Symmetry Definitions for Constraint
Satisfaction Problems

David Cohen', Peter Jeavons?, Christopher Jefferson®, Karen E. Petrie?, and
Barbara M. Smith*

! Department of Computer Science, Royal Holloway, University of London, UK
D.Cohen@rhul.ac.uk,
2 Computing Laboratory, University of Oxford, UK
peter. jeavons@comlab.ox.ac.uk,
3 School of Computer Science, University of St Andrews, UK
{caj,kep}@dcs.st-and.ac.uk,
4 Cork Constraint Computation Centre, University College Cork, Ireland
b.smith@4c.ucc.ie

Abstract. We review the many different definitions of symmetry for
constraint satisfaction problems (CSPs) that have appeared in the liter-
ature, and show that a symmetry can be defined in two fundamentally
different ways: as an operation preserving the solutions of a CSP instance,
or else as an operation preserving the constraints. We refer to these as
solution symmetries and constraint symmetries. We define a constraint
symmetry more precisely as an automorphism of a hypergraph associ-
ated with a CSP instance, the microstructure complement. We show
that the solution symmetries of a CSP instance can also be obtained as
the automorphisms of a related hypergraph, the k-ary nogood hypergraph
and give examples to show that some instances have many more solution
symmetries than constraint symmetries. Finally, we discuss the practical
implications of these different notions of symmetry.

1 Introduction

The issue of symmetry is now widely recognised as of fundamental importance
in constraint satisfaction problems (CSPs). It seems self-evident that in order to
deal with symmetry we should first agree what we mean by symmetry. Surpris-
ingly, this appears not to be true: researchers in this area have defined symmetry
in fundamentally different ways, whilst often still identifying the same collection
of symmetries in a given problem and dealing with them in the same way.

In this paper, we first survey the various symmetry definitions that have ap-
peared in the literature. We show that the existing definitions reflect two distinct
views of symmetry: that symmetry is a property of the solutions, i.e. that any
mapping that preserves the solutions is a symmetry; or that symmetry preserves
the constraints, and therefore as a consequence also preserves the solutions. We
propose two new definitions of solution symmetry and constraint symmetry to
capture these two distinct views, and show that they are indeed different: al-
though any constraint symmetry is also a solution symmetry, there can be many

solution symmetries that are not constraint symmetries. We discuss the relation-
ship between the symmetry groups identified by these definitions and show that
each is the automorphism group of a hypergraph, derived from either the solu-
tions or the constraints of the CSP. We illustrate these ideas by discussing how
they apply to a well-studied example problem, the n-queens problem. We point
out that problems with very few solutions must have many solution symmetries,
even if they have no constraint symmetries. Finally, we discuss how these defi-
nitions of symmetry may be used in practice, by enlarging the symmetry group
used in searching for solutions to the CSP.

2 A Brief Survey of Symmetry Definitions

There have been many papers in recent years on symmetry in constraint satis-
faction and related problems, not all of which give a clear definition of symmetry.
In this section, we review the variety of definitions that have been used.

We first fix our terminology by defining a CSP instance as follows.

Definition 1. A CSP instance is a triple (V, D, C) where:

— V is a set of variables;

— D is a universal domain, specifying the possible values for those variables;

— C is a set of constraints. Fach constraint ¢ € C is a pair ¢ = (o, p) where o
is a list of variables from V', called the constraint scope, and p is a |o|-ary
relation over D, called the constraint relation.

An assignment of values to variables is a set {{v1,a1), (v2,a2), ..., (Vk,ar)}
where {v1,va,...,vp} CV and a; € D,V 1 < i < k. Note that the constraint
relation of a constraint c is intended to specify the assignments that are allowed
by that constraint.

A solution to the CSP instance (V, D, C) is a mapping from V into D whose
restriction to each constraint scope is in the corresponding constraint relation,
i.e. is allowed by the constraint.

We will call a CSP k-ary if the maximum arity of any of its constraints is k. A
2-ary CSP will be called a binary CSP.

There are two basic types of definition for symmetry in a CSP instance: those
that define symmetry as a property of the set of solutions, and those that define
symmetry as a property that can be identified in the statement of the problem,
without solving it. We shall refer to these informally in this section as solution
symmetry and problem symmetry or constraint symmetry. In Section 3 we will
define them formally and use these definitions to show how the two types of
symmetry are related.

An example of an early definition of solution symmetry is given by Brown,
Finkelstein & Purdom [6], who define a symmetry as a permutation of the prob-
lem variables that leaves invariant the set of solutions. Backofen and Will [2]
similarly define a symmetry as a bijective function on the set of solutions of

a CSP: they allow a symmetry to be specified by its effect on the individual
assignments of values to variables.

A number of papers have defined problem symmetry in propositional calcu-
lus. Aguirre [1] and Crawford, Ginsberg, Luks & Roy [7] each define symmetry
similarly: if .S is a set of clauses in CNF, then a permutation 7 of the variables
in those clauses is a symmetry of S if 7(S) = S. The expression 7(5S) denotes
the result of applying the permutation 7 to the clauses in S. If this permutation
simply re-orders the literals in individual clauses, and reorders the clauses, then
it leaves S effectively unchanged, and so in this case m(S) = S and 7 is a sym-
metry. Benhamou and Sais [4] use a slightly more general definition, in which a
symmetry is a permutation defined on the set of literals that preserves the set
of clauses. For example, given two variables x and y, x may be mapped to —y.

In CSPs, some authors have similarly defined a symmetry as a mapping that
leaves the constraints unchanged, but have often restricted the allowed mappings
to those that affect only the variables or only the values. Note that a constraint
may be specified ezxtensionally by listing its allowed tuples, or intensionally by
giving an expression such as x < y from which the allowed tuples could be
determined. Permuting the variables in a constraint will in general change it:
for example, the constraint = + y = z is not the same as the constraint x +
z = y. Puget [18] defines the notion of a symmetrical constraint, that is, a
constraint which is unaffected by the order of the variables. For example, the
binary inequality constraint, #, is symmetrical. He defines a symmetry of a CSP
as a permutation of the variables which maps the set of constraints into an
equivalent set: any constraint is either unchanged by the permutation or is an
instance of a symmetrical constraint and is mapped onto a constraint on the
same set of variables.

A similar idea was introduced by Roy and Pachet [21]. They define the notion
of intensional permutability: two variables are intensionally permutable if: they
have the same domain; any constraint affecting either of them affects both; for
any constraint affecting these two variables, interchanging them in the expression
defining the constraint does not change it. (The constraint is assumed to be
defined intensionally, hence the name.) For example, in a linear constraint, any
two variables with the same coefficient are intensionally permutable (with respect
to that constraint, and assuming that they have the same domain).

Both Puget [18] and Roy and Pachet [21] restrict their definitions of sym-
metries to mappings that permute the variables of the problem only. Meseguer
and Torras [16] define symmetries that act on both the variables and the values
of a CSP. They define a symmetry on a CSP with n variables as a collection of
n+ 1 bijective mappings © = {6, 64, ..., 0, }. The mapping @ is a bijection on the
set of variables {x1,xa,...,2,}; each 6; is a bijection from D(x;) to D(0(x;))
(where D(z;) is the domain D restricted to the acceptable values for x; by unary
constraints). These mappings will also transform each constraint. The set © is
called a symmetry if it does not change the set of constraints C, as a whole.

Meseguer and Torras’s definition allows both variable symmetries (that per-
mute only the variables) and value symmetries (that permute only the values)

as special cases, and hence is more general than many earlier definitions. How-
ever, it does not allow mappings in which variable-value pairs involving the same
variable (say (x;,a1) and {x;, a2)) can be mapped to variable-value pairs involv-
ing different variables (say (z;,a;) and (x,ax), where z; #). For example,
Meseguer and Torras consider the n-queens problem, in the commonly-used CSP
formulation in which the variables correspond to the rows of the chessboard and
the values to the columns. They show that the reflections in the horizontal and
vertical axes and the rotation of the chessboard through 180° are symmetries of
the corresponding CSP according to their definition, but the other four chess-
board symmetries (reflection in the diagonals, rotation through 90° and 270°)
are not. This example will be considered in more detail in Section 4 below.

Finally, we consider the notion of interchangeability, as defined by Freuder
[10]. This is a form of solution symmetry: two values a, b for a variable v are fully
interchangeable if every solution to the CSP containing the assignment (v, a) re-
mains a solution when b is substituted for a, and vice versa. As Freuder notes,
in general identifying fully interchangeable values requires finding all solutions
to the CSP. He therefore defines local forms of interchangeability that can be
identified by inspecting the problem. Neighbourhood interchangeability, for ex-
ample, is a form of constraint symmetry: two values a,b for a variable v are
said to be neighbourhood interchangeable if for every constraint ¢ whose scope
includes v, the set of assignments that satisfy ¢ which contain the pair (v, a) still
satisfy ¢ when this is replaced by (v,b), and vice versa.

Benhamou [3] extends the ideas of interchangeability slightly and distin-
guishes between semantic and syntactic symmetry in CSPs, corresponding to
our notions of solution symmetry and constraint symmetry, respectively. He de-
fines two kinds of semantic symmetry: two values a; and b; for a CSP variable
v; are symmetric for satisfiability if the following property holds: there is a so-
lution which assigns the value a; to v; if and only if there is a solution which
assigns the value b; to v;. The values are symmetric for all solutions if: each
solution containing the value a; can be mapped to a solution containing the
value b;. (The latter property implies the former.) Identifying semantic symme-
tries requires solving the CSP to find all solutions, and examining them. The
notion of syntactic symmetry in [3] is defined as follows. Let P = (V,D,C)
be a binary CSP instance, whose constraint relations are all members of some
set R. A permutation 7 of D is a syntactic symmetry if Vr;; € R, we have
(di,dj) € rij = (n(di),w(dj)) € rij. In other words, the permutation = does
not change any constraint relation of P, considered as a set of tuples.

From this brief survey of existing symmetry definitions, it can be seen that
they differ both in what aspect of the CSP they act on (only the values, only
the variables, or variable-value pairs) and in what they preserve (the constraints
or the set of solutions). It should be noted that it has become standard in the
symmetry breaking methods that act during search (e.g. [2, 8,9, 13]), as opposed
to adding constraints to the CSP, to describe symmetries by their action on
variable-value pairs. Hence, almost all the definitions described in this section
are more restrictive than these systems allow.

Under all the definitions, symmetries map solutions to solutions and non-
solutions to non-solutions; the definitions disagree over whether this is a defining
property, so that any bijective mapping of the right kind that preserves the
solutions must be a symmetry, or whether it is simply a consequence of leaving
the constraints unchanged. In the next section we will show that this distinction
is critical: the choice we make can seriously affect the symmetries that we find.

3 Constraint Symmetries and Solution Symmetries

In this section we will give two definitions of symmetries for constraint sat-
isfaction problems that are sufficiently general to encompass all the types of
symmetry allowed by the definitions given in the last section.

Note that the essential feature that allows any bijective mapping on a set of
objects to be called a symmetry is that it leaves some property of those objects
unchanged. It follows from this that the identity mapping will always be a sym-
metry, and the inverse of any symmetry will also be a symmetry. Furthermore,
given two symmetries we can combine them (by composing the mappings) to
obtain another symmetry. Hence, the set of symmetries forms a group.

The particular group of symmetries that we obtain depends on exactly what
property it is that we choose to be preserved. Our first definition uses the prop-
erty of being a solution.

Definition 2. For any CSP instance P = (V, D,C), a solution symmetry of P
s a permutation of the set V' x D that preserves the set of solutions to P.

In other words, a solution symmetry is a bijective mapping defined on the set
of possible variable-value pairs of a CSP, that maps solutions to solutions. Note
that this general definition allows variable and value symmetries as special cases.

To state our definition of constraint symmetries we first describe a mathe-
matical structure associated with any CSP instance. For a binary CSP instance,
the details of the constraints can be captured in a graph, the microstructure [10,
14] of the instance.

Definition 3. For any binary CSP instance P = (V, D, C)), the microstructure
of P is a graph with set of vertices V' x D where each edge corresponds either
to an assignment allowed by a specific constraint, or to an assignment allowed
because there is no constraint between the associated variables.

Hence, the vertices of the microstructure correspond to variable-value pairs of
the CSP. For our purposes, it is more convenient to deal with the complement of
this graph. The microstructure complement has the same set of vertices as the
microstructure, but with edges joining all pairs of vertices which are disallowed
by some constraint, or else are incompatible assignments for the same variable. In
other words, two vertices (v1,a1) and (v2,az) in the microstructure complement
are connected by an edge if and only if:

— the vertices v; and vy are in the scope of some constraint, but the assignment
of a1 to v1 and as to vs is disallowed by that constraint; or

— vy =v9 and a1 # as.

Recall that any set of vertices of a graph which does not contain an edge is
called an independent set. An immediate consequence of the definition of the
microstructure complement is that a solution to a CSP instance P is precisely
an independent set of size |V in its microstructure complement.

The definition extends naturally to the non-binary case. Here the microstruc-
ture complement is a hypergraph whose set of vertices is again the set of all
variable-value pairs. In this case, a set of vertices E is a hyperedge of the mi-
crostructure complement if it represents an assignment disallowed by a con-
straint, or else consists of a pair of incompatible assignments for the same vari-
able. In other words, a set of vertices {{vi,a1), (va, ag), ..., (vg,ar)} is a hyper-
edge if and only if:

— {wv1,v9,...,v,} is the set of variables in the scope of some constraint, but
the constraint disallows the assignment {(v1,a1), (ve,as),..., (v, ax)}; or
— k=2, v =vy and a1 # as.

Ezample 1. The following system of linear equations over the integers modulo 2
(that is, where 1+ 1 =0)

z+y+2=0
w+y=1
w+2z=0

can be modelled as a CSP instance P = (V, D, C), with V = {w,z,y,z}, D =
{0,1} and C = {¢1, ¢a, c3}, where ¢1, ¢a, c3 correspond to the three equations.
The microstructure complement of P is shown in Figure 1. It has eight ver-
tices: (w, 0), (w, 1), (x,0), (z, 1), (y,0), (y, 1), (z,0), (z, 1), and twelve hyperedges.
The equation = + y + z = 0 disallows the assignment {(z,0), (y,0), (z,1)} and
three other assignments. Hence, the microstructure complement has four ternary
hyperedges arising from this constraint, including {(x, 0), (y, 0}, (z,1)}. Each bi-
nary constraint also gives two binary hyperedges. In total therefore the mi-
crostructure complement has four ternary and four binary hyperedges arising
from disallowed tuples Finally, there are four binary hyperedges (one per vari-
able) corresponding to pairs of different values for the same variable; for example,

the hyperedge {{y,0), (y,1)}.

We are now in a position to define a constraint symmetry. Recall that an auto-
morphism of a graph or hypergraph is a bijective mapping of the vertices that
preserves the edges (and hence also preserves the non-edges).

Definition 4. For any CSP instance P = (V, D,C), a constraint symmetry is
an automorphism of the microstructure complement of P (or, equivalently, of
the microstructure).

Fig. 1. The microstructure complement of the CSP instance P defined in Example 1.

The microstructure complement is related to the direct encoding of a CSP
as a SAT instance [22]. The direct encoding has a variable for each variable-
value pair in the original CSP; a clause for each pair of values for each variable,
forbidding both values being assigned at the same time; and a clause for each
tuple of variable-value pairs not allowed by a constraint (as well as other clauses
ensuring that a value is chosen for every variable). A constraint symmetry as
defined here is therefore equivalent to a permutation of the variables in the
SAT encoding that does not change the set of clauses, and so is related to the
definition of symmetry in SAT given by Crawford et al. [7].

Ezample 2. We consider the constraint symmetries of the CSP defined in Ex-
ample 1, whose microstructure complement is shown in Figure 1. The automor-
phisms of this graph are:

= ({w,00(w, 1)) ((y,0)(y, 1)) ((z,0)(z,1));

= ((w, 0)(w, 1)) ({y,0)(z,1)) ({y,1)(2,0));

= ((w, 0)(w, 1)) ({9, 0)(2,0)) ({y,1){z,1));
and the identity mapping. (The permutations of the vertices are written in cyclic
form: the first swaps the vertices (w,0) and (w, 1) while simultaneously swap-
ping (y,0) and (y, 1) and swapping (z,0) and (z, 1), but leaves (z,0) and (z, 1)
unchanged.) Hence, these four mappings are the constraint symmetry group of
the CSP.

This example also shows that there can be more solution symmetries than
constraint symmetries. The CSP has only two solutions, {(w, 0), (x, 1), (y, 1), (z,0)}
and {(w, 1), (x, 1), (y, 0}, (z, 1) }. The permutation ({(w, 0)(z, 0){y, 1)), which maps
(w, 0) to (z,0), (z,0) to (y,1), (y,1) to (w,0) and leaves all other variable-value
pairs unchanged, is a solution symmetry. This mapping transforms each solution
into itself, but clearly is not a constraint symmetry.

Although Definition 2 and Definition 4 appear to be very different, we now
show that there are some simple relationships between solution symmetries and
constraint symmetries.

Theorem 1. The group of constraint symmetries of a CSP instance P is a
subgroup of the group of solution symmetries of P.

Proof. Let P be a CSP instance and let m be any automorphism of the mi-
crostructure complement of P. We will show that m maps solutions to solutions,
and hence is a solution symmetry of P.

Let s be any solution of P, and let W be the corresponding set of vertices in
the microstructure complement of P. By the construction of the microstructure
complement, W is an independent set of size |V|. Since 7 is an automorphism,
we know that w(W) is also an independent set of size |V|. Hence 7(W) is not
disallowed by any of the constraints of P, and so is a solution. a

Next we show that the group of all solution symmetries of an instance P is
also the automorphism group of a certain hypergraph. We first define a nogood.

Definition 5. For any CSP instance P, a k-ary nogood is an assignment to k
variables of P that cannot be extended to a solution of P.

The k-nogood hypergraph of P is a hypergraph whose set of vertices is V x D
and whose set of edges is the set of all m-ary nogoods for all m < k.

The k-nogood hypergraph of a CSP instance has the same vertices as the
microstructure complement. For a k-ary CSP (one whose constraints have max-
imum arity k), the k-ary nogood hypergraph contains every hyperedge of the
microstructure complement, and possibly some others. The additional hyper-
edges represent partial assignments of up to k variables that are allowed by the
constraints, but do not appear in any solution because they cannot be extended
to a full assignment satisfying all the constraints. Note that although enforcing
(k 4+ 1)-consistency in a CSP instance may add new k-ary nogoods, it will not
in general find all such nogoods; except in special cases, we identify the k-ary
nogoods from the set of solutions.

Ezxample 3. Consider again the CSP instance P defined in Example 1, with
solutions {(w,0), (z,1), (y, 1), (z,0)} and {(w, 1), (x,1), (y,0), (z,1)}.

This instance has a large number of 3-ary nogoods, and the 3-nogood hy-
pergraph of P has a large number of hyperedges, in addition to those in the
microstructure complement. These include the hyperedge {(z,0), (y,0), (z,0)},
for example. This assignment is allowed by the 3-ary constraint on the variables
x,y, z, but cannot be extended to a complete solution of P. Many of the addi-
tional hyperedges do not correspond to the scope of any constraint: for example,
the hyperedge {(w, 0), (z, 1), (3, 0)}.

Theorem 2. For any k-ary CSP instance P, the group of all solution symme-
tries of P is equal to the automorphism group of the k-nogood hypergraph of
P.

Proof. Let F be the k-nogood hypergraph of P and let = be any automorphism
of F'. We will show that 7 preserves solutions, and hence is a solution symmetry.

Let s be any solution of P, and let W be the corresponding set of vertices in
F'. By the construction of this hypergraph, W is an independent set of size |V|.

Since 7 is an automorphism of F', we know that w(W) is also an independent
set of size |V|. Hence m(W) is not disallowed by any of the constraints of P, and
is a solution.

Conversely, let m be a solution symmetry of P. We will show that = maps
every set of k or fewer vertices of F' which is not a hyperedge to another non-
hyperedge, and hence 7 is an automorphism of this hypergraph.

Let E be any set of k or fewer vertices in F' which is not a hyperedge. Since
every nogood of P of size k or less is a hyperedge of the k-nogood hypergraph,
it follows that E can be extended to at least one solution of P.

Hence we may suppose that E is part of some solution s. Now, s is mapped
to the solution m(s) by the solution symmetry m. Every k-ary projection of this
solution, including the image w(FE) of E, is a non-hyperedge in F, and so we are
done. ad

Theorem 2 shows that to obtain the solution symmetries of a CSP instance
it is sufficient to consider the automorphisms of the hypergraph obtained by
adding all the nogoods of arity k or less to the microstructure complement. We
will show in the next section that in some cases there are hypergraphs obtained
by adding a smaller number of edges to the microstructure complement which
already have all solution symmetries as automorphisms. However, the next result
shows that there are cases where it is in fact necessary to add all nogoods of
arity k or less to the microstructure complement in order to obtain a hypergraph
with all solution symmetries as automorphisms.

Proposition 1. For some k-ary CSP instances P, the k-nogood hypergraph is
the only hypergraph containing the microstructure complement of P whose auto-
morphisms are exactly the solution symmetries.

Proof. Consider a CSP instance P, with constraints of every arity less than or
equal to k, which has no solutions. Let H be the microstructure complement of
P.

Since P has no solutions, every permutation of the vertices of H is a solu-
tion symmetry. For each positive integer m < k, there is at least one m-tuple
disallowed by a constraint, so H has at least one m-ary hyperedge. Since every
permutation of the vertices of H is a solution symmetry, applying the solution
symmetry group to H will give all m-sets of vertices as hyperedges. Hence the
only hypergraph containing H whose automorphisms include all solution sym-
metries is the hypergraph with all m-sets of vertices as edges, for all m < k,
which is equal to the k-nogood hypergraph. a

Hence to obtain all solution symmetries of a k-ary CSP instance it is some-
times necessary to consider all m-ary nogoods, for all m < k. On the other hand,
Theorem 2 shows that we do not need to consider nogoods of any size larger than
k. (In fact the same proof shows that adding all nogoods of size [, for any [larger
than k, to the k-nogood hypergraph does not change its automorphism group.)
In particular, this means that to obtain all the solution symmetries of a binary
CSP instance we need only consider the binary and unary nogoods.

Theorem 1 and Theorem 2 help to clarify the relationship between solution
symmetries and constraint symmetries. One reason that it is important to dis-
tinguish these two kinds of symmetries carefully is that, in general, there can
be many more solution symmetries than constraint symmetries for a given CSP
instance, as we will show in the next section.

4 Case Study: Symmetry in n-queens

In this section we will illustrate the relationship between solution symmetries
and constraint symmetries by examining the n-queens problem. This problem is
useful for discussing symmetry because the common CSP formulation has several
different types of symmetry, some of which are beyond the scope of some earlier
definitions.

The standard formulation of the n-queens problem as a CSP has n variables
corresponding to the rows of the chessboard, say ri,7ra,...,7,. The domain of
values corresponds to the columns of the chessboard, say D = {1,2,...,n}. The
constraints can be expressed as follows, to give a binary CSP:

— forall¢,7,1 <i<j<n,r#r
—foralli,j,1<i<j<mn,|r,—rj| #li—j|

Considered as a geometric object, a chessboard has eight symmetries: reflec-
tions in the horizontal and vertical axes and the two diagonals, rotations through
90°, 180° and 270°, and the identity.

Recall, however, that Meseguer & Torras [16] did not allow the full set of
geometric symmetries of the chessboard as symmetries of the usual CSP for-
mulation of n-queens. This is because the formulation introduces an asymme-
try between rows and columns, so that some of the geometric symmetries do
not leave the constraints syntactically unchanged. In particular, the rotational
symmetries through 90° and 270° map assignments forbidden by some of the
constraints to assignments that are mutually incompatible because they assign
two values to the same variable. For example, the forbidden pair consisting of
(r1,1) and (rq,1) is mapped by the rotation through 90° to the incompatible
pair consisting of (r1,n) and (ri,n — 1).

The microstructure complement restores the symmetry between rows and
columns, by treating in the same way both of these reasons for a pair of assign-
ments to be disallowed. Hence each geometric symmetry of the chessboard gives
rise to a constraint symmetry of the n-queens problem for any n, according to
our definition of constraint symmetry (Definition 4).

Clearly, the set of solutions to an instance of the n-queens problem is invariant
under each of the eight geometric symmetries of the chessboard. Hence each of
these geometric symmetries is a solution symmetry of the n-queens problem for
any n, according to our definition of solution symmetry (Definition 2). However,
there can be many other solution symmetries for instances of this problem, as
we will now show.

The 3-queens problem has no solutions; like any other CSP with no solution,
any permutation of the possible variable-value pairs is a solution symmetry. This
is confirmed by Theorem 2: the binary nogood hypergraph is the complete graph
with nine vertices, and any permutation of the vertices is an automorphism.

The 4-queens problem has two solutions, shown in Figure 2. In this case,
it is easier to consider the complement of the binary nogood hypergraph, in
which each edge represents a pair of variable-value assignments that is allowed
by the solutions. Figure 2 also shows this graph, drawn so that the position
of each vertex, representing a variable-value pair, and hence a square of the
chessboard, corresponds to the position on a chessboard of that square. Each
solution is represented as a 4-clique in this graph, rather than as an independent
set, of size 4 in the binary nogood hypergraph. The automorphisms of this graph
are that: the vertices within either clique can be permuted; the vertices in one
clique can be swapped with those in the other; and the eight isolated vertices
(representing unary nogoods) can be permuted; and we can also compose these
permutations. This gives a total of 4! x 4! x 2 x 8! automorphisms, or 46, 448, 640.
Since the automorphisms of a graph are the same as the automorphisms of its
complement, these 46,448,640 automorphisms are the solution symmetries of
4-queens, by Theorem 2.

Q Q

Q Q

Fig. 2. The solutions of the 4-queens problem (left) and the complement of the binary
nogood graph (right).

The 5-queens problem has ten solutions, shown in Figure 3. These solutions
are divided into two equivalence classes by the geometric symmetries of the
chessboard; they transform any solution into another solution from the same
equivalence class. (The first eight solutions shown form one class, the last two
the second class.)

Every square of the chessboard has a queen on it in at least one of these ten
solutions, so that every value in the original domains is part of at least one solu-
tion and there are no unary nogoods. However, there are some pairs of squares,
where two queens can be placed consistently with the original constraints, but
which are not allowed in any solution.

Some of these new binary nogoods are shown in Figure 4; the others are
their symmetric equivalents under the geometric symmetries of the chessboard.
In this case, the 40 additional binary nogoods can be derived by making the
problem path consistent, without finding all solutions to the problem. A binary
CSP instance is path consistent if for every possible assignment {(v;, a;), (v, a;)}

Q Q Q Q
Q Q Q Q
Q |Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Ql |Q Q
Q Q
Q |Q
Q Q
Q Q
Q Q

Fig. 3. The ten solutions of the 5-queens problem.

satisfying the constraint between v; and v; and for every third variable vy, there
is a value ay, such that the assignments {(v;, a;), (vi, ax)} and {(vg, ax), (vj,a;)}
satisfy the constraints between v; and v;, and between vy, and v;, respectively. For
example in the 5-queens problem, a pair of queens in row 1, column 1 and row 3,
column 4 together attack every square in row 2, and so this pair of assignments
cannot be part of any solution.

If these additional binary nogoods are added to the microstructure comple-
ment, then we obtain the 2-ary nogood graph for the 5-queens problem. By
using the software tool NAUTY [15], we can find the automorphism group of
this graph: it has 28,800 elements, so the 5-queens problem has a total of 28,800

Fig. 4. New binary nogoods derived from the solutions of the 5-queens problem.

solution symmetries, by Theorem 2. (We have also used NAUTY to confirm that
the microstructure complement has just the eight geometric symmetries.)

In this case, unlike the 4-queens problem, it is difficult to develop an intuitive
understanding of the additional solution symmetries. Some are easy to see: for
instance, the rows of the board can be cyclically permuted (row 1 — row 2 — row
3 — row 4 — row 5 — row 1), as can the columns. The subgroup consisting of
these permutations together with the geometric symmetries and all combinations
makes all 10 solutions symmetrically equivalent, i.e. there is just one equivalence
class, rather than two. However, this subgroup is still much smaller than the full
solution symmetry group.®

In the 6-queens problem, the additional binary nogoods can again be derived
by path consistency. For example, queens in row 1, column 2 and row 3, column 5
together attack all the squares in row 2. There are also unary nogoods, since the
problem has only four solutions. Adding all these nogoods to the microstructure
complement yields a very large symmetry group, as shown in Table 1.

For n > 7, path consistency does not give any new nogoods, because two
queens can together attack at most six squares on any row. Even so, there can
be binary nogoods in addition to those in the original constraints for n = 7,8, 9;
if the constraints allow queens to be placed on a pair of squares, but no solution
has both squares occupied, we have a new binary nogood. For example, in the
7-queens problem there are no solutions with queens in row 1, column 1 and
in row 2, column 7. Again, in the 8-queens problem, there are many binary
nogoods to add; for example, in the set of 12 non-equivalent solutions (with
respect to the geometric symmetries), only two have a queen in a corner square.
Since a queen in a corner only directly attacks two squares in any other row,
there are many squares where a queen does not directly conflict with a queen
in a corner square, but where the combination with a queen in a corner square
does not appear in any solution. For instance, there are no solutions (including
symmetric equivalents) with a queen in row 1, column 1, and a queen in row 2,
columns 2, 3 or 8.

Thereafter, we have examined the sets of solutions up to n = 14 and found
no further additional binary nogoods. Table 1 shows that for n > 7, the solution
symmetries appear to be just the geometric symmetries: in spite of the additional
binary nogoods for n = 7, 8,9, the binary nogood graph for these instances has
the same automorphism group as the microstructure complement. This demon-
strates that in spite of Proposition 1, the minimal hypergraph containing the
microstructure complement whose automorphisms are the solution symmetries
can sometimes be smaller than the k-ary nogood hypergraph. Note that the num-
ber of solutions to the n-queens problem increases rapidly with n: intuitively,

5 In an attempt to understand the solution symmetries of 5-queens in terms of simple
transformations of the chessboard, we used NAUTY and GAP [11] to find a small
number of generators of the group, including one or more of the geometric symme-
tries. The group can be generated by two permutations of the variable-value pairs,
together with the rotation through 90°. However, these two permutations are still
far from meaningful in terms of the chessboard.

Table 1. The number of additional binary nogoods derived from the sets of solutions
to the n-queens problem, and the number of solution symmetries

Additional Solution
n|binary nogoods symmetries
3 8 9! = 362,880
4 32 4l x 4! x 2 x 8! = 46,448,640
5 40 28,800
6 280 3,089,428,805,320,704,000,000
7 72 8
8 236 8
9 40 8
10 0 8

it becomes more difficult for a solution symmetry to preserve them all, so that
eventually the solution symmetries are just the constraint symmetries.

A principal reason for identifying symmetry in CSPs is to reduce search effort
by not exploring assignments that are symmetrically equivalent to assignments
considered elsewhere in the search. Clearly, if the solution symmetry group is
larger than the constraint symmetry group, there will potentially be a greater
search reduction from using the solution symmetries, if they can somehow be
identified in advance. In some cases, as in the 5-queens problem, establishing
some level of consistency in the problem to find new nogoods (of arity < k),
and adding these to the microstructure complement, will give an automorphism
group that is nearer to the solution symmetry group, if not equal to it.

When finding all solutions, the aim in symmetry breaking is to find just one
solution from each symmetry equivalence class; in the 5-queens problem, the
solutions fall into two equivalence classes when using the constraint symmetries
and only one when using the solution symmetries. Once the search is completed,
it is possible to reconstruct the full set of ten solutions, if required, from either
the single solution found using the solution symmetries, or the two solutions
found using the constraint symmetries.

However, there seems no straightforward way of going from the single repre-
sentative solution found in the first case to two representatives that are distinct
under the constraint symmetries, except by generating the full set of solutions
and eliminating those that are equivalent under the constraint symmetries. Al-
though feasible in this case, when there are only ten solutions altogether, it
would not often be practicable to generate all possible solutions. Hence, if a set
of non-isomorphic solutions were required, under some group of symmetries, it
seems that only those symmetries should be used in the search. The appropri-
ate symmetry group should be chosen in advance, as the choice can affect the
number of solutions found.

This raises the question of how to identify the symmetries of a CSP, whether
the constraint symmetries or the solution symmetries; we discuss this next.

5 Identifying Symmetry in Practice

Symmetry in CSPs is usually identified, in practice, by applying human insight:
the programmer sees that some transformation would transform a hypothetical
solution into another hypothetical solution. The definition of constraint sym-
metry given earlier can be used to confirm that candidate transformations are
genuine symmetries. It is not necessary to generate the entire microstructure
complement for this purpose, but only to demonstrate that each candidate map-
ping will map edges to edges and non-edges to non-edges in this hypergraph.

For example, in the n-queens problem, each vertex in the microstructure
corresponds to a queen placed on a specific square of the chessboard, i.e. the
variable-value pair (r;, j) represents a queen placed in row ¢, column j. Rotation
through 90° maps this assignment to (r;, n+1—1). An edge in the microstructure
complement corresponds to a pair of squares that are on the same row, column or
diagonal; the rotation clearly maps rows to columns and vice versa, and also maps
diagonals to diagonals, and hence maps edges to edges in the microstructure
complement. For example, (r;,j) and (r;, k), which are in the same row, are
mapped to (r;,n + 1 — i) and (ry,n + 1 —), which are in the same column.
Similarly, it can be shown that this rotation maps variable-value pairs that are
in different rows, columns, and diagonals to pairs that remain in different rows,
columns, and diagonals, and hence it maps non-edges to non-edges.

Identifying symmetry in a CSP by inspection is prone to missing some of
the symmetry: a feasible method to identify symmetry automatically would be
preferable. We can in theory identify all the constraint symmetries in a prob-
lem by generating the microstructure complement and finding its automorphism
group. However, this may not be feasible, especially for CSPs with global con-
straints, where identifying the satisfying tuples may itself be intractable [5], and
in any case each constraint may result in a very large number of hyperedges.
It may then be possible to represent the constraints more compactly while pre-
serving the important details; for instance, Ramani and Markov [20] propose to
represent constraints by parse trees and find the automorphisms of the resulting
graph. Puget [19] also shows how to represent a CSP instance compactly in a
graph whose automorphisms are the constraint symmetries.

One advantage of considering the solution symmetry group is that it is well-
defined for any problem instance with a given set of solutions. On the other
hand, different CSP models of the same problem, with the same set of solu-
tions but differing slightly in the way that the constraints are expressed, may
have different constraint symmetry groups. The 5-queens example shows that
if the problem is made path consistent, and hence new nogoods are added, the
constraint symmetry group is the full solution symmetry group with 28,800 el-
ements rather than the eight constraint symmetries of the original formulation.
Conversely, it would often be possible, either deliberately or inadvertently, to
write the constraints of a CSP in such a way that the symmetry of the problem
being modelled is not reflected in the microstructure of the CSP.

Many authors have defined symmetry in CSPs in a similar way to our defini-
tion of solution symmetry, perhaps for this reason, but have effectively identified

constraint symmetries; we have shown that the solution symmetry group can
be much larger than the constraint symmetry group. It is inescapably hard to
determine the solution symmetry group: since it is the complete permutation
group on the variable-value pairs if and only if the CSP has no solution, finding
the solution symmetry group is equivalent to determining whether or not the
CSP has a solution. However, since we have shown that the solution symmetries
are the automorphisms of the k-ary nogood hypergraph, any additional nogoods
that can be found, for instance by preprocessing the problem, can be added to
the microstructure complement and may allow a larger group of symmetries to
be found.

Methods such as those proposed here may find a potentially very large group
of symmetries, but with possibly only a small number of generators. For instance,
as shown earlier, the solution symmetry group of 5-queens has 28,800 elements
but just three generators. Symmetry-breaking methods that combine dynamic
symmetry breaking during search with computational group theory, e.g. [12],
can tackle such symmetry groups.

6 Solution Symmetry without Constraint Symmetry

As already mentioned, if a CSP instance has no solutions, any permutation of the
variable-value pairs is a solution symmetry, irrespective of whether the problem
has any constraint symmetry. We can take this further, since it is easy to see that
any CSP instance with very few solutions must have many solution symmetries.

Ezxzample 4. Suppose a CSP instance with n variables, and d values for each
variable, has only one solution. Any permutation of the variable-value pairs in
that solution is a solution symmetry; so is any permutation of the variable-value
pairs that are not in the solution. The size of the solution symmetry group is
therefore n! x (n(d — 1))!.

Ezample 5. Suppose a CSP instance with n variables, and d values for each
variable, has just 2 solutions, and these solutions have k assignments in common.
A solution symmetry must transform the common assignments to themselves,
but then can map the other assignments in each solution either to assignments in
the same solution, or to assignments in the other solution. Again, the nd—2n+k
assignments that are not part of either solution can be mapped to themselves.
This gives (nd —2n+k)! x k! x 2 x (n —k)!2. (For example, the 4-queens problem
has two solutions; n = d = 4, k = 0 and the number of solution symmetries is
8! x 2 x 4!, as shown in Table 1.)

With larger numbers of solutions, it becomes more difficult to construct per-
mutations of the variable-value pairs (other than the identity mapping) that
can map each solution into itself without changing the other solutions, and still
more difficult to map one solution into another, unless there is some inherent
symmetry that leads to symmetry in the way that the solutions overlap.

Ezxample 6. Suppose a CSP instance has the following three solutions:

it is not possible to map any solution to another while preserving the third,
because of the different numbers of variable-value pairs in common. On the
other hand, if solution B is instead:

B’ 5{<$;a>7 (y,e), <Za f>7 <w7d>}

then the permutation ((z, a){(y,b))({(w, d){z, c))({z, h){y,e))({z, f){w, i)) maps so-
lution B’ to solution C' and solution A to itself, and there are many other solution
symmetries too.

Hence, as the number of solutions gets larger, the existence of solution sym-
metries depends on the structure of the solutions, and hence on the properties
of the CSP. Nevertheless, any CSP instance that has d values for each variable
and fewer than d solutions must have some solution symmetries arising from
permuting the assignments that do not appear in any solution.

These considerations show that to some extent the existence of solution sym-
metry reflects how many solutions the CSP instance has, rather than any other
property. This can lead to paradoxical results, as we will show. One way of deal-
ing with (constraint) symmetry that has been identified in a CSP instance is
to add constraints to eliminate it; the resulting new CSP instance has fewer
solutions than the original. Even though the new instance has fewer constraint
symmetries, it may have more solution symmetries.

Ezample 7. Consider the problem of finding a graceful labelling of a graph [17]. A
labelling f of the nodes of a graph with g edges is graceful if f assigns each node a
unique label from {0, 1, ..., ¢} and when each edge xy is labelled with | f(x)— f(y)],
the edge labels are all different (and form a permutation of {1,2,...,q}).

A simple CSP model has a variable for each node, and its values are the po-
tential labels for that node. Suppose that in the CSP instance, P, constructed to
find a graceful labelling of the graph in Figure 5, the nodes in one clique are rep-
resented by variables x1, .., x5 and those in the other by xg, ..., x1¢, in such a way
that there is an edge in the graph joining x; and xg, 2 and z7, and so on. The
solution shown in Figure 5 is therefore {(z1,0), (x2,4), (3, 18), (x4, 19), (x5, 25),
<1'6a 23>7 <l‘7, 14>7 <5E8a 6>7 <l‘9, 3>a <:L'10a 1>}

The constraint symmetries of P are, first, those corresponding to the sym-
metry of the graph: any permutation of the variables in each 5-clique which acts

Fig. 5. A graceful labelling of K5 X P.

on both sets of variables in the same way leaves P unchanged; also the variables
in the first clique can be interchanged with the adjacent variables in the second.
In addition, there is a value symmetry: replacing every value v in every domain
by its complement ¢ — v leaves P unchanged. The graph symmetries can be
combined with each other and with the complement symmetry. Hence, the size
of the symmetry group is 5! x 2 x 2, or 480.

In this case, it is possible to add symmetry-breaking constraints to eliminate
all the symmetry. A possible set of constraints to eliminate the graph symmetry
isx1 < e <x3 < x4 < x5 and x1 < xg. Eliminating the complement symmetry
is more difficult, but there must be an edge labelled ¢—1 in any graceful labelling,
and the edge must join either the nodes labelled 0 and ¢ — 1 or those labelled
1 and ¢; these two possibilities are equivalent under the complement symmetry.
Suppose we add a constraint eliminating the first possibility. The resulting CSP
instance P’ has no constraint symmetry.

The graph K5 x P, has a unique graceful labelling, apart from symmetric
equivalents. Hence, the original CSP instance P has 480 solutions. P has more so-
lution symmetries than the 480 constraint symmetries, since the labelling shown
in Figure 5 and its complement use only 16 different node labels; the assignments
of the remaining 10 values to each variable can be permuted without changing
the solutions. However, P’ has only one solution and its solution symmetry group
therefore has 10! x 250! elements, as shown in Example 4. We again used NAUTY
to find the solution symmetry group of P; as well as permutations of the 10 un-
used values for each of the 10 variables, and the original constraint symmetries,
there are some other swaps of variable-value pairs that leave the solutions un-
changed, giving a group with 100! x 22% x 480 elements. This is much smaller
than the solution symmetry group of P’, but is clearly not a subgroup of it: the
constraint symmetries of P are also solution symmetries of P, but not of P’.

We can see a similar effect in the n-queens problem, where eliminating the
symmetry by adding symmetry-breaking constraints also results in a new CSP
with more solution symmetries:

Ezample 8. The constraint symmetry of the n-queens problem can be eliminated
by adding ordering constraints (of arity up to n) in a manner similar to that

given by Crawford et al. [7]. The solution symmetry group can be found for the
resulting CSP by finding all the solutions and finding the automorphisms of the
graph that has an n-ary hyperedge for every solution. Table 2 shows the size of
the solution symmetry group.

Table 2. The size of the solution symmetry group and number of solutions for the
n-queens problem with constraints to eliminate the constraint symmetry.

Size of solution |Number of
n|symmetry group| solutions
3 9! 0
4 12! x 4! 1
516! x 4! x 4! x 2 2
6 30! x 6! 1
7| 24! x 13824 6
8 24! x 12 12
9 11! x 4 46

10 10! 92
11 10! 341
12 11! 1787

These results can be compared with the size of the solution symmetry group
for the original problem given in Table 1. The solution symmetry group is the
same as that of the original problem for n = 3: both problems have no solution.
Otherwise, the problem with the symmetry-breaking constraints has a larger
symmetry group than the original; this is particularly striking for n > 7, where
the solution symmetry group of the original problem has just the 8 constraint
symmetries, as shown in Table 1. The symmetry-breaking constraints result in a
larger group because they prevent queens from being placed on certain squares;
for instance, a queen can be placed in at most one of the corner squares, and the
queen in the top row can only be placed in the left half of the board. This gives
rise to several variable-value pairs (the number increasing with n) that cannot
appear in any solution, any permutation of which is a solution symmetry.

Hence, these examples show that eliminating the constraint symmetry in a
CSP instance, by adding symmetry-breaking constraints to give a new instance,
can result in an increase in the number of solution symmetries. In Example 7, this
is simply because the new instance has only one solution, and such problems have
many solution symmetries. In Example 8, the symmetry-breaking constraints
ensure that some variable-value pairs cannot be used in any solution, and so
give rise to solution symmetries.

7 Incremental Symmetry Breaking

In trying to find a set of non-isomorphic solutions to a CSP, the number of
solutions found may depend on the symmetry group, and hence, the symmetry
group should be decided in advance. However, if we are only trying to find a
single solution, and are making use of symmetry to eliminate wasted search, the
results of this paper suggest a novel, incremental approach to using symmetry
during search, which we now describe.

In this approach we maintain a set of currently known symmetries throughout
the solution process. This set is initialised to the group of constraint symmetries
by constructing the microstructure complement, and finding its automorphism
group. The microstructure complement serves as a first approximation to the
k-nogood hypergraph. Each time a nogood of arity &k or less is found during the
solution process it is added to our current view of the k-nogood hypergraph,
together with all of its images under currently known symmetries. Adding these
edges might increase the number of automorphisms of this graph, and hence
increase the set of currently known symmetries. The bigger this group of sym-
metries gets the more information we get from each additional nogood.

We know by Theorem 2 that when we have found all k-ary nogoods then we
have the whole group of solution symmetries. However, we may get the whole
group of solution symmetries long before we have explicitly considered all of the
nogoods, as illustrated in the following example.

Ezample 9. Consider the binary CSP P which has three variables V = {z, vy, 2},
domain D = {1,2} and three constraints {z # y,y # z,x # z}.

The microstructure complement of P has six vertices ((z,1), (y,1), (2,1},
(x,2), (y,2),(z,2)) and nine edges.

(z.2)

(v:2) (2,2)

(y1) (1)

Fig. 6. The microstructure complement of the CSP instance P defined in Example 9.

As shown in Figure 6, this graph has two disjoint 3-cycles, consisting of
(x,1), (y, 1), (2,1) and (z,2),(y,2), (z,2). These 3-cycles must be preserved by
any automorphism, so it follows that the automorphism group is generated by
three permutations:

= (=, 1) (y, 1) (. 2) (y,2)),
= (=, 1) (y,1) (z,1))((x,2) (y,2) (2,2)), and
= (1) (2,2))((y: 1) (y,2))((2,1) (2,2)).

The full automorphism group of this graph has 12 elements (it is the group
S3 x S3). Hence, P has 12 constraint symmetries.

On the other hand, as the instance has no solutions, the solution symmetry
group is the full permutation group of the six vertices, with 6! = 720 elements.

By one application of path consistency to the constraints z # y and y # z,
we immediately obtain the binary nogood x = 1, z = 2. If we add this nogood as
an additional edge to the microstructure complement of P, together with the five
images of it obtained by applying the constraint symmetries described above, we
obtain a graph with 15 edges in total, representing the 15 known binary nogoods.
Since this graph is the complete graph on six vertices, we have established that
every permutation is a solution symmetry and also that the problem has no
solutions.

As already outlined, an obvious way to use new nogoods of arity up to k to
increase the size of the symmetry group is to add each nogood, with its images
under the current symmetry group, to the microstructure complement and to
find the new automorphism group. Adding the symmetric equivalents of each
nogood ensures that this process will never lead to a decrease in the size of the
symmetry group. Unfortunately, however, the order in which nogoods are added
to the graph can affect the size of the resulting symmetry group, as the following
example shows:

Ezample 10. Consider a CSP instance with five variables V' = {a, b, ¢, d, e}, each
with domain D = {0,1}, and the constraints {a = b,b = ¢,c = d,d = e}.
The microstructure complement is shown in Figure 7. The constraint symmetry
group has four elements: apart from the identity mapping, the values 0 and 1
can be swapped for every variable; a can be swapped with e and simultaneously
b swapped with d; and the last two symmetries can be combined.®

Now suppose that the nogood a = 0 & e = 1 is discovered. Figure 8 shows
the microstructure complement after the edges {(a,0){e,1)} and {{a,1)(e,0)}
corresponding to this nogood and its symmetric equivalent have been added.
This graph has a larger symmetry group; the variables a, b, c,d, e can now be
cyclically permuted.

If the nogood b = 0 & e = 1 is found next and added to the microstructure
complement, with its images under the new symmetry group, the resulting graph
is shown in Figure 9. The symmetry group is again enlarged, and is now the full
solution symmetry group, since the complement of this graph consists of two

 Note that in finding the constraint symmetries of a CSP instance, Puget [19] pro-
poses to take the transitive closure of equality constraints, to ensure that the full
symmetry between the variables is represented in the constraints. In this example,
the microstructure complement would then be as shown below in Figure 9. However,
the example serves to illustrate the general point.

<a,0>

<b,0>

<d,0> <c,0>

Fig. 7. The microstructure complement of a CSP instance with V = {a,b,¢,d, e},
D = {0,1} and constraints {a = b,b =¢,c =d,d = e}.

<a,0>

Fig. 8. The microstructure complement after the nogood a =0 & e =1 is found.

cliques with vertex sets {{(a, 0}, (b,0), {¢,0), (d, 0), (e, 0)} and {{a, 1), (b,1), (c, 1),
(d,1), (e, 1)} corresponding to the two solutions a = b =c=d = e = 0 and
a=b=c=d=e=1.

Suppose instead that the first nogood found was b = 0 & e = 1; the edges
{(b,0){e, 1)}, {{b,1){e,0)}, {{d,0){a, 1)} and {{(d, 1){a,0)} would be added to the
microstructure complement, as shown in Figure 10 (left). The new graph has
the same automorphism group as the original. Now, if the nogood a =0 & e =
1 is discovered, giving the microstructure complement shown on the right of
Figure 10, the symmetry group is again unchanged. So by adding the same
nogoods in the reverse order, a smaller symmetry group has been generated.

In order to get the graph shown in Figure 9, and hence the solution symmetry
group, further nogoods would need to be discovered, e.g. a = 0 & ¢ = 1. Note
that adding both nogoods b =0 & e =1and a = 0 & e = 1 to the microstructure
complement at the same time, rather than successively, along with their images in
the original constraint symmetry group, would also result in the microstructure
complement shown on the right of Figure 10, and no change to the symmetry
group.

Fig. 9. The microstructure complement after the nogoods a = 0 & e = 1 and b =
0 & e =1 are found, in that order.

<d,0> <c,0>

Fig. 10. The microstructure complement (left) after the nogood b = 0 & e = 1 is found
and (right) after the nogoods b =0 & e =1 and a = 0 & e = 1 are found, in that
order.

This example shows that to get the maximum benefit from finding new no-
goods and using them to enlarge the symmetry group, the nogoods must be
added to the microstructure complement in the right order; finding a good order
efficiently seems difficult. Hence, although enlarging the symmetry group either
before or during search could potentially reduce the search effort required to
solve the CSP, there are some difficulties to overcome. Future work will address
these.

8 Conclusion

We have reviewed definitions of symmetry in CSPs and have proposed defini-
tions of comstraint symmetry and solution symmetry to encompass two types of
definition that have been used. We have shown that there can be many more so-
lution symmetries, i.e. permutations of the variable-value pairs that preserve the
solutions, than constraint symmetries, i.e. permutations that preserve the con-
straints. In practice, researchers have identified constraint symmetries in CSPs

rather than solution symmetries, regardless of their definition of symmetry, be-
cause of the difficulty of identifying solution symmetries that are not also con-
straint symmetries without examining the set of solutions. We have pointed out
that a CSP instance with very few solutions must have many solution sym-
metries, even if it has no constraint symmetry, and that eliminating constraint
symmetry can lead to an increase in solution symmetry. For a k-ary CSP, the
solution symmetries are the automorphisms of the k-ary nogood hypergraph;
hence, finding new nogoods of arity up to k£ and adding them to the CSP can
allow the constraint symmetry group to expand towards the solution symmetry
group. It is not yet clear how best to do this, since we have shown that the
order in which new nogoods are added can affect the resulting symmetry group.
However, this approach has the potential to reduce the search effort to solve the
problem, since symmetry-breaking methods avoid exploring assignments that
are symmetrically equivalent to assignments explored elsewhere in the search,
and hence working with a larger symmetry group may allow more of the search
tree to be pruned.

Acknowledgments

We thank members of the SBDS group, especially Warwick Harvey, lan Gent and
Steve Linton for their discussions on this topic; a review of symmetry definitions
by Iain McDonald was also useful. We are grateful to Brendan McKay for his help
in finding automorphism groups of graphs using the software tool NAUTY. This
material is based in part on works supported by the Science Foundation Ireland
under Grant No. 00/PI1.1/C075; the authors were also supported by SymNet, the
U.K. Symmetry and Search Network. Most of this work was completed while
the third author was at the Department of Computer Science, University of
York, UK, and the fourth author was at Cork Constraint Computation Centre,
University College, Cork, Ireland.

References

1. A. Aguirre. How to Use Symmetries in Boolean Constraint Solving. In F. Ben-
hamou and A. Colmerauer, editors, Constraint Logic Programming: Selected Re-
search, pages 287-306. MIT Press, 1992.

2. R. Backofen and S. Will. Excluding Symmetries in Constraint-Based Search. In
J. Jaffar, editor, Principles and Practice of Constraint Programming - CP’99,
LNCS 1713, pages 73-87. Springer, 1999.

3. B. Benhamou. Study of symmetry in constraint satisfaction problems. In Proceed-
ings of the 2nd Workshop on Principles and Practice of Constraint Programming,
PPCP’9/, pages 246254, May 1994.

4. B. Benhamou and L. Sais. Theoretical study of symmetries in propositional cal-
culus and applications. In D. Kapur, editor, Automated Deduction - CADE-11,
LNAI 607, pages 281-294. Springer-Verlag, 1992.

5. C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global con-
straints. In M. Wallace, editor, Principles and Practice of Constraint Programming
- CP 2004, volume LNCS 3258, pages 716-720. Springer, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. A. Brown, L. Finkelstein, and J. Paul Walter ” Purdom. Backtrack Searching
in the Presence of Symmetry. In T. Mora, editor, Applied Algebra, Algebraic Al-
gorithms and Error-Correcting Codes, LNCS 357, pages 99-110. Springer-Verlag,
1988.

J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-Breaking Predicates
for Search Problems. In Proceedings KR’96, pages 149-159, Nov. 1996.

T. Fahle, S. Schamberger, and M. Sellmann. Symmetry Breaking. In T. Walsh,
editor, Principles and Practice of Constraint Programming - CP 2001, LNCS 2239,
pages 225-239. Springer, 2001.

F. Focacci and M. Milano. Global Cut Framework for Removing Symmetries. In
T. Walsh, editor, Principles and Practice of Constraint Programming - CP 2001,
LNCS 2239, pages 77-92. Springer, 2001.

E. C. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In Proceedings AAAI’91, volume 1, pages 227-233, 1991.

The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4,
2005. (http://www.gap-system.org).

I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD using Compu-
tational Group Theory. In F. Rossi, editor, Principles and Practice of Constraint
Programming - CP 2003, LNCS. Springer, 2003.

I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint Pro-
gramming. In W. Horn, editor, Proceedings ECAI’2000, the European Conference
on Artificial Intelligence, pages 599-603, 2000.

P. Jégou. Decomposition of Domains Based on the Micro-Structure of Finite
Constraint-Satisfaction Problems. In Proceedings AAAI’93, pages 731-736, 1993.
B. McKay. Practical Graph Isomorphism. Congressus Numerantium, 30:45-
87, 1981. (The software tool NAUTY is available for download from
http://cs.anu.edu.au/ bdm/nauty/)

P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence, 129:133-163, 2001.

K. E. Petrie and B. M. Smith. Symmetry Breaking in Graceful Graphs. In F. Rossi,
editor, Principles and Practice of Constraint Programming - CP 2003, LNCS 2833,
pages 930-934. Springer, 2003.

J.-F. Puget. On the Satisfiability of Symmetrical Constrained Satisfaction Prob-
lems. In J. Komorowski and Z. W. Ras, editors, Methodologies for Intelligent
Systems (Proceedings of ISMIS’93), LNAI 689, pages 350-361. Springer-Verlag,
1993.

J.-F. Puget. Automatic Detection of Variable and Value Symmetries. In P. van
Beek, editor, Principles and Practice of Constraint Programming - CP 2005, LNCS
3709, pages 475-489. Springer, 2005.

A. Ramani and I. L. Markov. Automatically Exploiting Symmetries in Constraint
Programming. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Re-
cent Advances in Constraints, Joint ERCIM/CoLogNet International Workshop
on Constraint Solving and Constraint Logic Programming, CSCLP 2004, LNCS
3419, pages 98-112. Springer, 2005.

P. Roy and F. Pachet. Using Symmetry of Global Constraints to Speed up the
Resolution of Constraint Satisfaction Problems. In Workshop on Non Binary Con-
straints, EFCAI-98, Aug. 1998.

T. Walsh. SAT v CSP. In Proceedings CP’2000, pages 441-456, 2000.

