).6

Training: For each NMT architecture, we train five models (runs) with differ-
ent initialization seeds. Before segmenting, we average the produced matrices
from these different runs as in Godard et al. [21]. This can be seen as an
agreement over the segmentation generated by models with different weight
initializations. Optimization of the models was performed in a monolingual
condition, where a phone sequence is segmented with regards to the corre-
sponding word sequence (transcription) in the same language (hence mono-
lingual). This task can be seen as an automatic extraction of a pronunciation
lexicon from parallel words/phones sequences. Evaluation is performed in a
bilingual segmentation condition that corresponds to the real UWS task.

4.2 Results

Table 2 presents the scores for the UWS task7 and ANE results. The mono-
lingual results are shown for information only (topline). Surprisingly, RNN
models outperform the more recent (2D-CNN and Transformer) approaches.
One possible explanation is the lower number of parameters (in average 700k
parameters are trained, while 2D-CNN needs an additional 30.79% and Trans-
former 5.31%). Transformer’s low performance could be due to the use of sev-
eral heads, which could be “distributing” alignment information across differ-
ent matrices. Nonetheless, we evaluated averaged heads and single-head mod-
els, and these resulted in significant decreases in performance. This suggests
that this architecture may not need to learn explicit alignment to translate, but
instead it could be capturing different kinds of linguistic information. This was
discussed in the original paper, and illustrated in the provided examples [36].
Also, on the decoder side, the behavior of the self-attention mechanism on
phone units is unclear and under-studied so far. For the encoder, Voita et
al. [37] performed after-training encoder head removal based on head confi-
dence, showing that after initial training, most heads were not necessary for
maintaining translation performance. Hence, we find the Multi-head mech-
anism interpretation challenging, and maybe not suitable for a direct UWS
application, specially in low-resource settings.

Looking at the performance of these models for the monolingual scenario,
which can be seen as a naive baseline in which the alignment is expected to be
very diagonal, they all perform well. However, when the task involves discover-
ing non-symmetrical relationships between source and target representations,
the performance drops, and the attention method from Bahdanau et al. [5]

6 We notice the same trend from Garg et al. [16], and find that the exploitable alignments
are usually produced by the penultimate layer, and that these results tend to be better than
simply averaging heads or layers.

7 For 2D-CNN and RNN, average standard deviation for the bilingual task is of less than
0.8%. For Transformer, it is almost 4%.
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Bilingual Monolingual
P R F ANE P R F ANE

RNN 72.3 75.9 74.0 0.49 92.9 92.1 92.5 0.15
2D-CNN 65.9 70.6 68.2 0.64 89.6 90.1 89.8 0.19
Transformer 56.6 80.2 66.4 0.74 79.8 87.7 83.5 0.28

Table 2 UWS Boundary (Precision, Recall and F-score) and Corpus ANE scores for bilin-
gual and monolingual settings.

ANE (<) Bucket 1 Bucket 2 Bucket 3 Bucket 4 All Buckets
0.2 68.8 59.2 56.4 47.8 49.0
0.4 44.8 41.4 38.0 31.8 32.6
0.6 38.3 34.5 30.6 25.3 24.7
0.8 36.8 32.4 28.8 22.8 22.2
1 36.7 32.4 28.8 22.6 22.1

Table 3 Precision scores for Type retrieval for the alignment complexity buckets, and for
the totality of the corpus (All buckets). Results in each of the rows are cumulative and use
the Alignment ANE thresholds indicated in the first column.

(RNN) is the most exploitable in low-resource settings. Moreover, ANE is
consistent with UWS results: ANE decreases as UWS performance increases.
In Boito et al. [10], a deeper investigation of data size and language impact
was performed, and a strong negative correlation was found between UWS
F-scores and the corpus ANE results obtained.

To show the relation between alignment complexity and the quality of the
discovered segmentation, we use FastAlign [14] to obtain alignment proba-
bility scores for all sentences in the Mboshi corpus, using the reference seg-
mentation and the French text. The resulting scores can be seen as the degree
of syntactic divergence between source and target sentences.8 We then create
four alignment complexity buckets of equal size for separating the corpus in
four subsets with different degrees of complexity for the UWS task. For this
analysis, we use the soft-alignment probability matrices produced by the RNN
model. Figure 1 shows an example per bucket for sentences of equal source
length: buckets one to four have increasing alignment complexity scores, with
alignment probability thresholds of, respectively, -10.61, -46.87, -60.18, and
-78.15.

To verify the intuition that alignment quality will deteriorate as complex-
ity rises, we extract Alignment ANE scores for the matrices in every bucket.
The alignment ANE score for a given (discovered type, translation word) pair
gives us information about how confident the network is about that discovered
pairing. Boito et al. [10] showed that this metric can be used for increasing
Type F-scores in UWS. Here our goal is to verify the precision of type retrieval
in each bucket, to check for any relation with the straightforwardness of the
alignment task.

Table 3 shows the type retrieval precision scores for UWS using different
Alignment ANE thresholds. In these results, buckets with easier examples in

8 Results, however, are an approximation.
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term of alignment probabilities (from FastAlign) have higher overall preci-
sion. This confirms that the quality of the alignments obtained is related to the
syntactic divergence of the sentences. However, it is interesting to notice that
even for the worst case (bucket 4), there are still a fair amount of high-quality
alignments being retrieved. We believe this highlights the robustness of the
RNNs, that even in low-resource settings, are able to learn non-trivial equiva-
lences between source and target sentences. In the remaining of this paper, we
will analyse possible methods for increasing RNN’s performance for the UWS
task.

5 Alignment-focused Optimization

In the last section, we investigated the impact of using different attention
mechanisms for performing UWS in low-resource settings. Our experiments
led us to conclude that RNNs are the most efficient for this task. In this section
we focus on the investigation of methods for increasing the exploitability of
the soft-alignments produced by this architecture. We investigate different
training and target representation approaches for a particular low-resource
scenario when 5k parallel sentences only are available.

5.1 Leveraging Monolingual Data

For language documentation scenarios, transcription is very time-consuming:
one minute of audio is estimated to take one hour and a half on average
of a linguist’s work [4]. This is one of the motivations for the bilingual ap-
proach for UWS that we use in this paper. However, even if we cannot rely
on transcriptions for data being available when treating oral-languages, it is
not uncommon for a small portion of the produced documentation corpora to
be manually transcribed. It might then be interesting to use this annotation,
when available, as a way of informing the bilingual alignment process.

For this experiment, we randomly select 1,000 sentences from our corpus
for which we consider we do have access to the transcription. We call it the
monolingual set.9 For incorporating the information present in this set into
the training protocol, we separate it in three steps, each one trained for one
third of the total number of epochs for RNNs from Section 4.1.10

First we train the model using only the monolingual set, making use of
their gold transcriptions aligned to the unsegmented phones. This is the same
scenario from the monolingual protocol in the last section, with the difference
that here less data is used. Following this, the model is trained with a mixed

9 We maintain the data protocol from the last section, keeping 10% of the sentences for
validation, and the remaining for training.
10 In our experiments we find that adopting too many epochs for the initial and interme-

diate steps makes the network forgetful, and the results end up being equivalent to the ones
from Section 4.
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representation. This mixed representation contains the monolingual set, and
the 4,130 remaining sentences with bilingual alignment (no transcription). Fi-
nally, in the last step, the network is trained fully in bilingual settings (French
words aligned to unsegmented phone sequences).

Lastly, for these experiments, we adapt our representation to include lan-
guage tags11 in the target side, as in Johnson et al. [27]. This is necessary
because in this setup encoder annotations will vary by encoding transcriptions
or bilingual text. The tags in the target side are thus a way of better informing
the decoder network of the type of source annotation it will attend to. In pre-
liminary experiments, we noticed that including language tags in the decoder
increased its capacity to generate exploitable alignments.

5.2 Hybrid Bayesian-Neural Model

Non-parametric Bayesian models [24,26] are statistical approaches that can be
used for word segmentation and morphological analysis, being known as very
robust in low-resource settings [18,23]. In these monolingual models, words are
generated by a uni or bigram model over a non-finite inventory, through the
use of a Dirichlet process. Although providing reliable segmentation in low-
resource settings, these monolingual models are incapable of automatically
producing alignments with a foreign language, and therefore the discovered
pseudo-word segments can be seen as “meaningless”. Godard et al. [21] also
showed that dpseg12 [22,23] behaves poorly on pseudo-phone units discovered
from speech, which limits its application.

In this work, we investigate the use of dpseg as an intermediate monolingual-
rooted segmentation system, whose discovered boundaries are used as clues
by the bilingual neural models. This investigation derives from the notion
that several intermediate segmentations might be manually produced by lin-
guists during language documentation. We then question if the produced soft-
alignments could help linguists to validate their hypotheses in this scenario.

For these experiments, we augment the original unsegmented phone se-
quence with the dpseg output boundaries. In this augmented input repre-
sentation, a boundary is denoted by a special token # which separates the
words identified by dpseg. We call this soft-boundary insertion, since the
dpseg boundaries inserted into the phone sequence can be ignored by the
NMT model, and new boundaries can be inserted as well. Figure 2 brings an
example of soft-alignment probability matrices produced by this hybrid ap-
proach. We verify that the networks are able to ignore this symbol, keeping
the alignment at the same source word, or to accept it, blurring the alignment
for the # token.

11 We use two language tags, <mono> and <bi>, for denoting unsegmented phones aligned
to transcriptions and translations, respectively. These tags are added to the beginning of
every sentence.
12 Available at http://homepages.inf.ed.ac.uk/sgwater/resources.html
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Fig. 2 Soft-alignment probability matrices for the hybrid models. The examples are ordered,
from left to right, by alignment complexity buckets. The # is the soft-boundary symbol.

5.3 Word length biased NMT Training

Lastly, we investigate the RNN architecture from Godard et al. [20] that explic-
itly optimizes the word-length of the segmentations obtained during training.
There are two differences from this model to the one presented in Section 3.1.
The first one is the attention mechanism from Eq. 3, which they modify for
including a bias towards longer words. They define attention over the source
words as in Eq. 10, where γ is a monotonically increasing function of the
source word’s length given by |wj |. The intuition behind this modification is
that longer words should be aligned to more phone units than shorter words.

ct = Att(H, st−1) =

|s|∑

j=1

γ(|wj |)αt,jhj (10)

The second difference is the introduction of an auxiliary loss. The goal of
this loss is to control the number of words a segmentation produces on the
target side, encouraging it to become closer to the number of words in the
source language. This is illustrated in Eq. 11, where |s| and |t| are respectively
the lengths of source (word-level) and target (phone-level) sentences. The last
term represents the number of target phones not segmented by the alignment
generated.

LAUX(Ω|w) = ||t| − |s| −
|t|−1∑

t=1

αT
t,∗αt+1,∗| (11)
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Types Tokens Boundaries
1 Base model (RNN) 24.7 46.6 74.0
2 dpseg (monolingual)* 24.8 49.1 77.0

3 Pre-training Model 26.2 47.8 74.8
4 Hybrid Model 29.1 48.9 76.5
5 Word length Model 26.6 48.1 75.2

Table 4 UWS types, tokens and boundaries F-score results for the base model (1), dpseg
segmentation baseline (2), and optimizations (3-5). dpseg results are shown for reference
only, since its resulting segmentation does not provide any MT alignment.

5.4 Results

Table 4 presents UWS results for the base model (RNN), the segmentation
baseline (reference only), and the investigated optimizations. For the latter,
rows 3 to 5 bring them in the same order they were presented (Sections 5.1 to
5.3). We do not report ANE results since the representation level for 3 and 4 are
not the same for the target sequences. These methods introduce respectively
language tags, and soft-boundaries into the phone sequences. This makes ANE
scores not comparable.

Looking at the results, we notice that the hybrid optimization achieves the
best segmentation results, followed by the word length optimization and the
pre-training model. We remind the reader that here the UWS task is an extrin-
sic metric for assessing alignment quality for NMT models. The dpseg baseline
reaches higher token and boundary F-scores, compared to the hybrid model,
but its segmentation does not come from the training of a translation system.
Therefore results are presented only to assess the quality of the information
injected into the input representation of the hybrid model.

Focusing at the models investigated in this section, we notice that the
pre-training model is the worst among them. We analysed its type retrieval
scores, to verify if the network successfully remembered the types for which
the reference segmentation was provided. We found that, from the first to
the last step, the retrieval for these types dropped 23.6% (from 56.2% to
32.6%). This hints that, even if some information was propagated to the final
bilingual model, this method could still benefit from a more direct method of
segmentation bias. An alternative is the work performed in Boito et al. [9],
in which the pre-segmentation for the 100 most frequent types was performed
before NMT training.13 However, we believe the latter to be sub-optimal, since
sub-word information is potentially lost. Also, in this setting encoder networks
must deal with a mixed representation of words and phones. The flexibility
of not forcing a segmentation, and yet informing the model about possible
boundaries, might be the reason why the hybrid model performs the best.

Still about this hybrid model, we turn our attention to the examples in
Figure 2. There, we can observe that the existence of boundary clues adds
some disturbance to the produced matrices. This is noticeable by the brighter

13 This comes from the intuition that, in documentation scenarios, this would reflect the
knowledge acquired by a linguist after some days in the community.
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ANE (<) Bucket 1 Bucket 2 Bucket 3 Bucket 4 All buckets
0.2 82.0 (+13.3) 66.7 (+7.4) 69.0 (+12.5) 73.3 (+25.5) 64.5 (+15.5)
0.4 59.3 (+14.5) 55.4 (+14.1) 51.3 (+13.2) 45.6 (+13.8) 45.9 (+13.2)
0.6 47.9 (+9.6) 44.6 (+10.2) 40.8 (+10.2) 33.7 (+8.4) 32.7(+8.0)
0.8 43.9 (+7.1) 40.7 (+8.2) 37.1 (+8.3) 29.2 (+6.4) 28.2 (+6.0)
1 43.7 (+7.0) 40.2 (+7.8) 36.9 (+8.1) 28.9 (+6.3) 28.0 (+6.0)

Table 5 Precision scores in type retrieval for the alignment complexity buckets, and for the
totality of the corpus (All buckets) using the matrices produced by the hybrid model. Results
are cumulative and use the Alignment ANE thresholds indicated in the first column. The
absolute difference between the obtained scores and the ones from the base model (Table 3)
is displayed between parenthesis.

square colors for the #’s probability distributions. Even so, the network seems
capable of ignoring these clues when necessary. We perform the same analysis
from Section 4, investigating precision scores in type retrieval for the alignment
complexity buckets. The results, presented in Table 5, show an expressive dif-
ference in type precision, compared to the base model. The augmented input
representation seems to have helped this model especially in more challeng-
ing alignment scenarios (bucket 3 and 4). The hybrid model also increased
type F-score over the segmentation baseline dpseg. This suggests that the
boundary clues informed the network, instead of just forcing a pre-established
segmentation, which resulted in more meaningful source-to-target alignments.

Finally, for the word length optimization method, it may have suffered from
over-constraining the produced alignment. This method forces the amount of
words produced to be close to the number of source words available, what
ends up reducing the flexibility of the attention mechanism. For instance, in the
third example in Figure 2, we see that some source words are almost completely
ignored. This may need to happen when source and target languages differ
syntactically. Moreover, in the case of non-existing translation for a given
word, linguists might translate it by giving an explanation to the term. This
would result in a case of many-to-one alignment that would result in over-
segmentation.

Summarizing, we investigated different methods for increasing the quality
and usability of the soft-alignment probability matrices discovered by NMT
RNN-based models. We find that adding boundary clues to the input repre-
sentation is the best way of informing the neural model, resulting in the best
UWS results. This suggests that, in a documentation scenario, dpseg could
be replaced by early annotations of potential words done by a linguist, for in-
stance. The linguist could then validate the output of the neural system, and
review their word hypotheses considering the generated bilingual alignment.

6 Conclusion

In this paper we investigated the interpretability of attention-based NMT ar-
chitectures for low-resource settings. Our focus lies on the direct exploitation of
source-to-target alignment, evaluating the soft-alignment probability matrices
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produced by NMT models with respect to their performance in the Unsu-
pervised Word Segmentation (UWS) task. For this task, words are translated
into unsegmented phone sequences, and the alignments obtained by the NMT
training must result in segmentation over the target side. We compared three
well-known attention-based NMT models (RNN, 2D-CNN and Transformer),
finding that the RNN achieved the best results in low-resource settings. We also
evaluated the Average Normalized Entropy (ANE) for the ensemble of soft-
alignment matrices produced by the different models. The results obtained
highlight the correlation between low ANE scores and higher segmentation
scores, and better alignment quality.

We followed this by investigating methods for increasing the exploitability
of the soft-alignment probability matrices produced by the RNN architec-
ture. We investigated the following methods: pre-training, a hybrid approach
which includes soft-boundaries in the input representation, and a word length
alignment optimization during training. Interestingly, we found the hybrid ap-
proach to be the most efficient. This approach was superior in type retrieval
to the strong segmentation baseline dpseg. We attribute its efficiency to the
flexibility it allows, since the NMT models are not forced to respect a given
segmentation, and instead the boundary clues are used as bias. We hypothesise
that boundary information, even when noisy, can help the internal represen-
tation of the RNN models. In documentation scenarios, this supervision could
come from linguists, during the documentation process. Lastly, in line with the
results by Boito et al. [10], this work also confirms that ANE can be used as a
threshold for extracting high-confidence alignments, which can help linguists
to filter the generated bilingual vocabulary. The insertion of boundary clues
is yet another way to collaborate with linguists during this process.
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