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Abstract
We propose multimodal machine translation (MMT) approaches that exploit the cor-
respondences between words and image regions. In contrast to existing work, our 
referential grounding method considers objects as the visual unit for grounding, 
rather than whole images or abstract image regions, and performs visual grounding 
in the source language, rather than at the decoding stage via attention. We explore 
two referential grounding approaches: (i) implicit grounding, where the model 
jointly learns how to ground the source language in the visual representation and 
to translate; and (ii) explicit grounding, where grounding is performed independ-
ent of the translation model, and is subsequently used to guide machine translation. 
We performed experiments on the Multi30K dataset for three language pairs: Eng-
lish–German, English–French and English–Czech. Our referential grounding mod-
els outperform existing MMT models according to automatic and human evaluation 
metrics.
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1 Introduction

Multimodal machine translation (MMT) is a research field that aims to enrich tex-
tual context with additional modalities (images, videos, audio) for machine trans-
lation (MT). The assumption is that context provided by these modalities can help 
ground the meaning of the text and, as a consequence, generate more adequate 
translations. This grounding is particularly needed when translating content that 
is naturally multimodal, such as picture posts on social media, audio descriptions 
or subtitles. MMT is especially useful when dealing with ambiguous or out-of-
vocabulary words. One example is given in Fig. 1, where even a human translator 
would need to see the image to decide which word to use when translating the 
ambiguous word hat into German (distinction between summer hat Hut and win-
ter hat Mütze).

Existing work on image-based MMT (Specia et al. 2016; Elliott et al. 2017; Bar-
rault et al. 2018) (see Sect. 2), especially neural network approaches, often incorpo-
rate images as context either as a single, global vector representation of the whole 
image (Fig. 2a), or by attending to grid-based representations of different local sub-
regions of the image (Fig.  2b). We argue that such models do not exploit images 
effectively for MT. A global image representation provides only a summary of the 
image and is expected to apply equally to the whole text, while MT operates at the 
word level. For attention-based models, there is a mismatch between the visual unit 
(equally divided image grid-like subregions) and the textual unit (a word), as the 
subregions may not correspond to a word or cover multiple words. This makes it 
hard to learn the correspondence between the textual and visual units during decod-
ing due to a lack of visual consistency, especially when trained on small datasets; 
any assumed learned correspondences are also hard to interpret since the subregions 
are not well defined.

Fig. 1  The word  hat in the description “Woman covering her face with her hat.” is ambiguous when 
translating into German. The image is needed to enable the selection of the correct word,  Hut (summer 
hat), rather than Mütze (winter hat)
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In this paper, we propose new referential grounding approaches to MT where 
the correspondences between the visual units (object regions) and textual units 
(source words) are better defined, and can then be used more effectively for trans-
lation (Fig. 2c). By object region, we mean the depiction of the entity instance 
from the image as a single, coherent unit. The object instance can be a concrete 
entity, amorphous ‘stuff’ (sky, cloud), or a scene (beach, forest). The main moti-
vation for using objects as a visual unit is that it can potentially result in bet-
ter and more interpretable grounding. As a motivational example, Fig. 3 shows a 
case where the ambiguous word player can be translated correctly into a gender-
marked language (female player) if its correspondence to the correct region in the 
image is identified.

Our main contributions are: 

the man in the yellowpants is raising his arms .

der in der gelben hebt seine arme .mann

<s>

?

source text
encoder

target text
decoder

image
encoder

(a) Basic MMT is initialized with a single
vector.

the man in the yellowpants is raising his arms .

der in der gelben hebt seine arme .mann
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(b) Attention over subregions during de-
coding (target language).

the man in the yellowpants is raising his arms .

der in der gelben hebt seine arme .mann

<s>

?

source text
encoder

target text
decoder

image
encoder

(c) Our model: explicit grounding of ob-
jects on the source language side.

Fig. 2  Methods of incorporating images as context in neural MMT architectures. In a, the decoder 
(sometimes encoder) is initialised with a single global vector representation of the image. In b, an atten-
tion-based model learns to attend to the CNN convolutional layer at each time state of the decoder. Our 
referential grounding approach in c uses object bounding boxes as visual units, grounds object bounding 
boxes to source words in the encoder (dotted lines), and uses the grounding to guide MT
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1. An implicit referential grounding MT approach where the model jointly learns 
how to ground the source language in the object-level image representations and 
to translate (Sect. 4), and we explore training regimes with and without providing 
the correspondence as supervision;

2. An explicit referential grounding MT approach where object-level grounding is 
performed on the source side, independent of the translation model, and is sub-
sequently used to guide MT (Sect. 5), and we vary the ways in which the visual 
information is fused to the textual information; and

3. A strategy that automatically proposes and aligns objects to words, which can be 
used as input for the explicit grounding or potentially as supervision for learning 
implicit grounding, replacing gold-standard annotations (Sect. 3).

The results of our experiments (Sect. 6) show that the proposed referential ground-
ing models outperform existing MMT models according to automatic evaluation 
metrics that assess the general quality and lexical ambiguity, and according to man-
ual evaluation where humans assess the adequacy of the translations.

2  Related work

MMT with a single vector The first approaches for MMT represent images as a sin-
gle, global vector. These vectors are usually the output of a Convolutional Neural 
Network (CNN) layer. The layers that have been used are the penultimate layer (Elli-
ott et al. 2015; Caglayan et al. 2017) and the final softmax layer (Madhyastha et al. 
2017). The image representation is integrated into the MT models in different ways: 
(i) by initialising the hidden state of the encoder or decoder (Elliott et  al. 2015; 
Caglayan et al. 2017; Madhyastha et al. 2017); (ii) by element-wise multiplication 

Fig. 3  Multimodal correspondences can be used to help guide translation, for example potentially resolv-
ing the gender ambiguity of the word  player such that it can be correctly translated to its feminine form 
into a gender-marked language
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with the source word annotations (Caglayan et al. 2017); or (iii) by projecting both 
the image representation and encoder context onto a common space to initialise 
the decoder (Calixto and Liu 2017). Other methods include re-ranking the output 
of candidate translations based on the global image representation (Hitschler et al. 
2016; Shah et al. 2016; Lala and Specia 2018), and modelling the source sentence 
and reconstructing the image representation jointly in a multi-task learning setting 
(Elliott and Kádár 2017; Helcl et al. 2018). A global image vector is, however, lim-
ited in that it only captures the gist of the image.

MMT with attention most current work on neural MMT utilises an attention 
mechanism (Bahdanau et al. 2015) on the output of the last convolutional layer of a 
CNN (Xu et al. 2015). The layer signifies the activation of K different convolutional 
filters on evenly quantised N × N spatial regions of the image. Methods have been 
proposed to learn the attention weights for both source text and visual encoders, e.g. 
via concatenation (Caglayan et al. 2017), combining both attentions independently 
via a gating scalar (Calixto et  al. 2017; Delbrouck and Dupont 2017), applying a 
hierarchical attention distribution over two projected vectors where the attention for 
each is learned independently (Libovický and Helcl 2017), and via a doubly-atten-
tive transformer architecture (Helcl et  al. 2018). Such attention-based models are 
closer to our work, although learning attention weights across subregions effectively 
from limited training data is difficult (Delbrouck and Dupont 2017). Our proposed 
use of coherent object-level visual units are aimed at alleviating this problem by 
forming a stronger association between the textual unit and the visual unit.

MMT with whole objects Previous work has also explored using object-level 
regions rather than quantised regions. Huang et  al. (2016) detect object category 
instances in an image, and use the representations for these instances (along with 
the whole image) to initialise the encoder. Grönroos et al. (2018) extract region seg-
mentations for 80 object categories, and encode the whole image as an 80D vector 
containing the surface area of each category. In both cases, there is no strong asso-
ciation between the words and the regions, and thus object information is not well 
exploited. In contrast, our referential grounding models make better use of object 
and text associations.

3  Objects as visual units

In what follows we describe how object-level regions are extracted from images and 
aligned to their corresponding word in the textual description. Before that, we intro-
duce the datasets used in the experiments.

3.1  Data

We build and evaluate our referential grounding MMT models on the Multi30K 
(Elliott et al. 2016) dataset. Each image in Multi30K contains one English (EN) 
description taken from Flickr30K (Young et  al. 2014) and human translations 
into German (DE), French (FR), and Czech (CS) (Specia et al. 2016; Elliott et al. 
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2017; Barrault et al. 2018). The dataset contains 29,000 instances in the training 
set and 1014 in the development set. Each instance comprises an image and its 
description in four languages (EN, DE, FR and CS). Multi30K is the official data-
set in the WMT shared tasks on MMT, with DE introduced in 2016 (Specia et al. 
2016), FR in 2017 (Elliott et al. 2017) and CS in 2018 (Barrault et al. 2018). For 
this paper, we fix EN as the source language and evaluate translations into each of 
the three target languages (DE, FR and CS).

In our experiments, we use automatic and oracle image region annotations 
(bounding box annotations) and their mapping to words in the text. For the lat-
ter, we take the annotations from the Flickr30K Entities (Plummer et al. 2015) 
dataset. In the dataset, each entity mention (noun phrase) in Flickr30K descrip-
tions was manually annotated with a bounding box localisation of the instance(s) 
depicted in the image. An example is given in Fig.  4, which contains the five 
original descriptions (the one randomly selected for Multi30K in this case is the 
fourth). Any entity mention not depicted (without a bounding box) is labelled as 
non-visual. In Flickr30K entities, each entity mention is also assigned at least one 
out of eight high-level categories (person, clothing, bodyparts, animals, vehicles, 
instruments, scene, and others). These category labels are used in our models in 
Sect. 5.

Fig. 4  Example of oracle object bounding boxes and object-to-word alignment from Flickr30K Entities
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3.2  Object bounding boxes

Our referential grounding models rely on object-level information. Therefore, we 
consider bounding box localisations of an object as “region”; there is scope to use 
object segmentations instead of bounding boxes in future work.

For our experiments, we are interested in testing the hypothesis that region-spe-
cific grounding is beneficial for translation. Therefore, we focus on an oracle sce-
nario where object bounding boxes are given by humans for entity mentions in the 
source description. However, to test the feasibility of our models when this informa-
tion is not available, for a subset of the proposed models we also experiment with a 
predicted scenario where object bounding boxes for entity mentions are automati-
cally generated by an off-the-shelf object detection tool.

Oracle object bounding boxes The oracle scenario aims to evaluate the referen-
tial grounding capabilities of the proposed approaches with gold standard bound-
ing boxes for objects, isolating the challenge from having to automatically propose 
these bounding boxes. For this, we use the bounding box annotations provided by 
the Flickr30K Entities dataset.

Predicted object bounding boxes We use an object detector to produce candidate 
bounding boxes and object categories. More specifically, we use the Faster R-CNN 
(Ren et  al. 2015) detector pre-trained on the 545 object categories of the Open 
Images Dataset (V2) (Krasin et al. 2017), with the Tensorflow Object Detection API 
(Huang et  al. 2017).1 from https:// github. com/ tenso rflow/ models/ blob/ master/ resea 
rch/ object_ detec tion/ g3doc/ detec tion_ model_ zoo. md. We note that these 545 cat-
egories mostly contain more fine-grained versions of the 8 very general categories 
in Flickr30K Entities (e.g. man, woman, girl, boy, dress), as shown in the example 
in Fig. 5.

We note that object-level annotations (be it oracle or automatically predicted) are 
needed for all region-specific multimodal MT approaches proposed in this paper and 
described in Sects. 4.2, 4.3, and 5. The only strategy that does not require object-
level annotation is the baseline multimodal model in Sect. 4.1.

3.3  Object to word alignment

Some of our approaches require annotations on the correspondence between entity 
mentions in the source text and their localisation in the image. More specifically, 
this annotation is required for the training of the supervised co-attention approach in 
Sect. 4.3, and for both training and decoding of the explicit grounding approaches in 
Sect. 5.

Here we again explore the oracle approach where we take alignments previ-
ously annotated by humans for the corresponding bounding boxes also annotated by 
humans. In other words, we start with the oracle object bounding boxes as described 
in Sect. 3.2 and use the correspondence annotations as given in Flickr30K Entities. 

1 faster_rcnn_inception_resnet_v2_atrous_oid.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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An example is shown in Fig. 4, where the colours indicate the alignment. As our 
decoder operates at word level, we assume that any content word in the phrase for an 
entity mention can refer to the depicted object instance.

To test the feasibility of our models in the absence of these oracle alignments, in 
the case of automatically detected bounding boxes, we also propose an automatic 
alignment, where we infer an alignment for each bounding box. Here we start with 
the predicted object bounding boxes as described in Sect. 3.2 and infer the connec-
tion of these to words in the text. This alignment method is fully unsupervised, i.e. it 
uses no training data from Multi30K or Flickr30K.

More specifically, for each image, we compute the semantic similarity between a 
word and the category label for each detected bounding box instance. The intuition 
is that the bounding box instance that is very similar or related to a word is most 
likely to be the target object. For example, the word dancer is similar or related to 
the category person. We represent a word w and a detector label d (object category) 
as 300-dimensional CBOW word2vec embeddings (Mikolov et al. 2013). Detector 
labels comprising multiword phrases are represented by the sum of the word vectors 
of each in-vocabulary word of the phrase, normalised to unit vector.

We align a word w to the detected bounding box instance d with the highest 
cosine similarity S(w, d). If there are multiple bounding box instances with the high-
est score, we align it to the largest bounding box (most likely to be mentioned). We 

Fig. 5  Example output from our object-to-word alignment model using the automatically detected 
objects
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constrain alignment to nouns to reduce misalignments.2 Figure 5 shows an example 
output from our automatic aligner. Note that we can obtain phrase alignments, e.g. 
jean dress.

We note that the combinations of object bounding boxes and object–word align-
ment strategies result in two settings (i) a fully oracle-based annotation (object 
bounding boxes and object–word alignments), where we are able to isolate the 
grounding capabilities of the model from these two intermediate steps, and (ii) 
a fully automatic annotation (detected object bounding boxes and automatic 
object–word alignments), which is a more realistic setting. While other combina-
tions could be possible, they are less appealing. On the one hand, if the bounding 
boxes are predicted automatically, we cannot rely on oracle object–word alignments, 
as the detected objects can be different from the ones annotated by humans. On the 
other hand, while we could combine oracle object region annotations with automatic 
object-to-word alignments, the outcome of models trained in this way would be less 
insightful.

4  Implicit grounding

We propose two new attention mechanisms for MMT where (i) grounding happens 
on the source language (Sect. 4.2), and (ii) this process is supervised by examples of 
aligned word–image region annotations (Sect. 4.3). We start by describing our base-
line MMT model (Sect. 4.1).

4.1  Baseline attention‑based MMT

As a baseline, we experiment with the standard visual attention approach by 
Caglayan et  al. (2017) and its extension to hierarchical fusion by Libovický and 
Helcl (2017), which proved effective in their work. These approaches do not use 
object-level representations but convolutional feature maps, which are believed to 
capture spacial information in the image that could correspond to image regions 
(although there are no guarantees that this happens in practice).

The image features for an image I are extracted from the last convolutional 
layer of a 152-layer ResNet (He et al. 2016) as a 14×14×1024 feature map. In the 
standard approach to visual attention, given the spatial feature map �(vj) , where 
j ∈ {1,… , 196} are the flattened feature maps, and the decoder hidden state at time 
step i, �̃� , an unnormalised attention score �� is computed as in (1):

where ��� , �� and ��̃ are learned parameters.
The attention probabilities, �j , are computed as a normalised sum over the feature 

maps, as in (2):

(1)�� = �⊤

��
tanh (��𝜙(vj) +��̃�̃�),

2 POS tagger in spaCy v2: en_core_web_md from https:// spacy. io/ models/ en.

https://spacy.io/models/en
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We then obtain the visual context vector—an attention weighted sum over the fea-
ture maps—as in (3):

Caglayan et  al. (2017) concatenate the visual context vector ��� with the standard 
textual context vector �� while decoding. We instead follow the hierarchical attention 
approach from Libovický and Helcl (2017) where a second attention mechanism is 
constructed over the context vectors. This is done over two steps: (i) a context vector 
per encoder state is computed separately; and (ii) a weighted sum of the distribu-
tions over the n encoder states is computed. Formally, after the computation of both 
�� and ��� , for a source sentence with n words the unnormalised attention score ��

����
 

for encoder state k is computed as in (4)–(6):

where c̃k
i
 is the context vector for the kth encoder (i.e., �� or ��� ), and ���� is used as 

the final context vector for the decoder.

4.2  Source co‑attention

Our first object-level grounding model is designed to align source words to object 
regions using a co-attention mechanism at encoding time. Let � = v1,… , vm be the 
m object-level regions that have been cropped from the image. The visual represen-
tation for each object region, �(vi) , is a 2048-dimensional vector generated as a non-
linear transform of the penultimate (pool5) layer of a 152-layer ResNet CNN.

Given these representations, we adapt the co-attention mechanism of Lu et  al. 
(2016) to ground the source words, where the model jointly learns to align these 
words to the image regions, and to translate them. This is done by first obtaining the 
affinity matrix � as in (7):

where � ∈ R
n×d are the encoder hidden states, � ∈ R

m×l are the object-level image 
representations, and Wa is the bilinear parameter matrix. The image and encoder 
attention maps are obtained as in (8):

(2)�j = softmax({��,… , ����}).

(3)��� =

196
∑

j=1

�j�(vj).

(4)��
����

=�⊤

����
tanh (��

̄����
c̃k
i
+��̃�̃�)

(5)�k
i
=softmax({��

����
,… , ��

����
}),

(6)���� =

n
∑

k=1

𝛾k
i
��

̄����
c̃k
i
,

(7)� = tanh (�⊤Wa�),
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where �� computes the source affinity. Similarly, visual affinity �� is computed as in 
(9):

The expectation is that the model learns the alignment between source words and 
object regions while learning to translate, i.e. the attention weights indicate this 
alignment.

We also use hierarchical attention (as described in Sect. 4.1) on top of co-attention 
such that, at decoding time, the model learns to jointly attend to the source context vec-
tor computed using the standard attention and the sum of the source affinity attention 
and the visual affinity attention from Eqs. (8) and (9).

4.3  Supervised source co‑attention

Our second object-level grounding model builds on the one described in Sect. 4.2 by 
modifying the standard co-attention mechanism into a supervised co-attention mecha-
nism. The learning of the alignment between source words to object regions is therefore 
done with explicit correspondence annotations as supervision. To do so, we expand 
the co-attention approach by adding an auxiliary loss to the standard cross-entropy 
loss. The auxiliary loss penalises cases where the co-attention weights are highest for 
regions other than the correct one. Inspired by phrase localisation work by Rohrbach 
et al. (2016), given a correct region j, we define the grounding loss as in (10):

where B is the number of words per batch and �� is from Eq. (9). Here, we have 
explicit correspondences between words in the source language and the regions in 
the image. For each given source word, the loss is only active if the ground truth has 
an alignment for it, else it is set to zero.

In Fig. 6 we show an example of attention weights learned for image regions (indi-
cated by letters A–D on the grids) for a source sentence with both the unsupervised 
and supervised versions of the source co-attention mechanism. The supervised version 
clearly learns to assign the attention weights to the correct regions for each given con-
tent source word.

(8)
�� = tanh (���� + (����)�

⊤)

�� = softmax(w⊤

cs
��),

(9)
�� = tanh (���� + (����)�)

�� = softmax(w⊤

cv
��).

(10)Lgrounding = −
1

B

B
∑

b=1

log(Pr(j∣��)),
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5  Explicit grounding

While attention is a well-established approach, for a dataset as small as ours (30K 
training instances), we hypothesise that the models may not observe enough 
instances of similar visual representations with the same textual context for attention 
to be effective, even in its supervised formulation.

Here we introduce an alternative, two-step approach: first, not only the object 
regions but also their correspondence (alignments) to words in the source sentence 
are identified beforehand; second, these correspondences are then fed to the model 
as additional information further specifying the source words. Previous work has 
explored specifying word-level information in neural MT for morphological fea-
tures (Sennrich and Haddow 2016) and for topics (Deena et al. 2017). In both cases, 
every word was specified with a vector containing the additional information (e.g. 
POS tags). We follow a similar approach, but our setting is more complex in that 
we do not have an image region associated to each given word in the sentence (cf. 
Fig. 5). We focus on specifying nouns only, which are commonly depicted concepts 
in images. For nouns that do not have a corresponding image region and for all other 
words in the sentence, such as verbs and function words, we specify them with a 
vector containing a pre-trained word embedding of the word itself.3 For source noun 
phrases containing more than one word, we specified the head noun only.

As for the content of the additional vector to specify nouns, we experiment with two 
types of information: (i) specification using object categories; and (ii) specification 

Fig. 6  Distribution of attention weights for unsupervised and supervised co-attention mechanism

3 We note that these embeddings will be different from those learned for all input words as part of the 
MT model training. Another option would have been to use an empty vector, but in initial experiments 
this strategy performed worse.
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using CCA projections. In all cases, the two-step process is: we first obtain an 
alignment of the source words ( �(si) ∈ set of all words in source sentenceS ) 
and the corresponding object category embeddings in the image 
( �(rj) ∈ set of all object categories for a given imageR ). We then replace 
the source word embeddings with the corresponding specified embeddings ( �̃�(si) ). 
We describe the process in the following sub-sections.

5.1  Object categories

We specify the words in the source sentence with its aligned object category. As a 
visual representation for the image region aligned to the word, instead of pool5 
features we rely on the word representing the label of the category of the object in 
that region, e.g. person or clothing. Figure 7 shows a motivational example, where 
the pool5 visual representation for the two woman regions would be very differ-
ent despite them belonging to the same semantic category. To make the representa-
tion more semantically relevant, instead of the word representing the category label 
itself, we use pre-trained word embeddings for this word. For example, by specifica-
tion, we expect the visual representations for woman and girl to be closer than those 
for woman and  dog.

We further explore two methods to specify visual information in the form of cat-
egory embedding for words: by concatenation and by projection.

Specification by concatenation Here, the source word embedding is specified 
with region-grounded information via concatenation:

where �(si) is the source word embedding and �(rj) is the object-level region infor-
mation. These are then used to initialise the representations of the words for the 
encoder bidirectional recurrent units.

�̃�(si) = [𝜙(si);𝜙(rj)],

Fig. 7  Specification via category embedding versus pool5 features
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Specification by projection Alternatively, we learn a linear projection over the 
region-grounded information:

where W is a learned affine transformation. Note that, in this setup, the model is 
learning both �(si) and W, while the �(r) remains fixed. The motivating idea here 
is that the linear projection is a better combined representation to ground the source 
embeddings.

5.2  CCA projections

Since the specification involves relating words to image region representations, we 
evaluate the utility of projecting the image representation such that it is highly cor-
related with the word representations by using canonical correlation analysis (CCA) 
(Hotelling 1936). Formally, given paired matrices � and ℜ , where each row of � is 
a visual region and its corresponding word represented by its word embedding ℜ , 
we generate a linear projection using CCA. We then use these projections to obtain 
transformed representations of � as ���� and use them as visual features. � can be 
either the pre-trained word embedding for the category label of the object (as above) 
or pool5 features for the object region.

We specify the visual information in the form of CCA projections for words by 
concatenation as:

where �(si) is the source word embedding and �(�j)cca is the transformed visual 
representation.

6  Experiments and results

We build attention-based sequence to sequence models (Bahdanau et al. 2015) with 
bidirectional recurrent neural networks with gated recurrent units (Cho et al. 2014) 
as the encoder and decoder. We use the nmtpytorch tool,4 with the following set-
tings: early stop by Meteor (Lavie and Agarwal 2007) (max 100 epochs), selection 
of best model according to Meteor, beam size = 6, batch size = 64, Adam (Kingma 
and Ba 2014) as optimiser, word embedding dimensionality = 256, and tokens 
rather than sub-word units. Experiments with BPE (Sennrich et al. 2016) segmenta-
tion on monomodal models did not lead to significant translation quality improve-
ments according to automatic evaluation metrics. In addition, the alignment between 
subwords and object regions would have been harder than the token-level alignment.

�̃�(si) = 𝜙(si) +W𝜙(r),

�̃�(si) = [𝜙(si);𝜙(�i)cca],

4 https:// github. com/ lium- lst/ nmtpy torch.

https://github.com/lium-lst/nmtpytorch
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For category embeddings and CCA representations we use fasttext 
300-dimensional pre-trained word embeddings (Bojanowski et  al. 2017). In the 
results reported for explicit alignments we specify only head nouns for which an 
alignment exists to a region in the image, and use the pre-trained embeddings of the 
words themselves for the remaining words. Table 1 summarises the results for the 
following models, using BLEU (Papineni et al. 2002) and Meteor, where the latter is 
the official metric used for this task (following from the MMT shared tasks):

– Text-only: Standard NMT baseline without visual information.
–  SubrAttention: Standard visual attention over image subregions at decoding 

time (Sect. 4.1) with hierarchical fusion.
– CoAttention: Co-attention over image regions (pool 5 features for objects) 

and source words (Sect. 4.2).
– SupCoAttention: Supervised co-attention over image regions (pool 5 features 

for objects) and source words (Sect. 4.3).
– ExplicitProj: Projection of category embedding information ���� (Sect. 5.1).
– ExplicitConc: Concatenation of category embedding information ���� and 

learned word embeddings (Sect. 5.1).
– ExplicitCCA : Concatenation of ���� (pool 5 features for objects) and learned 

word embeddings (Sect. 5.2).

According to Table  1, the proposed multimodal models outperform text-only 
counterparts for EN–CS and EN–FR, and the standard multimodal approach SubrAt-
tention for all language pairs. We also show that this is the case for variants of two 
of our best performing models using automatic object detections and object–word 

Table 1  Performance of models 
using oracle object region 
annotations and alignments, 
according to Meteor

Results are average of three runs with different seeds. The first row 
indicates the best system for EN–DE, the only language tested on 
this test set at WMT16 (Specia et  al. 2016). For comparison, the 
bottom two rows show variants of the two well-performing models 
where both the object region and alignment annotations are gener-
ated automatically

Systems EN–CS EN–DE EN–FR

Best WMT16 – 53.20 –
Text-only 28.90 57.35 74.09
SubrAttention 28.84 55.45 73.31
CoAttention 30.37 57.15 75.85
SupCoAttention 30.34 56.48 75.10
ExplicitProj  30.63 57.05 75.02
ExplicitConc  30.61 57.26 75.17
ExplicitCCA 30.52 57.12 75.34
Automatic annotations
 ExplicitProj 30.58 56.96 74.89
 ExplicitConc 30.45 57.06 75.05
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alignments in the last two rows of the table. The comparison against automatic 
object region and alignment annotation is more applicable for  explicit grounding 
models since in implicit grounding alignments are not always needed (they are not 
needed by CoAttention or SubrAttention). While more experiments on other model 
variants could be done, the focus of this paper is on showing that object-level infor-
mation is beneficial for multimodal MT, rather than making a case for the quality of 
the automatic annotations. However, we posit that the performance of state-of-the-
art object detection (e.g., Redmon and Farhadi (2017)) and object–word alignment 
(e.g., Wang and Specia (2019)) approaches would allow them to be used for this 
purpose without performance degradation.

While the automatic metric results are generally positive, it has been shown in the 
WMT shared tasks on MMT (Elliott et al. 2017; Barrault et al. 2018) that automatic 
metrics can fail to capture nuances in translation quality such as those that we expect 
the visual modality to help with, which—according to human perception—lead to 
better translations. This may be particularly the case for EN–DE, where rich mor-
phology and compounding may result in better translations, even though these do 
not match the reference sentences. Therefore, we also present to two additional eval-
uations: (i) an automatic evaluation metric on the accuracy of translating ambiguous 
words only, and (ii) manual evaluation on the adequacy of the translations.

6.1  Lexical ambiguity evaluation

One motivation for incorporating multimodality into MT is that visual features could 
potentially help disambiguate ambiguous words (Elliott et al. 2015). Thus, the ques-
tion we ask is whether our MMT models can correctly translate a specific set of 
ambiguous words in the context of a sentence and image. At the WMT18 shared task 
on MMT, Barrault et al. (2018) evaluated systems using the Lexical Translation Accu-
racy (LTA) metric (Lala and Specia 2018), which assesses the disambiguation perfor-
mance of MMT systems at word level. More specifically, LTA measures how accu-
rately a system translates a subset of ambiguous words found in the Multi30K corpus. 
A word is said to be ambiguous in the source language if it has multiple translations 
(as given in the Multi30K training corpus) with different meanings. The subset of 
ambiguous words in context was created using a semi-automatic process, starting with 
word alignment to build dictionaries, followed by manual checking of the dictionaries 

Table 2  Performance of models 
using oracle object annotations 
and alignments according to 
LTA

Model EN–CS EN–DE EN–FR

Text-only 10.44 37.00 53.62
SubrAttention 10.84 37.82 53.62
CoAttention 12.45 38.06 55.16
SupCoAttention 13.25 37.47 55.16
ExplicitProj 13.65 38.41 54.08
ExplicitConc 12.85 38.06 53.78
ExplicitCCA 14.06 38.17 54.08
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to keep only those words that are actually ambiguous. At test time, a lexical translation 
is considered correct if it matches exactly the (lemmatised) word aligned to it in the 
reference test set. Our test set of 1000 sentences contains 1708 such words for EN–DE, 
1298 for EN–FR, and 249 for EN–CS. In this paper we use a variant of the LTA meth-
odology: in addition to rewarding cases where the correct translation is found ( +1 ), we 
penalise cases where an incorrect translation is found ( −1 ), i.e. a possible translation 
with a different meaning is generated. If no correct or incorrect translation is found, no 
reward or penalty is applied. Table 2 shows that all multimodal models are better than 
their text-only counterpart at translating ambiguous words.

6.2  Manual evaluation

For manual evaluation, we randomly sample 50 source sentences to form pairs of 
instances containing the text-only baseline and one of five multimodal models, where 
translations differ: SubrAttention, CoAttention, SupCoAttention, ExplicitProj (very 
similar translations to ExplicitConc), and ExplicitCCA. We then ask a human trans-
lator for each language to judge each pair and select the translation that is better at 
conveying the meaning of the source sentence, given the corresponding image, i.e. to 
judge adequacy, as in the WMT MMT shared task. In Table 3 we show the proportion 
of times each model is better than text-only variant. Once again, all our multimodal 
models are better than their text-only counterparts in more than half of the cases, 
with CoAttention and ExplicitCCA performing the best. The benefit of multimodality 
in the standard SubrAttention approach is less prominent. Examples of where multi-
modal models were judged better at preserving the meaning of the source text can be 
seen in Table 4. Here we take examples from ExplicitCCA  for all languages.

6.3  Oracle versus predicted regions

Thus far we have shown results where the oracle bounding boxes and object–word 
alignments are used. In the implicit grounding models this is not a major issue given 
that the alignments are only needed at training time. For the explicit grounding mod-
els, however, this information is also needed at test-time. Therefore, we also report 
results using the predicted objects (i.e. object detections) and object–word align-
ments. The results, shown in the bottom two rows of Table 1, indicate that there are 
no significant differences in performance.

Table 3  Proportion of times 
each multimodal model is better 
than its text-only counterpart at 
preserving the meaning of the 
source text

Text-only versus EN–CS EN–DE EN–FR

SubrAttention 0.67 0.38 0.55
CoAttention 0.60 0.89 0.60
SupCoAttention 0.67 0.63 0.63
ExplicitProj 0.67 0.67 0.63
ExplicitCCA 0.88 0.63  0.88
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Table 4  Qualitative examples comparing text-only NMT and multimodal models. We show the source 
(SRC), text-only MT (NMT) and the multimodal model ExplicitCCA  (MMT)

In both cases we also show the back-translation into English for clarity. Underlined words represent 
translation errors, while bold face words, the correct (or better) version

EN–FR

SRC: A man on a tag line going into the water.
NMT: Un homme sur une ligne de métro en train de marcher dans l’eau.

      (A man on the metro line walking to the water.)
MMT: Un homme sur une ligne de sable allant dans l’eau.

      (A man on the sand line going into the water.)

SRC: A large group of people of various ages and genders sit outside together.
NMT: Un grand nombre de personnes de différents âges et des accessoires sont 

assis ensemble.
      (A large number of people of different ages and accessories sit together.)

MMT: Un grand nombre de personnes de différentes áges et d’autres sont assis 
ensemble .
      (A large number of people of different ages and others sit together.)

EN–DE

SRC: A man in a gray shirt jumps over the top of a sand dune in the desert .
NMT: Ein mann in einem grauen hemd springt über das dach einer sanddüne .

      (A man in a grey shirt is jumping over the roof of a sand dune.)
MMT: Ein mann in einem grauen hemd springt über die spitze einer sanddüne 

in der wüste.
      (A man in a grey shirt is jumping over the peak of a sand dune in the 

desert.)

SRC: A fox terrier leaps after a ball.
NMT: Ein metzger springt nach einem ball.

      (A butcher jumps for a ball.)
MMT: Ein terrier springt nach einem ball.

      (A terrier jumps for a ball.)



163

1 3

Read, spot and translate  

7  Conclusions

We proposed referential grounding approaches for MMT that use clearly defined 
correspondences between a source word and an object in the image to guide transla-
tion. We showed that MMT models using such groundings at object-level can better 
exploit image information, leading to better performance, especially when translat-
ing challenging cases such as ambiguous words. In future work we will investigate 
ways to further improve our image segmentation and object–word alignment to 
make this approach applicable to any dataset.
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