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Abstract. We present an application of stochastic Concurrent Constraint Pro-
gramming (sCCP) for modeling biological systems. We provide a library of sCCP
processes that can be used to describe straightforwardly biological networks. In
the meanwhile, we show that sSCCP proves to be a general and extensible frame-
work, allowing to describe a wide class of dynamical behaviours and kinetic laws.

1 Introduction

Computational Systems Biology is a extremely fertile field, where many different mod-
eling techniques are used [7] in order to capture the intrinsic dynamics of biological
systems. These techniques are very different both in spirit and in the mathematics they
use. Some of them are based on the well known instrument of Differential Equations,
mostly ordinary, and therefore they represent phenomena as continuous and determin-
istic, cf. [8] for a survey. On the other side we find stochastic and discrete models,
that are usually simulated with Gillespie’s algorithm [14], tailored for simulating (ex-
actly) chemical reactions. In the middle, we find hybrid approaches like the Chemical
Langevin Equation [11], a stochastic differential equation that bridges partially these
two opposite formalisms.

In the last few years a compositional modeling approach based on stochastic process
algebras (SPA) emerged [22], based on the inspiring parallel between molecules and
reactions on one side and processes and communications on the other side. Stochastic
process algebras, like stochastic 7-calculus [20], have a simple and powerful syntax and
a stochastic semantics expressed in terms of Continuous Time Markov Chains [19],
that can be simulated with an algorithm equivalent to Gillespie’s one. Since their
introduction, SPA have been used to model, within the same framework, biological
systems described at different level of abstractions, like biochemical reactions [21] and
genetic regulatory networks [1].

Stochastic modeling of biological systems works by associating a rate to each active
reaction (or, in general, interaction); rates are real numbers representing the frequency
or propensity of interactions. All active reactions then undergo a (stochastic) race
condition, and the fastest one is executed. Physical justification of this approach can
be found in [13]. These rates encode all the quantitative information of the system, and
simulations produce discrete temporal traces with variable delay between events.

In this work we show how stochastic Concurrent Constraint Programming [2] (sCCP),
another SPA recently developed, can be used for modeling biological systems. sCCP
is based on Concurrent Constraint Programming [23] (CCP), a process algebra where



agents interact by posting constraints on the variables of the system in the constraint
store, cf. Section 2.

In order to underline the rationale behind the usage of SCCP, we take an high
level point of view, providing a general framework connecting elements of biological
systems with elements of the process algebra. Subsequently, we show how this general
framework gets instantiated when focused on particular classes of biological system,
like networks of biochemical reactions and gene regulatory networks.

In our opinion, the advantages of using sCCP are twofold: the presence of both
quantitative information and computational capabilities at the level of the constraint
systems and the presence of functional rates. This second feature, in particular, allows
to encode in the system different forms of dynamical behaviours, in a very flexible way.
Quantitative information, on the other hand, allows a more compact representation of
models, as part of the details can be described in relations at the level of the store.

The paper is organized as follows: in Section 2 we review briefly sCCP, in Section 3
we describe a high level mapping between biological systems and sCCP, then we in-
stantiate the framework for biochemical reactions (Section 3.1) and gene regulatory
networks (Section 3.2). Finally, in Section 4, we draw final conclusions and suggest
further directions of investigation.

2 Stochastic Concurrent Constraint Programming

In this section we present a stochastic version [2] of Concurrent Constraint Program-
ming [23], which will be used in the following as a modeling language for biological
systems.

2.1 Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [23]) is a process algebra having two dis-
tinct entities: agents and constraints. Constraints are interpreted first-order logical for-
mulae, stating relationships among variables (e.g. X =10 or X +Y < 7). CCP-Agents
compute by adding constraints (tell) into a “container” (the constraint store) and
checking if certain relations are entailed by the current configuration of the constraint
store (ask). The communication mechanism among agents is therefore asynchronous,
as information is exchanged through global variables. In addition to ask and tell,
the language has all the basic constructs of process algebras: non-deterministic choice,
parallel composition, procedure call, plus the declaration of local variables. This di-
chotomy between agents and the constraint store can be seen as a form of separation
between computing capabilities (pertaining to the constraint store) and the logic of in-
teractions (pertaining to the agents). From a general point of view, the main difference
between CCP and m-calculus resides really in the computational power of the former.
m-calculus, in fact, has to describe everything in terms of communications only, a fact
that may result in cumbersome programs in all those situations in which “classical”
computations are directly or indirectly involved.

The constraint store is defined as an algebraic lattice structure, using the theory
of cylindric algebras [15]. Essentially, we first choose a first-order language together
with an interpretation, which defines a semantical entailment relation (required to
be decidable). Then we fix a set of formulae, closed under finite conjunction, as the
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primitive constraints that the agents can add to the store. The algebraic lattice is
obtained by considering subsets of these primitive constraints, closed by entailment
and ordered by inclusion. The least upper bound operation in the lattice is denoted
by U and it basically represents the conjunction of constraints. In order to model local
variables and parameter passing, the structure is enriched with cylindrification and
diagonalization operators, typical of cylindric algebras [15]. These operators allow to
define a sound notion of substitution of variables within constraints. In the following
we denote the entailment relation by F and a generic constraint store by C. We refer
to [6,24, 23] for a detailed explanation of the constraint store.

2.2 Syntax of sCCP

The stochastic version of CCP (sCCP [2]) is obtained by adding a stochastic duration
to the instructions interacting with the constraint store C, i.e. ask and tell. More pre-
cisely, each instruction is associated with a continuous random variable 7', representing
the time needed to perform the corrisponding operations in the store (i.e. adding or
checking the entailment of a constraint). This random variable is exponentially distrib-
uted (cf. [19]), i.e. its probability function is

f(r) =A™, (2.1)

where ) is a positive real number, called the rate of the exponential random variable,
which can be intuitively seen as the expected frequency per unit of time.
In our framework, the rates associated to ask and tell are functions

A:C—RT,

depending on the current configuration of the constraint store. This means that the
speed of communications can vary according to the particular state of the system,
though in every state of the store the random variables are perfectly defined (their rate
is evaluated to a real number). This fact gives to the language a remarkable flexibility
in modeling biological systems, see Section 3 for further material on this point.

The syntax of sSCCP can be found in Table 1. An sCCP program consists in a list
of procedures and in the starting configuration. Procedures are declared by specifying
their name and their free variables, treated as formal parameters. Agents, on the other
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Table 2. Instantaneous transition for stochastic CCP

hand, are defined by the grammar in the last three lines of Table 1. There are two
different actions with temporal duration, i.e. ask and tell, identified by . Their
rate X is a function as specified above. These actions can be combined together into
a guarded choice M (actually, a mixed choice, as we allow both ask and tell to be
combined with summation). In the definition of such choice, we force procedure calls
to be always guarded. In fact, they are instantaneous operations, thus guarding them by
a timed action allows to avoid instantaneous infinite recursive loops, like those possible
inp:—A | p. In summary, an agent A can choose between different actions (M), it
can perform an instantaneous tell, it can declare a variable local (3, A) or it can be
combined in parallel with other agents.

The syntax presented here is slightly different from that of [2]. In fact, the class
of instantaneous actions is expanded: in [2] it contained only the declaration of local
variables, while here it contains also procedure call and a version of tell. Nevertheless,
the congruence relation defined in [2], ascribing the usual properties to the operators
of the language (e.g. associativity and commutativity to + and ||), remains the same.
The configurations of SCCP programs will vary in the quotient space modulo this
congruence relation, denoted by P.

2.3 Operational Semantics of sCCP

The definition of the operational semantics is given specifying two different kinds of
transitions: one dealing with instantaneous actions and the other with stochastically
timed ones. This is also a novelty w.r.t. [2], though in the previous version an instanta-
neous transition was implicitly defined in order to deal with local variables. The basic
idea of this operational semantics is to apply the two transitions in an interleaved way:
first we apply the transitive closure of the instantaneous transition, then we do one
step of the timed stochastic transition. To identify a state of the system, we need to
take into account both the agents that are to be executed and the current configuration
of the store. Therefore, a configuration will be a point in the space P x C.

The recursive definition of the instantaneous transition —C (P x C) x (P x C) is
shown in Table 2. Rule (IR1) models the addition of a constraint in the store through
the least upper bound operation of the lattice. Recursion corresponds to rule (I R2),
which consists in substituting the actual variables to the formal parameters in the
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definition of the procedure called. In rule (IR3), local variables are replaced by fresh
global variables, while in (I R4) the other rules are extended compositionally. Observe
that we do not need to deal with summation operator at the level of instantaneous
transition, as all the choices are guarded by (stochastically) timed actions. The syntactic
restrictions imposed to instantaneous actions guarantee that — can be applied only
for a finite number of steps. Moreover it can be proven that it is confluent. Given a
configuration (A,d) of the system, we denote by <A—,d>) the configuration obtained by
applying the transitions — as long as it is possible (i.e., by applying the transitive
closure of —). The confluence property of — implies that (A—,d)> is well defined.

The stochastic transition =C (P x C) x [0, 1] x RT x (P x C) is defined in Table 3.
This transition is labeled by two numbers: intuitively, the first one is the probability
of the transition, while the second one is its global rate, see Section 2.4 for further
details. Rule (SR1) deals with timed tell action, and works similarly to rule (IR1).
Rule (SR2), instead, defines the behaviour of the ask instruction: it is active only if
the asked constraint is entailed by the current configuration of the constraint store.
Rules (SR3) and (SR4), finally, deal with the choice and the parallel construct. Note
that, after performing one step of the transition =, we apply the transitive closure of
——. This guarantees that all actions enabled after one = step are timed. In Table 3
we use the function rate : P x C — R, assigning to each agent its global rate. It is
defined as follows:

Definition 1. The function rate : P x C — R is defined by

. rate (M; + My, d) = rate (M7, d) + rate (Ma, d).
. rate (A1 || Aa,d) = rate (A1, d) + rate (Ag, d);

1. rate (0,d) = 0;

2. rate (telb\(c) ,d) = A(d);

3. rate (asky(c).A,d) = A(d) if dF ¢;
4. rate (aska(c).A,d) =0 if dt/ ¢;

o (

6

Using relation =, we can build a labeled transition system, whose nodes are
configurations of the system and whose labeled edges correspond to derivable steps



of =>. As a matter of fact, this is a multi-graph, as we can derive more than one
transition connecting two nodes (consider the case of telly(c) + telly(c)). Starting from
this labeled graph, we can build a Continuous Time Markov Chain (cf. [19] and next
section) as follows: substitute each label (p, \) with the real number pA and add up the
numbers labeling edges connecting the same nodes. More details about the operational
semantics can be found in [2].

2.4 Continuous Time Markov Chains and Gillespie’s Algorithm

A Continuous Time Markov Chain (CTMC for short) is a continuous-time stochastic
process (X;):>0 taking values in a discrete set of states S and satisfying the memoryless
property, Vn,t1,...,tn,S1, ..., Sn:

P{th = Sn | th71 = Sn—1y--- ,th = 81} = P{th = Sn | th71 = Sn—l}- (22)

A CTMC can be represented as a directed graph whose nodes correspond to the states
of S and whose edges are labeled by real numbers, which are the rates of exponentially
distributed random variables (defined by the probability density (2.1)). In each state
there are usually several exiting edges, competing in a race condition in such a way
that the fastest one is executed. The time employed by each transition is drawn from
the random variable associated to it. When the system changes state, it forgets its past
activity and starts a new race condition (this is the memoryless property). Therefore,
the traces of a CTMC are made by a sequence of states interleaved by variable time
delays, needed to move from one state to another.

The time evolution of a CTMC can be characterized equivalently by computing, in
each state, the normalized rates of the exit transitions and their sum (called the exit
rate). The next state is chosen according to the probability distribution defined by the
normalized rates, while the time spent for the transition is drawn from an exponentially
distributed random variable with parameter equal to the exit rate.

This second characterization can be used in a Monte-Carlo simulation algorithm.
Suppose to be in state s; then draw two random numbers, one according to the proba-
bility given by the normalized rates, and the second according to an exponential prob-
ability distribution with parameter equal to the exit rate. Then choose the next state
according to the first random number, and increase the time according to the second.
The procedure sketched here is essentially the content of the Gillespie’s algorithm [13,
14], originally derived in the context of stochastic simulation of chemical reactions.
Indeed, the stochastic description of chemical reactions is exactly a Continuous Time
Markov Chain [12].

2.5 Stream Variables

In the use of sSCCP as a modeling language for biological systems, many variables will
represent quantities that vary over time, like the number of molecules of certain chem-
ical species. In addition, the functions returning the stochastic rate of communications
will depend only on those variables. Unfortunately, the variables we have at our dis-
posal in CCP are rigid, in the sense that, whenever they are instantiated, they keep
that value forever. However, time-varying variables can be easily modeled as growing
lists with an unbounded tail: X = [aq,...,a,|T]. When the quantity changes, we sim-
ply need to add the new value, say b, at the end of the list by replacing the old tail



variable with a list containing b and a new tail variable: T = [b|7”]. When we need
to compute a function depending on the current value of the variable X, we need to
extract from the list the value immediately preceding the unbounded tail. This can be
done by defining the appropriate predicates in the first-order language over which the
constraint store is built. As these variables have a special status in the presentation
hereafter, we will refer to them as stream variables. In addition, we will use a simplified
notation that hides all the details related to the list update. For instance, if we want to
add 1 to the current value of the stream variable X, we will simply write X = X + 1.
The intended meaning of this notation is clearly: “extract the last ground element n
in the list X, consider its successor n + 1 and add it to the list (instantiating the old
tail variable as a list containing the new ground element and a new tail variable)”.

2.6 Implementation

We have developed an interpreter for the language that can be used for running simula-
tions. The simulation engine is based on the Gillespie’s Algorithm, therefore it performs
a Monte-Carlo simulation of the underlying CTMC. The memoryless property of the
CTMC guarantees that we do need to generate all its nodes to perform a simulation,
but we need to store only the current state. By syntactic analysis of the current set of
agents in execution, we can construct all the exit transitions and compute their rates,
evaluating rate functions w.r.t. the current configuration of the store (actually, those
functions depend only on stream variables, thus their computation has two steps: ex-
tract the current value of the variables and evaluate the function). Then we apply the
Gillespie’s procedure to determine the next state and the elapsed time, updating the
system by modifying the current set of agents and the constraint store according to
the chosen transition.

The interpreter is written in SICStus Prolog [10]. It is composed by a parser, ac-
cepting a program written in sCCP and converting it into an internal list-based repre-
sentation. The main engine operates therefore by inspecting and manipulating the lists
representing the program. The constraint store is managed using the constraint solver
on finite domains of SICStus. Stream variables are not represented as lists, but rather
as global variables using the meta-predicates assert and retract of Prolog. The choice
of working with finite domains is mainly related to the fact that the biological systems
analyzed can be described using only integer values’.

In every execution cycle we need to inspect all terms in order to check if they
enable a transition. Therefore, the complexity of each step is linear in the size of the
(representation) of the program. This can be easily improved by observing that an
enabled transition that is not executed remains enabled also in the future.

The correctness of the virtual machine can be proven by showing that it simulates
exactly the same CTMC defined by the sCCP program. This can be done by showing
that the exit rate and the probability distribution on exiting transitions are computed
correctly, according to the operational semantics of SCCP.



Measurable Entities <+ Stream Variables

Processes

Logical Entities « (Control Variables)

Interactions «» Processes

Table 4. Schema of the mapping between elements of biological systems (left) and sCCP
(right).

3 Modeling Biological Systems

Taking an high level point of view, biological systems can be seen as composed essen-
tially by two ingredients: (biological) entities and interactions among those entities.
For instance, in biochemical reaction networks, the molecules are the entities and the
chemical reactions are the possible interactions, see [22] and Section 3.1. In gene regu-
latory networks, instead, the entities into play are genes and regulatory proteins, while
the interactions are production and degradation of proteins, and repression and en-
hancement of gene’s expression, cf. [1] and Section 3.2. In addition, entities fall into
two separate classes: measurable and logical. Measurable entities are those present in
a certain quantity in the system, like proteins or other molecules. Logical entities, in-
stead, have a control function (like gene gates in [1]), hence they are neither produced
nor degraded. Note that logical entities are not real world entities, but rather they are
part of the models.

The translation scheme between the previously described elements and sCCP ob-
jects is summarized in Table 4. Measurable entities are associated exactly to stream
variables introduced at the end of Section 2. Logical entities, instead, are represented
as processes actively performing control activities. In addition, they can use variables
of the constraint store either as control variables or to exchange information. Finally,
each interaction is associated to a process modifying the value of certain measurable
stream variables of the system.

Associating variables to measurable entities means that we are representing them
as part of the environment, while the active agents are associated to the different
actions capabilities of the system. These actions have a certain duration and a certain
propensity to happen: a fact represented here in the standard way, i.e. associating to
each action a stochastic rate. Actually, the speed of most of these actions depends
on the quantity of the basic entities they act on. This fact shows clearly the need for
having functional rates, which can be used to describe these dependencies explicitly.

In the next subsections we instantiate this general scheme, in order to deal with two
classes of biological systems: networks of biochemical reactions and genetic regulatory
networks.

! The real valued rates and the stochastic evolution are tight with the definition of the
semantics and not with the syntax of the language, thus we do not need to represent them
in the store.



3.1 Modeling Biochemical Reactions

Network of biochemical reactions are usually modeled through chemical equations of
the form Ry + ...+ R, —; P1 + ...+ P,,, where the n reactants R;’s (possibly in
multiple copies) are transformed into the m products P;’s. In the equation above,
either n or m can be equal to zero; the case m = 0 represents a degradation reaction,
while the case n = 0 represents an external feeding of the products, performed by an
experimenter. Actually, the latter is not a proper chemical reaction but rather a feature
of the environmental setting, though it is convenient to represent it within the same
scheme. Each reaction has an associated rate k, representing essentially its basic speed.
The actual rate of the reaction is k - [R1]---[R,], where [R;] denotes the number of
molecules R; present in the system. There are cases when a more complex expression
for the rate of the reaction is needed, see [25] for further details. For instance, one
may wish to describe an enzymatic reaction using a Michaelis-Menten kinetic law [8],
rather than modeling explicitly the enzyme-substrate complex formation (as simple
interaction/communication among molecules, cf. example below). A set of different
biochemical arrows (corresponding to different biochemical laws) is shown in Table 5;
this list is not exhaustive, but rather a subset of the one presented in [25]. Adding
further arrows is almost always straightforward.

In Table 5, we also show how to translate biochemical reactions into SCCP processes.
The basic reaction Ry + ...+ R, — P1 + ... P, is associated to a process that first
checks if all the reactants needed are present in the system (asking if all [R;] are
greater than zero), then it modifies the variables associated to reactants and products,
and finally it calls itself recursively. Note that all the tell instructions have infinite
rate, hence they are instantaneous transitions. The rate governing the speed of the
reaction is the one associated to ask instruction. This rate is nothing but the function
raualk,X1,...,Xn) = k- X1 -+ X, representing mass action dynamics. Note that =
is a shorthand for the forward and the backward reactions. The arrow '_’f(,vo has a

different dynamics, namely Michaelis-Menten kinetics: rppr (K, Vo, S) = Svii( This
reaction approximates the conversion of a substrate into a product due to the catalytic
action of enzyme E when the substrate is much more abundant than the enzyme (quasi-
steady state assumption, cf. [8]). The last arrow, instead, is associated to Hill’s kinetics.
The dynamics represented here is an improvement on the Michaelis-Menten law, where
the exponent h encodes some information about the spatial behaviour of the reaction.

Comparing the encoding of biochemical reaction into sCCP with the encoding into
other process algebras like 7-calculus [22], we note that the presence of functional rates
gives much more flexibility in the modeling phase. In fact, this form of rates allows to
describe dynamics that are different from Mass Action. Notable examples are exactly
Michaelis-Menten’s and Hill’s cases, represented by the last two arrows. This is not
possible wherever only constant rates are present, as the definition of the operational
semantics constrain the dynamics to be Mass-Action like. More comments about this
fact can be found in [3].

Example: Enzymatic Reaction As a first and simple example, we show the model
of an enzymatic reaction. We provide two different descriptions, one using a mass action
kinetics, the other using a Michaelis-Menten one, see Table 5.

In the first case, we have the following set of reactions:

S+E=p ES—, P+E; P—p.i =k S (3.1)



reaction(k, [R1,..., Ru], [P1,..., Pm]) : —

asky ;4 (k,R1,...,Rn) (/\ L (R >0))
Rit ..ot Ro—x Pit oot Pa (s telloo (R = Bi = 1) |

Iy telloo (P = P +1))

reaction(k, [R1, ..., Rn], [P1,. .., Pn])

ke reaction(k1, [R1, ..., Rnl, [Py, Pn]) ||
Rit .ot Ro=y, Prto 4 P reaction(kz, [P, .. ., Pml, [R1,- .., Ru])
mm _reaction(K, Vo, S, P) : —
E aSkTMM(KyVoys)(S > 0).
Sk P (telloo(S = S — 1) || tellso (P = P +1)).
mm _reaction(K, Vo, S, P)

hill_reaction(K, Vo, h, S, P) : —
aSkTHi”(KVVU?haS) (S > 0)
(telloo (S =S — h) || telloo(P = P+ h)) .
Hill_reaction(K, Vo, h, S, P)

E
S—=kvon P

where

h
raalk, X1,..., Xn) =k - X1+ Xn; TMM(K,VO,S)ZSVi}g(; THill(k,th,S):S}/zoszh

Table 5. Translation into sCCP of different biochemical reaction types, taken from the list
of [25]. The reaction process models a mass-action-like reaction. It takes in input the basic rate
of the reaction, the list of reactants, and the list of products. These list can be empty, corre-
sponding to degradation and external feeding. The process has a blocking guard that checks if
all the reactants are present in the system. The rate of the ask is exactly the global rate of the
reaction. If the process overcomes the guard, it modifies the quantity of reactants and prod-
ucts and then it calls itself recursively. The reversible reaction is modeled as the combination
of binding and unbinding. The third arrow corresponds to a reaction with Michaelis-Menten
kinetics. The corresponding process works similarly to the reaction one, but the rate function
is different. Here, in fact, the rate function is the one expressing Michaelis-Menten kinetics.
See Section 3.1 for further details. The last arrow replaces Michaelis-Menten kinetics with
Hill’s one (see end of Section 3.1).

corresponding to a description of an enzymatic reaction that takes into account also
the enzyme-substrate complex formation. Specifically, substrate S and enzyme E can
bind and form the complex E'S. This complex can either dissociate back into F and S,
or be converted into the product P and again enzyme E. Moreover, in this particular
system we added degradation of P and external feeding of S, in order to have con-
tinuous production of P. The sCCP model of this reaction can be found in Table 6.
It is simply composed by 5 reaction agents, one for each arrow of the equations (3.2).
The three reactions involving the enzyme are grouped together under the predicate
enz_reaction{kl,k-1,k2,S,E,ES,P}, that will be used in following subsections.



enz_reaction(k1, k—1, ke, S, E, ES, P) :-
reaction(ks, [S, E], [ES]) || reaction(k—1, [ES], [E, S]) || reaction(ks, [ES], [E, P]).

enz_reaction(ki1, k_1, k2, S, E, ES, P) || reaction(kprod, (|, [S]) || reaction(kqeq, [P],[])

Table 6. sCCP program for an enzymatic reaction with mass action kinetics. The first block
defines the predicate enz_reaction(k1, k—1, k2, S, E, ES, P), while the second block is the defi-
nition of the entire program. The predicate reaction has been defined in Table 5.

Simulations were performed with the simulator described in Section 2.6, and the
trend of product P is plotted in Figure 1 (left). Parameters of the system were chosen
in order to have, at regime, almost all the enzyme molecules in the complexed state,
see caption of Figure 1 (top) for details.

For this simple enzymatic reaction, the quasi-steady state assumption holds [8],
therefore replacing the substrate-enzyme complex formation with a Michaelis-Menten
kinetics should leave the system behaviour unaltered. This intuition is confirmed by
Figure 1 (bottom), showing the plot of the evolution over time of product P for the
following system of reactions:

E . .
S =K,V P; P “kdeg > —k

whose sCCP can be derived easily from Table 5.

A slightly more complicated version of the above example is the case in which some
level of cooperativity of the enzyme is to be modeled (Hill’s case). The set of reactions
in this case is an extension of the above one and can be written as:

nxS+E=" ES, —sp,nxP+E, P =S (3.2)

In this case the sCCP program is a straightforward extension of the previous one:

n_enz_reaction(k1, k—1, ke, S, E, ES, P) :-
reaction(k1, [n X S, E], [ESy]) || reaction(k—1, [ESy], [E,n x S]) ||
reaction(kz, [ESy], [E,n x P]).

while the rest of the coding is entirely similar to the previous case.
Also in this case a comparison with the reaction obtained with the computed Hill
coefficient
S H%yvoﬁn P P —=kays —kpod S

can be easily carried out. Notice that the Hill’s exponent corresponds exactly to the
degree of cooperativity of the enzyme.

Also a more refined approach to the case of Hill’s kinetics is possible, decomposing
the n-fold reaction in a series of n separated by Mass Action equation simulations.
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Fig. 1. (top) Mass Action dynamics for an enzymatic reaction. The graph shows the time
evolution of the product P. Rates used in the simulation are k1 = 0.1, k_1 = 0.001, k2 = 0.5,
kgeqg = 0.01, kproa = 5. Enzyme molecules E are never degraded (though they can be in the
complex status), and initial value is set to £ = 10. Starting value for S is 100, while for P
is zero. Notice that the rate of complexation of £ and S into ES and the dissociation rate
of ES into E and P are much bigger than the dissociation rate of ES into E and S. This
implies that almost all the molecules of E will be found in the complexed form. (bottom)
Michaelis-Menten dynamics for an enzymatic reaction. The graph shows the time evolution
of the product P. Rates kqeq and kproq are the same as above, whilst K = 5.01 and Vy = 5.
These last values are derived from mass action rates in the standard way, i.e. K = KQ%LI
and Vo = koFo, where Ey is the starting quantity of enzyme E, cf. [8] for a derivation of
these expressions. Notice that the time spawn by this second temporal series is longer than
the first one, despite the fact that simulations lasted the same number of elementary steps
(of the labeled transition system of sCCP). This is because the product formation in the
Michaelis-Menten dynamics model is a one step reaction, while in the other system it is a two
step reaction (with a possible loop because of the dissociation of ES into E and S).



enz_reaction(kq, ka, kr, KKK, E1, KKKFE1, KKKS) ||
enz_reaction(kq, ka, kr, KKKS, E2, KKKSE2, KKK) ||
enz_reaction(kq, ka, kr, KK, KKKS, KKKKKS,KKP) ||
enz_reaction(kq, ka, kr, KKP, KKP1, KKPKKP1,KK) |
enz_reaction(ka, ka, kr, KK P, KKKS, KKPKKKS, KK PP) ||
enz_reaction(kq, kq, kr, KKPP,KKP1, KKPPKKP1, KKP) |
enz_reaction(kq, ka, kr, K, KKPP, KKKPP,KP) |
enz_reaction(kq, ka, kr, KP, KP1, KPKP1,K) ||
enz_reaction(kq, kq, kr, KP, K KPP, KPKKPP,KPP) ||
enz._reaction(kq, ka, kr, KPP, KP1, KPPKP1, KP)

Table 7. sCCP code for the MAP-Kinase signaling cascade. The enz_reaction predicate has
been defined in Section 3.1. For this example, we set the complexation rates (kq), the dis-
sociation rates (kq) and the product formation reaction rates (k,) equal for all the reactions
involved. For the actual values used in the simulation, refer to Figures 3 and 4.

Example: MAP-Kinase Cascade A cell is not an isolated system, but it communi-
cates with the external environment using complex mechanisms. In particular, a cell is
able to react to external signals, i.e. to signaling proteins (like hormones) present in the
proximity of the external membrane. Roughly speaking, this membrane is filled with
receptor proteins, that have a part exposed toward the external environment capable of
binding with the signaling protein. This binding modifies the structure of the receptor
protein, that can now trigger a chain of reactions inside the cell, transmitting the signal
straight to the nucleus. In this signaling cascade a predominant part is performed by
a family of proteins, called Kinase, that have the capability of phosphorylating other
proteins. Phosphorylation is a modification of the protein fold by attaching a phos-
phorus molecule to a particular amino acid of the protein. One interesting feature of
these cascades of reactions is that they are activated only if the external stimulus is
strong enough. In addition, the activation of the protein at the end of the chain of
reactions (usually an enzyme involved in other regulation activities) is very quick. This
behaviour of the final enzyme goes under the name of ultra-sensitivity [17].

(input)

— 1T 1 1
KKK T2 KKK® KK 2 KK-P o KK-PP| K 7—> K-p _-
(output)
E2 KK-P'ase K-P'ase

Fig. 2. Diagram of the MAP-Kinase cascade. The round-headed arrow schematically repre-
sents an enzymatic reaction, see Section 3.1 for further details. This diagram has been stolen
from a presentation of Luca Cardelli, held in Dobbiaco, September 2005.



In Figure 2 a particular signaling cascade is shown, involving MAP-Kinase pro-
teins. This cascade has been analyzed using differential equations in [17] and then
modeled and simulated in stochastic Pi-Calculus in [4] (CONTROLLARE SE E’ LA
CITAZIONE GIUSTA). We can see that the external stimulus, here generically rep-
resented by the enzyme F;, triggers a chain of enzymatic reactions. MAPKKK is
converted into an active form, called MAPKKK*, that is capable of phosphorylating
the protein MAPKK in two different sites. The diphosphorylated version MAPKK-
PP of MAPKK is the enzyme stimulating the phosphorylation of another Kinase, i.e.
MAPK. Finally, the diphosphorylated version MAPK-PP of MAPK is the output of
the cascade.

The sCCP program describing MAP-Kinase cascade is shown in Table 7. The pro-
gram itself is very simple, and it uses the mass action description of an enzymatic
reaction (cf. Table 5). It basically consists in a list of the reactions involved, put in
parallel. The real problem in studying such a system is in the determination of its 30
parameters, corresponding to the basic rates of the reactions involved. In addition, we
need to fix a set of initial values for the proteins that respects their usual concentra-
tions in the cell. Following [4], in Figure 3 we skip this problem and assign a value of
1.0 to all basic rates, while putting 100 copies of MAPKKK, MAPKK and MAPK, 5
copies of E2, MAPKK-P’ase, and MAPK-P’ase and just 1 copy of the input E1. This
simple choice, however, is enough to predict correctly all the expected properties: the
MAPK-PP time evolution, in fact, follows a sharp trend, jumping from zero to 100 in
a short time. Remarkably, this property is not possessed by MAPKK-PP, the enzyme
in the middle of the cascade. Therefore, this switching behaviour exhibited by MAPK-
PP is intrinsically connected with the double chain of phosphorylations, and cannot
be obtained by a simpler mechanism. Notice that the fact that the network works as
expected using an arbitrary set of rates is a good argument in favor of its robustness
and resistance to perturbations.

In Figure 4, instead, we choose a different set of parameters, as suggested in [17]
(cf. its caption). We also let the input strength vary, in order to see if the activation
effect is sensitive to its concentration. As we can see, this is the case: for a low value
of the input, no relevant quantity of MAPK-PP is present in the system.

3.2 Modeling Gene Regulatory Networks

In a cell, only a subset of genes are expressed at a certain time. Therefore, an important
mechanism of the cell is the regulation of gene expression. This is obtained by specific
proteins, called transcription factors, that bind to the promoter region of genes (the
portion of DNA preceding the coding region) in order to enhance or repress their
transcription activity. These transcription factors are themselves produced by genes,
thus the overall machinery is a networks of genes producing proteins that regulate other
genes. The resulting system is highly complex, containing several positive and negative
feedback loops, and usually very robust. This intrinsic complexity is a strong argument
in favor of the use of a mathematical formalism to describe and analyze them. In the
literature, different modeling techniques are used, see [7] for a Survey. However, we
focus on a modeling formalism based on stochastic w-calculus [1].

In [1], the authors propose to model gene networks using a small set of “logical”
gates, called gene gates, encoding the possible regulatory activities that can be per-
formed on a gene. Specifically, there are three types of gene gates: nullary gates, positive



MAPK cascade with artifificial rates and concentrations.
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Fig. 3. Temporal trace for some proteins involved in the MAP-Kinase cascade. Traces were
generated simulating the sCCP program of Table 7. In this simulation, the rates k., ka, k»r
were all set to one. We can notice the sharp increase in the concentration of the output
enzyme, MAPK-PP, and its stability in the high expression level. The enzyme MAPKK-PP,
the activator of MAPK phosphorylations, instead has a more unstable trend of expression.

gates and negative gates. Nullary gates represent genes with transcriptional activity, but
with no regulation. Positive gates are genes whose transcription rate can be increased
by a transcription factor. Finally, negative gates represent genes whose transcription
can be inhibited by the binding of a specific protein. At the level of abstraction of [1],
the product of a gene gate is not a mRNA molecule, but directly the coded protein.
These product proteins are then involved in the regulation activity of the same or of
other genes and can also be degraded.

We propose now an encoding of gene gates within sCCP framework, in the spirit of
Table 4. Proteins are measurable entities, thus they are encoded as stream variables;
gene gates, instead, are logical control entities and they are encoded as agents. The
degradation of proteins is modeled by the reaction agent of Table 5. In Table 8 we
present the sCCP agents associated to gene gates. A nullary gate simply increases the
quantity of the protein it produces at a certain specified rate. Positive gates, instead,
can produce their coded protein at the basic rate or they can enter in an enhanced state
where production happens at an higher rate. Entrance in this excited state happens
at a rate proportional to the quantity of transcription factors present in the system.
Negative gates behave similarly to positive ones, with the only difference that they can
enter an inhibited state instead of an enhanced one. After some time, the inhibited
gate returns to its normal status. A specific gene, generally, can be regulated by more
than transcription factor. This can be obtained by composing in parallel the different
gene gates.

Example: Bistable Circuit The first example, taken from [1], is a gene network
composed by two negative gates repressing each other, see Figure 5. The sCCP model
for this simple network comprehends two negative gates: the first producing protein A
and repressed by protein B, the second producing protein B and repressed by protein
A. In addition, there are the degradation reactions for proteins A and B. This network
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Fig. 4. Comparison of the temporal evolution of the MAP-Kinase cascade for different con-
centrations of the enzyme MAPKKK. As argued in [17], this is equivalent to the variation of
the input signal E1. Rates are equal for all reactions, and have the following values: k, = 1,
kq = 150, k, = 150. This corresponds to a Michaelis-Menten rate of 300 for all the enzymatic
reactions. The initial quantity of MAPKK and MAPK is set to 1200, the initial quantity of
phosphatase MAPK-P’ase is set to 120, the initial quantity of other phosphatase and the
enzyme E2 is set to 5, and the initial quantity of E1 is 1. (top) The initial quantity of MAP-
KKK is 3. We can see that there is no sensible production of MAPK-PP. (middle) The initial
quantity of MAPKKK is 30. Enzyme MAPK-PP is produced but its trend is not sharp, as
expected. (bottom) The initial quantity of MAPKKK is 300. The system behaves as ex-
pected. We can see that the increase in the concentration of MAPK-PP is very sharp, while
MAPKK-PP grows very slowly in comparison.
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nu .l_ null_gate(kp, X) : —
telly, (X = X 4 1).null_gate(k;, X)

A n
pos pos_gate(kp, ke, ky, X, Y) : —

telly, (X = X 4 1).pos_gate(kp, ke, kr, X,Y)
+ask, (. vy (true).telly, (X = X + 1).pos_gate(kp, ke, ky, X,Y)

e ng
neg neg_gate(kp, ki, ka, X,Y) : —

tell, (X = X 4 1).neg_gate(kp, ki, ka, X,Y)
+ask, (x,,v)(true).asky, (true).neg_gate(kp, ki, ka, X,Y)

where 7(k,Y) =k Y.

Table 8. Scheme of the translation of gene gates into sCCP programs. The null gate is
modeled as a process continuously producing new copies of the associated protein, at a fixed
rate k,. The negative gate is modeled as a process that can either produce a new protein
or enter in an repressed state due to the binding of the repressor. This binding can happen
at a rate proportional to the concentration of the repressor. After some time, the repressor
unbinds and the gate return in the normal state. The enhancing of activators in the pos gate,
instead, is modeled here in an “hit and go” fashion. The enhancer can hit the gate and make it
produce a protein at an higher rate than usual. The hitting rate is proportional to the number
of molecules of the stimulating protein.

is bistable: only one of the two proteins is expressed. If the initial concentrations of
A and B are zero, then the stochastic fluctuations happening at the beginning of the
simulations decide which of the two fix points will be chosen. In Figure 5 we show one
possible outcome of the system, starting with zero molecules of A and B. In this case,
protein A wins the competition. Notice that the high sensitivity of this system makes
it unsuitable for biological system.

Example: Repressilator The repressilator [9] is a synthetic biochemical clock com-
posed of three genes expressing three different proteins, tetR, Acl, Lacl, that have a
regulatory function in each other’s gene expression. In particular, protein tetR inhibits
the expression of protein Acl, while protein AcI represses the gene producing protein
LacI and, finally, protein Lacl is a repressor for protein tetR. The expected behavior
is an oscillation of the concentrations of the tree proteins with a constant frequency.
The model we present here is extracted from [1], and it is constituted by three neg-
ative gene gates repressing each other in cycle (see Figure 6). The result of a simulation
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Fig. 5. Bistable circuit. (right) Diagram of gene gates involved. (left) Time evolution of the
circuit. The negative gates have the same rates, set as follows: basic production rate is 0.1
(kp in Table 8), degradation rate of proteins is 0.0001, inhibition rate (k;) is 1 and inhibition
delay rate (kq) is 0.0001. Both proteins have an initial value of zero. This graph is one of the
two possible outcomes of this bistable network. In the other the roles of the two proteins are
inverted.

of the sSCCP program is shown in Figure 6, where the oscillatory behaviour is manifest.
In [1] it is shown that the oscillatory behaviour is stable w.r.t. changes in parame-
ters. Interestingly, some models of the repressilator using differential equations do not
show this form of stability. More comments on the differences between continuous and
discrete models of repressilator can be found in [3].
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Fig. 6. Repressilator. (right) Diagram of gene gates involved. (left) Time evolution of the
circuit. The negative gates have the same rates, set as follows: basic production rate is 0.1
(kp in Table 8), degradation rate of proteins is 0.0001, inhibition rate (k;) is 1 and inhibition
delay rate (kq) is 0.0001. All proteins have an initial value of zero. The time evolution of
the repressilator is stable: all simulation traces show this oscillatory behaviour. However, the
oscillations among different traces usually are out of phase, and the frequency of the oscillatory
pattern varies within the same trace. Remarkably, the average trend of the three proteins shows
no oscillation at all, see [3] for further details.



3.3 Modeling the Circadian Clock

In this section we provide as a final example the model of a system containing regula-
tory mechanism both at the level of genes and at the level of proteins. The system is
schematically shown in Figure 7. It is a simplified model of the machinery involved in
the circadian rhythm of living beings. In fact, this simple network is present in a wide
range of species, from bacteria to humans. The circadian rhythm is a typical mech-
anism responding to environmental stimuli, in this case the periodic change between
light and dark during a day. Basically, it is a clock, expressing a protein periodically
with a stable period. This periodic behaviour, to be of some use, must be stable and
resistant to both external and internal noise. Here with internal noise we refer to the
stochastic fluctuations observable in the concentrations of proteins. The model pre-
sented here is taken from [26], a paper focused on the study of the resistance to noise
of this system. Interestingly, they showed that the stochastic fluctuations make the
oscillatory behaviour even more resistant. Our aim, instead, is that of showing how a
system like this can be modeled in an extremely compact way, once we have at disposal
the libraries of Sections 3.1 and 3.2.
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Fig. 7. Biochemical network for the circadian rhythm regulatory system. The figure is taken
from [26], like numerical values of rates. Rates are set as follows: aa = 50, o’y = 500, ar =
0.0]., oz}c = 50, ﬂA = 507 ﬁR = 5, (51ij = 10, 6AIR = 0.5, (5,4 = 1, 5R = 0.2, YA = 1, YR = 1,
Yo =2, 04 =50, Or = 100.

The system is composed by two genes, one expressing an activator protein A, the
other producing a repressor protein R. The generation of a protein is depicted here in
more detail than in Section 3.2, as the transcription phase of DNA into mRNA and
the traduction phase of mRNA into the protein are both modeled explicitly. Protein
A is an enhancer for both genes, meaning that it regulates positively their expression.
Repressor R, instead, can capture protein A, forming the complex AR and making A
inactive. Proteins A and R are degraded at a specific rate (see the caption of Figure 7
for more details about the numerical values), but R can be degraded only if it is not in
the complexed form, while A can be degraded in any form. Notice that the regulation



pos_gate(aa, &a,va,04, Ma, A) |
pos_gate(ar, a’r, VR, 0r, MR, A) ||
reaction(Ba, [Mal, [A]) ||
reaction(dara, [Mal,[]) ||
reaction(8r, [MRg], [R]) ||
reaction(darr, [MRr],[]) ||
reaction(yc, [4, R], [AR]) ||
reaction(da, [AR], [R]) ||
reaction(da, [A],[]) ||
reaction(dg, [R],[])

Table 9. sCCP program for the circadian rhythm regulation system of Figure 7. The agents
used have been defined in the previous sections. The first four reaction agents model the trans-
lation of mRNA into the coded protein and its degradation. Then we have complex formation,
and the degradation of R and A. The pos_gate agent has been redefined as follows, in order
to take into account the binding/unbinding of the enhancer: pos_gate(Kp, Ke, Ky, Ku, P, E)
- pos_gate_off(Kp, K¢, Ky, Ku, P, E); pos_gate_off(Kp, K¢, Kb, Ku, P, E) :-
tellx, (P = P 4+ 1).pos_gateoff(K,, K¢, Ky, Ku, P, E) + ask, . (k, 5)(E >
0).pos_gate_on(K,, K., Kp, Ky, P, E); pos_gateon(Kp, K, Ky, Ky, P,E) :- tellg (P =
P + 1).pos_gate_on(Kp, K¢, Ky, Ku, P, E) + askk, (true).pos_gate_off(K,, K, Ky, Ku, P, E).

activity of A is modeled by an explicit binding to the gene, which remains stimulated
until A unbinds. This mechanism is slightly different from the positive gate described
in Section 3.2, but the code can be adapted in a straightforward manner (we simply
need to define two states for the gene: bound and free, see caption of Table 9).

The code of the sCCP program modeling the system is shown in Table 9. It makes
use of the basic agents defined previously, and it is very compact and very easy and
quick to write. In Figure 8 (top) we show the evolution of proteins A and R in a nu-
merical simulation performed with the interpreter of the language. As we can see, they
oscillate periodically and the length of the period is remarkably stable. Figure 8 (bot-
tom), instead, shows what happens if we replace the bind/unbind model of the gene
gate with the “hit and go” code of Section 3.2 (where the enhancer do not bind to the
gene, but rather puts it into a stimulated state that makes the gene produce only the
next protein quicker). The result is dramatic, the periodic behaviour is lost and the
system behaves in a chaotic way.

4 Conclusion and future work

In this paper we presented an application of stochastic concurrent constraint program-
ming for modeling of biological systems. We dealt with two main classes of biological
networks: biochemical reactions and gene regulation. The main theme is the use of con-
straints in order to store information about the biological entities into play; this lead
straightforwardly to the definition of a general purpose library of processes that can be
used in the modeling phase (see Sections 3.1 and 3.2). However, this is only a part of
the general picture, as there are more complex classes of biological systems that need to
be modeled, like transport networks and membranes. In addition, all these systems are
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Fig. 8. Time evolution for circadian rhythm model in sCCP. (top) The figure refers to the
system described in Figure 7, with parameters described in the caption of the figure. We
can see the regularity of the period of the oscillations. (bottom) The graph shows the time
evolution for the model where the process governing the gene is the pos_gate described in
Table 8. The periodic behaviour, with this simple modification, is irremediably lost.

strongly interconnected, and they must be modeled altogether in order to extract deep
information about living beings. We believe that the flexibility of constraints makes
sCCP a powerful general purpose language that can be simply programmed, extended
with libraries, and used to model all these different classes of systems in a compact way.
For instance, different kinds of spatial information, like exact position of molecules or
the compartment they are in, can be easily represented using suitable constraints.

Biochemical reactions can be challenging to model, because proteins can form very
big complexes that are built incrementally. Therefore, we can find in the cell a huge
number of sub-complexes. Usually, these networks are described by biologists with
diagrams, like Kohn maps [18], that are very compact, because they represent com-
plexes and sub-complexes implicitly. Modeling these networks explicitly, instead, can
be extremely difficult, due to the blow up of the number of different molecules of the
system. A calculus having complexation as a primitive operation, the k-calculus, has
been developed in [5]. It offers a compact way to represent formally these diagrams.
Constraints can be used to encode this calculus elegantly, by representing complexes
implicitly, i.e. as lists of basic constituents.



Another interesting feature that sCCP offers are functional rates. As shown in
Section 3.1, they can be used to represent more complex kinetic dynamics, allowing a
more compact description of the networks. In this direction, we need to make deeper
analysis of the relation between these different kinetics in the context of stochastic
simulation, in order to characterize the cases where these different kinetics can be used
equivalently. Notice that the use of complex rates can be seen as an operation on the
Markov Chain, replacing a subgraph with a smaller one, hiding part of its complexity in
the expression of rates. This seems to be a sort of non-trivial lumpability relation [19],
though further studies are necessary.

In [3], the authors investigate the expressivity gained by the addition of functional
rates to the language. They suggest that there is an increase of power in terms of
dynamical behaviours that can be reproduced, after encoding in sCCP a wide class of
differential equations. This problem, together with the inverse one of describing sCCP
programs by differential equations, is an interesting direction of research, which may
lead to an integration of these different techniques, see [16, 3] for further comments.

Finally, we plan to implement a more powerful and fast interpreter for the lan-
guage, using also all available tricks to increase the speed of stochastic simulations [12].
Moreover, we plan to tackle also the problem of distributing efficiently the stochastic
simulations of programs written in sCCP.
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