Skip to main content
Log in

Stochastic Local Search Algorithms for Graph Set T-colouring and Frequency Assignment

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The graph set T-colouring problem (GSTCP) generalises the classical graph colouring problem; it asks for the assignment of sets of integers to the vertices of a graph such that constraints on the separation of any two numbers assigned to a single vertex or to adjacent vertices are satisfied and some objective function is optimised. Among the objective functions of interest is the minimisation of the difference between the largest and the smallest integers used (the span). In this article, we present an experimental study of local search algorithms for solving general and large size instances of the GSTCP. We compare the performance of previously known as well as new algorithms covering both simple construction heuristics and elaborated stochastic local search algorithms. We investigate systematically different models and search strategies in the algorithms and determine the best choices for different types of instance. The study is an example of design of effective local search for constraint optimisation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aardal, K. I., van Hoesel, C. P. M., Koster, A. M. C. A., Mannino, C., & Sassano, A. (2003). Models and solution techniques for the frequency assignment problem. 4OR: Operational Research Quarterly, 1(4), 261–317 (An updated version to appear in Annals of Operations Research is available at http://fap.zib.de/download/fap2007.ps.gz).

    MATH  Google Scholar 

  2. Allen, S. M., Smith, D. H., & Hurley, S. (1999). Lower bounding techniques for frequency assignment. Discrete Mathematics, 197-198, 41–52.

    Google Scholar 

  3. Anderson, L. G. (1973). A simulation study of some dynamic channel assignment algorithms in a high capacity mobile telecommunications system. IEEE Transactions on Communications, 21, 1294–1301.

    Article  Google Scholar 

  4. Bartz-Beielstein, T., & Markon, S. (2004). Tuning search algorithms for real-world applications: A regression tree based approach. In Congress on evolutionary computation (CEC’04) (pp. 1111–1118). Piscataway NJ: IEEE Press.

    Google Scholar 

  5. Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon, et al. eds., Proceedings of the genetic and evolutionary computation conference (GECCO-2002) (pp. 11–18). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  6. Borndörfer, R., Eisenblätter, A., Grötschel, M., & Martin, A. (1998). Frequency assignment in cellular phone networks. Annals of Operation Research, 76, 73–93.

    Article  MATH  Google Scholar 

  7. Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont, CA: Wadsworth.

    MATH  Google Scholar 

  8. Castelino, D. J., Hurley, S., & Stephens, N. M. (1996). A tabu search algorithm for frequency assignment. Annals of Operation Research, 63(2), 301–320.

    Article  MATH  Google Scholar 

  9. Chiarandini, M. (2005). Stochastic Local Search Methods for Highly Constrained Combinatorial Optimisation Problems. Ph.D. thesis, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany.

  10. Chiarandini, M., Stützle, T., & Larsen, K. S. (2006). Colour reassignment in tabu search for the graph set T-colouring problem. In F. Almeida, J. Marcos Moreno, & M. Pérez (Eds.), Third international workshop on hybrid metaheuristics. Lecture Notes in Computer Science (Vol. 4030, pp. 162–177). Berlin: Springer.

    Google Scholar 

  11. Conover, W. J. (1999). Practical nonparametric statistics, (3rd ed.). New York: Wiley.

    Google Scholar 

  12. Costa, D. (1993). On the use of some known methods for T-colorings of graphs. Annals of Operation Research, 41(4), 343–358.

    Article  MATH  Google Scholar 

  13. Cozzens, M. B., & Roberts, F. S. (1982). T-colorings of graphs and the channel assignment problem. Congressus Numerantium, 35, 191–208.

    Google Scholar 

  14. Culberson, J. C. (1992). Iterated greedy graph coloring and the difficulty landscape. Technical Report 92-07, Department of Computing Science, The University of Alberta, Edmonton, Canada.

  15. de Givry, S., Verfaillie, G., & Schiex, T. (1997). Bounding the optimum of constraint optimization problems. In Principles and practice of constraint programming - CP97. Lecture notes in computer science (Vol. 1330, pp. 405–419). Berlin: Springer.

    Chapter  Google Scholar 

  16. Dorne, R., & Hao, J. K. (1998). Tabu search for graph coloring, T-colorings and set T-colorings. In Meta-heuristics: Advances and trends in local search paradigms for optimization (pp. 77–92). Norwell, MA: Kluwer.

    Google Scholar 

  17. Eisenblätter, A., Grötschel, M., & Koster, A. M. C. A. (2002). Frequency assignment and ramifications of coloring. Discussiones Mathematicae Graph Theory, 22, 51–88.

    MATH  Google Scholar 

  18. Galinier, P., & Hao, J. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 3(4), 379–397.

    Article  MATH  Google Scholar 

  19. Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of \(\cal NP\)-Completeness. San Francisco, CA: Freeman.

    Google Scholar 

  20. Giaro, K., Janczewski, R., & Malafiejski, M. (2003). The complexity of the T-coloring problem for graphs with small degree. Discrete Applied Mathematics, 129(2-3), 361–369.

    Article  MATH  Google Scholar 

  21. Giaro, K., Janczewski, R., & Malafiejski, M. (2003). A polynomial algorithm for finding T-span of generalized cacti. Discrete Applied Mathematics, 129(2-3), 371–382.

    Article  MATH  Google Scholar 

  22. Hale, W. K. (1980). Frequency assignment: Theory and applications. Proceedings I.E.E.E., 68(12), 1497–1514.

    Google Scholar 

  23. Hao, J.-K., Dorne, R., & Galinier, P. (1998). Tabu search for frequency assignment in mobile radio networks. Journal of Heuristics, 4(1), 47–62.

    Article  MATH  Google Scholar 

  24. Hao, J.-K., & Perrier, L. (1999). Tabu search for the frequency assignment problem in cellular radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique Georges Besse, Nimes, France.

  25. Hoos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  26. Hurley, S., Smith, D. H., & Thiel, S. U. (1997). FASoft: A system for discrete channel frequency assignment. Radio Science, 32(5), 1921–1939.

    Article  Google Scholar 

  27. Janssen, J., & Narayanan, L. (2001). Approximation algorithms for the channel assignment problem. Theoretical Computer Science, 262, 649–667.

    Article  MATH  Google Scholar 

  28. Janssen, J., Wentzell, T., & Fitzpatrick, S. (2005). Lower bounds from tile covers for the channel assignment problem. SIAM Journal of Discrete Mathematics, 18(4), 679–696.

    Article  MATH  Google Scholar 

  29. Johnson, D. S., Mehrotra, A., & Trick, M. (Eds.) (2002). Proceedings of the Computational Symposium on Graph Coloring and Its Generalizations, Ithaca, NY.

  30. Joslin, D. E., & Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial Intelligence Research, 10, 353–373.

    MATH  Google Scholar 

  31. Lim, A., Zhang, X., & Zhu, Y. (2003). A hybrid method for the graph coloring and related problems. In Proceedings of MIC’2003—The fifth metaheuristics international conference, Kyoto-Japan.

  32. Lim, A., Zhu, Y., Lou, Q., & Rodrigues, B. (2005). Heuristic methods for graph coloring problems. In SAC ’05: Proceedings of the 2005 ACM symposium on applied computing (pp. 933–939). New York: ACM.

    Chapter  Google Scholar 

  33. Malaguti, E., & Toth, P. (2007). An evolutionary approach for bandwidth multicoloring problems. European Journal of Operational Research, in press (doi:10.1016/j.ejor.2006.09.095).

  34. Matsui, S., & Tokoro, K. (2001). Improving the performance of a genetic algorithm for the minimum span frequency assignment problem with an adaptive mutation rate and a new initialization method. In Proceedings of the genetic and evolutionary computation conference (GECCO-2001) (pp. 1359–1366). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  35. McGeoch, C., Sanders, P., Fleischer, R., Cohen, P. R., & Precup D. (2002). Using finite experiments to study asymptotic performance. In R. Fleischer, B. Moret, & E. Meineche Schmidt (Eds.) Experimental algorithmics: From algorithm design to robust and efficient software. Lecture notes in computer science (Vol. 2547, pp. 93–126). Berlin: Springer.

    Google Scholar 

  36. Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conflicts: A heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58(1-3), 161–205.

    Article  MATH  Google Scholar 

  37. Montemanni, R. (2001). Upper and lower bounds for the fixed spectrum frequency assignment problem. Ph.D. thesis, Division of Mathematics and Statistics, School of Technology, University of Glamorgan, UK.

  38. Montgomery, D. C. (2005). Design and analysis of experiments (6th ed.). New York: Wiley.

    MATH  Google Scholar 

  39. Phan, V., & Skiena, S. (2002). Coloring graphs with a general heuristic search engine. In Johnson et al. [29] (pp. 92–99).

  40. Prestwich, S. (2002). Coloration neighbourhood search with forward checking. Annals of Mathematics and Artificial Intelligence, 34(4), 327–340.

    Article  MATH  Google Scholar 

  41. Prestwich, S. (2002). Constrained bandwidth multicoloration neighbourhoods. In Johnson et al. [29], (pp. 126–133).

  42. Prestwich, S. (2003). Hybrid local search on two multicolouring models. In International Symposium on Mathematical Programming, Copenhagen, Denmark.

  43. Prestwich, S., & Roli, A. (2005). Symmetry breaking and local search spaces. In R. Barták & M. Milano (Eds.), CPAIOR, Lecture notes in computer science (Vol. 3524, pp. 273–287). Berlin Heidelberg New York: Springer.

    Google Scholar 

  44. Roberts, F. S. (1991). T-colorings of graphs: Recent results and open problems. Discrete Mathematics, 93(2-3), 229–245.

    Article  Google Scholar 

  45. Simon, H. U. (1989). Approximation algorithms for channel assignment in cellular radio networks. In Fundamentals of computation theory. Lecture notes in computer science, (Vol. 380, pp. 405–415). Berlin: Springer.

    Google Scholar 

  46. Sivarajan, K. N., McEliece, R. J., & Ketchum, J. W. (1989). Channel assignment in cellular radio. In Proceedings of the 39th IEEE vehicular technology conference (pp. 846–850).

  47. Smith, D. H., Hurley, S., & Allen, S. M. (2000). A new lower bound for the channel assignment problem. IEEE Transactions on Vehicular Technology, 49(4), 1265–1272.

    Article  Google Scholar 

  48. Stützle, T. (1998). Local Search Algorithms for Combinatorial Problems—Analysis, Improvements, and New Applications. Ph.D. thesis, FB Informatik, Technische Universität Darmstadt, Darmstadt, Germany.

  49. Tesman, B. A. (1990). Set T-colorings. Congressus Numerantium, 77, 229–242.

    MATH  Google Scholar 

  50. Tsang, E., & Voudouris, C. (1998). Solving the radio link frequency assignment problem using guided local search. In NATO Symposium on Radio Length Frequency Assignment, Aalborg, Denmark.

  51. Voudouris, C. (1997). Guided Local Search for Combinatorial Optimization Problems. Ph.D. thesis, University of Essex, Department of Computer Science, Colchester, UK.

  52. Walser, J. P. (1996). Feasible cellular frequency assignment using constraint programming abstractions. In Proceedings of the workshop on constraint programming applications, held in conjunction with CP96, Cambridge, MA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Chiarandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiarandini, M., Stützle, T. Stochastic Local Search Algorithms for Graph Set T-colouring and Frequency Assignment. Constraints 12, 371–403 (2007). https://doi.org/10.1007/s10601-007-9023-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9023-y

Keywords

Navigation